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ABSTRACT  

We present the characterization of Silicon-on-insulator (SOI) photonic-crystal based 2D grating-couplers (2D-GCs) 
fabricated by CEA-Leti in the frame of the FP7 Fabulous project, which is dedicated to the realization of devices and 
systems for low-cost and high-performance passives-optical-networks. On the analyzed samples different test structures 
are present, including 2D-GC connected to another 2D-GC by different waveguides (in a Mach-Zehnder like 
configuration), and 2D-GC connected to two separate 2D-GCs, so as to allow a complete assessment of different 
parameters. Measurements were carried out using a tunable laser source operating in the extended telecom bandwidth 
and a fiber-based polarization controlling system at the input of device-under-test. The measured data yielded an overall 
fiber-to-fiber loss of 7.5 dB for the structure composed by an input 2D-GC connected to two identical 2D-GCs. This 
value was obtained at the peak wavelength of the grating, and the 3-dB bandwidth of the 2D-GC was assessed to be 
43 nm. Assuming that the waveguide losses are negligible, so as to make a worst-case analysis, the coupling efficiency 
of the single 2D-GC results to be equal to -3.75 dB, constituting, to the best of our knowledge, the lowest value ever 
reported for a fully CMOS compatible  2D-GC. It is worth noting that both the obtained values are in good agreement 
with those expected by the numerical simulations performed using full 3D analysis by Lumerical FDTD-solutions. 
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1. INTRODUCTION

During the last decade Silicon Photonics (Si-Photonics) technology established as mature technology for the fabrication 
of low cost-scalable miniaturized optical components [1]. Silicon-on-insulator (SOI) technology has been widely 
accepted as the ideal fabrication platform for silicon photonics components providing a CMOS compatible, high-index 
contrast basic building block. A wide range of extremely high performing SOI-devices for the new generation optical 
communications, have already been demonstrated such as ultra-low loss waveguides [1], optical filters [1], high speed 
optical transceiver [2] as well as nonlinear-based components for all optical signal processing [3], [4]. However the 
practical implementation of silicon photonics transceivers is still facing relevant challenges, and consistent research 
effort are devoted to the integration of components and devices that are required to be compatible with the existing 
optical fiber networks [5]. 

One of the main challenges related to the design and fabrication of Si-Photonics-based devices is that of identifying 
structures allowing to couple light from a single mode optical fiber to sub-micrometer scale SOI waveguides with very 
high efficiency [5]. Different coupling approaches have been proposed in the last decade such as butt-coupling, polymer-
assisted inverse coupling and grating assisted light coupling. Even though butt coupling schemes could reach very high 
coupling efficiencies, they are not commonly perceived by the scientific community, and by the main Si-Photonics 



companies, as a viable solution for the mass-production scale silicon photonic products. This is mainly due to the fact 
that they require relatively high complexity fabrication steps, not fully compatible with the CMOS technology. 
Furthermore this approach entails the use of lensed optical fibers, which are not practical for device-packaging purposes. 
On the other hand, grating assisted coupling schemes, attracted considerable attention in the last few years because of 
their ability to utilize standard single mode optical fiber, and their flexibility for the final packaging step [5]. Si-
Photonics grating couplers (GCs) can be lithographically realized on a SOI wafer and etched down by using standard 
CMOS compatible dry-etching techniques. The generated devices are generally quite tolerant to fabrication 
imperfections and alignment tolerances making them the ideal candidate for the next-generation devices. 

Significant coupling efficiency enhancement have been reached in the last years by several groups, showing a maximum 
coupling ratio coefficient of 92 % [6]–[9], when the most sophisticated 1D non uniform apodized with Bragg back-
reflector is employed; nevertheless this kind of grating allows efficient coupling only of a single polarization-component 
of the input radiation. Fully CMOS-compatible 1D-grating have also been successful demonstrated providing coupling 
efficiency up to 70% [10]. Although the practical implementation of efficient 1D grating has been widely demonstrated 
and accepted by the scientific community, they still exhibit a strong sensitivity to the optical input fiber state of 
polarization, making them not suitable for many intra-system applications. In order to overcome this limitation 2D-
gratings could be explored. Such devices are classically formed by orthogonally superimposing two 1D gratings, forming 
an optical component that can couple the incoming light, independently from its state of polarization, into two 
waveguides that support the fundamental TE optical mode. A crucial figure of merit for such components is represented 
by the total coupling efficiency (i.e. the sum of the coupling efficiency of each arm) as well as by the optical bandwidth 
and its sensitivity to the state of polarization of the incoming light beam. CMOS compatible 2D-GCs have been 
demonstrated showing overall efficiencies up to 37% [7], [11]. 

By conducting a rigorous campaign of 3D simulations, exploiting the FDTD technique, of photonic-crystal-based 
gratings we theoretically shown that the efficiency of such devices could be improved by adopting an optimal 
configuration of hole-depth, hole radius and grating pitch [12]. In this work we show the experimentally demonstration 
of a fully CMOS compatible optimized 2D-GCs showing, to the best of our knowledge, the highest coupling efficiency 
ever reported in literature along to a very low input state of polarization sensitivity. This result makes the 2D-GCs an 
ideal candidate for high density, CMOS compatible, polarization insensitive, applications. 

2. DEVICE DESIGN AND FABRICATION

The proposed device is a 2D uniform grating coupler designed by conducting an extensive campaign of full 3D-FDTD 
simulations, employing the commercial Lumerical® software. The full design optimization procedure has been 
extensively described in a previous work from our research group [12] showing that a full 3D simulation approach is 
required in order to find the best design parameters. We show in Fig. 1 a schematic of the designed device, highlighting 
the parameters that have been varied as a consequence of the numerical-simulations campaign for device optimization.  

The 2D grating cross section is shown in Fig.1 (inset). A thick Silicon substrate is topped by a 2 um SiO2 layer, where a 
220 nm silicon layer is assumed to form the guiding layer. A 750 top oxide layer is considered as cladding material to 
meet the standard process flow employed by CEA-Leti in their laboratories. The simulated fiber source is placed at 
θ = 15° with respect to the normal-incident axis (z axis in Fig.1), positioned on the plane that bisects the two grating
arms (i.e. the plane is normal incident to the grating plane and at 45° with respect to both x and y axis).

The optical mode is simulated by employing a Gaussian source centered at a wavelength of λ = 1550 nm with a Mode 
Field Diameter (MDF) of 10.4 μm. In Fig. 1, CEx and CEy represent the normalized coupled light intensity for each arm, 
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