Efficacy of escitalopram in the treatment of social anxiety disorder: A meta-analysis versus placebo

David S. Baldwin\textsuperscript{a,b,\*}, Satoshi Asakura\textsuperscript{c}, Tsukasa Koyama\textsuperscript{d}, Taiji Hayano\textsuperscript{e}, Atsushi Hagino\textsuperscript{e}, Elin Reines\textsuperscript{f}, Klaus Larsen\textsuperscript{f}

\textsuperscript{a}Clinical and Experimental Sciences, University of Southampton, Southampton, UK
\textsuperscript{b}Department of Psychiatry and Mental Health, University of Cape Town, South Africa
\textsuperscript{c}Health Care Center and Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
\textsuperscript{d}Clinical Research Centre, Ohyachi Hospital, Sapporo, Hokkaido, Japan
\textsuperscript{e}Mochida Pharmaceutical Co., Ltd., Tokyo, Japan
\textsuperscript{f}H Lundbeck A/S, Valby, Denmark

Received 17 December 2015; received in revised form 9 February 2016; accepted 20 February 2016

Keywords
Efficacy; Escitalopram; Social anxiety disorder; LSAS; Meta-analysis; Placebo

Abstract
Escitalopram is the most selective of the serotonin reuptake inhibitor (SSRI) antidepressants. We conducted a meta-analysis of placebo-controlled studies where escitalopram was used to treat patients with social anxiety disorder (SAD). Data from all randomised, double-blind placebo-controlled studies in SAD with escitalopram from both specialist settings and general practice were used. Patients met the DSM-IV criteria for SAD, were \textit{Z}18 years old, and had a Liebowitz Social Anxiety Scale (LSAS) \textit{Z}60. The primary outcome measure was the estimated treatment difference in LSAS total score at Week 12. Secondary outcome measures included the estimated treatment difference in LSAS total score at Week 12. A total of 1598 patients from 3 randomised controlled trials were included in the analyses. Escitalopram (\textit{n}=1061) was superior to placebo (\textit{n}=537), with an estimated treatment difference on the LSAS of \textit{Z}9.2 points (95\%CI: \textit{Z}14.4; \textit{Z}4.0, \textit{p}<0.01) (escitalopram 5 mg/day), \textit{Z}4.6 points (95\%CI: \textit{Z}8.1; \textit{Z}1.0, \textit{p}<0.01) (escitalopram 10 mg/day), \textit{Z}10.1 points (95\%CI: \textit{Z}13.7; \textit{Z}6.5, \textit{p}<0.01) (escitalopram 20 mg/day) and \textit{Z}7.3 points (95\%CI: \textit{Z}12.3; \textit{Z}2.2, \textit{p}<0.01) (escitalopram 10-20 mg/day). For the CGI-S, the corresponding values were \textit{Z}0.55 points (95\%CI: \textit{Z}0.79; \textit{Z}0.31, \textit{p}<0.01) (escitalopram 5 mg/day), \textit{Z}0.26 points (95\%CI: \textit{Z}0.42; \textit{Z}0.10, \textit{p}<0.01) (escitalopram 10 mg/day), \textit{Z}0.48 points (95\%CI: \textit{Z}0.64; \textit{Z}0.31, \textit{p}<0.01) (escitalopram 20 mg/day) and \textit{Z}0.29 points (95\%CI: \textit{Z}0.51; \textit{Z}0.07, \textit{p}<0.05) (escitalopram 10-20 mg/day). The withdrawal rate due to adverse events was 7.2\% for...
1. Introduction

Social anxiety disorder (SAD) is typically a long-term medical condition with an estimated 1-year prevalence of 1.1–4.4% (Wittchen et al., 2011) or around 4.5% (Kessler et al., 2005), and a lifetime prevalence of 12.1% (Kessler et al., 2005) with an onset of symptoms typically in adolescence. This leads to significant functional impairment, including occupational, academic, and social dysfunction (de Menezes et al., 2011). SAD comprises social interaction fears, observation fears and public speaking fears. Early treatment is recommended, given the prolonged course of the disease and the low rate of spontaneous remission (Baldwin et al., 2014; Nagata et al., 2015).

Escitalopram is the most selective of the serotonin reuptake inhibitor (SSRI) antidepressants (Owens et al., 2001) and its efficacy has been demonstrated in SAD and other indications in both primary care and specialist settings (Kennedy et al., 2009). The efficacy of escitalopram, together with its good tolerability (Baldwin et al., 2007), suggests a favourable benefit-risk ratio.

To investigate the efficacy of the approved doses of escitalopram, the present analysis examined data from three randomised, double-blind placebo-controlled SAD studies. Meta-analysis is a method to synthesise data from several clinical studies providing they have similar trial designs, rating scales, duration, and patient selection criteria. When patient-level data are not available a meta-analysis uses the study as the unit of observation to produce a weighted average of trial results. The authors searched for all published and unpublished randomised placebo-controlled studies in SAD up to October 2015 involving escitalopram.

2. Experimental procedures

In this meta-analysis of published studies of the escitalopram treatment of patients with SAD, an attempt was made to identify all randomised, double blind placebo-controlled studies, regardless of patient numbers or treatment length.

2.1. Sources of data and criteria for review

Multiple computer searches using MEDLINE (1966-Oct 2015), EMBASE (1998-2015), and the Cochrane Collaboration (1980-Oct 2015) were conducted. The authors specified the keywords, including escitalopram, placebo, randomized controlled trials, and social anxiety disorder. Additional studies in any language were sought in reference lists of retrieved articles. Unpublished trials were identified through the Controlled Trials database and the National Institute of Health's Computer Retrieval of Information on Scientific Projects (CRISP) service (1972-2015). In addition, the following clinical trial registration sites were searched: www.lundbecktrials.com, www.forestclinicaltrials.com, www.japic.or.jp, www.clinicaltrials.gov, www.clinicaltrialresults.org, www.ifpma.org/c clinicaltrials and www.controlled-trials.com. Results from all three of these studies have already been published (Lader et al., 2004; Kasper et al., 2005; Asakura et al., 2016a).

2.2. Patients

Patients were randomly assigned to double-blind treatment at the daily dosages shown in Table 1. Eligible patients fulfilled the DSM-IV criteria for a primary diagnosis of generalised SAD and were at least 18 years old. Patients were required to have a baseline LSAS score ≥70 (Lader et al., 2004; Kasper et al., 2005) or an LSAS-J ≥60 (the LSAS-J is the Japanese translation of the LSAS) and a Clinical Global Impression-Severity (CGI-S) score ≥4 (Kasper et al., 2005; Asakura et al., 2016a). Patients were excluded if their baseline Montgomery

<table>
<thead>
<tr>
<th>Study no. (reference)</th>
<th>Duration</th>
<th>Design</th>
<th>ESC dose</th>
<th>Baseline LSAS</th>
<th>ΔLSAS&lt;sup&gt;a&lt;/sup&gt;</th>
<th>FAS (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Lader et al. (2004)</td>
<td>24 weeks&lt;sup&gt;b&lt;/sup&gt;</td>
<td>Fixed</td>
<td>5 mg</td>
<td>94.3</td>
<td>-38.7</td>
<td>166</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10 mg</td>
<td>92.4</td>
<td>-34.6</td>
<td>163</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20 mg</td>
<td>94.0</td>
<td>-39.8</td>
<td>164</td>
</tr>
<tr>
<td>2 Kasper et al. (2005)</td>
<td>12 weeks</td>
<td>PBO</td>
<td>-</td>
<td>96.0</td>
<td>-29.5</td>
<td>163</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flexible</td>
<td>10-20 mg</td>
<td>96.3</td>
<td>-34.5</td>
<td>177</td>
</tr>
<tr>
<td>3 Asakura et al. (2016a)</td>
<td>12 weeks</td>
<td>Fixed</td>
<td>10 mg</td>
<td>94.5</td>
<td>-26.9</td>
<td>198</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20 mg</td>
<td>93.4</td>
<td>-32.6</td>
<td>193</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PBO</td>
<td>-</td>
<td>95.3</td>
<td>-23.1</td>
<td>196</td>
</tr>
</tbody>
</table>

ESC: escitalopram; LOCF: last observation carried forward; LSAS: Liebowitz Social Anxiety Scale; PBO: placebo, FAS: full analysis set.

<sup>a</sup>Change from baseline to primary endpoint (ANCOVA, LOCF, FAS).

<sup>b</sup>Data from primary endpoint at Week 12.
Efficacy of escitalopram in the treatment of social anxiety disorder

2.4. Statistical analyses

Meta-analyses were carried out by dose on three endpoints: change from baseline to Week 12 on the symptom-specific LSAS scale (the primary analysis in all three studies); change from baseline on the Clinical Global Impression-Severity scale (CGI-S); as well as on the binary response endpoint (CGI-I score \( \leq 2 \)). The treatment effects and standard errors based on the pre-defined adjusted analyses reported by dose were used as inputs to the meta-analyses for the continuous endpoint, while the raw unadjusted prevalences were used for the binary response endpoint. Treatment estimates and confidence intervals are shown in tables and in forest plots with pooled estimates and standard errors based on the pre-defined adjusted analyses.

2.3. Variables

The primary efficacy variable in each of the 3 studies was the LSAS. The primary outcome endpoint of this meta-analysis was the estimated difference to placebo in the LSAS total score at Week 12. A secondary outcome measure was the estimated difference to placebo in the CGI-S score at Week 12 and response to treatment (CGI-I score \( \leq 2 \)).

3. Results

A total of 1615 patients comprised the treated population of the three studies [escitalopram \((n=1076)\) and placebo \((n=539)\)] and 1958 (98.9%) were included in the intent-to-treat (ITT) analysis of the efficacy [escitalopram \((n=1061)\) and placebo \((n=537)\)]. There was an approximately 1:1 distribution of men (44.8%) and women (55.2%). The patients had a mean age of 36 years and an onset of SAD at approximately 18 years of age, with a mean duration of about 18 years. The mean LSAS total score at baseline was 95.1, with a mean CGI-S total score of 1979) total score \( \geq 18 \) (Lader et al., 2004), MADRS \( > 19 \) (Kasper et al., 2005), or MADRS \( \geq 15 \) (Asakura et al., 2016a). Patients with a serious concomitant illness or a recent history of alcohol or drug abuse were excluded from study participation. Clinically significant abnormalities on the baseline physical examination, electrocardiogram, or laboratory tests were also criteria for exclusion from study participation (Lader et al., 2004; Kasper et al., 2005). Patients who had a known hypersensitivity to citalopram or escitalopram (Asakura et al., 2005), or MADRS total score \( \geq 16.4 \) (Lader et al., 2004), MADRS \( \geq 15 \) (Asakura et al., 2016a) had taken disallowed recent or concomitant medication were also excluded. Patients were excluded if they had been diagnosed with another psychiatric disorder (mania, bipolar disorder, schizophrenia, or any other psychotic disorder); if they were considered to be at significant risk of suicide; if they were unlikely to be able to comply with the protocol; or if they had any disorder that might interfere with study treatment or impair treatment compliance.

### Table 2 Baseline characteristics of the APTS population in the meta-analysis.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Placebo</td>
<td>Escitalopram 5, 10 &amp; 20 mg</td>
<td>Placebo</td>
</tr>
<tr>
<td>Patients (n)</td>
<td>166</td>
<td>504</td>
<td>177</td>
</tr>
<tr>
<td>Age (years)</td>
<td>37 ± 12</td>
<td>37 ± 11</td>
<td>36 ± 11</td>
</tr>
<tr>
<td>Men (%)</td>
<td>81 (48.8%)</td>
<td>233 (46.2%)</td>
<td>94 (53.1%)</td>
</tr>
<tr>
<td>Caucasian (%)</td>
<td>100</td>
<td>99.7</td>
<td>91.6</td>
</tr>
<tr>
<td>Japanese (%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Age of SAD onset (years)</td>
<td>18 ± 8</td>
<td>17 ± 8</td>
<td>15 ± 8</td>
</tr>
<tr>
<td>Duration of disorder (years)</td>
<td>13 ± 7</td>
<td>20 ± 12</td>
<td>21 ± 12</td>
</tr>
<tr>
<td>LSAS total score (years)</td>
<td>96.0 ± 14.4</td>
<td>93.6 ± 14.4</td>
<td>95.4 ± 16.4</td>
</tr>
<tr>
<td>CGI-S total score (years)</td>
<td>4.8 ± 0.8</td>
<td>4.8 ± 0.7</td>
<td>4.8 ± 0.7</td>
</tr>
<tr>
<td>MADRS total score (years)</td>
<td>7.6 ± 4.8</td>
<td>7.0 ± 4.4</td>
<td>7.5 ± 4.4</td>
</tr>
</tbody>
</table>

*mean ± SD. APTS: all patients treated set; CGI-S: Clinical Global Impression-Severity, LSAS: Liebowitz Social Anxiety Scale, MADRS: Montgomery Åsberg Depression Rating Scale SAD: social anxiety disorder, SD: standard deviation.

Asberg Depression Rating Scale (MADRS) (Montgomery and Åsberg, 1979) total score was \( \geq 18 \) (Lader et al., 2004), MADRS \( > 19 \) (Kasper et al., 2005), or MADRS \( \geq 15 \) (Asakura et al., 2016a). Patients with a serious concomitant illness or a recent history of alcohol or drug abuse were excluded from study participation. Clinically significant abnormalities on the baseline physical examination, electrocardiogram, or laboratory tests were also criteria for exclusion from study participation (Lader et al., 2004; Kasper et al., 2005). Patients who had a known hypersensitivity to citalopram or escitalopram (Asakura et al., 2005), or MADRS total score \( \geq 16.4 \) (Lader et al., 2004), MADRS \( \geq 15 \) (Asakura et al., 2016a) had taken disallowed recent or concomitant medication were also excluded. Patients were excluded if they had been diagnosed with another psychiatric disorder (mania, bipolar disorder, schizophrenia, or any other psychotic disorder); if they were considered to be at significant risk of suicide; if they were unlikely to be able to comply with the protocol; or if they had any disorder that might interfere with study treatment or impair treatment compliance.

Be used. The study-specific treatment effect test was not statistically significant and the pooled analyses were thus all conducted using fixed-effect models. These analyses used the statistical summary data from each published study based on a modified intent-to-treat analysis (the full-analysis set [FAS], using the last observation carried forward (LOCF) method for missing data.

For all efficacy measures, point estimates were expressed with their 95% confidence intervals (95% CI). The number needed to treat (NNT) is the inverse of the difference in the proportion of patients responding to treatment between escitalopram and placebo rounded up to the nearest integer. Similarly, the limits of the NNT confidence intervals are the inverted limits of the confidence intervals of the difference in proportions. Statistical analyses were performed using SAS software, and all statistical tests were two-sided. The alpha risk was set to 5%. Disposition, safety and tolerability data are presented for each study.

3. Results

A total of 1615 patients comprised the treated population of the three studies [escitalopram \((n=1076)\) and placebo \((n=539)\)] and 1958 (98.9%) were included in the intent-to-treat (ITT) analysis of the efficacy [escitalopram \((n=1061)\) and placebo \((n=537)\)]. There was an approximately 1:1 distribution of men (44.8%) and women (55.2%). The patients had a mean age of 36 years and an onset of SAD at approximately 18 years of age, with a mean duration of about 18 years. The mean LSAS total score at baseline was 95.1, with a mean CGI-S total score of 1979) total score \( \geq 18 \) (Lader et al., 2004), MADRS \( > 19 \) (Kasper et al., 2005), or MADRS \( \geq 15 \) (Asakura et al., 2016a). Patients with a serious concomitant illness or a recent history of alcohol or drug abuse were excluded from study participation.
treatment difference to placebo on the LSAS of –9.2 points (95% CI: [–14.4; –4.0], p < 0.01) (escitalopram 5 mg/day), –4.6 points (95% CI: [–8.1; –1.0], p < 0.01) (escitalopram 10 mg/day), –10.1 points (95% CI: [–13.7; –6.5], p < 0.01) (escitalopram 20 mg/day) and –7.29 points (95% CI: [–12.3; –2.2], p < 0.01) (escitalopram 10–20 mg/day) (Figure 1). For the CGI-S, the corresponding values were –0.55 points (95% CI: [–0.79; –0.31], p < 0.01) (escitalopram 5 mg/day), –0.26 points (95% CI: [–0.42; –0.10], p < 0.01) (escitalopram 10 mg/day), –0.48 points (95% CI: [–0.64; –0.31], p < 0.01) (escitalopram 20 mg/day) and –0.29 points (95% CI: [–0.51; –0.07], p < 0.05) (escitalopram 10–20 mg/day) (Figure 2).

3.2. Efficacy at end of 24 weeks of double-blind treatment

In one study (Lader et al., 2004) although the pre-defined endpoint was at Week 12, patients were in double-blind treatment for 24 weeks. At the end of this period, the estimated treatment difference to placebo on the LSAS was –10.5 points (95% CI: [–16.3; –4.7], p < 0.001) (escitalopram 5 mg/day), –7.45 points (95% CI: [–13.3; –1.5], p < 0.05) (escitalopram 10 mg/day), and –15.1 points (95% CI: [–20.9; –9.2], p < 0.001) (escitalopram 20 mg/day). For the CGI-S, the corresponding values were –0.42 points (95% CI: [–0.71; –0.14], p < 0.01) (escitalopram 5 mg/day), –0.47 points (95% CI: [–0.76; –0.17], p < 0.01) (escitalopram 10 mg/day), –0.88 points (95% CI: [–1.17; –0.60], p < 0.001) (escitalopram 20 mg/day).

3.3. Response to treatment at week 12

The estimated treatment difference in response (CGI-I score ≤2) at Week 12 is shown in Figure 3. For each treatment arm in each study, the response rates were 41.2% (placebo) and 60.8% (escitalopram 5 mg), 37.8% (placebo) and 48.0% (escitalopram 10 mg), 41.2% (placebo) and 54.9% (escitalopram 10 mg), 37.8% (placebo) and 54.9% (escitalopram 20 mg), 41.2% (placebo) and 62.0% (escitalopram 20 mg) and 38.6% (placebo) and 54.2% (escitalopram 10–20 mg). The difference to placebo was significant for all escitalopram doses in each of the three studies, and ranged from 10.2% to 20.8%. The number-needed-to-treat (NNT) for...
response to treatment ranged from 5 to 10 for the individual studies, with values of 6 (escitalopram 5 mg/day), 9 (escitalopram 10 mg/day) and 6 (escitalopram 20 mg/day) in the meta-analysis.

3.4. Withdrawal rates

The total withdrawal rate was 17.3% for all escitalopram doses, compared with 17.1% for placebo. Withdrawal rates for different escitalopram doses were as follows: 17.4% versus 23.5% (5 mg versus placebo), 16.2% versus 16.6% (10 mg versus placebo) and 16.8% versus 16.6% (20 mg versus placebo). The withdrawal rate due to adverse events was 8.1% for all escitalopram doses versus 4.6% for placebo: withdrawal rates due to adverse events for different escitalopram doses were as follows: 4.8% versus 6.0% (5 mg versus placebo), 7.9% versus 4.7% (10 mg versus placebo) and 9.4% versus 4.7% (20 mg versus placebo). In the flexible dose study, the overall withdrawal rate was 19.9% versus 18.1% (10-20 mg versus placebo) and the withdrawal rate due to adverse events was 8.8% versus 4.5% (10-20 mg versus placebo).

4. Discussion

This meta-analysis involved patients with social anxiety disorder from Europe, North America and Japan who took part in one of 3 double-blind randomised clinical trials involving escitalopram. The principal finding in this meta-analysis is that escitalopram consistently demonstrated greater efficacy compared to placebo, as assessed by the LSAS and the CGI, on a series of endpoint comparisons involving change in scores from baseline and response rates.

What is the clinical relevance of these results? Reductions in LSAS scores of at least 20–30% from baseline have been defined as clinically significant (Hansen et al., 2008). In this meta-analysis, the mean decrease from baseline was 41.0% (escitalopram 5 mg), 33.0% (escitalopram 10 mg), and 38.6% (escitalopram 20 mg) versus 27.8% for placebo (Table 1). This compared with a mean decrease from baseline in the
LSAS-J of 33.3% versus 24.4% for placebo in a 10-week SAD study with fluvoxamine (150–300 mg) (n=273) in Japan (Asakura et al., 2007).

The estimated treatment differences for escitalopram, ranging from 4 to 10 points on the LSAS, are statistically significant for all three doses (Figure 1). The response rates were 37.8–41.2% for placebo (n=537), which was remarkably consistent between studies, and 48.0–62.0% for escitalopram (n=1061), depending on dose. This corresponds to a difference to placebo in response rates of over 16%, considered to be a clinically meaningful difference in studies in patients with major depression undergoing antidepressant treatment (Melander et al., 2008).

In the 12-week open-label phase of a relapse prevention study with escitalopram 10-20 mg (n=517), LSAS scores improved by −46.6 points, from 94.8 at baseline to 48.2 (observed cases) (Montgomery et al., 2005). In the open-label phase of this study, 70% of the patients had their dose increased to escitalopram 20 mg by Week 12. After randomisation, both escitalopram doses showed significantly lower relapse rates compared to their corresponding placebo group. The mean dose at Week 12 in the flexibly-dosed study of Kasper et al., 2005 was 17.6 mg, indicating that 76% of patients had increased their dose to 20 mg/day escitalopram.

There are also open-label studies in SAD with escitalopram. In a large (n=158) open-label flexible-dose study (10-20 mg/day) in Japan (Asakura et al., submitted for publication), 81.0% of patients completed 52 weeks of treatment. LSAS-J scores improved from 95.3 at baseline to 49.9 (FAS, OC) at Week 52 and (56.3 at last assessment (LOCF, FAS)), with 68.4% of patients increasing their dose from 10 to 20 mg/day. In a small (n=29) 12-week open-label study with escitalopram 10-20 mg in patients with...
treatment-resistant SAD, LSAS scores reduced by 29.2 points, from 62.4 at baseline to 33.2 (mixed model repeated measures) (Pallanti and Quercioli, 2006). In another small (n=14) 12-week open-label study with escitalopram 10-20 mg in patients with SAD, LSAS scores reduced by 25.8 points, from 83.6 at baseline to 57.8 (Warwick et al., 2012), with a significantly greater improvement in patients with an A10/A10 genotype, which is associated with increased expression of the dopamine transporter. In the third small 12-week open-label study with escitalopram 10-30 mg in patients with SAD (n=39) and fear of blushing, LSAS scores reduced by 24.2 points, from 76.8 at baseline to 52.6, and 20 of 28 patients (71.4%) responded (CGI-I ≤ 2, FAS, OC) to treatment (Pelissolo and Moukheiber, 2013). And in a 12-week open-label study with escitalopram 10-20 mg in children with SAD, 13 of 20 patients (65.0%) responded (CGI-I ≤ 2) to treatment (Isolan et al., 2007). In spite of the possibility of expectation effects in these open-label studies (Bandelow et al., 2015), the mean improvement from baseline is similar in magnitude to those found in the randomised controlled trials included in this meta-analysis (Table 1).

In a comparison of pharmacological and psychological treatments based on the difference between pre-post and treated versus control effect sizes, medications have been associated with a significantly higher average pre-post effect size than psychotherapies (Bandelow et al., 2015). The choice of a pharmacotherapy should be made on the basis of efficacy as well as on possible side effects, contraindications and interactions (Baldwin et al., 2014). The total withdrawal rate for patients treated with escitalopram in the three SAD studies included in this meta-analysis was at placebo level, while the adverse event withdrawal rate for all escitalopram doses was 4.8-9.4% versus placebo (4.9-6.0%).

A limitation of this meta-analysis is the small number of randomised controlled studies, all of which were sponsored by the manufacturer of escitalopram. As a result of regulatory and safety requirements, patients with another psychiatric disorder were excluded, as were those with depressive symptoms. Very few patients with an ethnicity other than Caucasian or Japanese were treated in these studies. Thus, these patients may not be representative of those seen in actual clinical practice.

In conclusion, in this meta-analysis all doses of escitalopram (5, 10 and 20 mg/day) had significantly greater efficacy versus placebo, as assessed by the LSAS and the CGI on a series of endpoint comparisons involving change in efficacy scores from baseline and response rates. Given its favourable tolerability profile based on withdrawals due to adverse events, these results suggest that escitalopram has a good benefit-risk ratio.

Role of funding source

The studies in this meta-analysis were sponsored by H. Lundbeck A/S, the manufacturer of escitalopram, and the Mochida Pharmaceutical Company. Lundbeck and Mochida were involved in the design, analysis and interpretation of data, and in the decision to submit the paper for publication.

Conflict of interest

Prof. Baldwin has received honoraria for educational presentations from H. Lundbeck A/S, and has acted as a paid consultant to Eli Lilly, Lundbeck, Pfizer and Servier, and currently holds research grants (on behalf of his employer) from Lundbeck and Pfizer. He has accepted paid speaking engagements in industry-supported satellite symposia or other meetings hosted by GlaxoSmithKline, Eli Lilly, Lundbeck, Pfizer and Servier. L.C. Dr. Asakura and Dr. Koyama report no potential conflict of interest in this work. T. Hayano and A. Hagino are employees of the Mochida Pharmaceutical Co., Ltd. Dr. Reines and K. Larsen are employees of H Lundbeck A/S.

Acknowledgements

The authors thank D.J. Simpson (H. Lundbeck A/S) for providing support in the preparation, revision, and editing of the manuscript.

References


Contributors

K. Larsen conceived the design and methodology and conducted the systematic review and meta-analysis. Prof. Baldwin wrote the first draft of the manuscript. All authors contributed to and have approved the final manuscript.


