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Abstract
Little is known about the influence of meal timing and caloric consumption patterns throughout the day on glucose regulation during pregnancy. We examined the association of maternal feeding patterns with glycaemic levels among lean and overweight pregnant women. In a prospective cohort study in Singapore, maternal 24-hour dietary recalls, fasting glucose (FG) and 2-hour postprandial glucose (2HPPG) concentrations were measured at 26-28 weeks’ gestation. Women (n=985) were classified into lean (BMI<23 kg/m2) or overweight (BMI≥23 kg/m2) group. They were further categorized as predominantly day-time (pDT) or predominantly night-time (pNT) feeders according to consumption of greater proportion of calories from 0700 to 1859h or from 1900 to 0659h respectively. On stratification by weight status, lean pNT feeders were found to have higher FG than lean pDT feeders (4.36+0.38mmol/l vs 4.22+0.35mmol/l, p=0.002); however, such difference was not observed between overweight pDT and pNT feeders (4.49+0.60mmol/l vs 4.46+0.45mmol/l, p=0.717). Using multiple linear regression with confounders adjustment, pNT feeding was associated with higher FG in the lean group (β = 0.16mmol/l; 95% confidence interval (CI) = 0.05 to 0.26; p=0.003), but not in the overweight group (β = 0.02mmol/l; CI = -0.17 to 0.20; p=0.879). No significant association was found between maternal feeding pattern and 2HPPG in both lean and overweight groups. In conclusion, predominantly night-time feeding was associated with higher FG concentration in lean but not in overweight pregnant women, suggesting there may be an adiposity-dependent effect of maternal feeding patterns on glucose tolerance during pregnancy.

Introduction
Insulin sensitivity decreases with advancing pregnancy, leading to abnormalities in glucose homeostasis(1). Compared to lean or average weight women, overweight and obese women have a greater reduction in insulin sensitivity, resulting in higher risk of developing glucose intolerance during pregnancy(1). A body of literature demonstrated that the influence of maternal glucose concentrations on adverse perinatal outcomes extends throughout the range of glycaemia(2, 3). Thus, improvement in glycaemic levels during pregnancy, even among non-diabetic women, is expected to alleviate a number of detrimental health consequences in mothers and offspring(2). Currently, the use of dietary modification to control or improve maternal glycaemic levels has mostly focused on overall diet quantity and quality(4). Nevertheless, an elemental aspect of the diet which relates to the timing of feeding and the circadian pattern of food consumption has largely been ignored. In view of the fact that both food and light are powerful signals that entrain our body’s circadian clocks which control daily physiological events(5), it is possible that timed feeding could serve as an important mean to improve glucose tolerance.
Emerging evidence describing the metabolic risk of shift-work, circadian misalignment and clock genes polymorphisms imply that inappropriate meal timing may induce impairment of glucose metabolism(5, 6). Glucose tolerance and insulin secretion have been shown to oscillate in a diurnal fashion, with the lowest insulin sensitivity and pancreatic islet β-cell responsiveness to glucose in the evening(7). It has been documented that time of the day alters glucose profile following meal consumption, depending on the ability of timed feeding to synchronise local circadian rhythms(8). The overall effect of feeding on circadian system appears to involve both the timing and quantity of food consumption(8). In adult population, higher glycaemic levels and insulin resistance were found in those with greater caloric consumption in the evening than morning despite similar total calorie intake for the entire day(9, 10). 
In pregnant women, little information is available on physiological adaptations of the circadian system to pregnancy(11). Much less is known about the response of this circadian system to environmental disturbance(11). Maternal feeding rhythm over a 24-hour day/ night cycle and the effects of timed feeding on metabolic outcomes during pregnancy are not widely explored. At present, there had been only one study that examined the association of meal timing with glucose metabolism during pregnancy(12). In this study of low-income African American pregnant women, caloric consumption during night-time was inversely associated with dynamic β-cell response at late pregnancy(12). When further analysis was done by stratifying women into normal and obese group based upon their weight status in early pregnancy, night-time caloric consumption remained inversely associated with dynamic β-cell response in the obese group, but not in the normal weight group(12). However, generalizability of these findings may be limited by specific population demographics and distinctive diet quality.
Altogether at this point, it is not known if consuming calories predominantly at night-time may further exacerbate the effect on insulin insensitivity during pregnancy and how this association may vary in response to different weight status. Growing Up in Singapore Towards healthy Outcomes (GUSTO) is a mother-offspring cohort study designed to test hypotheses related to the developmental pathways to metabolic diseases in Chinese, Malay and Indian populations(13). Here we asked the question as whether the feeding patterns of women based on the timing of caloric consumption throughout the day during pregnancy could influence maternal glycaemic levels in a multi-ethnic Asian context. We hypothesized that consuming higher calories at night-time was associated with higher glucose concentrations in pregnant women who were overweight as this group of women were more susceptible to insulin resistance compared to lean women. 


Methods
Study participants
Details of the GUSTO cohort study have been reported previously(13). In brief, pregnant women (18 year old and older) in their first trimester (<14 weeks’ gestation) were recruited from KK Women’s and Children’s Hospital (KKH) and National University Hospital (NUH), between June 2009 and September 2010. The inclusion criteria included Singapore citizens or permanent residents who were of Chinese, Malay or Indian ethnicity with homogeneous parental ethnic background. Women receiving chemotherapy, psychotropic drugs or with type 1 diabetes mellitus were excluded. All women provided their written consent. The Domain Specific Review Board of Singapore National Healthcare Group (reference D/09/021) and the Centralised Institutional Review Board of SingHealth (reference 2009/280/D) approved the GUSTO study protocol.

Data collection
Detailed interviews were conducted in the clinics at recruitment and at 26-28 weeks’ gestation. Data on socioeconomic status, educational attainment, physical activity and sleep duration were collected. Three types of physical activity were assessed, including light-moderate, moderate and vigorous intensity activities. Total score of physical activity was computed from the summation of the duration (in minutes) and frequency (days) of these three types of activity. The score was expressed in metabolic equivalents (MET-minutes/week)(14). Actual sleep duration at night was recorded using Pittsburgh Sleep Quality Index (PSQI) questionnaire(15).

Anthropometric measurements
Maternal height was measured with a stadiometer (Seca 206, Hamburg, Germany). Self-reported pre-pregnancy weight and measured weight at first antenatal visit (≤14 weeks of gestation) were collected. Body mass index (BMI) was computed from weight (kg)/ height (m2). Women were classified as lean (BMI<23 kg/m2) or overweight (BMI≥23 kg/m2) based on BMI cut-off points for Asian populations(16). Strong agreements were observed between pre-pregnancy and first antenatal visit weight status (Cohen’s kappa =0.82, p<0.001). Owing to some missing data for pre-pregnancy BMI (n=62, 6.3%), maternal weight status classification based on BMI at first antenatal visit was used for analysis.  

Dietary assessments
A 24-hour dietary recall was administered via face-to-face by trained clinical staff at 26-28 weeks’ gestation using the 5-stage, multiple-pass interviewing technique(17) which includes reporting an uninterrupted listing of all food and beverages consumed, answering a forgotten food list tailored for local population, providing details of time, occasions and descriptions of foods and amounts eaten and a final probe review. Standardized household measuring utensils and food pictures of various portion sizes were used to assist women in quantifying their food and beverage intakes.  Daily energy and macronutrient intakes were assessed using a nutrient analysis software (Dietplan, Forestfield Software) with a food composition database of locally available foods(18) and modifications made on inaccuracies found. For mixed dishes not found in the local database, nutrient analyses of recipes were conducted with the use of the nutrient software. For other food items not found in the database, nutrient information was obtained from either food labels or the USDA national nutrient database(19). 

Feeding patterns
Sunlight has been reported as a strong environmental signal for human circadian clock(20). In Singapore (1.3° North, 103.8° East)(21), sunrise and sunset occur  at ~0700h and ~1900h respectively throughout the year, with fairly constant daylength of 12 hours all year round(22). Therefore, we categorized women as (i) predominantly day-time (pDT) feeders who consumed more than 50% of total energy intake from 0700 to 1859h (from sunrise to sunset), and (ii) predominantly night-time (pNT) feeders who consumed more than 50% of total energy intake from 1900 to 0659h (from sunset to sunrise). 

Glucose concentrations
An overnight fasting blood samples were drawn at 26-28 weeks’ gestation. At the same visit, women underwent 75g Oral Glucose Tolerance Test (OGTT). Fasting glucose (FG) and 2-hour postprandial glucose (2HPPG) concentrations were measured by colorimetry [Advia 2400 Chemistry system (Siemens Medical Solutions Diagnostics) and Beckman LX20 Pro analyzer (Beckman Coulter)]. 

Statistical analyses
Differences in maternal characteristics between included and excluded women in this study, as well as lean and overweight women were compared using Pearson’s Chi-square test for categorical variables or independent t-test for continuous variables. The interaction effect between BMI status and feeding pattern on glucose concentration was tested. Multivariate linear regression analysis was performed to assess the associations between feeding patterns and glucose concentrations, adjusting for confounders. The confounding variables included maternal age, education, ethnicity, physical activity, sleep duration and total energy intake. These confounders were selected a priori based on literature review(12, 23, 24). Total energy intake was adjusted for using standard multivariate approach(25) in order to examine the association of feeding pattern with glucose concentration in an isocaloric condition. In view of the difference in carbohydrate intake between groups, additional adjustment for proportion of carbohydrate was performed. All statistical analyses were performed using IBM SPSS statistics, Version 20 (USA). Two-sided tests were used. A value of p<0.05 was considered statistically significant.

RESULTS
Participant characteristics
Of the 1237 recruited singleton pregnant women, 79 (6.4%) had incomplete 24-h dietary recalls, 146 (11.8%) missed their blood glucose tests, 154 (12.4%) did not have their first antenatal recorded weights. We further excluded women with implausible energy intake(26, 27), which was <500 kcal/day (n=4) and >3500 kcal/day (n=10), leaving a final sample of 985 women in this study.  
No statistically significant differences in characteristics were observed between included and excluded pregnant women (Supplement 1).  
The study sample included a higher proportion of lean (54.2%) than overweight (45.8%) women. Overall, there were 838 (85.1%) pDT feeders and 147 (14.9%) pNT feeders. The hourly caloric consumption patterns throughout the day for these two groups of feeders were presented in Figure 1. A substantial rise in caloric consumption was observed during 1900-1959h for pNT feeders. The proportions of pDT and pNT feeders were not significantly different between lean and overweight women (p=0.553). The majority of the lean women were Chinese (p<0.001), attained higher education (p<0.001) and slept for longer duration at night (p=0.043) as compared to overweight women. The majority of the overweight women were multiparous (p=0.004), diagnosed with gestational diabetes mellitus (p<0.001), had higher FG (p<0.001) and 2HPPG concentrations (p<0.001), consumed lower total daily energy (p<0.001) but with similar proportions of protein (p=0.592), fat (p=0.174) and carbohydrate intakes (p=0.401) as compared to lean women. There were no differences in the level of physical activity between these two groups of women (p=0.717). Maternal characteristics were similar between pDT and pNT feeders, except total energy intake and proportion of carbohydrate intake which were significantly higher in pDT feeders, while proportion of fat intake which was significantly higher in pNT feeders (Table 1).
A statistical trend towards significance was observed for interaction between BMI status and feeding pattern on FG (p=0.056), but not on 2HPPG (p=0.315). Lean pNT feeders were found to have higher FG than lean pDT feeders (4.36+0.38mmol/l vs 4.22+0.35mmol/l, p=0.002); however, such difference was not observed between overweight pDT and pNT feeders (4.49+0.60mmol/l vs 4.46+0.45mmol/l, p=0.717). For 2HPPG, there were no significant differences between pDT and pNT feeders in both lean (6.32+1.36mmol/l vs 6.22+1.58mmol/l, p=0.564) and overweight groups (6.86+1.58mmol/l vs 6.49+1.52mmol/l, p=0.078). With respect to the proportions of daily macronutrient intake, no significant differences were found between pDT and pNT feeders, apart from a lower proportion of carbohydrate intake among pNT feeders in the overweight group (Table 2).  

Associations between maternal feeding patterns and glucose concentrations
Table 3 shows the association between maternal feeding pattern and glucose concentration. An association of pNT feeding with higher FG was observed in the lean group (β = 0.16mmol/l; 95% confidence interval (CI) = 0.05 to 0.26; p=0.003), but not in the overweight group (β = 0.02mmol/l; CI = -0.17 to 0.20; p=0.879) after adjusting for maternal age, education, ethnicity, physical activity, sleep duration and total energy intake (Table 3). Similar findings were obtained after further adjustment for proportion of carbohydrate intake (lean group: β = 0.15mmol/l; 95% CI = 0.05 to 0.26; p=0.003; overweight group: β = 0.02mmol/l; 95% CI = -0.17 to 0.21; p=0.842). On the other hand, no significant association was found between maternal feeding pattern and 2HPPG in both lean and overweight groups (lean group: β = -0.24mmol/l; 95% CI = -0.64 to 0.16; p=0.232; overweight group: β = -0.31mmol/l; 95% CI = -0.83 to 0.21; p=0.246).

Discussion
In this large multi-ethnic cohort, we showed that one in seven pregnant women were pNT feeders in the late second trimester. We found that pNT feeders were positively associated with higher FG concentration in women who were lean at the start of pregnancy. In contrast, such an association was not observed in overweight women. These findings are at odds with our hypothesis and suggest that risk of glucose intolerance was more susceptible to feeding pattern only in lean women. In overweight women, feeding pattern had no significant effect on glucose metabolism. 
Few studies have examined the timing of daily energy intake with glucose regulation. A clinical trial of Spanish women showed that delaying meal timing resulted in decreased carbohydrate oxidation and glucose tolerance(28). In an experimental study among Israel women, fasting glucose and insulin resistance were higher in participants with high-caloric dinner (1800-2100h) intake than those with high-caloric breakfast (0600-0900h) intake after a 12 week intervention, despite consuming an isocaloric diet on a daily basis(10). These findings are similar to our results which demonstrated that those lean women who consumed greater proportion of calories at night were more likely to exhibit higher fasting glucose concentrations. In support of this, previous reports have indicated there is a progressive reduction of insulin sensitivity, β-cell response and glucose tolerance throughout the day, with insulin sensitivity reaching a nadir at night time(7, 9, 29). A recent study with the sample size of 40 African American women found that night-time (2000-0559), but not day-time (0600-1959h), caloric consumption was inversely associated with dynamic β-cell response, but not with glucose tolerance or insulin action during late pregnancy(12). 
A previous report found that glucose tolerance declined in the evening in normal weight adults, but such rhythm was absent in the obese(29). It was suggested that the marked suppression of insulin sensitivity in the morning in obese subjects may lead to failure for detection with further reduction in insulin sensitivity(29). This may probably explain the reason of why overweight pNT feeders in our study did not show significant difference in glycaemic response related to feeding patterns. It is therefore speculated that diurnal rhythm in insulin sensitivity and secretion may be adiposity dependent. Specifically, we showed that FG but not 2HPPG concentration was associated with feeding patterns. This suggests that 2-hour glucose measurement is less likely able to be influenced by the timed feeding, although the variability of 2-hour glucose measurement was larger than fasting glucose. Nonetheless, as we did not ascertain any glucose measurements between FG and 2HPPG, we were unable to determine the post-OGTT response using the trapezoid method(30) which serves as a better indicator for glucose tolerance.
Limited research has been conducted to examine the diet quality in those with delayed temporal distribution of food intake(31). With respect to the daily macronutrient distribution, overweight pNT feeders had lower proportion of carbohydrate consumption than their counterpart. This is consistent with a report which indicated an association between evening chronotypes and less carbohydrate consumption(32). Such difference in carbohydrate intake did not seem to attenuate the association between feeding pattern and FG in the overweight group. Similar result remained with adjustment for proportion of carbohydrate intake in the model. In contrast to these observations, two studies reported no differences in the daily macronutrient distribution between early and late-eaters(33, 34), which is similar to our findings in lean women. Altogether, this suggests that the association between feeding patterns and glucose concentration may not be confounded by diet quality in terms of macronutrient distribution. 
This study provides an insight into the influence of feeding patterns on glycaemic levels in a large sample of pregnant Asian women. However, our findings had been limited by the lack of data on serum insulin concentrations, dietary glycaemic index and maternal genotype, which would have allowed the assessment on insulin sensitivity, quality of carbohydrate and clock gene polymorphisms. Furthermore, only one free-living 24-hour dietary recall had been collected and might not reflect habitual consumption patterns. Fluctuation of food intakes from day to day could have led to misclassification of women according to feeding patterns. 
In conclusion, predominantly night-time feeding was associated with higher FG concentration in lean but not in overweight pregnant women. This suggests that the effect of feeding patterns on glucose tolerance during pregnancy may be adiposity-dependent. Further investigation is required to identify the underlying mechanism of such differences. Nonetheless, our findings are important to serve as a basis on developing novel nutritional strategies to improve glucose tolerance during pregnancy. Therefore, intervention study targeting pregnant women at risk of glucose intolerance and examination of changes in metabolic profile should be performed to better elucidate the effectiveness of using this time-related dietary approach. It will also be interesting to examine the changes in feeding patterns across different trimesters of pregnancy. Additionally, the potential long term health benefits of consuming higher calories during the day for both mother and offspring will need to be assessed. Undoubtedly, future research will shed more light on the interaction between the circadian timing system, nutrition and metabolism to improve human health, calling for more attention on the role of chrono-nutrition.
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Figure 1. The hourly energy consumption patterns throughout the day of predominantly day-time (pDT) and predominantly night-time (pNT) feeders



































Table 1. Maternal characteristics during pregnancy
	Characteristics
	BMI <23
(n=534)
	BMI≥23
(n=451)
	χ2
	p*
	
	pDT feeders
(n=838)
	pNT feeders
(n=147)
	χ2
	p*

	
	n
	%
	
	n
	%
	
	
	
	n
	%
	n
	%
	
	

	Type of feeders
	
	
	
	
	
	0.35
	0.553
	
	
	
	
	
	
	

	   pDT feeders 
	451
	84.5
	
	387 
	85.8
	
	
	
	
	-
	
	-
	
	-

	   pNT feeders  
	83 
	15.5
	
	64 
	14.2
	
	
	
	
	-
	
	-
	
	-

	Parity
	
	
	
	
	
	8.44
	0.004
	
	
	
	
	
	0.05
	0.832

	   Nulliparous
	263
	49.3
	
	180 
	40.0
	
	
	
	378 
	45.2
	65 
	44.2
	
	

	   Multiparous
	271
	50.7
	
	270 
	60.0
	
	
	
	459 
	54.8
	82 
	55.8
	
	

	Ethnicity
	
	
	
	
	
	74.88
	<0.001
	
	
	
	
	
	0.26
	0.878

	   Chinese
	369
	69.1
	
	188 
	41.7
	
	
	
	473 
	56.4
	84 
	57.1
	
	

	   Malay
	99
	18.5
	
	154 
	34.1
	
	
	
	214 
	25.5
	39 
	26.5
	
	

	   Indian
	66 
	12.4
	
	109 
	24.2
	
	
	
	151 
	18.1
	24 
	16.4
	
	

	Education
	
	
	
	
	
	21.01
	<0.001
	
	
	
	
	
	3.30
	0.069

	   None/ primary/ secondary
	315 
	59.4
	
	326 
	73.4
	
	
	
	536 
	64.7
	105 
	72.4
	
	

	   University
	215 
	40.6
	
	118 
	26.6
	
	
	
	293 
	35.3
	40 
	27.6
	
	

	Physical activity
	
	
	
	
	
	0.13
	0.717
	
	
	
	
	
	0.13
	0.720

	   <600 MET-minutes/week 
	176 
	33.2
	
	152 
	34.3
	
	
	
	281 
	33.9
	47 
	32.4
	
	

	   ≥600 MET-minutes/ week
	354 
	66.8
	
	291 
	65.7
	
	
	
	547 
	66.1
	98 
	67.6
	
	

	Body mass index, kg/m2
	
	
	
	
	
	
	
	
	
	
	
	
	0.35
	0.553

	   <23
	
	-
	
	
	-
	
	-
	
	451 
	53.8
	83 
	56.5
	
	

	   ≥23
	
	-
	
	
	-
	
	-
	
	387 
	46.2
	64 
	43.5
	
	

	Gestational diabetes mellitus
	
	
	
	
	
	13.94
	<0.001
	
	
	
	
	
	0.11
	0.738

	   No
	457
	85.6
	
	344 
	76.3
	
	
	
	680 
	81.1
	121 
	82.3
	
	

	   Yes 
	77 
	14.4
	
	107 
	18.7
	
	
	
	158 
	18.9
	26 
	17.7
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	Mean
	SD
	
	Mean
	SD
	
	
	
	Mean
	SD
	Mean
	SD
	
	

	Age, years
	30.43 
	5.01
	
	31.02 
	5.21
	
	0.071
	
	30.78 
	5.06
	30.30 
	5.38
	
	0.298

	Fasting glucose, mmol/l
	4.25 
	0.36
	
	4.49 
	0.58
	
	<0.001
	
	4.35 
	0.50
	4.40 
	0.41
	
	0.195

	2-hour glucose, mmol/l
	6.31 
	1.39
	
	6.81 
	1.58
	
	<0.001
	
	6.57 
	1.49
	6.34 
	1.56
	
	0.076

	Total energy intake, kcal/day
	1915
	554
	
	1770 
	545
	
	<0.001
	
	1864 
	549
	1764 
	579
	
	0.044

	Total protein, %
	15.67 
	3.78
	
	15.80 
	4.06
	
	0.592
	
	15.67 
	3.82
	16.03 
	4.42
	
	0.308

	Total fat intake, %
	32.81
	7.45
	
	32.14 
	7.88
	
	0.174
	
	32.29 
	7.60
	33.71 
	7.89
	
	0.038

	Total carbohydrate intake, %
	51.39 
	8.29
	
	51.86 
	9.24
	
	0.401
	
	51.87 
	8.62
	50.12 
	9.23
	
	0.026

	Sleep duration, hours
	7.30 
	1.46
	
	7.06 
	1.55
	
	0.043
	
	7.15 
	1.46
	7.35 
	1.69
	
	0.220


BMI, body mass index; pDT, predominantly day-time; pNT, predominantly night-time; MET, metabolic equivalents; SD, standard deviation. 
*p values are based on chi-square test or independent t-test as appropriate.



Table 2.  Comparison of glucose concentrations, energy and macronutrients distribution between predominantly day-time and night-time feeders by weight status
	
	BMI<23kg/m2
	
	BMI≥23kg/m2

	
	pDT feeders (n=451)
	
	pNT feeders
(n=83)
	
	
	pDT feeders (n=387)
	
	pNT feeders 
(n=64)
	

	
	Mean
	SD
	
	Mean
	SD
	p*
	
	Mean
	SD
	
	Mean
	SD
	p*

	Fasting glucose, mmol/l
	4.22 
	0.35
	
	4.36 
	0.38
	0.002
	
	4.49 
	0.60
	
	4.46 
	0.45
	0.717

	2-hour glucose, mmol/l
	6.32 
	1.36
	
	6.22 
	1.58
	0.564
	
	6.86 
	1.58
	
	6.49 
	1.52
	0.078

	Total energy intake, kcal
	1939 
	544
	
	1784 
	590
	0.019
	
	1776 
	542
	
	1739 
	568
	0.615

	  Protein, %
	15.64 
	3.70
	
	15.77 
	4.24
	0.807
	
	15.70 
	3.96
	
	16.37 
	4.64
	0.225

	  Fat, %
	32.66 
	7.21
	
	33.60 
	8.65
	0.352
	
	31.86 
	8.02
	
	33.85 
	6.83
	0.061

	  Carbohydrate, %
	51.54 
	7.92
	
	50.60 
	10.06
	0.424
	
	52.25 
	9.37
	
	49.51 
	8.07
	0.028


BMI, body mass index; pDT, predominantly day-time; pNT, predominantly night-time; SD, standard deviation.
*p values are based on independent t-test.



Table 3. Association between maternal feeding pattern and glucose concentration
	
	BMI<23kg/m2
	
	BMI≥23kg/m2

	
	Crude
	
	Adjusted*
	
	Crude
	
	Adjusted*

	
	β
	95% CI
	p
	
	β
	95% CI
	p
	
	β
	95% CI
	p
	
	β
	95% CI
	p

	
	Fasting glucose concentration (mmol/l)

	pDT feeders
	reference
	
	
	reference
	
	
	reference
	
	
	reference
	

	pNT feeders
	0.14
	0.05, 0.22
	0.002
	
	0.16
	0.05, 0.26
	0.003
	
	-0.03
	-0.18, 0.13
	0.717
	
	0.02
	-0.17, 0.20
	0.879

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	2-hour postprandial glucose concentration (mmol/l)

	pDT feeders
	reference
	
	
	reference
	
	
	reference
	
	
	reference
	

	pNT feeders
	-0.11
	-0.43, 0.22
	0.521
	
	-0.24
	-0.64, 0.16
	0.232
	
	-0.38
	-0.79, 0.04
	0.078
	
	-0.31
	-0.83, 0.21
	0.246


BMI, body mass index; CI, confidence interval; pDT, predominantly day-time; pNT, predominantly night-time; CI, confidence interval.
*Adjusted for maternal age, education, ethnicity, physical activity, sleep duration and total energy intake.

