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Abstract. Analysis of hydrochemical behaviour during

storm events can provide new insights into the process con-

trols on nutrient transport in catchments. The examination of

storm behaviours using hysteresis analysis has increased in

recent years, partly due to the increased availability of high

temporal resolution data sets for discharge and water quality

parameters. A number of these analyses involve the use of

an index to describe the characteristics of a hysteresis loop

in order to compare storm behaviours both within and be-

tween catchments. This technical note reviews the methods

for calculation of the hysteresis index (HI) and explores a

new more effective methodology. Each method is systemat-

ically tested and the impact of the chosen calculation on the

results is examined. Recommendations are made regarding

the most effective method of calculating a HI which can be

used for comparing data between storms and between differ-

ent water quality parameters and catchments.

1 Introduction

The analysis of hysteresis patterns is a key tool for the in-

terrogation of in-stream physical and chemical responses to

storm events, which have been shown to be important peri-

ods for the transport of nutrients and sediment within catch-

ments (Bowes et al., 2003; Jarvie et al., 2002; Jordan et al.,

2007; Burt et al., 2015; Evans and Johnes, 2004). In the con-

text of this paper, hysteresis is defined as the nonlinear re-

lationship between discharge and concentration of nutrients

or sediment. When discharge–concentration data are plotted

a cyclic pattern is often observed, and the size and shape of

the loop is dependent on the lag in response between the dis-

charge and water quality variables. Quantification of hystere-

sis allows multiple storm behaviours to be examined between

and within catchments as well as under varying antecedent

conditions, for discharge and a wide range of hydrochemi-

cal parameters. This can provide insight into catchment func-

tion, allowing the development and testing of process-based

hypotheses. This type of analysis has been used in recent

years by many authors investigating nutrient concentration-

discharge relationships in catchments of differing environ-

mental character (e.g. Bowes et al., 2015; Darwiche-Criado

et al., 2015; Cerro et al., 2014; Rodriguez-Blanco et al., 2013;

Oeurng et al., 2010; Eder et al., 2010; Evans and Johnes,

2004) but, traditionally, has been used for the examination

of turbidity or suspended sediment data (e.g. Ziegler et al.,

2014; House and Warwick, 1998; Williams, 1989; Tena et al.,

2014; Klein, 1984; Whiting et al., 1999). Hysteresis analysis

has been used to support the investigation of the temporal

variations in nutrient transport to streams as a means of char-

acterising the likely contributing source areas and flow path-

ways linking source to stream in complex landscapes (Out-

ram et al., 2014; Bowes et al., 2015; Lloyd et al., 2016a).

Hysteresis patterns with similar characteristics can be ob-

served for a variety of different reasons; however, it is gener-

ally assumed that clockwise hysteresis, caused by concentra-

tions increasing more rapidly than discharge during the rising

limb, suggests a source close to the monitoring point. Con-

versely, anticlockwise hysteresis generally signifies a longer

lag between the discharge and concentration peak, suggest-

ing that the source was located further from the monitor-

ing point. Williams (1989) provides a detailed summary of
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Figure 1. (a) Impact of storm initial concentration, (b) storm initial discharge on the value of the calculated HI when the mid-point in

discharge and raw data is used and (c) an idealised and normalised storm illustrating the impact of measuring different quantiles of flow on

the HI calculated, where HIL and HILA are the original and adapted Lawler et al. (2006) methods, respectively and HInew, the proposed new

method. Colours represent different discharge intervals measured.

different shape hysteresis plots and the possible underlying

mechanisms.

For hysteresis analysis to be effective and easy to inter-

pret there is a need to develop a robust method of classi-

fying storms according to their hysteretic behaviour. Many

papers have classified storms into clockwise or anticlock-

wise responses, and described the strength of the hystere-

sis as small or large (Bowes et al., 2015; Evans and Davies,

1998; Butturini et al., 2008). Other authors have used an in-

dex approach, which allows a dimensionless quantification

of the hysteresis, and thus comparison of hysteresis indices

between catchments of differing size, morphology, and hy-

drological function. An index approach is also useful as it

provides information about both the direction and strength

of the hysteresis. Hysteretic indices proposed by Butturini

et al. (2008) provide semi-quantitative methods to describe

whether the measured parameter is enriched or diluted dur-

ing a storm event and to assess the area inside the hystere-

sis loop, along with its direction. Langlois et al. (2005) pro-

pose a quantitative method which involves splitting the dis-

charge hydrograph into the rising and falling limb and fit-

ting regression lines to each data set. The hysteresis index

is calculated as the ratio (rising:falling) of the areas under

the regression curves. Whilst this index provides a quanti-

tative solution, the authors suggest that the method should

only be applied to simple uni-directional loops, i.e. not those

which exhibit figure-of-eight or more complex behaviours. A

quantitative index was also proposed by Lawler et al. (2006),

which uses the ratio of the turbidity (or other parameter) con-

centration on the rising and falling limb, at the mid-point in

the discharge. The mid-point in discharge is defined as 50 %

of the range in discharge during the storm event. This in-

dex has been used by a number of other authors (McDonald

and Lamoureux, 2009; Outram et al., 2014), as it is flexible

and can be applied to hysteresis loops of all shapes. How-

ever it is not without limitations. In a recent paper, Aich et

al. (2014) highlight that the index of Lawler et al. (2006) in

its current form becomes skewed at higher concentrations,

with a smaller index calculated for loops of the same shape

and area in the case of storms commencing at a higher con-

centration (Fig. 1a). In addition, the calculation of the index

using only the mid-point (50 %) in discharge can be prob-

lematic. Lawler et al. (2006) state that the mid-point was

used as it avoids the often noisy sections at the beginning

and end of the loops. However, the result of the calculated

index may be misleading in many figure-of-eight scenarios,

especially those which cross close to the mid-point in dis-

charge (see Fig. 1b). The example shown in Fig. 1b illus-

trates that a hysteresis index (HI) calculated at the mid-point

in discharge would suggest that there was very little hystere-

sis, even though there is a strong effect but in different di-

rections during different periods of the storm event. As sug-

gested by Lawler et al. (2006), the HI can be calculated at

multiple increments through the flow range and an average

HI value gained. Against the above background, this techni-

cal note reports the impact of the chosen method on the in-

dex values generated from a series of storms of varying size

and hysteretic shapes, using an adapted version of the Lawler

et al. (2006) index (HILA). The paper also introduces a new

method for calculating the hysteresis index (HInew) and, as

a result of this analysis, suggests a recommendation for the

most appropriate calculation for a HI for storm-driven nutri-

ent transport in catchments.

2 Methodology

2.1 Data sets

The example uses a series of storms extracted from high tem-

poral resolution (15 min) data collected on the River Wylye at

Brixton Deverill (Wiltshire, UK) as part of the Defra Demon-

stration Test Catchment project (McGonigle et al., 2014)

from March 2012 to March 2014. Detailed descriptions of

the field site and the data sets are available in previously

published work (Lloyd et al., 2016a, b) . For the purposes

of this study, discharge data were obtained from the Environ-

ment Agency gauge (Gauge Number 43806) and turbidity

data were collected using a YSI 6-Series sonde, which was
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Figure 2. Six storms with varying loop shapes and sizes (a–f), where (I) is the hysteresis loop using the raw data, (II) is the distribution of

HI values using the original and adapted Lawler et al. (2006) methods (HIL / HILA) using varying percentiles of flow, (III) is the hysteresis

loop plotted using normalised data, and (IV) is the distribution of HI values using the new method (HInew) using varying percentiles of flow.

The grey areas show the distributions which are not statistically different from each other. In panels I and III, the black line represents the

median and the boxes represent the 5th–95th percentiles of the uncertainty range.
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Figure 3. Examples of how the sampling intervals for the calcula-

tion of the HILA and HInew are determined. The coloured arrows

and dashed lines illustrate the position of sections used for the cal-

culation of the HI, where 50, 25, or 10 % intervals are used. The

coloured dots show the positions on the rising and falling limbs used

to calculate the HI.

cleaned and calibrated once a month over the monitoring pe-

riod. Turbidity (measured in Nephelometric Turbidity Units

(NTU)) was chosen for this study as it is the most widely

examined parameter in terms of hysteresis and the storms

selected from the data set exhibit a wide range of turbidity

values and hysteretic shapes. A total of 66 storms were ex-

tracted for this analysis from the 2-year observational data.

A storm was classified as an increase in discharge of more

than 20 % above baseflow and the end of the storm was de-

termined by either a return to baseflow conditions or when

discharge began to rise again if another storm occurred be-

fore the system had returned to baseflow conditions. Previous

work had quantified the uncertainty associated with the dis-

charge and turbidity measurements (Lloyd et al., 2016a, b)

and this provided 100 resampled iterations of each measured

parameter for every storm, accounting for observational un-

certainties, for this analysis. Figure 2a–f(I) shows some ex-

ample storms, where the boxes represent the 5th–95th per-

centile uncertainty range for each data point.

2.2 Lawler et al. (2006) method and modification

The HI was then calculated according to the standard method

of Lawler et al. (2006) (HIL) for combinations of all 100 it-

erations of each of the storms to provide a distribution of HI

when the mid-point in discharge was calculated (50 %). The

Lawler et al. (2006) method was also adapted (HILA), where

HI was calculated at every 25, 10, 5, and 1 % increments of

the discharge (see Fig. 3 for visualisation) as shown below.

If TRL >TFL (clockwise hysteresis):

HIL =

(
TRL

TFL

)
− 1. (1)

Or, if TRL < TFL (anticlockwise hysteresis):

HIL =

(
−1/

TRL

TFL

,

)
+ 1, (2)

where TRL is the value of turbidity at a given point in flow on

the rising limb of the hydrograph and TFL is the value on the

falling limb.

When multiple sections per storm were calculated, the av-

erage value was taken to represent the HI of the complete

storm event. In some cases there were no corresponding val-

ues on both the falling and rising limbs – when this occurs

the maximum number of available pairs of data were used

to calculate the index. This usually only occurred at lowest

discharges and when a large number of intervals were be-

ing analysed. This meant that the number of missing pairs

was small compared with the available pairs (< 5 %) and as a

result had little impact on the overall calculation. The analy-

ses were completed for both the raw data and for normalised

storms to assess the impact of the different analysis methods

on the HI values obtained. The data were normalised using

the following equations:

Normalised Qi =
Qi −Qmin

Qmax−Qmin

(3)

Normalised Ti =
Ti − Tmin

Tmax− Tmin

, (4)

where Qi / Ti is the discharge/turbidity at timestep i,

Qmin / Tmin is the minimum storm parameter value and

Qmax / Tmax is the maximum storm parameter value.

2.3 Proposed new hysteresis index method (HInew)

A new method of calculating a HI was also tested (HInew)

with the aim of eliminating the impact of a changing baseline

value on the ratio as multiple measurements are taken from

the same storm. The new index uses the difference between

the turbidity values on the rising and falling limbs of the nor-

malised storms, rather than a ratio, and effectively normalises

the rising limb at every measurement point, thereby resulting

in an index between −1 and 1:

HInew = TRL_norm− TFL_norm. (5)

As with the other methods, the analysis was carried out us-

ing different intervals of discharge (25, 10, 5, and 1 %) and

the mean was used as the final HI value for the storm. The

impact of this number of chosen intervals of discharge on the

magnitude of the resulting HI was tested.

The resulting distributions of HI values for each method

were then scrutinised using boxplots. Differences between

Hydrol. Earth Syst. Sci., 20, 625–632, 2016 www.hydrol-earth-syst-sci.net/20/625/2016/
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Table 1. Showing the increments of discharge measured and the corresponding number of storms (out of 66 analysed) and the percentage of

storms which can be robustly∗ characterised using different HI methods. (∗Where adding extra measurement sections does not statistically

change the distribution of HI vales for a storm.)

Percentile increments Sections measured Storms (HILA) Storms (HInew)

50 % (=HIL) 1 5 (8 %) 1 (1.5 %)

25 % 3 34 (52 %) 41 (62 %)

10 % 9 55 (83 %) 63 (95 %)

5 % 19 65 (98 %) 66 (100 %)

1 % 99 66 (100 %) 66 (100 %)

the distributions of data for each storm were analysed statis-

tically using ANOVA where normality and variance assump-

tions were met, and the non-parametric alternative Kruskal–

Wallis H on ranked data where the ANOVA assumptions did

not hold. When a significant difference between the groups

was detected, a pairwise Tukey test was used to establish

which of the groups were contributing to the effect. The main

aim of the analysis was to determine the point at which suf-

ficient intervals of discharge were used so that there was no

statistically significant difference between the different data

sets for each storm.

3 Results and discussion

A total of 66 storms were analysed using the three meth-

ods for calculating the HI, which included 35 anticlock-

wise loops, 11 clockwise loops, 12 figure-of-eight loops

which were mainly anticlockwise, and 8 figure-of-eight

loops which were mainly clockwise (loop shapes were iden-

tified by visual inspection). The peak turbidity during the

storms ranged between 10 and 392 NTU (mean= 91 NTU)

and the starting values were between 2 and 31 NTU

(mean= 8 NTU). Figure 2 shows six example storms (a–f,

panel I) from the range of behaviour identified above, each

with varying shape and size. Table 1 summarises the number

(and percentage) of storms tested which can be adequately

represented by calculating the HI values using each of the

different discharge interval frequencies stated in Sect. 2.2.

Figure 2a–f(II) shows that the distributions of HI values

(using HIL) measured at only 50 % of discharge are often

very different from the analyses which measure multiple sec-

tions across the loop (HILA). The more complex the shape of

the loop, the more measured sections are needed to represent

it adequately. The analysis shows that by using 5 % incre-

ments of discharge (19 sections), 98 % of the storms anal-

ysed showed stable distributions and therefore no significant

changes were observed when additional increments were in-

cluded. While including more increments of the loop in the

analysis does improve the HI results, it does not solve all of

the issues highlighted earlier. Both HIL and HILA are sen-

sitive to the size of the storm and, as a result, for a simi-

lar pattern in hysteresis but a larger magnitude of storm, a

comparatively smaller value would be calculated for the in-

dex, as shown in Fig. 1a. This means that the results gen-

erated for a series of storms are very difficult to interpret

and it is difficult to compare between individual storms and

catchments. By normalising the storms as described above

and continuing to use the HILA method, the comparability of

the outputs between storms is improved as they are all as-

sessed on the same scale. However, if multiple increments of

discharge are included, which has been shown to be benefi-

cial, then effectively each of the individual measured sections

of the storm need to be normalised, otherwise the problem

is reduced but not eradicated. This problem is illustrated in

Fig. 1c, which shows an example of an idealised and nor-

malised storm where the width of the loop remains constant

through most of the storm. However, at different quantiles of

flow, HI value varies due to the loop gradient, the HI is in-

flated towards the lower and reduced at higher quantiles of

discharge. The HInew was designed to overcome this prob-

lem. The new index uses the difference between the nor-

malised turbidity values on the rising and falling limb at each

increment of discharge rather than the ratio, thereby directly

quantifying the width of the loop.

Figure 4 shows how the new index effectively normalises

the rising limb and examines the relative behaviour of the

falling limb, thereby identifying the proportion of the storm

occurring in a clockwise or anticlockwise phase. For this new

method to be robust, it is necessary to normalise the data as

described earlier before the analysis. Figure 2a–f(III) show

the example storms in their normalised forms. The new index

produces a value between −1 and 1, where 0 represents no

hysteretic pattern and positive values clockwise and negative

values, anticlockwise hysteresis. A figure-of-eight storm will

be represented as a weighted average of the intervals of dis-

charge measured when the storm was in a clockwise phase

and when it was in an anticlockwise phase. Therefore, for

example, if the storm exhibits anticlockwise behaviour for a

large proportion of the storm event the average HInew will

produce a negative number. It should be noted that in the un-

usual case that an exactly symmetrical figure-of-eight storm

is presented the index would produce a value of 0, suggesting

no hysteresis. Using the HI value in conjunction with loop

area will however provide clarification, as a storm which has

www.hydrol-earth-syst-sci.net/20/625/2016/ Hydrol. Earth Syst. Sci., 20, 625–632, 2016
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Figure 4. (a) The original storm, where the black line represents the median and the boxes the 5–95th percentiles of the uncertainty around

the line, and (b) illustrates the HInew of the normalised storm.

an HI of 0 but a positive loop area has to be a complex loop

shape. The advantage of our new technique is that the user

can choose to interrogate other output metrics within these

results, such as the quantified loop area and the distribution

of HI values calculated for each section of the loop in addi-

tion to the averaged HI value. By looking at the distribution

of values it is simple to identify complex loop shapes such as

figure-of-eight (due to both positive and negative values cal-

culated for the various loop sections) and this ensures correct

interpretation of the HI values. Although we do not explore

the advantage of these further analyses here, we suggest that

they potentially provide a richer analysis of hysteresis dy-

namics that we aim to explore in future papers.

We suggest that the new index provides a consistent ap-

proach to the core loop characteristics and therefore is more

easily interpretable by the user when comparing behaviour

between storms or field sites. Figure 2a–f(IV) show the re-

sulting distributions of HInew generated using varying in-

crements of discharge. The analysis shows that the distribu-

tion of calculated values was generally more stable compared

with the HILA method and, in many cases, fewer increments

of discharge were necessary to produce a statistically stable

representation of the storm loop shape (Table 1). The results

demonstrate that increasing the increments to every 10 % of

discharge allowed 95 % of storms and using 5 % increments

allows 100 % of storms to be robustly characterised in terms

of their loop shape, meaning that the addition of more sec-

tions did not significantly alter the distribution of HI results.

4 Conclusions and recommendations

The concept of using an index to aid the quantification of

storm hysteresis has been established for over two decades.

However, few papers have chosen to use them, perhaps due

to the limitations associated with the most common meth-

ods. This technical note was designed to test systematically,

for the first time, the way that the HI is calculated and to

quantify the impact of the chosen method on the results. This

technique is useful when the user’s interest is in the rela-

tive characteristics of the loop geometries. The analysis has

led to a number of recommendations concerning how the HI

should be calculated in order to produce results which are

both statistically robust and comparable between storms and

field sites:

1. Storms should be normalised before analysis so that

multiple storms can be robustly compared.

2. A difference method, such as the new index (HInew)

proposed here, should be used in preference to a ra-

tio method as it produces results which are easier to

interpret, allowing quantification of the extent of the

hysteresis effect that can be directly compared between

contrasting catchments even when the magnitude of the

storms varies greatly.

3. Multiple sections of each loop should be analysed so

that the extent and direction of the hysteresis can be ac-

counted for throughout the flow range. Sections should

be calculated at least every 10 % of the discharge range,

although every 5 % is recommended as it is likely, based

on our analysis, to produce robust results for almost all

storm sizes and shapes.

4. The distribution of HI values calculated across the sec-

tions should be examined in addition to the averaged

value, as this aids robust classification of complex loop

shapes, including figure-of-eight loops.

Undertaking the analysis of hysteresis loops using these

guidelines improves the clarity of the hysteresis index as a

diagnostic tool for the analysis of storms and how discharge–

concentration patterns vary. The new index (HInew) is able
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to describe robustly the shape and direction of a hysteretic

pattern in storms of any size, and can be used to compare

storms from multiple catchments. This means that the in-

dex becomes more useful as it has the potential to become

a standardised analytical technique that can be utilised by

the water quality research community. Lloyd et al. (2016a)

illustrates the use of the new hysteresis index to investi-

gate storm behaviours across different water quality param-

eters and between contrasting catchments. The cited study

exemplifies the power of having such a summary statistic,

as different parameters and field sites can be rapidly and ro-

bustly compared. The information provided by the HInew can

be used in conjunction with other common metrics such as

storm maximum concentration to produce a useful and ro-

bust quantitative representation of storm hydrochemical be-

haviour. This is timely given the marked increase in the num-

ber of catchment-scale water quality monitoring initiatives,

which are now employing high temporal resolution monitor-

ing to improve understanding of pollution sources and de-

livery pathways. Our ongoing research is exploring the use

of this new index in understanding differences in catchment

dynamics associated with storm behaviours.

Acknowledgements. The authors gratefully acknowledge the

funding provided by Defra project WQ0211 (the Hampshire

Avon Demonstration Test Catchment project) and NERC Grant

NE/1002200/1 (The Environmental Virtual Observatory Pilot),

and the access to the Brixton Deverill gauging site and flow data

provided by Geoff Hardwicke at the Environment Agency.

Edited by: T. Blume

References

Aich, V., Zimmermann, A., and Elsenbeer, H.: Quantification and

interpretation of suspended-sediment discharge hysteresis pat-

terns: How much data do we need?, Catena, 122, 120–129,

doi:10.1016/j.catena.2014.06.020, 2014.

Bowes, M. J., House, W. A., and Hodgkinson, R. A.: Phosphorus

dynamics along a river continuum, Sci. Total Environ., 313, 199–

212, doi:10.1016/s0048-9697(03)00260-2, 2003.

Bowes, M. J., Jarvie, H. P., Halliday, S. J., Skeffington, R.

A., Wade, A. J., Loewenthal, M., Gozzard, E., Newman,

J. R., and Palmer-Felgate, E. J.: Characterising phospho-

rus and nitrate inputs to a rural river using high-frequency

concentration-flow relationships, Sci. Total Environ., 511, 608–

620, doi:10.1016/j.scitotenv.2014.12.086, 2015.

Burt, T. P., Worrall, F., Howden, N. J. K., and Anderson, M. G.:

Shifts in discharge-concentration relationships as a small catch-

ment recover from severe drought, Hydrol. Process., 29, 498–

507, doi:10.1002/hyp.10169, 2015.

Butturini, A., Alvarez, M., Bernal, S., Vazquez, E., and Sabater, F.:

Diversity and temporal sequences of forms of DOC and NO3-

discharge responses in an intermittent stream: Predictable or ran-

dom succession?, J. Geophys. Res.-Biogeosci., 113, G03016,

doi:10.1029/2008jg000721, 2008.

Cerro, I., Sanchez-Perez, J. M., Ruiz-Romera, E., and An-

tiguedad, I.: Variability of particulate (SS, POC) and dis-

solved (DOC, NO3) matter during storm events in the Ale-

gria agricultural watershed, Hydrol. Process., 28, 2855–2867,

doi:10.1002/hyp.9850, 2014.

Darwiche-Criado, N., Comin, F. A., Sorando, R., and Sanchez-

Perez, J. M.: Seasonal variability of NO3- mobilization during

flood events in a Mediterranean catchment: The influence of in-

tensive agricultural irrigation, Agricul. Ecosyst. Environ., 200,

208–218, doi:10.1016/j.agee.2014.11.002, 2015.

Eder, A., Strauss, P., Krueger, T., and Quinton, J. N.: Comparative

calculation of suspended sediment loads with respect to hystere-

sis effects (in the Petzenkirchen catchment, Austria), J. Hydrol.,

389, 168–176, doi:10.1016/j.jhydrol.2010.05.043, 2010.

Evans, C. and Davies, T. D.: Causes of concentration/discharge

hysteresis and its potential as a tool for analysis of

episode hydrochemistry, Water Resour. Res., 34, 129–137,

doi:10.1029/97wr01881, 1998.

Evans, D. J. and Johnes, P.: Physico-chemical controls on

phosphorus cycling in two lowland streams. Part 1 –

the water column, Sci. Total Environ., 329, 145-163,

doi:10.1016/j.scitotenv.2004.02.016, 2004.

House, W. A. and Warwick, M. S.: Hysteresis of the solute concen-

tration/discharge relationship in rivers during storms, Water Res.,

32, 2279–2290, doi:10.1016/s0043-1354(97)00473-9, 1998.

Jarvie, H. P., Neal, C., Williams, R. J., Neal, M., Wickham, H.

D., Hill, L. K., Wade, A. J., Warwick, A., and White, J.: Phos-

phorus sources, speciation and dynamics in the lowland eu-

trophic River Kennet, UK, Sci. Total Environ., 282, 175–203,

doi:10.1016/s0048-9697(01)00951-2, 2002.

Jordan, P., Arnscheidt, A., McGrogan, H., and McCormick, S.:

Characterising phosphorus transfers in rural catchments using a

continuous bank-side analyser, Hydrol. Earth Syst. Sci., 11, 372–

381, doi:10.5194/hess-11-372-2007, 2007.

Klein, M.: Anti clockwise hysteresis in suspended sediment con-

centration during individual storms – Holbeck catchment –

Yorkshire, England, Catena, 11, 251–257, doi:10.1016/s0341-

8162(84)80024-7, 1984.

Langlois, J. L., Johnson, D. W., and Mehuys, G. R.: Suspended

sediment dynamics associated with snowmelt runoff in a small

mountain stream of Lake Tahoe (Nevada), Hydrol. Process., 19,

3569–3580, doi:10.1002/hyp.5844, 2005.

Lawler, D. M., Petts, G. E., Foster, I. D. L., and Harper, S.: Turbidity

dynamics during spring storm events in an urban headwater river

system: The Upper Tame, West Midlands, UK, Sci. Total Envi-

ron., 360, 109–126, doi:10.1016/j.scitotenv.2005.08.032, 2006.

Lloyd, C. E. M., Freer, J. E., Johnes, P. J., and Collins, A. L.: Using

hysteresis analysis of high-resolution water quality monitoring

data, including uncertainty, to infer controls on nutrient and sed-

iment transfer in catchments, Science of The Total Environment,

543, Part A, 388–404, doi:10.1016/j.scitotenv.2015.11.028,

2016a.

Lloyd, C. E. M., Freer, J. E., Johnes, P. J., Coxon, G., and Collins, A.

L.: Discharge and nutrient uncertainty: implications for nutrient

flux estimation in small streams, Hydrol. Process., 30, 135–152,

doi:10.1002/hyp.10574, 2016b.

McDonald, D. M. and Lamoureux, S. F.: Hydroclimatic and chan-

nel snowpack controls over suspended sediment and grain size

www.hydrol-earth-syst-sci.net/20/625/2016/ Hydrol. Earth Syst. Sci., 20, 625–632, 2016

http://dx.doi.org/10.1016/j.catena.2014.06.020
http://dx.doi.org/10.1016/s0048-9697(03)00260-2
http://dx.doi.org/10.1016/j.scitotenv.2014.12.086
http://dx.doi.org/10.1002/hyp.10169
http://dx.doi.org/10.1029/2008jg000721
http://dx.doi.org/10.1002/hyp.9850
http://dx.doi.org/10.1016/j.agee.2014.11.002
http://dx.doi.org/10.1016/j.jhydrol.2010.05.043
http://dx.doi.org/10.1029/97wr01881
http://dx.doi.org/10.1016/j.scitotenv.2004.02.016
http://dx.doi.org/10.1016/s0043-1354(97)00473-9
http://dx.doi.org/10.1016/s0048-9697(01)00951-2
http://dx.doi.org/10.5194/hess-11-372-2007
http://dx.doi.org/10.1016/s0341-8162(84)80024-7
http://dx.doi.org/10.1016/s0341-8162(84)80024-7
http://dx.doi.org/10.1002/hyp.5844
http://dx.doi.org/10.1016/j.scitotenv.2005.08.032
http://dx.doi.org/10.1016/j.scitotenv.2015.11.028
http://dx.doi.org/10.1002/hyp.10574


632 C. E. M. Lloyd et al.: Testing an improved index for analysing storm discharge–concentration hysteresis

transport in a High Arctic catchment, Earth Surface Processes

and Landforms, 34, 424–436, doi:10.1002/esp.1751, 2009.

McGonigle, D. F., Burke, S. P., Collins, A. L., Gartner, R., Haft,

M. R., Harris, R. C., Haygarth, P. M., Hedges, M. C., Hiscock,

K. M., and Lovett, A. A.: Developing Demonstration Test Catch-

ments as a platform for transdisciplinary land management re-

search in England and Wales, Environ. Sci.-Proc. Imp., 16, 1618–

1628, doi:10.1039/C3EM00658A, 2014.

Oeurng, C., Sauvage, S., and Sanchez-Perez, J.-M.: Tempo-

ral variability of nitrate transport through hydrological re-

sponse during flood events within a large agricultural catch-

ment in south-west France, Sci. Total Environ., 409, 140–149,

doi:10.1016/j.scitotenv.2010.09.006, 2010.

Outram, F. N., Lloyd, C. E. M., Jonczyk, J., Benskin, C. M. H.,

Grant, F., Perks, M. T., Deasy, C., Burke, S. P., Collins, A. L.,

Freer, J., Haygarth, P. M., Hiscock, K. M., Johnes, P. J., and

Lovett, A. L.: High-frequency monitoring of nitrogen and phos-

phorus response in three rural catchments to the end of the 2011–

2012 drought in England, Hydrol. Earth Syst. Sci., 18, 3429–

3448, doi:10.5194/hess-18-3429-2014, 2014.

Rodriguez-Blanco, M. L., Taboada-Castro, M. M., and Taboada-

Castro, M. T.: Phosphorus transport into a stream drain-

ing from a mixed land use catchment in Galicia (NW

Spain): Significance of runoff events, J. Hydrol., 481, 12–21,

doi:10.1016/j.jhydrol.2012.11.046, 2013.

Tena, A., Vericat, D., and Batalla, R. J.: Suspended sedi-

ment dynamics during flushing flows in a large impounded

river (the lower River Ebro), J. Soil. Sed., 14, 2057–2069,

doi:10.1007/s11368-014-0987-0, 2014.

Whiting, P. J., Samm, J. F., Moog, D. B., and Orndorff, R. L.:

Sediment-transporting flows in headwater streams, Geological

Society of America Bulletin, 111, 450–466, doi:10.1130/0016-

7606(1999)111<0450:stfihs>2.3.CO;2, 1999.

Williams, G. P.: Sediment concentration versus water discharge dur-

ing single hydrologic events in rivers, J. Hydrol., 111, 89–106,

doi:10.1016/0022-1694(89)90254-0, 1989.

Ziegler, A. D., Benner, S. G., Tantasirin, C., Wood, S. H., Suther-

land, R. A., Sidle, R. C., Jachowski, N., Nullet, M. A., Xi,

L. X., Snidvongs, A., Giambelluca, T. W., and Fox, J. M.:

Turbidity-based sediment monitoring in northern Thailand: Hys-

teresis, variability, and uncertainty, J. Hydrol., 519, 2020–2039,

doi:10.1016/j.jhydrol.2014.09.010, 2014.

Hydrol. Earth Syst. Sci., 20, 625–632, 2016 www.hydrol-earth-syst-sci.net/20/625/2016/

http://dx.doi.org/10.1002/esp.1751
http://dx.doi.org/10.1039/C3EM00658A
http://dx.doi.org/10.1016/j.scitotenv.2010.09.006
http://dx.doi.org/10.5194/hess-18-3429-2014
http://dx.doi.org/10.1016/j.jhydrol.2012.11.046
http://dx.doi.org/10.1007/s11368-014-0987-0
http://dx.doi.org/10.1130/0016-7606(1999)111<0450:stfihs>2.3.CO;2
http://dx.doi.org/10.1130/0016-7606(1999)111<0450:stfihs>2.3.CO;2
http://dx.doi.org/10.1016/0022-1694(89)90254-0
http://dx.doi.org/10.1016/j.jhydrol.2014.09.010

	Abstract
	Introduction
	Methodology
	Data sets
	Lawler et al. (2006) method and modification
	Proposed new hysteresis index method (HInew)

	Results and discussion
	Conclusions and recommendations
	Acknowledgements
	References

