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Abstract. This paper proposes a new approach to building false-
name-proof (FNP) combinatorial auctions from those that are FNP
only with single-minded bidders, each of whom requires only one
particular bundle. Under this approach, a general bidder is decom-
posed into a set of single-minded bidders, and after the decomposi-
tion the price and the allocation are determined by the FNP auctions
for single-minded bidders. We first show that the auctions we get
with the single-minded decomposition are FNP if those for single-
minded bidders satisfy a condition called PIA. We then show that an-
other condition, weaker than PIA, is necessary for the decomposition
to build FNP auctions. To close the gap between the two conditions,
we have found another sufficient condition weaker than PIA for the
decomposition to produce strategy-proof mechanisms. Furthermore,
we demonstrate that once we have PIA, the mechanisms created by
the decomposition actually satisfy a stronger version of false-name-
proofness, called false-name-proofness with withdrawal.

1 Introduction
With the fast growing application of auctions in the real-world,
many theoretical and practical studies of auctions have been con-
ducted [10]. Among various auctions, combinatorial auctions such
as spectrum auctions have attracted considerable attention as they
sell a variety of goods in bundles. Combinatorial auctions utilize the
fact that a buyer/bidder might gain extra value for receiving a bundle
of goods together, and therefore improve social welfare and possibly
the revenue of the seller (see [5, 4] for extensive surveys).

One major challenge of designing a desirable auction mechanism
is preventing cheating or strategic manipulations by participants. One
kind of manipulation for a buyer in a combinatorial auction is mis-
reporting her valuations for goods/bundles, given that buyers’ valua-
tions are privately observed. An auction mechanism preventing mis-
reporting is known to be strategy-proof, e.g. Vickrey-Clarke-Groves
(VCG) mechanisms. As Internet trading/auctions such as ebay have
been growing tremendously, there exist another kind of manipula-
tion called false-name manipulation. Namely, for an auction running
through the Internet, an agent might be able to create multiple ac-
counts/identifiers to participate in the auction, because, for exam-
ple, many web applications require only a valid email address and
an agent can create multiple email addresses at practically no cost.
A mechanism preventing false-name manipulations is known to be
false-name-proof [16], which is also strategy-proof.

Designing a strategy-proof mechanism is relatively easy, while to
design a “good” false-name-proof mechanism is very difficult. For
combinatorial auctions, existing work [8, 9, 7] has shown that if all
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bidders are single-minded (i.e. each bidder requires only one bun-
dle), designing a desirable mechanism is relatively easy, no matter
whether from a computational complexity aspect, an efficiency as-
pect or a false-name-proofness aspect. However, when we face gen-
eral bidders, obtaining a mechanism with desirable properties be-
comes very challenging.

In this paper, we propose a different approach to designing false-
name-proof (or strategy-proof) combinatorial auctions for general
bidders from combinatorial auctions that are false-name-proof (or
strategy-proof) only with single-minded bidders. The main idea is
decomposing a general bidder into a set of single-minded bidders and
then adapting the mechanism for single-minded bidders to get the al-
location and payments. Using this decomposition approach, we anal-
yse under what conditions desirable mechanisms for general bidders
are achievable. Especially, we show that a condition, called Prices In-
crease with Agents (PIA), is sufficient to achieve a false-name-proof
auction for general bidders from the auction that is false-name-proof
only with single-minded bidders. We also demonstrate another con-
dition weaker than PIA, but sufficient for the decomposition to build
strategy-proof mechanisms from the mechanisms that are strategy-
proof only with single-minded bidders. As well as these sufficient
conditions, we further provide some necessary conditions for design-
ing false-name-proof/strategy-proof mechanisms via the decomposi-
tion, and finally demonstrate the applicability of these conditions.

Most existing research on false-name-proof mechanism design has
focused on combinatorial auctions. Yokoo [16] showed that no false-
name-proof mechanism satisfies Pareto efficiency, i.e. maximizing
social welfare. Therefore, to get false-name-proof auction mech-
anisms we need to sacrifice efficiency. Several false-name-proof
mechanisms have been proposed for general combinatorial auction
settings, such as the Set mechanism [14], the Minimal Bundle mech-
anism [14], and the Leveled Division Set mechanism [15]. Iwasaki
et al. [7] showed that the worst-case efficiency ratio of any false-
name-proof combinatorial auction is at most 2/(m + 1) for sell-
ing m items. They also observed that the worst-case efficiency ratio
of those existing false-name-proof mechanisms mentioned above is
generally 1/m or 0. Furthermore, they proposed a novel false-name-
proof mechanism for single-minded bidders called Adaptive Reserve
Price (ARP), which has the worst-case efficiency ratio of 2/(m+1),
i.e. it achieves the highest worst-case efficiency ratio. For general
false-name-proof combinatorial auctions, Yokoo [14] and Todo et
al. [13] characterized the payment rules and the allocation rules re-
spectively. Guo and Conitzer [6] provided the same characterization
for a stronger version of false-name-proofness, called false-name-
proofness with withdrawal.

In other settings, Conitzer [3] offered a characterization of false-
name-proof voting rules, and showed the difficulty of designing



false-name-proof mechanisms for resource allocation with transfers
and public decision making without transfers. Todo et al. [11, 12]
had some case studies of designing false-name-proof mechanisms
without money. Bu [2] clarified the relationship between false-name-
proofness and a consistency condition, called population monotonic-
ity, in general public choice problem without transfers. Aziz et al. [1]
extended the concept of false-name manipulation to cooperative
games, namely weighted voting games.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the model of combinatorial auction design. Sec-
tion 3 demonstrates the single-minded decomposition auction design.
Then, Sections 4 and 5 provide a sufficient and a necessary condition
respectively for the decomposition to work. Section 6 investigates the
opportunity to close the gap between the two conditions and shows
another sufficient condition for strategy-proofness, and finally Sec-
tion 7 discusses the applicability of the decomposition. We conclude
and discuss future work in Section 8.

2 The Model
Consider a set of bidders N = {1, . . . , n}, and a set of goods/items
G = {g1, . . . , gm}. Each bidder i ∈ N has a valuation for each
bundle B ⊆ G, which is determined by i’s privately observed type
θi, denoted by v(B, θi). We assume v(∅, θi) = 0, and v(B′, θi) ≥
v(B, θi) for all B ⊆ B′ ⊆ G (i.e. free disposal). Let θ be the type
profile of all bidders and θ−i be the type profile of all bidders except
i. In a combinatorial auctionM = (π, p), each bidder i is required
to report her type θi (note that, she does not have to report her true
type), and given bidders’ type reports θ̂, M determines a feasible
allocation3 πi(θ̂) ⊆ G for each bidder i and a payment pi(πi(θ̂), θ̂)
that i will pay. Given i’s allocation B ⊆ G and her payment pB,i,
the utility of bidder i is defined as v(B, θi)− pB,i.

One key criterion of combinatorial auction design (or mecha-
nism design in general) is preventing strategic manipulations by bid-
ders/participants, which is known as strategy-proofness or incentive
compatibility.

Definition 1. We say mechanism M = (π, p) is strategy-proof
(SP), if for all θ, for all θ̂i, v(πi(θ), θi) − pi(πi(θ), θ) ≥
v(πi(θ̂i, θ−i), θi)− pi(πi(θ̂i, θ−i), (θ̂i, θ−i)).

That is, declaring the true type is a dominant strategy for each bid-
der. However, strategy-proofness cannot prevent manipulations via
creating multiple identities for a single bidder, which is called false-
name manipulation. In a false-name manipulation, a bidder uses
more than one identity to report multiple types, which can be ben-
eficial even if the mechanism is strategy-proof. We say a mechanism
is false-name-proof if declaring the true type via a single identifier is
a dominant strategy for each bidder.

Definition 2. Mechanism M = (π, p) is false-name-
proof (FNP), if for all θ, for all θi1 , θi2 , . . . , θik , we have
v(πi(θ), θi) − pi(πi(θ), θ) ≥ v(

⋃k
j=1 πij (θ−i ∪

⋃k
j=1 θij ), θi) −∑k

j=1 pij (πij (θ−i ∪
⋃k
j=1 θij ), θ−i ∪

⋃k
j=1 θij )).

Intuitively, in a false-name-proof mechanism, a bidder cannot gain
more utility via using any number of identifiers with any kind of
misreports than reporting her type truthfully with one identifier. It is
evident that false-name-proofness implies strategy-proofness.

We restrict our attention to individually rational mechanisms in
this paper, where no bidder suffers any loss for participating in these

3 Allocation π is feasible if πi(θ̂) ∩ πj(θ̂) = ∅, for all i 6= j, all profile θ̂.

mechanisms, i.e. bidders are not forced to participate in the mech-
anisms. Moreover, we restrict our attention to deterministic mecha-
nisms, which always give the same outcome for the same input.

There are a few ways to characterize strategy-proof mechanisms
such as Proposition 9.27 of [10], we will use the one given by [14],
called Price-Oriented, Rationing-Free (PORF) mechanism, which
characterizes a class of strategy-proof combinatorial auction mecha-
nisms for our model. Namely, any strategy-proof combinatorial auc-
tion can be described as a PORF mechanism.

Theorem 1 ([14]). MechanismM = (π, p) is strategy-proof if and
only ifM can be described as a PORF mechanism.

A PORF mechanism is defined as follows:

Definition 3 (PORF Mechanism [14]).

• Each bidder i declares her type θ̂i, which is not necessarily her
true type θi.

• For each bidder i, for each bundle B ⊆ G, the price pB,i is de-
fined. pB,i is determined independently of i’s declared type θ̂i,
while it can depends on declared types of other bidders.

• We assume p∅,i = 0. Also, if B ⊆ B′, pB,i ≤ pB′,i.
• For bidder i, bundle B∗i is allocated, where B∗i =

arg maxB⊆G(v(B, θ̂i) − pB,i), and i pays pB∗i ,i. If there exist
multiple bundles that maximize i’s utility, one of these bundles is
allocated.

• The result of the allocation satisfies allocation-feasibility, i.e.B∗i ∩
B∗j = ∅ for any i 6= j.

In a PORF mechanism, i’s price is determined independently of
i’s declared type, and i receives a bundle maximizing her utility (i.e.
a PORF mechanism is strategy-proof). Therefore, the prices must be
determined appropriately to satisfy allocation-feasibility, i.e. alloca-
tion feasibility is essentially controlled by the prices. Without loss of
generality, we assume that PORF always allocates one of the mini-
mal bundles that maximizing a bidder’s utility to the bidder. Bundle
B is minimal for i if v(B′, θi) < v(B, θi) for all B′ ⊂ B.

Furthermore, Yokoo [14] showed that a PORF mechanism satisfy-
ing additional conditions, namely WAP and NSA defined below, is
false-name-proof.

Definition 4 (Weakly-Anonymous Pricing Rule (WAP)). For bid-
der i, the price of bundle B is given as a function of types of other
bidders, i.e., the price can be described as p(B,ΘX), whereX is the
set of bidders except i, and ΘX is the set of types of bidders in X .

That is, if two bidders face the same set of types of other bidders,
their prices must be identical. Note that, a mechanism always allo-
cating items to some dictators does not satisfy the WAP rule, as the
prices depend on bidder’s identity but not on the others’ types.

Definition 5 (No Super-Additive Price Increase (NSA)). For
all subset of bidders S ⊆ N and X = N \ S, let Bi, for
each i ∈ S, denote a bundle that maximizes i’s utility, then∑
i∈S p(Bi,

⋃
j∈S\{i}{θj} ∪ΘX) ≥ p(

⋃
i∈S Bi,ΘX).

NSA says that the price of buying a combination of bundles (the
right side of the inequality) must be smaller than or equal to the
sum of the prices for buying these bundles separately (the left side).
The following theorem characterizes a set of false-name-proof PORF
mechanisms.

Theorem 2 ([14]). A PORF mechanism with the WAP is false-name-
proof if and only if it also satisfies the NSA condition.



Next section will propose a single-minded decomposition ap-
proach to designing false-name-proof combinatorial auctions for
general bidders from combinatorial auctions that are false-name-
proof only with single-minded bidders.

3 The Decomposition
Given a set ofm heterogeneous items, there are 2m−1 different bun-
dles, excluding the empty bundle, and each bidder has a valuation for
each bundle and therefore there are at most 2m− 1 different positive
valuations for a given bidder. We call a bidder is single-minded if
she has only one positive valuation, i.e. she requires only one bun-
dle or any superset of it. We call a general bidder k-minded, where
1 ≤ k ≤ 2m − 1 is the number of different positive valuations the
bidder assigned to all bundles. Therefore, a single-minded bidder is
also 1-minded.

Definition 6. We say bidder i is single-minded if i requires only
one bundle Ai, i.e. for any bundle B, if Ai ⊆ B, then v(B, θi) =
v(Ai, θi) > 0, otherwise, v(B, θi) = 0.

Definition 7. We say bidder i is k-minded if i requires exactly one
bundle from k bundles Ai1 , . . . , Aij , . . . , Aik with distinct positive
valuations vi1 , . . . , vij , . . . , vik , respectively. For notation simplic-
ity, let us assume Ai0 = ∅ and vi0 = 0. i’s valuation for bundle B
is defined as v(B, θi) = max0≤j≤k vij , where Aij ⊆ B.

Note that, each bundle Aij of k-minded bidder i is minimal for i,
i.e. v(B, θi) < v(Aij , θi) for all B ⊂ Aij .

Given the above definitions, we are ready to describe our decom-
position approach which aims to build a false-name-proof PORF
mechanism for k-minded bidders from the one that is FNP only with
single-minded bidders. The essential part of the approach is decom-
posing a k-minded bidder into a set of k single-minded bidders and
then apply the pricing rule of the mechanism for single-minded bid-
ders to determine the payment and the allocation for k-minded bid-
ders. A k-minded bidder is decomposed as follows.

Definition 8. Given a k-minded bidder of type θi, who requires one
bundle from k bundles Ai1 , . . . , Aik , with valuations vi1 , . . . , vik ,
respectively, dc(θi) is a single-minded decomposition of θi, where
dc(θi) = {θi1 , . . . , θik}, where each θij is a type of a single-
minded bidder who requires Aij with valuation vij . Let dc(ΘX) =
∪θj∈ΘXdc(θj).

Given the above single-minded decomposition, we can apply the
pricing rule of a false-name-proof mechanism for single-minded bid-
ders to define the prices for k-minded bidders. That is, a false-name-
proof mechanism for general bidders is defined by the pricing rule
of the mechanism for single-minded bidders with single-minded de-
composition. The following definition gives the formal definition
of the new mechanism, called Mk, and the mechanism for single-
minded bidders is calledMsingle.

Definition 9. Given a PORF mechanism Msingle with a weakly-
anonymous pricing rule p that is false-name-proof only with single-
minded bidders, mechanismMk for k-minded bidders is defined by
pricing rule p′ where p′(B,ΘX) = p(B, dc(ΘX)) and an alloca-
tion maximizing each bidder’s utility.

Note that, Mk does not satisfy allocation feasibility, i.e. not a
PORF mechanism, in general, althoughMsingle is false-name-proof
or strategy-proof. In the rest, we investigate under what conditions
Mk satisfies false-name-proofness or strategy-proofness.

4 A Sufficient Condition for Mk to be FNP
In this section, we show a condition, called Prices Increase with
Agents, on the price function p of the FNP mechanismMsingle, that
is sufficient forMk to be false-name-proof. For notation simplicity,
we assume in the rest of the paper that p ofMsingle satisfies WAP
without further mention.

Definition 10 (Prices Increase with Agents (PIA) [6]). Given a set
of single-minded bidders S, for each i ∈ S, each bundle B ⊆ G,
p(B,ΘS) ≥ p(B,ΘS\{i}).

Intuitively, price p satisfies PIA if for each bidder the price for
each bundle is non-decreasing after adding more bidders.

Theorem 3. Given FNP mechanismMsingle with price p, if p sat-
isfies PIA, thenMk is also FNP.

To prove above theorem, according to Theorem 1 and 2, we need
to prove that the price p′ ofMk satisfies both allocation feasibility
and NSA.

Lemma 1. Given FNP mechanismMsingle with price p, if p satis-
fies PIA, then p′ ofMk satisfies allocation feasibility.

Proof. Given any set of single-minded bidders X and any two k-
minded bidders k1 and k2 who can be decomposed into to a set of
single-minded bidders K1,K2 respectively. To guarantee that p′ sat-
isfies allocation feasibility, we need to show:

• Firstly, for k1, the bundleBk1 maximizing k1’s utility under price
p(B,ΘX∪K2) is not conflicting with the allocation of X ∪ K2

when there are only single-minded bidders X ∪ K1 ∪ K2 (note
that the allocation forX∪K2 is the same no matter the rest bidders
are k1 or K1 because the price p′ for X ∪ K2 is the same). The
same must hold for k2.

• Secondly, the allocations for k1 and k2 are not conflicting, i.e.
Bk1 ∩Bk2 = ∅.

Assume the bundle Bk1 maximizing k1’s utility is the bundle in-
terested by b∗1 ∈ K1 (there is no need to check for Bk1 = ∅), and
let BK2 and BX be the items allocated to K2 and X respectively.
If we substitute b∗1 for k1, i.e. consider the situation with bidders
{b∗1,K2, X}, the price for b∗1 is the same as for k1, and the price for
j ∈ X∪K2 is p(B,Θ(X∪{b∗1}∪K2)\{j}) ≤ p(B,Θ(X∪K1∪K2)\{j})
(according to PIA). Therefore, the allocation for b∗1 is still Bk1 . The
allocation for each j ∈ X ∪ K2 might change and assume that the
new allocation for K2 and X are B1

K2
and B1

X respectively. From
the situation with bidders {b∗1,K2, X} to the situation with bidders
{k1,K2, X}, the price for each j ∈ X ∪ K2 is non-decreasing,
so j’s allocation is either the same or empty, i.e. B1

K2
⊇ BK2 and

B1
X ⊇ BX . We already know that p satisfies allocation feasibility in

the situation with bidders {b∗1,K2, X}, i.e.Bk1 ∩ (B1
K2
∪B1

X) = ∅,
thus Bk1 ∩ (BK2 ∪BX) = ∅, i.e. the allocation is feasible under the
situation with bidders {k1,K2, X}. Similarly, we can show for k2.

We summarize the above proof by Table 1, where Case I shows the
situation with (single-minded) bidders {K1,K2, X}, Case II shows
the situation with bidders {b∗1,K2, X}, and Case III shows the sit-
uation with bidders {K1, b

∗
2, X}. Case IV shows the situation with

bidders {b∗1, b∗2, X}, which is used in the rest of the proof.
In the rest, we show that Bk1 ∩ Bk2 = ∅. Under the situa-

tion with bidders {b∗1, b∗2, X}, we can show that the allocation for
b∗i is Bki given PIA. Take b∗1 as example, we know from PIA that
p(B,ΘX∪{b∗2}) ≤ p(B,ΘX∪K2), therefore, the bundle maximizing
b∗1’s utility is still Bk1 . From the allocation feasibility of Msingle,
we get that Bk1 ∩Bk2 = ∅.



I Bidders: K1 K2 X
Allocation: BK1 BK2 BX

II Bidders: b∗1 K2 X
Allocation: Bk1 B1

K2
⊇ BK2 B1

X ⊇ BX

III Bidders: K1 b∗2 X
Allocation: B2

K1
⊇ BK1

Bk2 B2
X ⊇ BX

IV Bidders: b∗1 b∗2 X
Allocation: Bk1 Bk2 B1,2

X ⊇ B1
X ∪B

2
X

Table 1. Summary of the Proof of Lemma 1

Lemma 2. Given FNP mechanismMsingle with price p, if p satis-
fies PIA, then p′ ofMk satisfies NSA.

Proof. By contradiction, assume p′ does not satisfy NSA, by suing
PIA, we show that p also violates NSA.

Given a set of k-minded bidders X , and two k-minded
bidders 1, 2 6∈ X with type θ1, θ2 who can be decom-
posed into single-minded bidders of types {θ11 , ..., θ1i}
and {θ21 , ..., θ2j} respectively. Without loss of general-
ity, assume NSA of p′ does not hold for S = {1, 2}, i.e.
p(B1, {θ21 , ..., θ2j} ∪ dc(ΘX)) + p(B2, {θ11 , ..., θ1i} ∪ dc(ΘX))

< p(B1 ∪B2, dc(ΘX)),

where Bi 6= ∅ is a bundle maximizing i’s utility.
Assume that B1 (B2) is the bundle interested by θ11 (θ21 ).

If we simply substitute θ11 for θ1 and θ21 for θ2, from PIA,
we know that the prices for bidder 1, 2 are non-increasing, so
the allocation keeps the same for bidder 1, 2 before and after the
substitution. Therefore, we conclude that p also violates NSA:
p(B1, {θ21} ∪ dc(ΘX)) + p(B2, {θ11} ∪ dc(ΘX))

< p(B1 ∪B2, dc(ΘX)).

5 What is Necessary for Mk to be FNP
We have shown that PIA on p is sufficient to guarantee that Mk

is FNP. In this section, we discuss what are necessary in order to
achieve false-name-proofness forMk.

In the following, we show that p of Msingle has to satisfy
some kind of weaker PIA in order to achieve false-name-proofness
forMsingle (even without considering the false-name-proofness of
Mk). Namely, by adding a new bidder j who requires a bundle Aj ,
then for each old bidder the price of any bundle B s.t. B ∩Aj 6= ∅ is
non-decreasing. Moreover, if new bidder j’s allocation is empty, or
j’s allocation is non-empty but with zero payment, then for each old
bidder the prices of all bundles should be non-decreasing.

Theorem 4. Given FNP mechanismMsingle with price p and a set
of single-minded bidders N , for any i 6= j ∈ N , we have for all
B ⊆ G, p(B,ΘN\{i}) ≥ p(B,ΘN\{i,j}) if one of the following
conditions hold:

• B ∩Aj 6= ∅, where Aj is the bundle asked by j.
• the bundle Bj maximizing v(Bj , θj) − p(Bj ,ΘN\{j}) > 0 is

empty.
• the bundle Bj maximizing v(Bj , θj)− p(Bj ,ΘN\{j}) > 0 is not

empty, but p(Bj ,ΘN\{j}) = 0.

Proof. By contradiction, for the first condition in the theorem,
assume there exists a bundle B∗ such that p(B∗,ΘN\{i}) <
p(B∗,ΘN\{i,j}) and B∗ ∩ Aj 6= ∅. We can always find a
single-minded bidder i who requires B∗ and her valuation satisfies

p(B∗,ΘN\{i}) < v(B∗, θi) < p(B∗,ΘN\{i,j}), then i can ma-
nipulate via adding false-name bidder j so that her price for B∗ is
decreased and her allocation should be B∗ according to the alloca-
tion feasibility of p. Similarly, we can get the same manipulation for
the other two conditions.

Note that, Theorem 4 does not say how much the price should
increase after adding j, because allocation feasibility requires more,
which is something not explicitly specified for a general PORF mech-
anism [14]. It is clear that the price must also satisfy the following
additional condition to achieve allocation feasibility: for any θi, θj
requiring Ai, Aj respectively, where Ai ∩ Aj 6= ∅, if v(Ai, θi) >
p(Ai,ΘN\{i,j}), i.e. i is allocated the bundle Ai without j, then one
of the following conditions must hold after adding j:

1. v(Aj , θj) ≤ p(Aj ,ΘN\{j}).
2. v(Ai, θi) ≤ p(Ai,ΘN\{i}).

That is, either i or j cannot receive the bundle she requires.
Furthermore, Theorem 4 induces that for any i 6= j ∈ N ,

p(B,ΘN\{i}) can be less than p(B,ΘN\{i,j}) if and only if B ∩
Aj = ∅ and j receives Aj with payment p(Aj ,ΘN\{j}) > 0, given
that NSA and allocation feasibility are not violated. Therefore, the
necessary condition given in Theorem 4 is part of the PIA condition.

Now we have a sufficient condition, PIA, to guarantee false-name-
proofness ofMk and also a necessary condition, a weaker PIA, for
Msingle/Mk to be false-name-proof. We will discuss in next sec-
tion the possibilities of closing the gap to obtain a both sufficient and
necessary condition on p forMk to be FNP.

6 The Possibility of Closing the Gap
PIA condition given in Section 4 is intuitive and sufficient forMk to
be FNP, but not all FNP mechanisms for single-minded bidders can
satisfy PIA (e.g. the ARP mechanism discussed in Proposition 3),
while the condition given in Theorem 4 is necessary but not enough
forMk to be FNP. This section investigates the possibility of closing
the gap between these two conditions.

As we demonstrated in the proof of Theorem 3, to prove thatMk

is FNP, we need to show that the price p′ of Mk satisfies both al-
location feasibility and NSA. From the the first part of the proof of
Lemma 1, we get another necessary condition presented in the fol-
lowing proposition, which is necessary to achieve the allocation fea-
sibility of p′.

Proposition 1. Given single-minded bidders N , if Mk is FNP,
then for all i ∈ N and non-empty S ⊆ N \ {i}, if v(Ai, θi) −
p(Ai,ΘN\(S∪{i})) > maxj∈S(v(Aj , θj) − p(Aj ,ΘN\(S∪{i}))),
then for all j ∈ N \ (S ∪ {i}), p(Aj ,ΘN\{j}) ≥ v(Aj , θj) if
Aj ∩ Ai 6= ∅, where Ai, Aj are the minimal bundles asked by i, j
respectively.

Proposition 1 says that if we extend a single-minded bidder i to
a k-minded bidder i′ who can be decomposed into a set of single-
minded bidders {i}∪S and the allocation isAi for both i and i′, then
other bidders N \ (S ∪ {i}) cannot get any allocation with positive
utility that is conflicting withAi after substituting i′ for i. Otherwise,
allocation feasibility is violated.

Note that, Proposition 1 does not depend on the allocation feasi-
bility of p for Msingle, although it provides a necessary condition
on p to achieve the allocation feasibility of p′. By utilizing the allo-
cation feasibility of p, we get the following stronger version of the
condition given in Proposition 1, but weaker than PIA.



Condition 1. Given single-minded bidders N , for all i ∈ N and
non-empty S ⊆ N \ {i}, if v(Ai, θi) − p(Ai,ΘN\(S∪{i})) >
maxj∈S(v(Aj , θj) − p(Aj ,ΘN\(S∪{i}))), then for all j ∈ N \
(S ∪ {i}), p(B,ΘN\{j}) ≥ p(B,ΘN\(S∪{j})) if B ∩Ai 6= ∅.

Condition 1 guarantees the first part of the allocation feasibil-
ity of p′ (i.e. the allocation for a k-minded bidder will not conflict
with the allocation of the other bidders given that the others are all
single-minded), because from allocation feasibility of p, we know
p(Aj ,ΘN\(S∪{j})) ≥ v(Aj , θj) if Aj ∩ Ai 6= ∅, and therefore
p(Aj ,ΘN\{j}) ≥ v(Aj , θj) which guarantees that j’s allocation is
still not conflicting with Ai after adding bidders S. For the second
part of the allocation feasibility of p′ (i.e. the allocation for any two
k-minded bidders is not conflicting), we propose Condition 2.

Condition 2. Given two k-minded bidders k1, k2 and a set of single-
minded bidders X , if ki receives bundle Bi 6= ∅ with positive utility
under price p′, then the allocations for single-minded bidders b∗1, b

∗
2

are not both empty under the situation of bidders {b∗1, b∗2, X} with
price p, where b∗i is a single-minded bidder decomposed from ki and
the bundle required by b∗i is Bi.

Condition 2 says that if two k-minded bidders should receive a
bundle each with a positive utility under price p′, then if we substi-
tute b∗1 and b∗2 for k1 and k2 respectively, the allocation for either b∗1
or b∗2 should be non-empty under price p. We will prove in the fol-
lowing that to guarantee allocation feasibility of p′, Conditions 1 and
2 together, which is weaker than PIA4, is sufficient. Note that, Con-
dition 2 is a high level constraint on price p and the only situation it
excludes is when the allocations for b∗1, b∗2 are both empty. To include
this situation to guarantee allocation feasibility of p′, we need more
less-intuitive constraints. Nonetheless, similar to PIA, Condition 1
and 2 are also verifiable for a given PORF mechanism.

Theorem 5. If p of FNP mechanismMsingle satisfies Conditions 1
and 2, then p′ ofMk satisfies allocation feasibility.

Proof. Recall the two steps to prove the allocation feasibility ofMk

in Lemma 1:
1. For any k-minded bidder k1, any set of single-minded bidders X ,

the allocation for k1 is not conflicting with the allocation for X .
2. For any two k-minded bidders k1, k2, any set of single-minded

bidders X , the allocation for k1, k2 is not conflicting.
For the first step, assume the allocation for k1 is B1 6= ∅ under
price p′, and B1 is interested by single-minded bidder b∗1 decom-
posed from k1. It is evident that the allocation for b∗1 is still B1 when
we substitute b∗1 for k1, because the price for k1, b

∗
1 is the same. From

the allocation feasibility of p, we know thatB1 is not conflicting with
the allocation ofX after the substitution. From Condition 1, we know
that if we substitute k1 for b∗1 back, the price of bidders in X for any
bundle that intersects with B1 is non-decreasing, and therefore the
allocation for X is also not conflicting with k1’s allocation B1.

For the second step, assume the allocation for k1, k2 areB1, B2 6=
∅ respectively, and B1, B2 are interested by single-minded bidders
b∗1, b

∗
2 decomposed from k1, k2 respectively. From Condition 2, we

know that the allocation for either b∗1 or b∗2 is non-empty in the situa-
tion with bidders {b∗1, b∗2, X}. If both b∗1 and b∗2 receive a non-empty
allocation, i.e. B1 and B2 respectively, then from allocation feasibil-
ity of p, we get that B1 ∩B2 = ∅. Otherwise, assume the allocation
for b∗1 is empty (i.e. the allocation for b∗2 is B2), if we substitute k2

4 It is worth mentioning that PIA guarantees that the allocations for both b∗1
and b∗2 are non-empty under the same situation.

for b∗2, then the allocation for b∗1 changes to B1 and the allocation for
k2 is B2. Thus, from Condition 1, we know that the allocation B2

for k2 is not conflicting with b∗1’s allocation B1.

Once p′ satisfies allocation feasibility,Mk is a PORF mechanism,
i.e.Mk is strategy-proof, which leads to the following corollary.

Corollary 1. For any PORF mechanismMsingle with price p sat-
isfying Conditions 1 and 2,Mk based on p is strategy-proof.

We know from Theorem 2 that NSA is a necessary and sufficient
condition for a PORF mechanism with the WAP to be false-name-
proof. The challenge here is how to utilize NSA of p to get NSA
of p′. With PIA, we can easily have NSA for p′ from NSA for p,
because we can simply replace each k-minded bidder by a single-
minded bidder where their allocations keep the same (see the proof of
Lemma 2). However, we will lose this advantage if we weaken PIA
condition. It seems very hard to get another sufficient and intuitive
condition, weaker than PIA, that guarantees NSA of p′ via utilizing
NSA of p. The key reason is that once the price p can both increase
and decrease after adding new bidders, we will need to know more
about the precise definition of p, which is unknown for a general
PORF mechanism because of the allocation feasibility assumption.

7 The Applicability
We have shown some sufficient or necessary conditions in previ-
ous sections to achieve false-name-proofness or strategy-proofness
ofMk. This section discusses the applicability of them.

For the sufficient condition PIA given in Section 4 which guaran-
tees false-name-proofness ofMk, it also guarantees another stronger
version of false-name-proofness proposed by Guo and Conitzer [6],
called false-name-proofness with withdrawal.

Definition 11 ([6]). A mechanism M = (π, p) is false-
name-proof with withdrawal (FNPW), if for all θ, for all
θi1 , θi2 , . . . , θik , . . . , θim , we have v(πi(θ), θi) − pi(πi(θ), θ) ≥
v(
⋃k
j=1 πij (θ−i ∪

⋃m
j=1 θij ), θi) −

∑k
j=1 pij (πij (θ−i ∪⋃m

j=1 θij ), θ−i ∪
⋃m
j=1 θij )).

That is, truthful reporting using a single identifier is always better
than submitting multiple false-name bids and then withdrawing some
of them, i.e. some of the false-name identifiers (θik+1 , . . . , θim in
Definition 11) refuse to receive the allocation and to pay the payment.
According to [6], PIA is also a sufficient condition to get false-name-
proofness with withdrawal forMk.

Proposition 2. Given FNP mechanism Msingle with price p, if p
satisfies PIA, then bothMsingle andMk are FNPW.

Proof. It is evident that FNPW is equivalent to FNP plus that a bid-
der’s utility for reporting truthfully does not increase if we add more
bidders. With PIA, we know that all prices are non-decreasing, so
a bidder’s utility is non-increasing by adding more bidders for both
Msingle andMk.

There exist very few FNP mechanisms in the literature and to our
knowledge, all of them were designed for general bidders except
Adaptive Reserve Price (ARP) [7]. In the rest, we show that ARP
cannot be applied for the decomposition to achieve even strategy-
proofness, because it does not satisfy the necessary condition given
in Proposition 1.

Proposition 3. The decomposition mechanismMk using ARP does
not satisfy allocation feasibility.



To prove the above proposition, we need to briefly review the def-
inition of ARP, which is also a PORF mechanism. In ARP, all bid-
ders are single-minded, and if a bidder bids on a bundle of more
than one item, it is treated as a bid on the bundle of all the items.
Let v−i{g1}, . . . , v

−i
{gm}, v

−i
{g1,...,gm} denote the highest bids for each

bundle from all bidders except i. Let g(k) indicate the item that has
the k-th highest bid among v−i{g1}, . . . , v

−i
{gm}, i.e. v−i{g(1)} ≥ . . . ≥

v−i{g(m)}
. For bidder i, the price for each bundle is defined as:

p({g1, . . . , gm}, θ−i) = max(v−i{g1,...,gm}, v
−i
{g(1)}

, 2v−i{g(2)}
)

p({g(1)}, θ−i) =


max(v−i{g(1)}

, v−i{g1,...,gm}/2)

if v−i{g1,...,gm} < 2v−i{g(2)}
,

max(v−i{g(1)}
, v−i{g1,...,gm})

otherwise

∀k ∈ [2,m],

p({g(k)}, θ−i) =


max(v−i{g(2)}

, v−i{g1,...,gm}/2)

if v−i{g1,...,gm} < 2v−i{g(1)}
,

max(v−i{g(1)}
, v−i{g1,...,gm})

otherwise

Proof of Proposition 3. The proof is by example. Consider three bid-
ders {1, 2, 3} with types {θ1, θ2, θ3} and two items {g1, g2}. Bid-
ders’ valuations are the following.

{g1} {g2} {g1, g2}
Bidder 1: 5 3.6 7
Bidder 2: 5.5 0 5.5
Bidder 3: 0 3 3

That is, bidder 1 is 3-minded, who can be decomposed into 3 single-
minded bidders {θ11 , θ12 , θ13} asking for {g1}, {g2}, {g1, g2} re-
spectively. Bidder 2 and 3 are single-minded.

By applying the price of ARP, we get the following prices, beside
the valuations, for each bidder:

{g1} {g2} {g1, g2}
Bidder 1: 5(5.5) 3.6(3) 7(6)
Bidder 2: 5.5(5) 0(3.6) 5.5(7.2)
Bidder 3: 0(5.5) 3(3.6) 3(7.2)

For bidder 1, we get v−1
{g1} = 5.5, v−1

{g2} = 3 and
v−1
{g1,g2} = 0. Therefore, p({g1, g2}, {θ2, θ3}) = 2v−1

{g2} =

6, p({g1}, {θ2, θ3}) = v−1
{g1} = 5.5 and p({g2}, {θ2, θ3}) =

v−1
{g2} = 3. For bidder 2, we have to consider bidder 1 as 3 single-

minded bidders, i.e. {θ11 , θ12 , θ13}, we get v−2
{g1} = 5, v−2

{g2} =

3.6 and v−2
{g1,g2} = 7. Thus, p({g1, g2}, {θ11 , θ12 , θ13 , θ3}) =

2v−2
{g2} = 7.2, p({g1}, {θ11 , θ12 , θ13 , θ3}) = v−2

{g1} = 5 and
p({g2}, {θ11 , θ12 , θ13 , θ3}) = v−2

{g2} = 3.6. Similarly, we get the
prices for bidder 3.

Maximizing their utility, bidder 1 receives {g1, g2}, bidder 2 re-
ceives {g1} and bidder 3 gets nothing, which violates allocation fea-
sibility and the necessary condition given in Proposition 1.

8 Conclusion
We have proposed a single-minded decomposition approach to de-
signing false-name-proof (FNP) or strategy-proof (SP) combinatorial
auctions based on those that are FNP or SP only with single-minded
bidders. By doing that, we are able to utilize the advantage of de-
signing FNP or SP mechanisms for single-minded bidders to build

those for general bidders, although not every FNP or SP combinato-
rial auction for single-minded bidders can be successfully adapted by
the decomposition. We have showed that if the single-minded FNP
mechanism satisfies PIA, then the mechanism built by the decompo-
sition is not only FNP but also FNP with withdrawal. If we only con-
sider strategy-proofness, then another condition (Conditions 1 and
2 together, weaker than PIA) is sufficient for the decomposition to
build SP mechanisms. We have also proved some necessary condi-
tions (Theorem 4 and Proposition 1) for the decomposition to output
FNP/SP mechanisms, and investigated the possibility of closing the
gap between the sufficient conditions and the necessary conditions.

This is the very first attempt to design general FNP/SP combina-
torial auctions from relatively “simple” ones. We believe that single-
minded decomposition is not the only approach following this direc-
tion. Also, for the single-minded decomposition approach, we have
not successfully closed the gap to obtain a both sufficient and neces-
sary condition for the decomposition to produce FNP or SP mecha-
nisms. The major challenge we have faced is that the PORF mecha-
nisms used by the decomposition are very general and they assume
allocation feasibility but without explicit characterization. Once we
have a better understanding of the hidden constraints behind the al-
location feasibility assumption, we might be able to utilize them to
close the gap. Furthermore, to fully explore the power the decompo-
sition approach, we need another line of research to designing dedi-
cated mechanisms for single-minded bidders.
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