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ON NONPARAMETRIC ADDITIVE ERROR MODELS

WITH DISCRETE REGRESSORS

by Katarzyna Maria Bech

This thesis contributes to the literature on nonparametric additive error mod-

els with discrete explanatory variables. Although nonparametric methods have

become very popular in recent decades, research on the impact of the discreteness

of regressors is sparse. Main interest is in an unknown nonparametric conditional

mean function in the presence of endogenous explanatory variables. Under en-

dogeneity, the identifying power of the model depends on the number of support

points of the discrete instrument relative to that of the regressor. Under non-

parametric identi�cation failure, we show that some linear functionals of the

conditional mean function are point-identi�ed, while some are completely un-

constrained. A test for point identi�cation is suggested.

Observing that the simple nonparametric model can be interpreted as a lin-

ear regression, new approaches to testing for exogeneity of the regressor(s) are

proposed. For the point-identi�ed case, the test is an adapted version of the

familiar Durbin-Wu-Hausman approach. This extends the work of Blundell and

Horowitz (2007) to the case of discrete regressors and instruments. For the par-

tially identi�ed case, the Durbin-Wu-Hausman approach is not available, and

the test statistic is derived from a constrained minimization problem. In this

second case, the asymptotic null distribution is non-standard, and a simple de-

vice is suggested to compute the critical values in practical applications. Both

tests are shown to be consistent, and a simulation study reveals that both have

satisfactory �nite-sample properties. The practicability of the suggested testing

procedures is illustrated in applications to the modelling of returns to education.
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1 Introduction

Nonparametric and semiparametric methods have attracted a great deal of at-

tention from econometricians and statisticians in the past few decades. Initially,

researchers were interested in describing the relationships between two or more

series, but with the recent expansions in economics, they are involved in mea-

suring conditional probabilities of decisions, duration of events, etc. The main

concern is the need to make precise assumptions about the nature of these re-

lationships. Frequently, the assumptions imposed on the model are implausible,

especially those that restrict the functional form of the relationship. It is argued

that the nature of most econometric models is nonparametric and parametriza-

tion can be viewed as an approximation of the relationship, which is required for

estimation. Economic theory rarely provides information on the shape of the re-

lationship between a dependent variable and regressors. It is important to realize

that functional form choices have an extensive impact on parameter estimates

and inference. Hence, the need of developing new, more �exible nonparametric

methods emerged.

The nonparametric methods seem attractive, since they have desirable e¢ -

ciency properties that hold under relatively mild assumptions on the population

of interest and data generating processes. The main advantage, over parametric

speci�cations, is that nonparametric techniques do not rely on any functional

form or underlying distributional restrictions. Hence, they can be widely ap-

plicable in cases when there is limited information about the studied sample and

making a priori assumption might give inaccurate results, as restrictive paramet-

ric restrictions often fail to be valid. Additionally, the nonparametric techniques

are typically easy to implement and, especially for non-statisticians, to under-

stand and interpret.

Throughout this thesis, the main focus is on a simple additive error nonpara-

metric model of the form

Y = h(X) + "; (1)

where Y is a dependent variable, X is a vector of regressors and " is the dis-

turbance term. In parametric econometrics the estimation of the unknown h(�)
is carried out by assuming some functional form of h, typically a linear func-

tion. However, it is well known that any misspeci�cation in the functional form
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leads to inconsistent estimates and a¤ects the size and power of tests based on

them. In view of this, it is desirable to consider estimation and testing without

assuming any functional form. Several methods of estimating nonparametrically

the unknown structure of interest h(�) have been proposed. The most popular
technique is the nonparametric kernel estimation �rstly proposed by Nadaraya

(1964) and Watson (1964). Other methods involve smoothing splines techniques

(Reinsch(1967)) and signal extraction (Rao 1986)). The basic nonparametric

methods are summarized in Section 1.1.

Since nonparametric methods are very general, the estimation is frequently

computationally intensive. In many applications, the problems do not have a

closed form solution and need to be solved numerically. Therefore, from the

empirical point of view, it is important to be able to simplify the complicated

expressions, which de�ne the nonparametric estimators, to make them convenient

to apply. One of the contributions of this thesis is to provide a neat and compact

way of presenting the nonparametric speci�cation in terms of a linear model and

to express the standard nonparametric estimators in the form of familiar linear

regression estimators.

Along with estimation, the separate path taken by the literature on non-

parametric models is concerned with obtaining statistical inference. Hypothesis

testing and construction of con�dence intervals have been discussed by many

authors. Particularly interesting are tests regarding the correct model speci�ca-

tion. In the standard linear regression analysis, to ensure consistent ordinary

least squares estimation, one of the assumptions imposed on the model is that

of exogeneity of explanatory variables, i.e. a lack of correlation between the dis-

turbance term and regressors. If the exogeneity assumption is violated, other

estimation techniques must be employed. In the nonparametric framework, the

notion of exogeneity, although de�ned in a slightly di¤erent way, still plays a cru-

cial role in ensuring the consistency of the standard estimators. Therefore, testing

whether the regressors are exogenous or endogenous is necessary for choosing an

appropriate nonparametric estimation method. This thesis provides such non-

parametric exogeneity testing procedures.
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Throughout this thesis, the main interest lies in nonparametric models de�ned

by equation (1), with X being a set of discrete regressors. Even though the

literature on nonparametric models has grown rapidly in recent decades and

di¤erent estimation techniques and methods for obtaining statistical inference

are developed in frameworks with continuous regressors, not enough attention is

paid to the models with discrete explanatory variables.

In applied works, the model with discrete regressors can be applied in many

economic problems. Variables such as gender, race, levels of education or house-

hold size typically take a discrete number of values. When X is binary it may

indicate the occurrence of the event. In empirical applications, such regressors

are called �dummy variables�taking values 0 or 1, for instance, an individual is

either male or female, working or unemployed. The discrete regressor might also

be integer valued (for instance, indicating the number of children in a household

or years of education an individual has completed) or ordered (for example, giv-

ing the position on an attitudinal scale). The nonparametric model with discrete

regressors has been applied by Hu and Lewbel (2008) to identify and estimate

the di¤erence in average wages between individuals who falsely claim college ex-

perience and those who tell the truth about not completing college education;

and by Delgado (2011) to examine the impact of voluntary pollution prevention

programs on the level of pollution emissions. More recently, Iori, Kapar and

Olmo (2014) use nonparametric methods to explain variation in the continuous

variable (bank funding spreads) given the set of discrete regressors (bank char-

acteristics, nationality, size and operating currency) in the European interbank

money market.

1.1 Models with continuous regressors

This section brie�y summarizes the existing literature on nonparametric additive

error models with continuous regressors and provides a contrast to a discrete case,

which is the main focus of this thesis.

Consider the nonparametric model (1), where Y;X and " are continuously

distributed random variables. Under the standard mean independence condi-

tion E ["jX] = 0, the unknown function h(�) is determined by the conditional
distribution of Y given X.
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The �rst approach to a nonparametric estimation of the structural function

h(�) was independently proposed by Nadaraya (1964) and Watson (1964), who
suggest estimating the conditional mean of Y given X, using the sample obser-

vations yi and xsi , by the kernel estimator:

bh(x) = Pn
i=1K

�
xsi�x
b

�
yiPn

i=1K(
xsi�x
b
)
;

where the kernel function K is usually a univariate density function, assumed to

be symmetric, and b (the bandwidth) is a function of the sample size n and goes

to zero as n ! 1. The proposed estimator is then a weighted average of the
observations yi with weights depending on the distance between xsi and x. An

implicit assumption in nonparametric estimation is that yi contains information

about h(x), if xsi is in the neighborhood of x. Alternatively, one might allow the

window width b to vary across data points, and construct the recursive kernel

estimator, as in Devroye and Wagner (1980) and Greblicki and Pawlak (1987).

The main di¢ culty of any kernel-based approach is the e¢ cient choice of the

smoothing parameter b. Although the shape of the nonparametric estimator is

not very sensitive to the actual choice of the kernel function, it crucially depends

on the bandwidth b. The popular bandwidth selection strategies are based on

minimizing the integrated squared error or its expected value. However, these

methods are computationally complex as they involve the estimation of unknown

density derivatives.

Another problem in nonparametric approach to estimation is the "curse of

dimensionality", that is the need for a large number of observations in the sam-

ple in order to obtain accurate estimators in high-dimensional spaces. As a

result, the rates of convergence of standard nonparametric estimators are slower.

For instance, the bias of the Nadaraya-Watson estimator is of order O(b2) and

V ar(bh(x)) = O(n�1b�1):

Both problems highlighted above do not occur in models with discrete regres-

sors. Firstly, the nonparametric estimation of the density function (probability

mass function in the discrete case) does not require kernel smoothing as the

probability masses are easily estimated from the data as sample proportions.

Secondly, the problem is not in�nite dimensional as there is a �nite number of

conditional means E [Y jX = xk], which need to be estimated. Therefore, the es-

4



timation of nonparametric additive error models with discrete regressors seems

to be more straightforward.

1.2 Endogeneity in nonparametric models

The main focus of this thesis is the impact of the presence of endogenous regres-

sors in the nonparametric model. The problem of endogeneity arises frequently

in economics and occurs when the independent variable is correlated with the

model error term. Typically, it is a result of omitting a relevant explanatory vari-

able in a regression speci�cation, simultaneity in the model or a measurement

error in the regressor. When the regressors used in the model are exogenous, the

standard nonparametric estimator of the conditional mean of the outcome given

the explanatory variables is consistent. However, in many important economic

applications, the regressors used in the analysis are endogenous and the consis-

tent estimation of h(�) in (1) requires the implementation of di¤erent techniques.
The most popular method of dealing with endogeneity in econometric models

is the instrumental variable (IV) estimation. Although IV methods are tradi-

tionally parametric in nature, the extension of the approach to more �exible

nonparametric framework originated with Newey and Powell (2003). Further

studies were also conducted by Hall and Horowitz (2005) and Darolles, Florens

and Renault (2011), who propose a kernel estimator and derive optimal con-

vergence rates. The main idea is that researchers should �nd a set of variables

satisfying instrument relevance and exogeneity conditions and use them to con-

sistently estimate the causal relationship between the dependent variable and

endogenous regressors. However, the IV method involves some identi�cation

issues.

The nonparametric instrumental variable approach of Newey and Powell

(2003) shows that the nonparametric point identi�cation of h requires that the

conditional distribution of X given Z is complete. The completeness condition

can be seen as an intuitive generalization (or nonparametric analogue) of the

rank condition for identi�cation in linear speci�cations. However, not many re-

searchers concentrate on providing evidence for or against these assumptions in

datasets. In linear models under endogeneity, it is possible to test whether the

rank condition for identi�cation is satis�ed or not. Yet, as shown by Canay,

Santos and Shaikh (2013) the equivalent completeness condition in the nonpara-
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metric IV framework is untestable. Speci�cally, they show that when testing

H0 : completeness condition does not hold (lack of point identi�cation) vs:

H1 : completeness condition holds (model is point identi�ed)

it is not possible to provide empirical evidence in favour of H1. Such a test is

equivalent to existing tests of rank conditions in linear speci�cations with the

null hypothesis of rank condition failure. Hence, the arising conclusion is that

even though it is possible to test for identi�cation in linear models, the analo-

gous nonparametric completeness condition is nontestable. As pointed out by

the authors, since the data cannot provide supporting evidence for point iden-

ti�cation, empirical researchers should present alternative arguments to justify

their analysis being performed under point identi�cation assumption. Nonethe-

less, the more rational way to proceed is to abandon completeness condition and

employ statistical methods that allow for partial identi�cation in this framework.

These methods are brie�y discussed in Section 1.3.

The problem with identi�cation is particularly noticeable in nonparametric

models with additive errors when the regressors are discrete. A typical example

of an endogenous discrete regressor appears in treatment e¤ect models, where

the endogeneity of a treatment variable comes from self-selection. Other ex-

amples include a nonparametric version of classical supply and demand model

with prices and discrete quantities, which are jointly determined by the model

and endogeneity arising from measurement error, if the discrete regressor is mis-

classi�ed. The identi�cation and estimation of the nonparametric models with

discrete endogenous regressors is discussed in Das (2005) and Florens and Mala-

volti (2003). They show that the necessary and su¢ cient condition for point

identi�cation is that the number of points of support of the discrete instrument

is at least as large as the number of points of support of endogenous regressor.

It implies that the problem of not being able to test whether the identi�cation

condition is satis�ed is avoided, as given the instrument, the identi�cation is

straightforward to judge. If this nonparametric identi�cation condition fails the

unknown conditional mean function (CMF) is only partially identi�ed. In the

absence of additional information this means that certain functionals of the CMF

can take arbitrary values, whilst others are point-identi�ed. One contribution of

this thesis is to provide a test for point-identi�ability in this context.
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Returning to the nonparametric estimation with endogenous regressors, Newey

and Powell�s (2003) nonparametric two-stage least squares estimator is based on

solving the integral equation

bE [Y jZ] = Z h(X) bF (dXjZ): (2)

As (2) is a Fredholm integral equation of the �rst kind, it creates a so called

ill-posed inverse problem, as the mapping from the structural (FXjZ) to the re-

duced form (E[Y jZ]) is not continuous. This means that h(�) cannot be estimated
consistently by replacing the unknown population quantities with consistent es-

timators. In order to obtain a consistent estimator, it is necessary to regularize

the mapping that identi�es the unknown function of interest. Newey and Powell

(2003) and Santos (2010) propose to assume compactness through smoothness

restrictions on h. They restrict the true function to be an element of a com-

pact set of functions, which makes the mapping from reduced form to structure

continuous. One of the advantages of nonparametric models with discrete en-

dogenous regressors is that they do not su¤er from the ill-posed inverse problem.

Restricting the endogenous regressors to be discrete eliminates the ill-posed in-

verse problem. The discrete speci�cation is well-posed, and no regularization of

the problem is required.

Even in simple linear models, the presence of endogenous regressors typi-

cally leads to the OLS coe¢ cients being biased and, in many cases, inconsistent.

Because of the severe consequences of endogeneity, applied researchers need to

check whether the explanatory variables used are exogenous, before providing an

inference of the parameters of interest. Following the work of Hausman (1978)

the research on testing for exogeneity of the regressors has been growing rapidly.

Recently, with the expansion of nonparametric models, new testing proce-

dures had to be developed. The problem of testing the correct speci�cation of a

nonparametric model given by equation (1) has been discussed by many authors

including the work of Fan and Li (1996), Zheng (1996), Lavergne and Vuong

(2000) and Lavergne and Patilea (2008). The tests �t in a conditional moment

restriction testing framework and are based on an earlier work of Newey (1985)

and Bierens (1990) among others. All the nonparametric tests of this type as-

sume that the regressors are continuously distributed. The aim of this thesis is to

provide a test for exogeneity in a nonparametric model with discrete explanatory
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variables.

Our benchmark study is that of Blundell and Horowitz (2007). They propose

a consistent nonparametric test for exogeneity in model (1) with continuous

regressors. The test is based on the comparison of the unknown function h(�) with
the conditional mean function of Y given X. We will follow similar methodology

in constructing the exogeneity test for discrete regressors.

1.3 Review of partial identi�cation literature

Throughout the thesis, we broadly talk about partial identi�cation. For the

reader not familiar with that concept, we provide a brief summary. The following

literature review comes from Bech (2011).

The literature on estimation and inference in partially identi�ed models has

been growing rapidly in the last two decades. It is clear that in applied econo-

metrics data alone is not su¢ cient to deduct meaningful conclusions about the

population of interest. Inference always requires making assumptions on the pop-

ulation behaviour via a hypothesis about the data generating mechanism. Until

the late 1980�s, parameters were only considered to be either point identi�ed or

not identi�ed at all. Point identi�cation was typically achieved by using assump-

tions, which were strong enough to identify the exact value of the parameters.

However, by imposing weaker and more credible restrictions, researchers are able

to partially identify some features of the model.

An interest parameter is said to be partially identi�ed by the model if it

is not uniquely determined by the distribution of the observed data. Hence,

the partial identi�cation approach states that even if the model cannot point

identify parameters, it frequently contains some relevant message, which enables

researchers to bound parameters in informative ways. The class of partially

identi�ed models also contains models that are identi�ed in some parts, but the

parameter is unidenti�ed in others. For instance, in the simultaneous equations

models, some equations might be identi�ed and others are not. The typical

example is the very simple supply-demand model, where

Q = �1P + "S (supply equation)

Q = �1P + �2X + "D (demand equation)

with Cov("S; "D) = 0 and X exogenous.
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Clearly, the parameters of the demand equation are not identi�ed, but the slope

parameter in supply equation is1. The nonparametric additive error model with

discrete endogenous regressors under identi�cation failure also falls in this class

of partially identi�ed models, as some linear functionals of the parameters of

interest are point identi�ed while other are undetermined.

The term �identi�cation� was �rstly introduced by Tjalling Koopmans in

1949. He developed the concept of the identi�ability as the property of �a para-

meter that can be determined from a su¢ cient number of observations.�(Koom-

pans (1949)). Surprisingly, until the late 1980s, the impact of the failure of point

identi�cation and the main �ndings of the articles on partial identi�cation were

neglected. Although estimation and inference under unjusti�ably assumed point

identi�cation might lead to distortions in the asymptotic theory of estimators,

the �rst rare works on partial identi�cation had almost no impact on empiri-

cal studies before the 1990s. The �rst main research on partial identi�cation

was conducted by Frisch (1934), who studies the problems of estimation when

all variables are measured with error. In this framework, Frisch (1934) derives

the bounds on the slope parameter of a linear regression i.e. the identi�ed set,

which can be estimated from the data. The second important studies were per-

formed by Marschak and Andrews (1944). They show that the parameters of

the production function can be bounded to sections within the parameter space.

In the late 1980s the new literature on partial identi�cation was developed

to confront the traditional approaches to inference with missing data models.

Phillips (1989) explores the changes in the properties of common statistical pro-

cedures under point identi�cation failure. Phillips (1989) also provides a list of

models in which partial identi�cation analysis is required e.g. the classical si-

multaneous equations model under rank condition failure, time series spurious

regressions and microeconometric models with endogenous regressors.

The main pioneer of recent studies of partial identi�cation is Charles F. Man-

ski, who started his work in 1989 with analyzing the problem of self-selection into

treatment. Manski�s (1989) problem is to �nd the correct prior restrictions which

1That is true in the iid, cross-sectional framework. However, if the data are time series
and nonstationary, then there is scope for structural identi�cation and consistent estimation.
In such cases, it is possible that the nonstationary variable (here price) can serve as its own
instrument. This type of facility also occurs in the cross section framework, where there are
location shifts as these can drive nonstationary behaviour. The same might occur in treatment
e¤ec models when there is a threshold shift.
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point identify treatment e¤ects. Horowitz and Manski (2000) study an inference

with the missing outcome data using nonparametric prediction. They show that

even without any restrictions on the distribution of the missing outcomes, data

alone yields informative nonparametric bounds on treatment response. Manski

and Tamer (2002) examine inference in regressions with interval data and de-

velop two new estimators: Modi�ed Maximum Score Estimator and Modi�ed

Minimum Distance Estimator. Manski and Pepper (2000) use partial identi-

�cation in the estimation of wage as a function of schooling without assuming

statistical independence between outcomes and instruments. Horowitz and Man-

ski (1995) show that in errors in variables models under the assumption of robust

estimation, the population parameters are not identi�ed, but can be frequently

bounded. They apply the �ndings to the income distribution model and con-

clude that estimating bounds consistently is often accessible. Other in�uential

partial identi�cation studies include Tamer (2003) who detects that with the

least possible set of assumptions, incomplete econometric structural models con-

tain useful information about the parameters of interest. He also shows how to

obtain reasonable conditions for identi�cation in the presence of multiple equilib-

ria. Blundell et al. (2007) study the impact of non-random selection into work.

They show that in the presence of censoring, the wage distribution is not point

identi�ed without strong assumptions. However, even the worst-case bounds can

be informative and there is a way to tighten bounds using restrictions dictated

by economic theory.

Within the broad class of partially identi�ed nonparametric instrumental

variables models, Severini and Tripathi (2006) derive semi-parametric bounds

for the estimation of linear functionals of h. Santos (2010) develops methods for

hypothesis testing and construction of the con�dence sets under partial identi�-

cation assumption, based on the techniques applied by Newey and Powell (2003).

Chesher (2005) provides conditions for nonparametric set identi�cation in non-

separable models with discrete endogenous regressors, and discusses an interval

estimation in this framework. Chesher (2010) derives set identifying results for

nonseparable IV models with discrete outcomes.

The recent literature on obtaining inference in partially identi�ed models us-

ing di¤erent techniques includes results by Imbens andManski (2004), who derive

con�dence intervals for the mean of a bounded random variable that asymptoti-

cally contain the true value of parameter with �xed probability. Chernozhukov et
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al. (2007) were the �rst to examine inference in more general setups by using the

population objective function and sub-sampling methods. Similar sub-sampling

procedures are employed by Romano and Shaikh (2008) who additionally present

conditions for a uniform coverage of the con�dence regions. Santos (2010) intro-

duces methods for hypothesis testing in a nonparametric Instrumental Variables

model under point identi�cation failure and constructs the asymptotic distrib-

ution of a test statistic of a hypothesis that some elements of the identi�ed set

satisfy a given condition. Rosen (2008) introduces con�dence sets for a parameter

of interest in models composed of moment inequalities. Beresteanu and Molinari

(2008) suggest an alternative way of obtaining inference in partially identi�ed

models by applying instruments from the random set theory (Bech (2011)).

1.4 Notation

Throughout this thesis, the notational conventions are as follows: the upper

case letters Y;X;Z; " represent scalar random variables, and Yn; Xn; Zn; "n are

the n� 1 vectors of sample equivalents, with n being the sample size. Realized
sample observations are denoted by xsi ; z

s
i ; i = 1; :::; n, and the observed value

of Yn by y. Symbols xk for k = 1; :::; K and zj for j = 1; :::; J denote the

points of support of discrete random variables X and Z. I(B) stands for an

indicator function, which takes value 1 if the event B occurs, and is 0 otherwise.

The probability density function of a continuous random variable Y is denoted

by fY (y) and the probability mass function of a discrete random variable X is

pX(x). The cumulative distribution function is denoted by FX(x). For a matrix

A of full column rank we de�ne

PA = A (A0A)
�1
A0

MA = I � PA;

both of which depend only on the space spanned by the columns of A (i.e. are

invariant under A! AB, with B a non-singular matrix). For any r, lr denotes

an r-vector of ones and Cr denotes an r � (r � 1) matrix with the properties
C 0rlr = 0 and C

0
rCr = Ir�1.
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1.5 Structure of the thesis

The plan of this dissertation is as follows. Chapter 2 introduces the nonparamet-

ric model of interest and presents the notation that enables us to interpret the

nonparametric speci�cation as a linear model. Additionally, it explains the iden-

ti�cation problems in the presence of endogenous regressors and gives some basic

estimation results. An important part of this chapter, Section 2.2.1, shows how

the point-identi�ability of linear functionals of the unknown function of interest

might be tested under nonparametric point identi�cation failure.

Chapter 3 deals with nonparametric testing for exogeneity. Section 3.1 presents

the test for models that point identify the entire unknown function and estab-

lishes its asymptotic properties under the null and alternative hypothesis. Sec-

tion 3.2 proposes a test for exogeneity in models that are partially identi�ed,

and again gives the asymptotic properties of the test statistic under the null

and alternative hypothesis. In this second case, we also discuss the computation

of critical values, because the asymptotic null distribution is non-standard. In

Section 3.3, we present the results of the Monte Carlo investigation of the �nite

sample properties of the proposed tests.

Chapter 4 extends the results to models with additional exogenous regressors

and multiple instruments. An important point that arises from this discussion is

that nonparametric identi�cation does not depend on the number of instrumental

variables, but only on the number of support points.

In Chapter 5, we present empirical applications that illustrate the practical

use of the proposed tests. We con�rm that education is endogenous when esti-

mating the returns to schooling in a standard wage equation and check whether

any linear function of the conditional average wage is point identi�ed.

Chapter 6 concludes and discusses further work. All proofs are in the Ap-

pendix A. Appendix B contains additional results on empirical power properties

from Monte Carlo simulations and Appendix C presents supplementary results

from empirical applications.
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2 Nonparametric additive error model with dis-

crete regressors: identi�cation and estima-

tion

2.1 Model and assumptions

This section introduces the model of interest and provides a neat way of rep-

resenting the nonparametric model in terms of a familiar linear structure. We

also discuss the identi�cation issues arising in the models with discrete regres-

sors and provide necessary and su¢ cient conditions for point identi�cation of the

unknown function h(�).

2.1.1 Model

We consider to begin with a simple additive error model, in which an observable

scalar continuous random variable Y is determined by equation (1), with X; a

single discrete regressor, and " denotes a continuously distributed error term.

The interest of econometricians typically lies in estimating the unknown struc-

tural function h(�). Consistent nonparametric estimation of h(�) is feasible under
the assumption that the regressors are exogenous. Numerous de�nitions of exo-

geneity have been provided in the literature, see Deaton (2010). The standard

exogeneity condition is that of an absence of correlation between regressor and

the model error term. Here we employ the de�nition proposed by Blundell and

Horowitz (2007) for nonparametric regressions:

De�nition 2.1 The explanatory variable X is exogenous if the conditional mo-

ment restriction

E["jX = xk] = 0

holds for all k = 1; :::; K:

Given exogeneity, E[Y jX = xk] = h(xk); i.e. the conditional mean of the

dependent variable given X = xk coincides with the structural function h(xk).

This de�nition has the advantage that standard nonparametric regression of Y

on X is then appropriate for consistent estimation of the unknown function of

interest h(�).
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In the presence of endogeneity of regressors, h(�) is unidenti�ed in the absence
of additional information. The common strategy to deal with the endogeneity

problem is to apply the instrumental variable estimation. However, the IV solu-

tion to endogeneity is only possible if the discrete instrument has more support

points than the endogenous discrete regressor. In the sparse support case, the

instrument fails to fully identify h(�) (see Section 2.1.4).
The complete model of interest is characterized by the following set of as-

sumptions:

Assumption 1 X is a discrete (scalar) random variable with support fx1; :::; xKg
with associated probabilities pk > 0.

Assumption 2 There exists a discrete instrumental variable Z with support

fz1; :::; zJg and associated probabilities qj > 0, with the property that

E["jZ = zj] = 0; j = 1; :::; J (3)

which de�nes the instrument exogeneity condition2.

Assumption 3 The matrix of joint probabilities P with elements

pjk = Pr [Z = zj; X = xk] ; j = 1; :::; J ; k = 1; :::; K

is of full rank K when J � K, and of full rank J when J < K:

Assumption 4 E[XjZ = zj] and E[h(X)jZ = zj] vary with zj.

Assumption 5 The data consists of n iid observations on (Y;X;Z). Under

exogeneity, for all j and k,

E["jX = xk; Z = zj] = 0 and V ar["jX = xk; Z = zj] = �2:

Assumption 2 and 4 are analogous to the standard assumptions for the valid-

ity of instruments in the single equation IV estimation (see, for example, Greene

(1993), Section 20.4.3). The �rst condition in Assumption 4 (the instrument

relevance conditional) together with (3) ensures that Z is a valid instrument.

2Notice that we include in the support of X and Z only points for which pk and qj are
strictly positive.
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The rank condition in Assumption 3 is e¤ectively a completeness condition in

Newey and Powell (2003). Assumption 5 implies that the following unconditional

moments of the error term:

E["] = EX;Z [E ["jX = xk; Z = zj]] = 0

V ar ["] = EX;Z [V ar["jX = xk; Z = zj]] + V arX;Z [E["jX = xk; Z = zj]]

= EX;Z
�
�2
�
+ V arX;Z [0] = �2:

The complete model consists of equations (1) and (3). The assumption of

exogeneity of the regressor, i.e. E["jX = xk] = 0 for all k is equivalent to

E[Y jX = xk] = h(xk); k = 1; :::; K:

If this condition is satis�ed the unknown function h(�) can be consistently esti-
mated nonparametrically (see Section 2.3.1) and equation (3) is not needed for

consistent estimation. If E["jX = xk] 6= 0 i.e. the regressors are endogenous, the
use of instruments is necessary and equation (3) plays a crucial role.

Since (1) can be represented as the linear function

Y =
KX
k=1

I(X = xk)h(xk) + ";

the unknown function h(�) is constrained by the set of J linear equations

E[Y jZ = zj] =
KX
k=1

Pr[X = xkjZ = zj]h(xk); j = 1; :::; J: (4)

Let � denote the K-vector with �k = h(xk), k = 1; :::; K, � be the J-vector with

the elements E[Y jZ = zj], j = 1; :::; J and � be the J �K matrix of conditional

probabilities Pr[X = xkjZ = zj]; k = 1; :::; K; j = 1; :::; J . Then, (4) can be

written compactly as

� = ��: (5)

In the continuous case, equation (5) corresponds to the integral equation for the

structural function, e.g. equation (2.2) in Blundell and Horowitz (2007)3. The

nonparametric nature of the model is re�ected in the fact that �, the vector of

3Similar conditions are given in Chesher (2004) and Freyberger and Horowitz (2014).
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values of h(�) at the support points of X is completely unknown. It is worth

noting that equation (5) always has a solution (for unknown �), since for each

j = 1; :::; J by de�nition

E[Y jZ = zj] =

KX
k=1

Pr[X = xkjZ = zj]E[Y jX = xk; Z = zj];

which implies that � is certainly in the space spanned by the columns of �.

Throughout this thesis we assume that there exists a valid instrument Z for

which (5) holds.

Let nXk =
Pn

i=1 I(x
s
i = xk) and nZj =

Pn
i=1 I(z

s
i = zj), the multiplicity of xk

and zj in the sample. Also njk =
Pn

i=1 I(x
s
i = xk)I(z

s
i = zj). The important

properties of sample multiplicities are

KX
k=1

njk = nZj and
JX
j=1

njk = nXk :

The elements of the vector � can be consistently estimated from the data, by

averaging those yi that correspond to the observations with zsi = zj (standard

nonparametric estimator of the conditional mean):

b�j = 1
n

Pn
i=1 yiI(z

s
i = zj)

1
n

Pn
i=1 I(z

s
i = zj)

=
1

nZj

nX
i=1

yiI(z
s
i = zj): (6)

The elements of the matrix of conditional probabilities � can be written as

Pr[X = xkjZ = zj] =
Pr[X = xk \ Z = zj]

Pr[Z = zj]

and can be consistently nonparametrically estimated by

b�jk = 1
n

Pn
i=1 I(x

s
i = xk)I(z

s
i = zj)

1
n

Pn
i=1 I(z

s
i = zj)

=
njk
nZj

: (7)

Therefore, � and � can easily be learned from the data, and the problem is to

use this information to make inference on h(�).
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Remark 2.1 In the discussion here, and also in what follows, it is implicitly
assumed that all K support points of X; and all J of Z; occur in the sample.

That is, that both nXk and nZj are non-zero for all k = 1; ::; K and j = 1; ::; J .

This will ultimately (for large enough n) be the case with probability one. The

alternative would be to de�ne estimates for the �j and �jk only for those points

xk and zj that occur in the sample, say Ks � K and Js � J points, and allow

these to increase to K and J respectively, as n increases. This would make

the arguments and derivations to follow considerably more cumbersome, without

materially a¤ecting the results, so instead we will tacitly assume throughout that

n is large enough to ensure that Ks = K and Js = J:

There is no di¢ culty in extending the results by allowing for additional dis-

crete exogenous regressors and multiple instruments in the model. The results

for these generalized models are presented in Chapter 4.

2.1.2 Linear Model Interpretation

The above setup can be represented compactly in terms of a linear model. We

de�ne the n�K matrix LX with (i; k) element

(LX)ik = I(xsi = xk);

so that (LX)ik = 1 if observation i corresponds to a value xk for X, and is 0

otherwise. Likewise, de�ne the n� J matrix LZ with elements

(LZ)ij = I(zsi = zj):

Note that the rows of both LX and LZ add up to 1, since there can be only one

entry in each row that is equal to 1, and other entries in that row have to be 0.

Both LX and LZ are random matrices, because both the number and position

of the non-zero elements are determined randomly in the sample.

Let x denote the K-vector with elements xk; k = 1; :::; K, the support points

of the regressor. The vector LXx represents the n-vector of sample observations

xsi . Finally, let y denote the n-vector of sample observations on Y .

Using the notation just introduced (6) can be written as

b� = (L0ZLZ)�1 L0Zy (8)
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and (7) becomes b� = (L0ZLZ)�1 L0ZLX : (9)

The inverse in (8) and (9) exists almost surely for large enough sample size, since

Pr[Z = zj] = qj > 0 by assumption. Clearly, for existence we require n > K and

n > J .

Observe that

n�1L0ZLZ =

0B@
1
n

Pn
i=1 I(z

s
i = z1) 0

:::

0 1
n

Pn
i=1 I(z

s
i = zJ)

1CA!p diag(qj) := DZ ;

because 1
n

Pn
i=1 I(z

s
i = zj) !p E[I(zsi = zj)] = Pr[Z = zj] for all j by the

WLLN . Hence, by the Slutsky Theorem

�
n�1L0ZLZ

��1 !p D�1
Z :

Similarly, n�1L0ZLX is a consistent estimator for the joint probability matrix P .

Therefore, b� !p � and b�!p � := D�1
Z P .

In terms of observables, the assumption of the exogeneity of X takes the form

E[YnjX = LXx] = LX�;

which is analogous to a linear model for the vector y with random regressors

matrix LX and unknown parameters �k = h(xk); k = 1; :::; K. Our model can

be therefore expressed as

y = LX� + "n: (10)

It means that although the model is purely nonparametric, it can be interpreted

as a linear regression. Note that even though in the nonparametric speci�cation

there is only one discrete regressor X, the regression matrix LX is n � K in

the linear regression speci�cation. Also, observe that the support points xk only

determine the points at which we can learn h(�), but do not appear elsewhere
in the linear model. This familiar linear speci�cation allow us to connect the

nonparametric estimators with the well known regression estimators, particularly

OLS and 2SLS.
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2.1.3 A complication

There is a relationship between LX and LZ , which has an important implica-

tion on the further analysis. The problem is that every sample point must be

associated with exactly one support point of both X and Z. It follows that, for

any regressor X and any instrument Z, the row sums of both LX and LZ are all

equal to one. Let us, for brevity, call this

Property C: LX lK = LZ lJ = ln:

Algebraically, this says that the column spaces of LX and LZ always have

the vector ln in common, and this needs to be taken into account in adapting

existing procedures to the present problem.

Note that Property C implies, in particular,

MLXLZ lJ =MLX ln = 0:

As a consequence of Property C, some matrices involving both LX and LZ have

reduced rank. Hence, special attention has to be paid when dealing with these

matrices.

2.1.4 Identi�cation

Newey and Powell (2003) and Das (2005) study identi�cation of the unknown

structural function h(�) in the presence of endogeneity of a discrete regressor
X. Florens and Malavolti (2003) and Das (2005) consider estimation in this

framework. They show that nonparametric point identi�cation is achieved if the

vector of instruments Z has at least as many points of support as the endogenous

regressor X under a marginal covariation condition:

E["jZ = z] = c; (11)

where c is a constant that is invariant with respect to Z. This follows from (5),

since assuming that equations in (5) represent the only information about h(�)
that the data contains, the point identi�cation requires that the matrix � has a

rank K.

Using this marginal covariation restriction, one can normalize c = 0 producing

the system of linear equations (5). Since the conditional expectations on the left
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hand side and probabilities on the right hand side are observables, (5) forms a

set of linear equations in the unknown h(xk): Hence, the value of the vector � is

identi�ed if these linear equations have a unique solution.

Proposition 1 (Newey and Powell (2003)) The necessary and su¢ cient condi-
tion for identi�cation in the model Y = h(X) + ", with discrete endogenous X

and a discrete instrument Z satisfying E["jZ] = 0; both with �nite support, is

that rank(�) = K; for which it is necessary that the number of points of support

of the instrument Z is at least as large as the number of points of support of

endogenous X.4

Hence, if J � K, � is point-identi�ed for known (�;�) and � = (�0�)�1�0�.

2.2 Point-identi�ability of linear functionals

When J < K; so that the identi�cation condition fails, the model still has partial

identifying power. The following proposition elaborates on partial identi�cation,

and slightly extends Proposition 1 in Freyberger and Horowitz (2014).

Proposition 2 Let L(�) = c0� be a linear functional of the elements of �:When

rank(�) = J < K, the following are true:

1. for any c orthogonal to the null space of �, L(�) is point-identi�ed; the

dimension of this set is J .

2. for c not orthogonal to the null space of �, L(�) is completely uncon-

strained; the dimension of this set is K � J:

Thus, there is a space of linear functionals of dimension J that are point

identi�ed by (5), and a space of dimension K � J about which we can hope

to learn nothing, without the addition of further information. This space is

larger the larger the di¤erence K � J . Freyberger and Horowitz (2014) discuss

the identifying power of additional restrictions on � in this unidenti�ed case, in

particular, shape restrictions on h(�):
4The result can also be found in Matzkin (2007), Chapter 73 in "Handbook of Economet-

rics".
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Recall that � is a solution to equation (5) and let S� denote a set of all

possible solutions, i.e.

S� = f� : �� = �g:

Let V be a full rank K � (K � J) matrix satisfying �V = 0 and let C be a full

rank K � J matrix, such that C 0V = 0, i.e. the columns of C are orthogonal to

the columns of V . Let �0 be any �xed vector satisfying ��0 = �. The set S�
can be represented as

S� = f�0 + V 
; 
 2 RK�Jg:

The set of identi�ed functions g(�) : RK 7�! R consists of just those functions
that, when restricted to S�; are constant. The following Proposition extends the

results of Proposition 2 to general functions of the elements of �.

Proposition 3 When rank(�) = J < K, in the absence of additional restric-

tions, the set of point identi�ed functions of � consists of those functions that

depend on � only through C 0�.

The result in Proposition 3 arises because the set S� is invariant under the

transformations � ! � + V 
; 
 2 RK�J , and it can be shown that C 0� is a
maximal invariant under this group.

2.2.1 A test for point-identi�ability

The condition required for point-identi�ability in Proposition 2 can be tested.

That allows us to construct a simple test for point-identi�ability of some linear

functionals of dimension J of the elements of � under identi�cation failure, i.e.

when the entire unknown vector remains undetermined.

Writing � = (�1;�2); with �1 J � J and non-singular, we may write5

L(�) = c01�1 + c02�2 = c01�
�1
1 � + (c02 � c01�

�1
1 �2)�2;

and the condition for point identi�cation of L(�) is:

c02 � c01�
�1
1 �2 = 0

0; (12)
5By considering the reduction of � to upper echelon form it is easy to see that none of what

follows depends on which columns of � form the nonsingular component �1; if there is more
than one choice. We omit details.
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which, for given c; is a restriction on �.

We can test whether this linear functional of interest is point identi�ed by

checking whether the sample equivalent of c02 � c01��11 �2 is close to 0. Note that
�1 = D�1

Z P1 and �2 = D�1
Z P2 where P1 is a J � J non-singular matrix and P2 is

J � (K � J); so that the identi�ability hypothesis for given c can be expressed

in terms of the matrix of joint probabilities P :

Hc
0 :
�
c02 � c01P

�1
1 P2

�
= 00:

The partition of c into (c1; c2) is induced by the choice of P1; and, when c2 6= 0;
c01P

�1
1 P2 cannot be zero if the corresponding L(�) is to be point identi�ed. In

particular, if c2 6= 0; a necessary condition for identi�ability of c0� is that c1 6= 0:
Since P can be consistently estimated by bP = n�1L0ZLX ; the sample equiva-

lent of (12) is c02 � c01 bP�11 bP2; where bP = ( bP1; bP2) is a suitable partition of bP . A
natural statistic to measure the departure of this vector from zero, and therefore

to test Hc
0; is the quadratic form

Gn = n
�
c02 � c01 bP�11 bP2�V �1bP

�
c02 � c01

bP�11 bP2�0 ; (13)

where VP is the asymptotic covariance matrix of
�
c02 � c01

bP�11 bP2�0 : The following
result gives the asymptotic distribution of Gn under Hc

0; and the formula for the

covariance matrix VP :

Theorem 2.1 Under Hc
0, and the assumptions above,

(i)
p
n
�
c02 � c01

bP�11 bP2�!d N(0; VP );

with VP given by

VP =

�
P�11 P2
�IK�J

�0
D
�
P�11 P2
�IK�J

�
;

where

D = diagfc01P�11 DkP
0�1
1 c1; k = 1; :::; Kg;

in which Dk is a J � J diagonal matrix with the elements in column k of P on

the diagonal.

(ii) Under Hc
0;

Gn !d �2K�J :
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Large values of Gn provide evidence against Hc
0. The practical application

of the above testing procedure is presented in Section 5.3, where the point-

identi�ability of the di¤erences in returns to schooling for various educational

levels is tested. The question is open whether an arbitrary function might be

set identi�ed under (5), in contrast to point identi�ed functions dealt with in

Proposition 3. Suppose that interest is in g(�), a (given) function from RK to
R. One can ask whether the restrictions (5) on � restrict g(�) to a subset of R.
This could be addressed by using similar methods as in Freyberger and Horowitz

(2014), by solving the extremum problems:

max :(min :) g(�) s:t: � = ��:

If the maximum coincides with the minimum, g(�) would be point identi�ed,

while if either is �nite g(�) would be set-identi�ed. We do not develop this

further here.

2.3 Estimation

This section presents some basic estimation results, and provides a link between

standard nonparametric estimators and the estimators de�ned for our linear

model. It also brie�y summarizes the estimation techniques available in the

literature for models that set identi�es the function of interest.

2.3.1 Estimation under point identi�cation

Firstly, we assume that J � K, i.e. that the model is point identi�ed.

OLS under exogeneity Since, for any support point xk of X, we have

E[Y jX = xk] = h(xk) + E["jX = xk];

�k = h(xk) can be nonparametrically estimated from the data by averaging the

yi corresponding to all xsi that equal xk.
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Under the exogeneity assumption, and given the linear interpretation of the

model, we have the standard OLS estimator for �:

b� = (L0XLX)�1 L0Xy =
0BB@

Pn
i=1 yiI(x

s
i=x1)Pn

i=1 I(x
s
i=x1)

:::Pn
i=1 yiI(x

s
i=xK)Pn

i=1 I(x
s
i=xK)

1CCA ; (14)

which coincides with the standard nonparametric estimator (see, for example

Pagan and Ullah (1999), Section 3.2.2). The important observation is that the

value of the conditional mean of Y given X, does not depend on the values

xk of X and the con�guration of xk in the sample (the position of non-zero

elements in the matrix LX) does not matter. The only thing that matters is

the multiplicity of each xk in the sample. Since
nXk
n
is a sample proportion, it

converges in probability to pk i.e. the probability mass on the support point xk.

Substituting the linear model y = LX� + "n in (14) gives

b� = � + (L0XLX)
�1
L0X"n

and since (n�1L0XLX)
�1 !p D�1

X where DX is diag(pk), the matrix of probability

masses on each point of support of X on the main diagonal, and n�1L0X"n !p

EX [L
0
XE["njX]] = 0 under the assumption of exogeneity, we obviously have

b� !p �;

i.e. if X is exogenous, the OLS estimator b� is a consistent estimator of �. Using
the linear interpretation of the model, we can easily establish the asymptotic

distribution of the OLS estimator (or the standard nonparametric estimator).

Theorem 2.2 Under assumptions above, if X is exogenous then the nonpara-

metric (OLS) estimator b� is consistent and
p
n
�b� � �

�
!d N

�
0; �2D�1

X

�
:

Remark 2.2 The primitive components of the elements of b� are sums of random
numbers of i:i:d:random variables, since the multiplicities and positions of the xk
in the sample are random. At �rst sight, therefore, one might expect to need

a central limit theorem adapted to this situation, such as those of, for example,
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Robbins (1948), or Anscombe (1952), both of which deal with this case. However,

the problem turns out to be more straightforward, and Theorem 2.2 can be proved

by using a multivariate version of the Lindeberg-Feller central limit theorem (see

Appendix A). Alternative ways to determine the asymptotic distribution using

suggested above CLTs can also be found in the Appendix A.

It can be shown that the covariance matrix �2D�1
X , under exogeneity achieves

the asymptotic Cramer-Rao bound for the variance, and hence b� is asymptoti-
cally e¢ cient. The unknown parameter �2 can be consistently estimated by the

usual estimator used in a linear regression model: n�1y0MLXy !p �2.

If E["jX = xk] 6= 0 and X is endogenous, then

n�1L0X"n !p EX [L
0
XE["jX]] 6= 0

and b� is an inconsistent estimator for �.
IV under endogeneity If X is endogenous and J � K, the unknown function

h(�) (or vector �) can be estimated using familiar IV methods. When the model
point-identi�es the structure of interest, the problem can be treated as a standard

IV problem and the IV estimator for � is

b�IV =
�b�0L0ZLZ b���1 b�0L0ZLZb�

=
�
L0XLZ (L

0
ZLZ)

�1
L0ZLX

��1
L0XLZ (L

0
ZLZ)

�1
L0Zy

= (L0XPLZLX)
�1
L0XPLZy:

This is the IV estimator for � in the null model y = LX�+ "n, in the presence of

the instrument matrix LZ . Even though in the nonparametric speci�cation there

is only one discete instrument Z, we have J instrumental variables (I(Z = zj),

j = 1; :::; J) in the linear model speci�cation. The matrix of instruments corre-

sponding to this interpretation of the model is LZ , so the familiar requirements

for the validity of the instruments are that n�1L0ZLX !p P , a �nite matrix of

rank K; that n�1L0Z"n !p 0 and n�1L0ZLZ !p DZ , a positive de�nite matrix

(e.g., Greene (1993), p.601). All these conditions are covered by Assumptions 2

and 3. However, crucially, when J < K the IV estimator is no longer available.
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The equivalence of b�IV and the standard nonparametric IV estimator is shown
by the following example.

Example 2.1 Consider a simple nonparametric model with a scalar binary re-
gressor X, taking values x1 = 0 and x2 = 1. In nonparametric literature,

this model is typically reparametrized by de�ning � = h(x1) = h(0) and � =

h(x2) � h(x1) = h(1) � h(0) as in Florens and Malavolti (2003). Given the

instrument Z, the standard nonparametric IV estimators b� and b� are de�ned as
b� = bE( bE(Y jZ)jX = 0)� b� bE( bE(XjZ)jX = 0) (15)

b� =
bE( bE(Y jZ)jX = 1)� bE( bE(Y jZ)jX = 0)bE( bE(XjZ)jX = 1)� bE( bE(XjZ)jX = 0)

;

with

bE(W jZ) =
1
n

Pn
i=1wiI(z

s
i = z)

1
n

Pn
i=1 I(z

s
i = z)

bE( bE(W jZ)jX = xk) =
1Pn

m=1 I(x
s
m = xk)

nX
m=1

1
n

Pn
i=1wiI(z

s
i = zsm)

1
n

Pn
i=1 I(z

s
i = zsm)

I(xsm = xk);

where W = Y or X.

Firstly, notice that I(zsi = zsm) = 1 if z
s
i = zsm; i.e. two observations are the

same. This can only happen if both zsi and z
s
m take the same value zj from the

support of Z. Given the basic properties of the indicator function, we know that

IA\B = IA � IB. Therefore

I(zsi = zsm) = I(zsi = z1)I(z
s
m = z1) + :::+ I(zsi = zJ)I(z

s
m = zJ)

=
JX
j=1

I(zsi = zj)I(z
s
m = zj):

It follows that

bE( bE(W jZ)jX = xk)

=
1Pn

m=1 I(x
s
m = xk)

nX
m=1

PJ
j=1

1
n

Pn
i=1wiI(z

s
i = zj)I(z

s
m = zj)PJ

j=1
1
n

Pn
i=1 I(z

s
i = zj)I(zsm = zj)

I(xsm = xk):

Clearly, closed form solutions for bh(x1) and bh(x2) are very complicated, and even
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if we wanted to state them here, it is impossible due to space limitations. Using

the IV estimator obtained for a linear speci�cation, the estimators are expressed

in a short and elegant way as bh(x1)bh(x2)
!
= (L0XPLZLX)

�1
L0XPLZy

Given that PLZ is a symmetric n� n matrix with the imth element equal to

JX
j=1

I(zsi = zj)I(z
s
m = zj)

nZj
;

the whole L0XPLZLX is a K- square symmetric matrix with the kl
th element equal

to
nX
i=1

I(xsi = xk)
nX

m=1

I(xsm = xl)
JX
j=1

I(zsi = zj)I(z
s
m = zj)

nZj
:

The K- vector L0XPLZy is simply0BB@
Pn

i=1 yi
Pn

m=1 I(x
s
m = x1)

PJ
j=1

I(zsi=zj)I(z
s
m=zj)

nZj

:::Pn
i=1 yi

Pn
m=1 I(x

s
m = xK)

PJ
j=1

I(zsi=zj)I(z
s
m=zj)

nZj

1CCA :

The manipulation of terms in (15) shows that the IV estimator de�ned for the

linear interpretation of the nonparametric model is equivalent to the standard

nonparametric estimator. The advantage of our approach is that the estimator

can be written in a compact matrix notation, which is easier to work with.

Provided J � K, the IV estimator is consistent in both scenarios: when X is

exogenous and when it is endogenous, since n�1L0ZLX !p P , n�1L0ZLZ !p DZ

and n�1L0Z"n !p EZ [L
0
ZE["njZ]] = 0. The last expression follows because of the

instrument exogeneity condition (3).

The asymptotic normality of the IV estimator is established through:

Theorem 2.3 Under assumptions above, the IV estimator b�IV is consistent and
p
n
�b�IV � �

�
!d N

�
0; �2

�
P 0D�1

Z P
��1�

:
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Note that because K and J are �xed, we cannot estimate the entire unknown

function h(�), but can only learn the values of h(�) at the support points of X:
Additional information about h(�), could possibly be acquired if the support of
the regressor (and instrument) were assumed to be increasing with the sample

size, and this would also have implications for identi�ability. Further study of

this interesting possibility is beyond the scope of this thesis, but some basic ideas

are outlined in the �nal conclusion of this thesis.

2.3.2 Estimation under partial identi�cation

Now, we assume that J < K. Given the results in Section 2.2.1, if the null hy-

pothesis of point identi�ability of L(�) = c0� is not rejected, the linear functional

of interest can be estimated by

[L(�) = c01
b��11 b�,

a consistent estimator if Hc
0 is indeed true. On the other hand, rejection of the

null hypothesis suggests that the linear functional of interest L(�) cannot be

consistently estimated without further information about h(�).
Several classes of additional restrictions on h(�); which produce bounds on

certain linear functionals, so that the functionals are set identi�ed, have been

considered in the literature. Chesher (2004) gives conditions under which an

informative bound on h can be consistently nonparametrically estimated from

the data. He assumes that the structural model consists of equations (1) and

(3), and additionally

X = g(Z;U);

where the continuously distributed error term U is normalized to Unif(0; 1) and

is independent of the instrumental variable Z. The function g(z; u) is the con-

ditional quantile function of X given Z. Even though under standard marginal

covariation condition (11), the value of h(�) is not point identi�ed, it can be
bounded in informative ways under the iterated covariation restriction of the

following form:

E ["jU = u; Z = zj] = c(u); (16)

where c is assumed to be a monotonic function. Since U and Z are assumed to

be independent, condition (16) implies, but is not implied by (11). Therefore,
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the iterated covariation condition provides additional identifying information if

J < K, but does not increase the identifying power of the model if J � K.

Suppose that there exist points zk�1; zk in the support of the instrument Z,

such that for some u 2 (0; 1) and some k = 1; :::; K, we have

Pr [X = xkjZ = zk] � u � Pr [X = xk�1jZ = zk�1] : (17)

Under these additional assumptions given by equations (16) and (17), the fol-

lowing partial identi�cation result is obtained:

min fE [Y jX = xk; Z = zk] ; E [Y jX = xk; Z = zk�1]g
� h(xk) + c(u) �

max fE [Y jX = xk; Z = zk] ; E [Y jX = xk; Z = zk�1]g :

This allow us to obtain the upper and lower bounds on di¤erences h(xk)� h(xj)
by replacing the conditional expectations with sample averages. Therefore, even

though the exact value of the vector � remains unknown, we are able to bound

its value by the quantities that are easily estimated from the data. We present

a practical application of Chesher�s (2004) method in Section 5.3 to bound the

di¤erences in returns to schooling for various years of education using real data.

Manski and Pepper (2000) give conditions under which the upper and lower

bounds on h(xk) and the upper bound on h(xk)�h(xj) can be consistently esti-
mated. Their "monotone treatment response" condition (analogous to monotonic-

ity assumption (16)) ensures that for the outcomes y(1) and y(2) of the treatment

values x(1) and x(2), x(2) � x(1) implies y(2) � y(1): The second assumption

("monotone treatment selection") replaces the standard assumption of availabil-

ity of the relevant instruments and states that if x(2) � x(1) thenE
�
Y jXS = x(2)

�
�

E
�
Y jXS = x(1)

�
; where XS is the treatment selected by an individual. Under

Manski and Pepper�s (2000) additional restrictions, the value of h(xk) is bounded

by X
m:xm<xk

E [Y jX = xm] pm + E [Y jX = xk] Pr [X � xk]

� h(xk) �X
m:xm>xk

E [Y jX = xm] pm + E [Y jX = xk] Pr [X � xk] :
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The third estimation method available in the literature under set identi�-

cation is by Freyberger and Horowitz (2014), who study the identi�cation and

estimation of the linear functional L(�) = c0�. They use the shape restrictions

on the unknown function of interest dictated by the economic theory, such as

monotonicity of the demand function or convexity of cost functions, to obtain the

bounds on L(�) by solving linear programming problems. Their upper and lower

bounds on L(�) are equivalent to the bounds on the local average treatment ef-

fect obtained by Angrist and Imbens (1995) for systems of linear simultaneous

equations.

2.4 Summary

This section has presented a new approach to estimation in the nonparamet-

ric additive errors model with discrete regressors. The fact that the explana-

tory variable only takes a �nite number of distinct values enabled us to put

the nonparametric structure into a well-known linear regression framework with

n�K matrix of explanatory variables. Under standard assumptions, it has been

shown that the simple nonparametric estimator of the conditional mean of the

dependent variable given the set of regressors coincides with the ordinary least

square estimator for the linear regression. When the explanatory variables are

exogenous, this OLS estimator is consistent and follows the normal distribution

asymptotically. In the presence of endogenous regressors, the instrumental vari-

able estimation has been proposed. The identi�cation study has revealed that

the model point identi�es the unknown structure of interest if the discrete in-

strument available to the researcher has at least as many points of support as the

endogenous regressor. Under identi�cation failure, nothing can be learned about

the entire unknown function of interest without further restrictions. However,

it has been shown that there exists some linear combinations of parameters of

interest which might be point- identi�ed. A test for point-identi�ability of such

functionals has been proposed. When the explanatory variables are endogenous,

but the nonparametric identi�cation condition is satis�ed, the standard two stage

least squares estimator for a linear regression coincides with the nonparametric

IV estimator and has been proven to be consistent and to follow the normal

distribution asymptotically.
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3 Nonparametric testing for exogeneity with dis-

crete regressors and instruments

The presence of endogenous regressors in a nonparametric model produces bias

in the identi�ed case, and in the partially identi�ed case means that there are

no consistent estimators for some parameters. We are particularly interested in

testing exogeneity in models that are partially identi�ed under the alternative

hypothesis. There are many published applications in which the (assumed) en-

dogenous regressor is instrumented by a variable with insu¢ cient support. For

instance, in Angrist and Krueger (1991) endogenous education is instrumented

by the quarter of birth of an individual, and Bronars and Grogger (1994) use

the twin birth indicator as an instrument for endogenous number of children. In

these papers point identi�cation is achieved by assuming a parametric (linear)

speci�cation. However, the parametric speci�cation is an additional assumption,

and the validity of such assumption should be tested. Parametric vs. nonpara-

metric speci�cation testing has been discussed by Donald, Imbens and Newey

(2003) and Tripathi and Kitamura (2003). In nonparametric single equation

IV models, the test proposed by Horowitz (2006) could be employed to check

whether the parametric speci�cation is appropriate for the available data. If

the null hypothesis is rejected, then nonparametric estimation should be chosen.

Typically, these speci�cation tests are based on a comparison of parametric and

nonparametric estimators. Since, under endogeneity, there exists no consistent

estimator for the entire conditional mean function when the support of instru-

ment is sparse relative to the support of endogenous regressor, the parametric

speci�cation hypothesis is not testable. This provides an incentive to use the

nonparametric model. Alternatively, one could nonparametrically test for exo-

geneity of regressors, and given the outcome of the test, decide on functional

form and estimation method.

Ideally, we would like to test whether E["jX = xk] = 0 i.e. X is exogenous,

which in terms of observables can be written as

H0 : E[Y jX = xk] = h(xk); k = 1; :::; K:

In equation (1) the function h(�) is unknown and if h(xk) were completely ar-
bitrary, the null hypothesis would not impose any constraint on the conditional
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density function of Y given X, fY jX(yjx) and would therefore be untestable.
Thus, more information about h(�) than just equation (1) alone is required for
H0 to become a testable hypothesis. This additional information about h(�) is
gained by using the fact that there exist a valid instrument Z satisfying (3) for

any admissible zj. The hypothesis H0 imposes the constraint that the vector of

conditional means E[Y jX = xk] is a solution to linear equations � = ��, so

in this case the null hypothesis imposes a restriction on the conditional density

function fY jX(yjx) and is therefore testable.

Remark 3.1 There might be other restrictions that can be imposed on h(�) to
make the null hypothesis testable. In order to make sure that h(�) is not en-
tirely arbitrary, one could impose some shape restrictions dictated by economic

theory. Such restrictions are already in use in the literature of nonparametric

estimation, for example by Hall and Huang (2001) who estimate the conditional

mean function subject to a monotonicity constraint. Monotone estimates are re-

quired in many empirical applications, when the theory suggests that the outcome

should be monotonic in explanatory variables e.g. wage increasing in the years

of schooling. Blundell, Horowitz and Parey (2012) use di¤erent shape restriction

and provide a nonparametric estimator of the demand function assuming that

the unknown function h(�) satis�es the Slutsky condition of consumer theory.
The literature suggests that imposing shape restrictions improves the precision of

nonparametric estimates, but in our case, it might also act as a tool to ensure

that the hypothesis of exogeneity of regressors is testable.

This chapter is organized as follows. Section 3.1 deals with nonparametric

exogeneity testing under point identi�cation. It presents a modi�ed version of the

Durbin-Wu-Hausman test-statistic, establishes the asymptotic distribution of the

test-statistic under the null hypothesis and local alternatives. In Section 3.2, we

provide the exogeneity testing procedure that can be applied in models that are

partially identi�ed. Additionally, we discuss various ways of computing critical

values. In Section 3.3 the results of Monte Carlo simulations are presented.
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3.1 Testing under point identi�cation

Assume that J � K, so the model point identi�es the entire unknown function

of interest h(�).

3.1.1 Test statistic

We are interested in testing E["jX = xk] = 0 through the following hypothesis

of exogeneity of regressors:

H0 : E[Y jX = xk] = h(xk); k = 1; :::; K

or equivalently

H0 : E[YnjXn = LXx] = LX�:

In the previous chapter, we have shown that the OLS estimator b� is consistent
and e¢ cient if X is exogenous, but inconsistent otherwise. The IV estimator is

consistent in both cases, but ine¢ cient if X is exogenous. For this situation,

then, the test is really just to decide which estimator to use (OLS or IV).

The OLS and IV estimators (with instrument Z) for � are:

b� = (L0XLX)�1 L0Xy
b�IV = (L0XPLZLX)�1 L0XPLZy

and the di¤erence between them is therefore

b�IV � b� = (L0XPLZLX)
�1
L0XPLZy � (L0XLX)

�1
L0Xy (18)

= (L0XPLZLX)
�1
L0XPLZMLXy:

The covariance matrix of that di¤erence is given by

Cov(b�IV � b�) = (L0XPLZLX)�1 L0XPLZMLXPLZLX (L
0
XPLZLX)

�1
: (19)

An obvious test could be based on the Durbin-Wu-Hausman- type statistic. The

standard Durbin-Wu-Hausman test is based on a quadratic form the di¤erence

(18), with the matrix of the quadratic form equal to the inverse of Cov(b�IV � b�)
(in order to produce a �2variable asymptotically). However, Property C implies
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that the relevant covariance matrix is in this case singular. To see this, observe

that

l0K (L
0
XPLZLX) (

b�IV � b�) = l0KL
0
XPLZMLXy

= l0nPLZMLXy since LX lK = 0

= l0nMLXy since PLZ ln = ln

= 0 since MLX ln = 0:

That is, for all LX and LZ there is an exact linear relation between the

elements of b�IV � b�, so its covariance matrix will always be singular.
We need to adapt the Durbin-Wu-Hausman test statistic to this situation.

To do so we simply replace the inverse of the covariance matrix - the matrix that

would normally be used in the quadratic form to produce an asymptotically �2

test statistic - by a generalized inverse of that matrix. The covariance matrix in

(19) can be written as

(L0XPLZLX)
�1
CK [C

0
KL

0
XPLZMLXPLZLXCK ]C

0
K (L

0
XPLZLX)

�1
;

since MLXPLZLX [lK ; CK ] = [0;MLXPLZLXCK ] and [lK ; CK ]
�1 = [K�1lK ; CK ]

06.

The middle matrix C 0KL
0
XPLZMLXPLZLXCK is (K � 1) square matrix of full

rank. Thus, the covariance matrix can be expressed as a matrix of the form

S = A�1CBC 0A�1, where C is m � p, C 0C = Ip, B is p � p nonsingular and

symmetric and A is m�m nonsingular and symmetric. The generalized inverse

of the matrix with this form is S+ = ACB�1C 0A. To verify that it is su¢ cient

to check two conditions that de�ne a generalized inverse, i.e. SS+S = S and

S+SS+ = S+(both conditions hold).

Therefore, the generalized inverse of the covariance matrix is

S+ = (L0XPLZLX)CK [C
0
KL

0
XPLZMLXPLZLXCK ]

�1
C 0K (L

0
XPLZLX) :

6Essentially, what we are doing to construct the CK matrix is the Gram-Schmidt ortogo-
nalization procedure on the K-vector of ones.
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Using this matrix to de�ne the test statistic, we have

T �n = (b�IV � b�)0 hCov(b�IV � b�)i+ (b�IV � b�)
= y0MLXPLZLXCK [C

0
KL

0
XPLZMLXPLZLXCK ]

�1
C 0KL

0
XPLZMLXy

= y0WXZ (W
0
XZWXZ)

�1
W 0
XZy;

where

WXZ = MLXPLZLXCK

= MLXLZ (L
0
ZLZ)

�1
L0ZLXCK

is n� (K � 1).
Scaling to eliminate �2, we propose the test-statistic

Tn =
y0WXZ (W

0
XZWXZ)

�1W 0
XZy

n�1y0MLXy
: (20)

Observe that the values xk of X and zj of Z do not appear in the test

statistic, nor does their con�guration in the sample matter. The only things

that appear are the multiplicities of each value in the sample, the nXk and n
Z
j ;

and the multiplicity of the joint event (X = xk; Z = zj), njk. Note also that

the numerator of the modi�ed version of Tn is easily computed from a linear

regression of y on WXZ . Since WXZ is easy to construct in practice, the value of

the test-statistic can be e¢ ciently calculated by any statistical software package.

Remark 3.2 Using the generalized inverse is not the only way to deal with sin-
gularity of the covariance matrix. The naive approach would be to reduce the

dimension of the test-statistic by eliminating for example, the �rst element in

the di¤erence (18) and picking up the lower-right corner of the covariance ma-

trix in (19). Then the Durbin-Wu-Hausman test-statistic of the reduced dimen-

sion would follow the standard results. Alternative approach would be to use

the Moore-Penrose inverse of the covariance matrix (built in all econometric

software). All three approaches give similar values of the test-statistic, thus in

applications, the researcher could choose the method that is the most convenient

for them.
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3.1.2 Asymptotic distribution under the null hypothesis

In order to obtain the asymptotic distribution of the test statistic under H0,

observe that the primitive components the numerator of Tn are the two vectors

un = n�1L0Z"n and vn = n�1L0X"n. In terms of these, the vector appearing in the

numerator is

nC 0KL
0
XLZ(L

0
ZLZ)

�1 (un � L0ZLX(L
0
XLX)

�1
vn):

Thus, we �rst consider the asymptotic behaviour of these two vectors, i.e. the

asymptotic distribution of

wn =
p
n

 
un

vn

!
:

This is given in:

Lemma 3.1 Under H0 and the given assumptions,

wn !d N

  
0

0

!
; �2

"
DZ P

P 0 DX

#!
:

This result will also be useful in the partially identi�ed model later. Putting

z1n =
p
nC 0KL

0
XLZ(L

0
ZLZ)

�1 (un � L0ZLX(L
0
XLX)

�1
vn);

we have

Lemma 3.2 Under H0 and the given assumptions,

z1n !d N(0; �2�11)

where

�11 = C 0KP
0D�1

Z

�
DZ � PD�1

X P 0
�
D�1
Z PCK

is positive de�nite.

Now

Tn =
z01n [n

�1C 0KL
0
XPLZMLXPLZLXCK ]

�1
z1n

n�1y0MLXy
;
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and it is easily seen that

�
n�1C 0KL

0
XPLZMLXPLZLXCK

�
!p �11:

Thus, as expected, we have:

Theorem 3.1 Under H0, and the assumptions above,

Tn !d �2K�1:

Evidently, critical values for the test can be easily obtained from statistical

tables. The accuracy of this asymptotic result is examined in Section 3.3.

3.1.3 Test consistency

It is straightforward to see that, under suitable conditions on the class of alterna-

tive hypotheses, the test that rejects H0 for large Tn is consistent, i.e. the power

of the test approaches 1 as n!1. Assume that the conditional expectation of
the error term in (1) is given by:

E["njXn = LXx] = m; (21)

where m is an n�vector that may be �xed or random, but must not be in the
column space of LX . That is, there must be variation in the elements of m

that correspond to each of the support points xk of X: If this is not the case

the test will have no power. Under the alternative hypothesis we will have

E["jX = xk] 6= 0 for at least one value of k. Cases with no power occurs if, when
the null hypothesis fails

E[Y jX = xk] = h(xk) + 
(xk);

where 
(xk) = E["jX = xk] depends only on xk. In this case instead of (10), we

will have the model

y = LX(� + 
) + e"n;
where e"n = "n � 
, which is identical to the original model with the unknown h

replaced by the also-unknown h+ 
. Recall that the null hypothesis claims that

the CMF of Y lies in the column space of LX and the alternative (21) simply
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says that H0 is false. Since we continue to assume the validity of the instrument,

i.e., that p limn!1(n
�1L0Z"n) = 0; we must have p limn!1(n

�1L0Zm) = 0: We

also assume that

p lim
n!1

(n�1L0Xm) = �;

a non-zero �nite vector. Additionally, let ��2 denote the probability limit of

n�1y0MLXy under alternative hypothesis (21), and assume that �
�2 <1.

The following proposition establishes the consistency of the test against a

�xed alternative hypothesis.

Proposition 4 Under �xed alternatives (21) and the earlier assumptions, the
proposed test is consistent, i.e., for any �xed constant c�;

lim
n!1

Pr (Tn > c�) = 1:

The consistency follows from the fact that

p lim
n!1

n�1Tn =
�0��111 �

��2
> 0; (22)

where

� = C 0KP
0D�1

Z PD�1
X �;

i.e. the value of the test statistic tends to +1 under �xed alternatives, implying

that the power of the test tends to unity as n ! 1. Note that the standard
estimator y0MLXy in the denominator of the test statistic (20) under-estimates

�2. Since

n�1y0MLXy = n�1"0nMLX"n = n�1"0n"n � n�1"0nLX(L
0
XLX)

�1L0X"n;

and given the fact that

p lim
n!1

n�1"0nLX(L
0
XLX)

�1L0X"n = �0D�1
X �;

it follows that

n�1y0MLXy !p �2 � �0D�1
X � � ��2 < �2:
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This result has no impact on the consistency of the proposed test, as long as

��2 is a �nite positive constant.

3.1.4 Asymptotic distribution under local alternatives

Since the power of the test at �xed alternatives converges to 1, we examine

the ability of the test to detect small deviations from the null hypothesis. We

consider a sequence of local alternatives that converges to the null hypothesis at

rate O(n�
1
2 ), i.e.

E["njXn = LXx] = n�
1
2m: (23)

A simple generalization of Lemmas 3.1 and 3.2 gives

Lemma 3.3 Under the sequence of local alternatives (23), and the assumptions
on m just given,

wn !d N

  
0

�

!
; �2

"
DZ P

P 0 DX

#!

and

z1n !d N(��; �2�11):

From familiar results for quadratic forms in normal vectors with non-zero

mean, it immediately follows that

Theorem 3.2 Under the sequence of local alternatives (23), and the assump-
tions above, the test statistic

Tn !d Gamma (�; �; �) ;

with the shape parameter � = K�1
2
, the scale parameter � = 2 �

2

��2 and the non-

centrality parameter � = 2�2, where

�2 =
�0��111 �

�2
:

The asymptotic behaviour of the test-statistic is captured by the non-central

Gamma distribution. For a given size, the power of the test increases with

noncentrality parameter �2. As in the standard Durbin-Wu-Hausman test, the
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value of this parameter depends on the the distance between the probability

limits of the OLS and IV estimators. Hence, the test is more powerful if the

probability limit of the OLS estimator is far from the true value of the parameter

of interest.

3.2 Testing under partial identi�cation

In this situation (J < K), there is no consistent estimator (in the conventional

sense) for � if X is endogenous, so in this case the test is to decide whether

point estimation of � is even possible. When J < K; the Durbin-Wu-Hausman

approach to testing H0 is not available. However, assuming the existence of an

instrument Z with the properties given above, � is constrained to satisfy the

linear equations � = ��, but is not point identi�ed by them. That is, there

is a set of vectors �, a subset of RK , that satisfy these equations, of dimension
K � J . The model maintains that � belongs to this set, and H0 says that

E[YnjXn = LXx] = LX�.

3.2.1 Test statistic

Now, consider the empirical counterpart of the system � = ��, namely b� =b��, and the vector � that, among all solutions to this system, minimizes (y �
LX�)

0(y � LX�). That is, de�ne

b�Z = arg min
�:b�=b��(y � LX�)

0(y � LX�):

Straightforward familiar algebra gives

b�Z = b� + (L0XLX)�1 b�0 �b�(L0XLX)�1 b�0��1 �b� � b�b��
= b� + (L0XLX)�1 L0XLZ (L0ZPLXLZ)�1 L0ZMLXy;

where b� is the OLS estimator de�ned earlier. The minimum achieved by this

choice for � is therefore

Qn = (y � LXb�Z)0(y � LXb�Z)
= y0MLXy + y0MLXLZ (L

0
ZPLXLZ)

�1
L0ZMLXy:
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Intuitively, a large value for this minimum sum of squares is evidence against

H0, because it means that, among all solutions to b� = b��, none produces a
small value of (y � LX�)

0(y � LX�). This suggests, not that � 6= ��, because
this is ruled out, but rather that E[YnjXn = LXx] 6= LX�; i.e. that the null

hypothesis is false. Normalizing Qn by dividing by n�1y0MLXy, this argument

suggests rejecting H0 when the statistic

Rn =
y0MLXLZ (L

0
ZPLXLZ)

�1 L0ZMLXy

n�1y0MLXy

is large. Again, note that Rn is not regarded as a measure of whether � = ��,

but rather whether b�, which embodies H0, can satisfy these conditions.

Now, in view of Property C,

MLXLZ [lJ ; CJ ] = [MLX ln;MLXLZCJ ] = [0;MLXLZCJ ]

and, the (2; 2) block of

[[lJ ; CJ ]
0 (L0ZPLXLZ) [lJ ; CJ ]]

�1 =

"
n l0nLZCJ

C 0JL
0
Z ln C 0JL

0
ZPLXLZCJ

#�1

is given by

(C 0JL
0
Z [PLX � Pln ]LZCJ)

�1
:

Thus, after taking account of Property C, Rn reduces to

Rn =
y0MLXLZCJ (C

0
JL

0
Z [PLX � Pln ]LZCJ)

�1C 0JL
0
ZMLXy

n�1y0MLXy
(24)

with the middle matrix being (J � 1) square. Thus, although at �rst sight a
quadratic form involving J variables, the numerator of Rn in fact involves only

J � 1 terms.

3.2.2 Asymptotic distribution under null hypothesis

In this case the vector involved in the numerator of Rn is, in terms of the variates

un and vn dealt with in Lemma 3.1,

z2n :=
p
nC 0J(un � L0ZLX(L

0
XLX)

�1vn);
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and it follows at once that

z2n !d N(0; �2�);

where

� := C 0J
�
DZ � PD�1

X P 0
�
CJ :

However, in this case the (normalized) matrix of the quadratic form converges

to something other than the inverse of �; namely

n�1C 0JL
0
Z [PLX � Pln ]LZCJ !p C 0J(PD

�1
X P 0 � pZp

0
Z)CJ := 
:

The following theorem gives the asymptotic distribution of the test statistic under

the null hypothesis.

Theorem 3.3 Under H0 and the assumptions above,

Rn !d z0
�1z �
J�1X
j=1

!j�
2
j(1) (25)

where z � N(0;�); with � as de�ned above,


 := C 0J(PD
�1
X P 0 � pZp

0
Z)CJ ;

and the !j are positive eigenvalues satisfying

det[�� !
] = 0

with the �2j(1) variables independent copies of a �
2
1 random variable.

The asymptotic distribution of the proposed test with discrete regressors and

instruments is similar to the distribution obtained by Blundell and Horowitz

(2007) for the continuous case. Their test-statistic follows asymptotically the

distribution of an in�nite sum of weighted chi-square variables with 1 degree of

freedom. When calculating critical values, they face the additional problem of

approximating an in�nite sum by a �nite number of terms. In the discrete case,

the asymptotic distribution is more straightforward, since it is based on a �nite
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sum of terms due to the discrete nature of variables. Nonetheless, the distrib-

ution theory for such variables is complicated, and there is an incentive to use

approximations, and several have been discussed extensively in the literature. In

Section 3.2.5 we discuss the approximation proposed by Hall (1983) and further

explored by Buckley and Eagleson (1988), which allows us to compute the critical

values in practical applications.

3.2.3 Test consistency

Assume that H0 is false and consider again the �xed alternative hypothesis (21).

In the proof of Proposition 4 we have shown that

p lim
n!1

n�
1
2wn =

 
0

�

!
;

and it follows at once that

p lim
n!1

n�
1
2 z2n = �C 0JPD�1

X � = ��;

say. Therefore,

p lim
n!1

n�1Rn =
� 0
�1�

��2
> 0:

Using the same argument as before, we obtain the consistency of the test:

Proposition 5 Under �xed alternatives (21) and the earlier assumptions, the
proposed test is consistent, i.e., for any �xed constant c�;

lim
n!1

Pr (Rn > c�) = 1:

3.2.4 Asymptotic distribution under local alternatives

Consider again the sequence of local alternatives (23). By Lemma 3.3, we obtain

the asymptotic distribution of z2n:

z2n !d N
�
��; �2�

�
:

The following theorem establishes the asymptotic distribution of the test-statistic

under local alternatives.
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Theorem 3.4 Under the sequence of local alternatives (23) and the assumptions
above, the test statistic Rn converges to a distribution of a weighted sum of non-

central chi-square random variables:

Rn !d �2

��2

J�1X
j=1

!j�
2
1(�

2
j) (26)

with the noncentrality parameters

(�1; :::; �J�1)
0 =

S 0��
1
2 �

�
;

where S denotes the orthogonal matrix of the eigenvectors of �
1
2
�1�

1
2 .

The proof is based on standard results on the distribution of quadratic forms

in normal vectors with non-zero mean, and hence omitted. Under local alter-

natives, the test statistic asymptotically follows the distribution of a weighted

sum of non-central chi-square (1) variables. This result again corresponds to the

distribution obtained by Blundell and Horowitz (2007) for the continuous case.

3.2.5 Critical values computation

The asymptotic distribution of the test-statistic is non-standard and depends on

the weights !j, which, in practice, need to be estimated from the data. Since

we cannot provide statistical tables with the appropriate tail probabilities and

cut o¤ points, it is essential to �nd a quick technique for calculating the critical

values of the proposed test.

The distribution of a weighted sum of �2(1) random variables has been stud-

ied in the literature since 1960�s. Many authors derived explicit formulas for

the probability density function and a cumulative distribution function of the

process of interest. The results are typically obtained by examining the behav-

iour of a moment generating function, as in Mathai (1982) or by using mixtures

approximations as in Solomon and Stephens (1977) or Oman and Zacks (1981).

An explicit expression for the distribution function is given in Johnson and Kotz

(1970). Let q =
PK

k=1 dkZ
2
k = z0Dz, where D = diagfdkg and z � N(0; Ik).
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Then the probability density function of q is

fq(q) =
expf�1

2
�qgq k2�1

2
k
2�(k

2
)jDj 12

1X
j=0

qj(1
2
)j

j!2j(k
2
)j
Cj(�Ik �D�1); (27)

where � is an arbitrary positive constant, and the cumulative distribution of q is

given by

Fq(z) = Pr[q � z] =
1

j�Dj 12

1X
j=0

�
1
2

�
j

j!
Cj(Ik � (�D)�1)Gk+2j(�z); (28)

where Gm(:) denotes the cumulative distribution function of �2(m) random vari-

able. The function Cj(M) is a top-order zonal polynomial and (c)j = c(c +

1):::(c + j � 1) is the Pochhammer symbol.
�
1
2

�
j
Cj(M) are derived from the

generating function

C(t) = jI � tM j� 1
2

as the coe¢ cients on tj

j!
.

Obviously, (27) and (28) are rather complicated and di¢ cult to handle in

empirical applications. From the practical point of view, in order to calculate

the critical values for the proposed test, it is crucial to be able to approximate the

process of interest by a well known structure. Alternatively, one could use the

inverse interpolation procedure of �nding the critical values proposed by Sheil

and Muircheartaigh (1977). However, this method is computationally intensive

and requires specifying the upper and lower bounds on the weights, which we

would like to avoid.

There are numerous ways of computing the critical values in this case. Let-

ting b!j be consistent estimators of the weights !j under H0, the distribution

of
PJ�1

j=1 b!j�2j(1) can be simulated and appropriate 1� � quantiles can be used

as critical values in the standard rejection rule. However, our experiments show

that this approach is computationally intensive and time consuming. The second

method involves simulating the quadratic form

z0b
�1z, z � N(0; b�)
and computing the quantiles. This method delivers satisfactory results and re-
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duces the simulation time signi�cantly. An alternative (and popular) procedure

of obtaining the critical values, based on the numerical inversion of the charac-

teristic function, was proposed by Imhof (1961). This procedure is much more

computationally intensive, since it requires the knowledge of all eigenvalues of

�
�1:

A �nal method is based on using an approximation to the distribution of

a weighted sum of chi-square variables. Even though a linear combination of

independent chi-squared variables is, under regularity conditions, known to be

asymptotically normally distributed when the sample size tends to1 (Johnson,

Kotz and Balakrishnan (1994), p.444), the simulations reveal the unsatisfac-

tory performance of the normal approximation. Hence, we suggest applying the

approximation proposed by Hall (1983) and further explored by Buckley and Ea-

gleson (1988), where the distribution of a weighted sum of �21 random variables

is approximated by the distribution of ~R = a�2v + b by choosing (a; b; v) so that

the �rst three cumulants of R and ~R agree.

The cumulants �l of a random variable are de�ned via the cumulant-generating

function K(t), which is the logarithm of the characteristic function �(t) with the

following expansion (Muirhead (1982), p.40)

K(t) = log(�(t)) =
1X
l=1

�l
(it)l

l!
:

Since the characteristic function �(t) of a chi-square random variable with r

degrees of freedom is

�(t) = (1� 2it)� r
2 ;

the cumulant generating function K(t) of �2(r) variable is

K(t) = �r
2
log(1� 2it) = 1

2
r

1X
l=1

(2it)l

l

and the cumulants �l solve

1X
l=1

�l
(it)l

l!
=
1

2
r

1X
l=1

(2it)l

l
:

Let R =
PJ�1

j=1 !j�
2
j(1). The cumulants of this chi-squared-type mixture are
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given by7

�l(R) = 2
l�1(l � 1)!

J�1X
j=1

!lj:

Therefore, the �rst three cumulants of R are

�1(R) = E(R) =
J�1X
j=1

!j = trace(�
�1)

�2(R) = V ar(R) = 2
J�1X
j=1

!2j = 2trace
��
�
�1

�2�
�3(R) = E

�
(R� E(R))3

�
= 8

J�1X
j=1

!3j = 8trace
��
�
�1

�3�
:

The cumulants of ~R = a�2v + b are:

�1( ~R) = av + b; �2( ~R) = 2a
2v; �3( ~R) = 8a

3v:

To determine the parameters a; b and v we set �m( ~R) = �m(R) for m = 1; 2; 3

which leads to

a =
�3(R)

4�2(R)
(29)

b = �1(R)�
2�22(R)

�3(R)

v =
8�32(R)

�23(R)
:

Hence the approximate cumulative distribution of R is

FR(t) = Pr(R � t) � Pr( ~R � t) = Pr

�
�2v �

t� b

a

�
:

The critical value c� solves

1� Pr
�
�2v �

c� � b

a

�
= �

for � = 1%; 5% or 10%.

7See Severini (2005), Theorem 8.5, p. 245.
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Note that parameter v is typically not an integer and the �2v distribution here

is in fact a gamma distribution with parameters 1
2
and v

2
. In practice, the matrix

�
�1 is unknown and, in order to calculate the values of parameters in (29), it

has to be replaced by its consistent estimate:

C 0JL
0
ZMLXLZCJ [C

0
JL

0
Z(PLX � Pln)LZCJ ]

�1
:

3.3 Monte Carlo simulations

In this section, we discuss the results of Monte Carlo simulations designed to

examine the �nite sample size and power properties of the proposed tests. We

modify Blundell and Horowitz�s (2007) setup by generating X and Z as discrete

random variables.

3.3.1 Simulation design

In the experiments, realizations of (X;Z) are generated as Z = Binomial(J �
1; q) with q = 0:5 and X is a function of Z such that

X = xk if ak < X� � bk; (30)

where ak and bk are �xed for �xed K, and

X� =  Z + (1�  2)1=2v

with v � N(0; 1) and  2 f0:35; 0:7g. That is, we partition the real line into
segments and assign X = xk if X� is in the interval (ak; bk]. The choice of xk
values is irrelevant. The selected values for ak and bk are presented in Table 1.
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a1 b1 a2 b2 a3 b3 a4 b4 a5 b5 a6 b6
K=2 �1 0 0 +1
K=3 �1 �0:5 �0:5 0:5 0:5 +1
K=5 �1 �0:25 �0:25 0 0 0:25 0:25 0:5 0:5 +1
K=6 �1 �0:5 �0:5 �0:25 �0:25 0 0 0:5 0:5 1 1 +1

Table 1: The choice of cuto¤ points in the simulation design

Note that  measures the strength of the relationship between X and Z.

Weak instruments are characterized by  = 0:35 and  = 0:7 characterizes

strong instruments. Under this data generating process, probability masses on

each support point xk of X are given in Tables 2 and 3.

 = 0:35

p1 p2 p3 p4 p5 p6

K=2 J=2 0:4272 0:5728

J=3 0:3590 0:6410

J=4 0:2971 0:7029

K=3 J=3 0:1903 0:3712 0:4385

J=4 0:1490 0:3409 0:5101

J=5 0:1152 0:3056 0:5792

K=5 J=2 0:3279 0:0993 0:1042 0:1021 0:3666

J=3 0:2680 0:0911 0:0999 0:1026 0:4385

J=4 0:2157 0:0813 0:0930 0:0998 0:5101

K=6 J=3 0:1903 0:0777 0:0911 0:2025 0:1873 0:2513

J=4 0:1490 0:0667 0:0813 0:1928 0:1953 0:3149

J=5 0:1152 0:0560 0:0709 0:1787 0:1970 0:3822

Table 2: The probability masses of X with weak instruments
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 = 0:7

p1 p2 p3 p4 p5 p6

K=2 J=2 0:3317 0:6683

J=3 0:2130 0:7870

J=4 0:1334 0:8666

K=3 J=3 0:0847 0:3256 0:5897

J=4 0:0491 0:2323 0:7186

J=5 0:0282 0:1587 0:8131

K=5 J=2 0:2274 0:1043 0:1188 0:1233 0:4261

J=3 0:1393 0:0737 0:0918 0:1055 0:5897

J=4 0:0838 0:0496 0:0661 0:0819 0:7186

K=6 J=3 0:0847 0:0546 0:0737 0:1973 0:2228 0:3669

J=4 0:0491 0:0346 0:0496 0:1480 0:1977 0:5209

J=5 0:0282 0:0214 0:0322 0:1050 0:1599 0:6532

Table 3: The probability masses of X with strong instruments

In order to show how these were obtained, we provide

Example 3.1 Let K = 3, J = 2. Since Z is Bin(J � 1; q), it follows that
q1 = Pr[Z = 0] = 1� q, q2 = Pr[Z = 1] = q and

DZ =

"
1� q 0

0 q

#
:

Knowing the data generating process for X, we obtain:

p1 = Pr[X = 0] = (1� q)�

�
�0:5

(1�  2)1=2

�
+ q�

�
�0:5�  

(1�  2)1=2

�
p2 = Pr[X = 1] = (1� q)

�
�

�
0:5

(1�  2)1=2

�
� �

�
�0:5

(1�  2)1=2

��
+

q

�
�

�
0:5�  

(1�  2)1=2

�
� �

�
�0:5�  

(1�  2)1=2

��
p3 = Pr[X = 2] = (1� q)

�
�

�
�0:5

(1�  2)1=2

��
+ q�

�
�0:5 +  
(1�  2)1=2

�
;

where � is the cumulative standard normal distribution function. The matrix of
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joint probabilities P can be generated according to

(P )jk = Pr[Z = zj; X = xk] = Pr[X = xkjZ = zj] Pr[Z = zj];

for example

(P )11 = Pr[Z = z1; X = x1] = Pr[Z = 0; X = 0]

= Pr[X = 0jZ = 0]Pr[Z = 0] = �
�

�0:5
(1�  2)1=2

�
(1� q)

and

(P )21 = Pr[Z = z2; X = x1] = Pr[Z = 1; X = 0]

= Pr[X = 0jZ = 1]Pr[Z = 1] = �
�
�0:5�  

(1�  2)1=2

�
q:

The realizations of a continuous outcome Y are generated from

Y = �0 + �1X + ";

where " = �2"

�
�v + (1� �2)

1
2u
�
with u � N(0; 1) and �0 = 0, �1 = 0:5 and

�" = 0:2. The parameter � measures the strength of the relationship between

X and ", and its value varies across experiments. The null hypothesis is true if

� = 0 and false otherwise. The experiments use sample sizes of n = 100; 200; 400

and 1000 (for the power analysis) observations and there are 2000 Monte Carlo

replications in each experiment.

3.3.2 Size analysis J � K

Recall that under the null hypothesis Tn !d �2K�1, so the critical values are

easily obtained from statistical tables. The empirical size of the proposed test

for di¤erent combinations of J and K (satisfying J � K) is presented in Tables

4 and 5.
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K=2 J=2 J=3 J=4
 sample size 1% 5% 10% 1% 5% 10% 1% 5% 10%
0.35 100 0.90 4.95 10.05 1.00 4.95 9.35 0.95 5.35 10.50

200 1.30 5.10 10.20 1.10 5.05 10.45 1.10 5.10 11.20
400 0.85 5.20 10.20 1.10 5.05 10.45 1.10 5.10 10.25

0.7 100 0.80 4.50 9.55 0.85 4.95 10.10 1.25 4.95 9.65
200 1.10 4.55 10.80 1.25 4.85 10.10 0.95 5.40 9.70
400 1.25 5.20 10.10 0.95 4.95 10.50 1.10 5.15 10.40

Table 4: Proportion of rejections under the null hypothesis; K=2

K=3 J=3 J=4 J=5
 sample size 1% 5% 10% 1% 5% 10% 1% 5% 10%
0.35 100 0.95 5.35 10.75 0.85 5.35 11.20 1.05 5.45 10.30

200 0.80 4.75 10.10 1.25 5.25 10.95 1.25 5.50 10.45
400 0.85 4.85 10.25 1.10 5.05 9.85 1.20 5.10 9.55

0.7 100 1.05 5.90 11.20 1.15 5.15 10.70 0.95 5.15 10.30
200 1.00 5.40 10.65 1.25 5.05 10.35 1.10 5.75 10.70
400 1.45 5.80 10.65 0.95 5.45 10.55 1.05 5.10 9.65

Table 5: Proportion of rejections under the null hypothesis; K=3

It is possible to construct simulation-based con�dence intervals for the true

size. For 2000 simulations, the 5% con�dence interval for � = 1% is [0:56; 1:44],

for � = 5% : [4:04; 5:96] and for � = 10% : [8:69; 11:31]. As can be seen, all

empirical sizes are within the calculated bounds, and hence reasonably close to

the nominal values of 1%, 5% and 10%, even in small samples of 100 observations.

The size seems not very sensitive to changes in the number of points of support

of the endogenous regressor and instrument and do not vary with the strength

of instrument.

3.3.3 Power analysis J � K

For the power analysis, the errors are generated as " = �2"

�
�v + (1� �2)

1
2u
�
,

u � N(0; 1). Recall that this speci�cation excludes alternatives with E["jX =

xk] = 
(xk) in which the power is equal to the size of the test. The results of

power analysis at 5% signi�cance level for di¤erent sample sizes, but K = J; are

summarized in Figures 1 and 2. Detailed empirical power results are included in

the Appendix B.
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Figure 1: Empirical power for K=2 and J=2 with weak (a) and strong (b)
instruments

Figure 2: Empirical power for K=3 and J=3 with weak (a) and strong (b)
instruments
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Figures 3 and 4 show how the empirical power changes with the number of

points of support of the instrument.

Figure 3: Empirical power for K=2 and n=400 with weak (a) and strong (b)
instruments

Figure 4: Empirical power for K=3 and n=400 with weak (a) and strong (b)
instruments

The proposed test exhibits satisfactory power properties. The test is ap-

parently unbiased, and its empirical power increases with the sample size and

converges to 1 quickly. For a �xed number of support points of the endogenous

regressor and instrument, the empirical power is higher if the instrument used in

experiment is strong. The test has also higher power if the support of endoge-

nous regressor is larger. If the instrument is weak, for �xed K, the empirical

54



power of the test increases when additional points of support of the instrument

are added. Therefore, for weak instruments, the larger the support of Z, the

more powerful the test is. This suggests that in practice the researcher should

look for an instrument with many support points to increase the probability of

detecting the endogeneity of regressor. On the other hand, if the instrument is

strong, the empirical power remains roughly the same if the di¤erence between

the numbers of support points of X and Z is small, but decreases slightly with

the gap between J and K.

This unusual power function behaviour is due to our simulation design. Note

that as J increases, the probability masses pk become more and more unequal (see

Tables 2 and 3). The problem is more apparent in the case of strong instruments.

For example, in the case of 3 support points of X and 5 support points of Z,

Pr[X = x1] = 0:0282. Given that the sample size considered here is n = 400,

there are only a few sample points for which we observe the value x1. As a result,

the precision in computing the value of the test statistic is substantially reduced.

In order to show that the test performs better if there is a similar number of

observations for each support point xk, in an additional small experiment we

change the simulation design such that all pk = 1
K
. The new cuto¤ points of (30)

are given in Table 6.
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 = 0:35

a1 b1 a2 b2 a3 b3

K=2 J=2 �1 0:18 0:18 +1
J=3 �1 0:35 0:35 +1
J=4 �1 0:53 0:53 +1

K=3 J=3 �1 �0:07 �0:07 0:77 0:77 +1
J=4 �1 0:1 0:1 0:95 0:95 +1
J=5 �1 0:27 0:27 1:13 1:13 +1

 = 0:7

K=2 J=2 �1 0:35 0:35 +1
J=3 �1 0:7 0:7 +1
J=4 �1 1:05 1:05 +1

K=3 J=3 �1 0:32 0:32 1:08 1:08 +1
J=4 �1 0:64 0:64 1:46 1:46 +1
J=5 �1 0:96 0:96 1:84 1:84 +1

Table 6: The choice of cuto¤ points for equal point masses on the support points

of X; K=2 and K=3

Figures 5 and 6 show how the empirical power changes with the number

of points of support of the strong instrument under the new data generating

process.

Figure 5: Empirical power for K=2 and n=400 with weak (a) and strong (b)
instruments with equal point masses on the support points of X
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Figure 6: Empirical power for K=3 and n=400 with weak (a) and strong (b)
instruments with equal point masses on the support points of X

The empirical power increases now with the number of the support points

in the instrument. It is clear that the empirical power properties are improved,

while the size is una¤ected. The increase in power can also be noticed in the

case of weak instruments, but the di¤erence is smaller in magnitude, since with

the original data generating process, pk were closer to 1
K
with weak instruments.

3.3.4 Size analysis J < K

We have experimented with di¤erent methods of computing the critical values

for the proposed test. The three methods proposed in Section 3.2.5 produce

very similar results for the empirical size and power of the test. In this section,

we present the results based on the chi-square approximation, which minimizes

the computational time. The empirical size of the proposed test is presented in

Tables 7 and 8.
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K=5 J=2 J=3 J=4

 sample size 1% 5% 10% 1% 5% 10% 1% 5% 10%

0.35 100 1.10 5.00 10.45 1.20 5.65 10.85 0.85 5.25 10.80

200 0.90 4.85 10.00 0.80 4.55 9.65 0.95 4.55 9.65

400 0.85 5.50 10.50 1.15 6.15 10.55 1.10 5.50 9.75

0.7 100 1.20 6.10 11.50 1.35 5.85 11.35 1.55 5.80 11.20

200 1.15 5.80 10.90 1.05 4.75 9.70 1.10 5.35 10.35

400 1.20 5.65 9.80 1.05 5.30 10.10 0.95 4.95 10.50

Table 7: Proportion of rejections under the null hypothesis; K=5

K=6 J=3 J=4 J=5

 sample size 1% 5% 10% 1% 5% 10% 1% 5% 10%

0.35 100 1.20 5.70 10.50 0.85 5.25 10.95 1.10 6.15 11.50

200 1.05 4.80 10.15 1.00 5.60 11.10 1.50 5.55 10.40

400 0.95 4.65 9.80 0.90 5.05 9.85 0.90 5.25 10.50

0.7 100 1.05 5.35 10.55 0.95 4.75 10.30 1.60 5.70 10.15

200 1.15 5.10 9.85 0.85 5.05 9.90 1.65 5.90 11.20

400 0.90 5.40 10.75 1.05 5.65 11.10 0.95 5.20 10.40

Table 8: Proportion of rejections under the null hypothesis; K=6

.

The test has adequate size in all cases, even in the small samples of 100

observations. The size is not sensitive to changes in the number of points of

support and the strength of the relationship between endogenous regressor and

the instrument.

3.3.5 Power analysis J < K

The results of a power analysis at 5% signi�cance level are presented in Figures

7 and 8. Detailed empirical power results are included in the Appendix B.
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Figure 7: Empirical power for K=5 and J=2 with weak (a) and strong (b)
instruments

Figure 8: Empirical power for K=6 and J=3 with weak (a) and strong (b)
instruments
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Figures 9 and 10 show how the empirical power changes with the number of

points of support of the instrument.

Figure 9: Empirical power for K=5 and n=400 with weak (a) and strong (b)
instruments

Figure 10: Empirical power for K=6 and n=400 with weak (a) and strong (b)
instruments

The empirical power increases with the sample size and in some cases (strong

instruments) converges quickly to 1. The test is again apparently unbiased, and

performs particularly well if the instruments are strong. For a �xed number of

points of support of the regressor, the proposed test detects endogeneity of the

regressor better when the support of the instrument is smaller. Hence, for both

weak and strong instruments, the power of the test is decreasing with the number
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of points of support of the instrument. This suggests that in applications, in

order to obtain higher power in detecting endogeneity, among all the instruments

available, that with the smallest number of support points should be chosen.

Note that if the gap between K and J is small, the test tends to be more

powerful with weak instruments. This counter intuitive behaviour of the power

function might be again due to simulation design. Allowing for equal point

masses on the support points of X requires new cuto¤ points of (30), which are

given by

 = 0:35

b1 a2 b2 a3 b3 a4 b4 a5 b5 a6 b6

K=5 J=2 �0:63 �0:63 �0:07 �0:07 0:42 0:42 0:98 0:98 +1
J=3 �0:47 �0:47 0:11 0:11 0:6 0:6 1:17 1:17 +1
J=4 �0:30 �0:30 0:28 0:28 0:78 0:78 1:36 1:36 +1

K=6 J=3 �0:59 �0:59 �0:07 �0:07 0:35 0:35 0:77 0:77 1:29 1:29 +1
J=4 �0:43 �0:43 0:10 0:10 0:53 0:53 0:95 0:95 1:48 1:48 +1
J=5 �0:27 �0:27 0:27 0:27 0:7 0:7 1:13 1:13 1:67 1:67 +1

 = 0:7

K=5 J=2 �0:33 �0:33 0:15 0:15 0:56 0:56 1:03 1:03 +1
J=3 �0:04 �0:04 0:48 0:48 0:92 0:92 1:44 1:44 +1
J=4 0:25 0:25 0:81 0:81 1:29 1:29 1:85 1:85 +1

K=6 J=3 �0:15 �0:15 0:32 0:32 0:7 0:7 1:08 1:08 1:55 1:55 +1
J=4 0:13 0:13 0:64 0:64 1:05 1:05 1:46 1:46 1:97 1:97 +1
J=5 0:42 0:42 0:96 0:96 1:4 1:4 1:84 1:84 2:38 2:38 +1

Table 9: The choice of cuto¤ points for equal point masses on the support points

of X; K=5 and K=6

with a1 = �1. Figures 11 and 12 show how the empirical power changes
with the number of points of support of the strong instrument under new data

generating process.
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Figure 11: Empirical power for K=5 and n=400 with weak (a) and strong (b)
instruments with equal point masses on the support points of X

Figure 12: Empirical power for K=6 and n=400 with weak (a) and strong (b)
instruments with equal point masses on the support points of X

The power properties are signi�cantly improved and the size is una¤ected.

We can again conclude that the test performs better in samples with similar

number of observations for each support point of the endogenous regressor. In

general, these results are more than satisfactory, particularly so in view of the

fact that the model is only partially identi�ed under the alternative hypothesis,

and its simplicity.8

8Some recently developed testing procedures for partially identi�ed models are very com-
plicated, and are useful only for a limited range of hypotheses.
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3.4 Concluding remarks

The consistency of standard estimation procedures fails in the presence of en-

dogeneity in the model. Therefore, in order to choose the consistent estimation

technique, the applied researchers should test whether the explanatory variables

used in the model are exogenous. In this chapter, we have proposed a test

for exogeneity of regressors in nonparametric models with discrete explanatory

variables and discrete instruments under the assumption that the model point

identi�es the unknown structure of interest. Using the linear interpretation of

a nonparametric model, the test is built on a quadratic form of a di¤erence be-

tween two estimators, one of which is consistent only under exogeneity and the

other is consistent under both scenarios. This testing framework follows closely

the Durbin-Wu-Hausman-type of test. It has been shown that under the null

hypothesis of exogeneity, the test statistic follows chi-square distribution asymp-

totically. The consistency of the test has been established by showing that under

the alternative hypothesis the test-statistic follows a noncentral chi-square dis-

tribution and that the asymptotic power of the test equals 1. The results of

Monte Carlo simulations have shown satisfactory �nite-sample properties of the

proposed test. Based on our experiments, we can conclude that:

� both tests have correct size even in small samples, and are unbiased,

� empirical power increases with the sample size and converges to 1,

� using a strong instrument leads to better power properties,

� both tests are more powerful if the sample is balanced, i.e. there is an
equal number of observations for each support point,

� empirical power changes with the number of support points of both en-
dogenous regressor and instrument.

Particularly interesting is the fact that the power increases with the gap

between the number of points of support in the variables. Therefore, assuming

that there is a choice between valid instruments for the applied researcher, when

J � K, one should choose that with the most points of support, and when J < K

choose the one with the smallest number of support points in order to increase

the probability of detecting endogeneity of the regressor.
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4 Generalizations

This section provides extensions of the testing procedures to models that are more

realistic for practical applications. Firstly, we discuss exogeneity testing in the

presence of an additional exogenous regressor, but still with a single instrument.

Then we show that general results for testing the exogeneity of multiple regres-

sors using multiple instruments in models with multiple exogenous explanatory

variables have exactly the same structure, so that the tests are easily generalized.

4.1 Models with two discrete regressors

In most applications, it is reasonable to let the unknown h(�) be a function of
more than one regressor. In this section we extend the model given by equations

(1) and (3) to allow for a second explanatory variable.

4.1.1 Setup

We assume that the additional regressor is de�nitely exogenous, and write the

extended model as

Y = h(W;X) + "; (31)

where Y is a scalar continuous dependent variable, X is a single discrete regressor

that may be endogenous, and W denotes a discrete regressor whose exogeneity

is not in question. We assume that W has D points of support.

In addition to equation (31), we assume that there exists a single discrete

instrumental variable Z such that

E ["jW = wd; Z = zj] = 0; 8d; j (32)

which generalizes (3) and represents the instrument exogeneity condition. There-

fore, the extended model consists of equations (31) and (32). The data (ysi ; x
s
i ; z

s
i ; w

s
i )

consists of n i:i:d: observations on (Y;X;Z;W ).

We are interested in testing the null hypothesis of exogeneity of the regressor

X; i.e. E["jW = wd; X = xk] = 0 for all d and k. In terms of observables, the

null hypothesis is

H0 : E[Y jW = wd; X = xk] = h(wd; xk): (33)
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Under the null, the unknown function h(�) can be consistently estimated using
standard nonparametric techniques. If condition (33) is violated, the choice of

the consistent estimation method depends on the identi�cation regime.

In order to generalize the results of the previous sections, we modify the

notation by de�ning � to be the lexicographically ordered DK-vector with D

blocks of K elements h(wd; xk): In each block, wd is �xed and xk varies from x1

to xK ; i.e.

� =

0BBBBBBBBBBBBBB@

h(w1; x1)

:::

h(w1; xK)

h(w2; x1)

:::

h(w2; xK)

:::

h(wD; xK)

1CCCCCCCCCCCCCCA
:

Similarly, let � be the DJ-vector with D blocks of conditional means E[Y jW =

wd; Z = zj]; and let � = diagf�d; d = 1; ::; Dg be the DJ �DK matrix in which

�d(j; k) = Pr[X = xkjZ = zj;W = wd]:

As in the previous case, the restriction that the null hypothesis imposes on the

conditional density of Y given (X;W ) is that the vector of conditional means

E[Y jW = wd; X = xk] is a solution to the set of DJ linear equations

� = �� (34)

in the unknown �. (34) has a unique solution if and only if rank(�) = DK; which

requires DJ � DK; i.e., J � K. Therefore, the nonparametric identi�cation

condition remains the same as in the model without the additional regressor.

Hence, allowing for additional exogenous explanatory variable does not a¤ect

the identifying power of the instrument.9

9This is intuitive: � can be partitioned into D sub-vectors with K � 1 components hd(xk).
Therefore, we have D problems of the same type as in the model withoutW . For h to be point
identi�ed, each hd must be, so the identi�cation condition is unchanged.
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4.1.2 Linear model representation

Let nWX
dk =

Pn
i=1 I(w

s
i = wd)I(x

s
i = xk) and nWZ

dj =
Pn

i=1 I(w
s
i = wd)I(z

s
i = zj)

denote the multiplicities of pairs (wd; xk) and (wd; zj) in the sample. Note that

nd� =
KX
k=1

nWX
dk =

JX
j=1

nWZ
dj

represents the sample multiplicity of wd.

The compact linear model representation of the above setup requires de�n-

ing n � DK matrix LWX , which is build from DK blocks, denoted by LdX ; of

dimensions nd��K. The observations are ordered according to the values of W ,
i.e. the upper left corner of LWX consists of n1� rows, which correspond to n1�
observations in whichW = w1. The elements of each block LdX are the indicators

I(wsi = wd)I(x
s
i = xk): Therefore, the matrix LWX can be partitioned as

LWX =

266664
L1X 0 ::: 0

0 L2X :::

::: :: 0

0 ::: 0 LDX

377775 :

Likewise, de�ne n�DJ matrix LWZ , which is build from DJ blocks, denoted by

LdZ ; of dimensions nd� � J . Both LWX and LWZ are random matrices with the

row sums equal to 1. The linear model representation is therefore given by

y = LWX� + "n;

where � can be consistently estimated by OLS under exogeneity. If X is en-

dogenous and the point identi�cation condition is satis�ed, � can be consistently

estimated by IV using the matrix LWZ as instrument.

Note that there always exists a permutation of sample observations on Y ,

consistent with the construction of LWX and LWZ . Additionally, this permuta-

tion of the data is common to both LWX and LWZ , since the observations are

ordered according to the values of W . It is assumed that all combinations of K

support points of X, J support points of Z and D support points of W occur in

the sample. That is, there is at least one observation (preferably more) in which

X = xk; Z = zj and W = wd for all k; j; d:
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As before, there is a relationship between LWX and LWZ , that leads to rank

de�ciency of matrices appearing in the test-statistics. In models with an exoge-

nous covariate, there are D + 1 common vectors in the column spaces of LWX

and LWZ . Since the row sums of both LWX and LWZ are equal to one,

LWX lLK = LWZ lLJ = ln:

Additional to this relation, which has already been discussed in the simple model,

note that for each block LdX of LWX and LdZ of LWZ we have

LdX lK = LdZ lJ = lnd� :

Let mK
d denote the DK-vector of D blocks with lK placed as dth block, 0 else-

where. Similarly, let mJ
d be the DJ-vector with lJ as the d

th block and mn
d be

n-vector of nd� blocks with lnd� as n
th
d� block. The above relation implies that

LWXm
K
d = LWZm

J
d = mn

d ;

for all d. Since there are D possible positions of lK and lJ in m, there are

D vectors common to column spaces of LWX and LWZ . Even though at �rst

sight, there are D + 1 relationships between LWX and LWZ , note that the vec-

tors mn
1 ; :::;m

n
D add up to ln. Therefore, there are only D linearly independent

common vectors.

In order to deal with the rank de�ciency, we introduce DK � (DK � D)

matrix CDK , which is orthogonal to [mK
1 ; :::;m

K
D ] and DJ � (DJ � D) matrix

CDJ orthogonal to [mJ
1 ; :::;m

J
D].

4.1.3 Test statistics in the extended model

Since allowing for an additional exogenous regressor in the model only increases

the dimension of the objects used to construct the test-statistics presented in

Sections 3.1 and 3.2. Thus, for testing the null hypothesis of exogeneity of X

under point identi�cation, i.e. in models with J � K; the test statistic becomes:

Tn =
y0GXZ(G

0
XZGXZ)

�1GXZy

n�1y0MLWX
y

; (35)
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where

GXZ =MLWX
PLWZ

LWXCDK ;

and under H0 it is easy to show that Tn !d �2(DK�D): For the case J < K; i.e.,

under partial identi�cation, we have

Rn =
y0MLWX

LWZ (L
0
WZPLWX

LWZ)
�1 L0WZMLWX

y

n�1y0MLWX
y

; (36)

where !j are the eigenvalues of �
�1 with, in this case,

� = p lim
n!1

n�1[C 0DJL
0
WZMLWX

LWZCDJ ];

and


 = p lim
n!1

n�1(C 0DJL
0
WZ(PLWX

� P�W )LWZCDJ):

Again, it is easy to adapt the earlier proofs to show that, under H0;

Rn !d

D(J�1)X
j=1

!j�
2
j(1):

Here, CDJ = diagfCndg is DJ � D(J � 1); and �W = diagflndg is n � D: The

asymptotic distributions are stated without proof, but easily follow from the

proofs of Theorems 3.1 and 3.3 in the Appendix A.

4.2 Multiple endogenous regressors, multiple exogenous

covariates and multiple instruments

In the most general version of the model one would have several X variables to

be tested, several additional exogenous variables, Ws; and several instruments.

The model would thus be:

Y = h(W1; :::;WM ; X1; :::; XR) + ";

we allow for R potentially endogenous discrete regressors and M exogenous dis-

crete covariates, and we have, say, S discrete instruments Z1; :::; ZS. Additionally,

we can allow each of these variables to have di¤erent numbers of support points.
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Allowing for multidimensional regressors and instruments does not require

any changes in the results presented in the previous section. To see this, let the

number of support points of each Xr, Wm and Zs be denoted by Kr; Dm and Js,

respectively, for all r;m and s. We can denote combinations of support points

by sequences

x� = (x�1 ; :::; x�R); 1 � �r � Kr;

w' =
�
w�1 ; :::; w�M

�
; 1 � 'm � Dm;

z
 =
�
z
1 ; :::; z
S

�
; 1 � 
s � Js:

There are K = �Rr=1Kr sequences �; D = �Mm=1Dm sequences '; and J =

�Ss=1Js sequences 
; and the combinations x�; w�; and z
 can be considered to

be the support points of single "composite" random variables, and all results for

this case therefore follow from the previous subsection, with J;K; andD replaced

by appropriate products. A particularly interesting result following from this

transformation is the nonparametric identi�cation condition, summarized in:

Proposition 6 The necessary and su¢ cient condition for identi�cation in the
model Y = h(W1; :::;WM ; X1; :::; XR) + ", with multiple discrete endogenous re-

gressors X1; :::; XR, multiple discrete exogenous regressors W1; :::;WM and mul-

tiple discrete instruments Z1; :::; ZS, satisfying E["jW1; :::;WM ; Z1; :::; ZS] = 0,

is that the product of the number of points of support of the instruments is at

least as large as the product of the number of points of support of endogenous

regressors, i.e., J = �Ss=1Js � K = �Rr=1Kr:

Remark 4.1 This result di¤ers from the standard identi�cation condition, which
requires that there are at least as many instrumental variables as endogenous re-

gressors. When all variables are discrete, nonparametric identi�cation does not

depend on the actual number of instruments, but only on the number of (com-

bined) support points. Hence, theoretically, many endogenous regressors can be

instrumented by one variable, assuming that it is correlated with all endogenous

regressors and the support of that instrument is large enough. On the other hand,

with more instruments the point identi�cation condition J � K is more likely to

be satis�ed.
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5 Empirical applications

This section presents an empirical application of the testing procedures described

in previous sections. We are interested in testing whether education is endoge-

nous when estimating the returns to schooling in the standard wage equation

using some classic applied work.

The impact of education on earnings is one of the most popular relationships

studied in labour economics. Thousands of studies show that better- educated

workers earn higher wages. However, this measured wage gap between more and

less educated individuals cannot be interpreted as the estimate of the economic

return to education. As individuals di¤er in their personal characteristics, their

schooling choices vary and the causal e¤ects of education on wage are di¢ cult to

uncover. To explain the earnings di¤erences between workers with di¤erent lev-

els of education, researchers typically use models, which builds on Becker (1967)

where individuals face the problem of choosing the optimal level of education,

associated with a given level of earnings. The optimal choice requires balancing

the bene�ts of higher schooling, captured by the life-time earnings pro�le, with

the cost of education (direct costs, such as tuition fees and indirect costs in the

form of foregone earnings while still in education). From the practical point

of view, the return to education is typically estimated from the cross-sectional

regression of earnings on schooling. Since individuals have di¤erent tastes or

attitudes towards education, their returns to schooling are di¤erent. As high-

lighted by Card (2001), the issue is that people with higher return to education

have an incentive to get more schooling and the typical estimate of the average

marginal return to education will be upward biased.

The main problem in the traditional estimation of returns to education is

(potential) endogeneity of schooling variable. The most popular sources of cor-

relation between education and the unobserved error term in the wage equation,

highlighted in the literature are the "ability bias" and the measurement error.

The problem of unobserved omitted ability comes from the fact that more able

individuals can earn higher wages at any educational level and are more likely

to acquire higher schooling, resulting in upward-biased estimates of return to

education. On the other hand, the mismeasurement of schooling might lead to

the downward bias in the estimates of the impact of education on earnings (see

Griliches (1977)). As schooling is typically self-reported in available datasets
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and the reliability of self-reporting has been estimated to be 85-90% (Angrist

and Krueger (1999)), the resulting bias might be severe.

Given potential endogeneity of education, the study of the causal e¤ects of

schooling on earnings requires the use of instrumental variables methods and

�nding the exogenous source of variation in schooling. The set of instruments

typically used in the literature include the geographic proximity of schools (Card

(1995) and Kane and Rouse(1993)) and the quarter of birth of an individual

(Angrist and Krueger (1991) and Staiger and Stock (1997)). Many studies have

also used the institutional features of the schooling system, such as tuition costs

(Kane and Rouse (1993)) and changes in the minimum school leaving age (Har-

mon and Walker (1995)). The common �nding appearing in these studies is that

instrumental variable estimates of the return to education exceed the analogous

OLS estimates, which suggests that the upward bias of the standard OLS es-

timates caused by omitted ability might be o¤set by the negative bias due to

the measurement error. Another common feature of the above studies is that

education is assumed to be endogenous, but it is not tested for endogeneity,

even though methods of exogeneity testing in linear models are well known (e.g.

Hausman (1978)). Therefore, our interest lies in investigating whether education

is truly endogenous.

We discuss two classic models: Card (1995) and Angrist and Krueger (1991),

which di¤er only in the choice of the instrumental variable and the set of ex-

ogenous explanatory variables. We consider the nonparametric version of their

structural relationship between education and (log) earnings. In both examples,

education is instrumented by a variable with the support that is insu¢ cient for

nonparametric point identi�cation (J < K). The linear speci�cations estimated

in the original studies are identi�ed, because of the parametric restriction im-

posed. Before providing an inference on the parameters of interest, one should

check whether the parametric regression is well-speci�ed. Such testing proce-

dures typically involve comparing the parametric and nonparametric estimates.

If education is endogenous, the linear speci�cations used by Card (1995) and

Angrist and Krueger (1991) are not testable, as the nonparametric point esti-

mates do not exist, and hence cannot be compared by their parametric analogues.

Therefore, we test for endogeneity of education nonparametrically and given the

outcome of the test we propose an adequate estimation method.
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5.1 Testing for exogeneity of education in Card (1995)

In Card (1995) education is assumed to be endogenous (due to omitted ability

or measurement error) and the following linear model (the standard earnings

function)

ln(wagei) = �0 + �1Educi +
MX
m=1


mWmi + "i

is estimated by Two Stage Least Squares using a binary instrument, which takes

value 1 if there is an accredited 4-year public college in the neighborhood (in

the "local labour market"), 0 otherwise. It is argued that the presence of a

local college decreases the cost of further education (transportation and accom-

modation costs) and particularly a¤ects the schooling decisions of individuals

with poor family backgrounds. The set of exogenous explanatory regressors W

includes variables like race, years of potential labour market experience, region

of residence and some family background characteristics.

The dataset is available online10, and consists of 3010 observations from the

National Longitudinal Survey of Young Men. Education is measured by the years

of completed schooling and varies we between 2 and 18 years. The (sample) sup-

port of education consists then of K = 17 possible values and the support of

instruments is J = 2. In order to test for exogeneity of education we use the

test-statistic given by (36) in di¤erent speci�cations (in terms of selected ex-

ogenous regressors). Note that the more exogenous covariates included, the less

likely it is to have enough observations for all possible combinations of support

points. For instance, there are no individuals in the sample with 17 years of

schooling who are black and do not live in the capital of the state. To overcome

this small sample problem, we group the years of education into four educational

levels: less than high school, high school graduate, some college and post-college

education (a modi�ed version of Acemoglu and Autor (2010) education group-

ing), such that K� = 4 > J . One of the important determinants of wages is the

level of experience. Since the actual labour market experience is not available in

the dataset, Card (1995) constructs a potential experience as age�education�6:
Since all individuals in the sample are of similar age (24� 34), people with the
same years of schooling have similar levels of potential experience implying the

lack of observations for all possible combinations of support points. Therefore,

10At http://davidcard.berkeley.edu/data_sets.html.
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we group experience into two levels: low (0� 8 years) and high (9+). In Card�s
(1995) linear speci�cations, the experience variable enters as a quadratic func-

tion to capture the nonlinear e¤ect observed in many studies i.e. that wage

increases with experience, but at the decreasing rate. One of the advantages of

the nonparametric speci�cation used here is that the shape of the relationship

between wage and experience does not matter or that the nonparametric function

captures all kinds of nonlinearities.

Table 10 summarizes the results of implementing our testing procedure in

di¤erent speci�cations. In the �rst speci�cation we use years of education with-

out grouping. In the other speci�cations, we use levels of education and levels of

experience (grouped) indicated by stars. The binary variable Race takes value

1 if an individual is black, 0 otherwise, and the binary SMSA equals 1 if an in-

dividual lived in a metropolitan area in 1976. The full set of family background

variables is excluded from the analysis due to small sample limitations. The

dependent variable is the log of hourly wages in 1976.

Covariates Rn cv:1 cv:2 cv:3 �

Educ 1.765 0.239 0.232 0.238 1%

0.136 0.132 0.138 5%

0.094 0.096 0.097 10%

Educ*, Exp* 4.147 1.221 1.259 1.217 1%

0.715 0.696 0.719 5%

0.511 0.500 0.515 10%

Educ*, Exp*, Race 3.572 1.771 1.692 1.688 1%

1.107 1.131 1.108 5%

0.849 0.871 0.860 10%

Educ*, Exp*, Race, SMSA 2.955 2.382 2.330 2.415 1%

1.702 1.679 1.735 5%

1.399 1.365 1.430 10%

Table 10: The value of the test-statistic and critical values for testing the exo-

geneity of education in di¤erent speci�cations

The critical values (columns 3; 4 and 5) are computed by using three methods

discussed in Section 3.2.5 : cv:1 are computed by simulating the weighted sum
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directly, cv:2 by simulating the quadratic form in normal vectors and cv:3 are ob-

tained by chi-squared approximation. All these methods produce similar values

and given relatively small sample size, their computation time is equally short.

Hence, the choice of the most favorable approach is left to the practitioner. The

value of the test statistic and critical values are large (in magnitude), because

the estimated weights b!j are large (e.g. b! = 35:84 in the �rst speci�cation). The
results presented in the table are therefore scaled down (by dividing by 1000).

Alternatively, we could scale down the test-statistic by dividing by the sum of

the weights and adjust the asymptotic distribution accordingly.

In all four speci�cations, the calculated value of the test- statistic (column

2) exceeds the critical value at any signi�cance level � and the null hypothesis

of exogeneity is rejected. Therefore, we conclude that education is endogenous.

Recall that under endogeneity, this model is nonparametrically not identi�ed and

the linear speci�cation is critical for identi�ability of parameters. However, as

mentioned before, the parametric speci�cation is not testable, and should not be

used. Even though the nonparametric identi�cation condition is violated, some

linear functionals of the parameters of interested might be point identi�ed and

consistently estimated from the data. We will use the test proposed in Section

2.2.1 to check that in Section 5.3. Alternatively, some shape restrictions on the

unknown function of interest might be imposed to partially identify and estimate

informative bounds on the e¤ects of education on earnings (see Section 5.3).

It can be argued that if education is endogenous, then so is experience, since

the potential labour market experience variable is constructed as a function of

education. Taking that into account, Card (1995) uses age as an instrument for

(potentially) endogenous experience. Now, we are interested in testing jointly the

exogeneity of two explanatory variables. Using the results discussed in Section

4.2, we treat this problem as the case with a single discrete regressor X with

K = 8 points of support (4 values for educational levels and 2 values for levels

of experience). Similarly, we have a single instrumental variable Z with J = 22

support points (11 values for age and 2 values for college proximity). Note that

in this example we use one instrument for education and one for experience, but

theoretically it is su¢ cient to use one instrument for both (as long as it satis�es

the relevance condition). Since J > K in this case, the nonparametric exogeneity

can be tested using the statistic in equation (35). The results are summarized

in Table 11. The reported critical values come from �2(DK�D) distribution.
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Covariates Tn null distribution cv �

Educ*, Exp* 173.47 �2(7) 18.48 1%

14.07 5%

12.02 10%

Educ*, Exp*, Race 185.11 �2(14) 29.14 1%

23.68 5%

21.06 10%

Educ*, Exp*, Race, SMSA 174.30 �2(28) 48.28 1%

41.34 5%

37.92 10%

Table 11: The value of the test-statistic and critical values for testing jointly the

exogeneity of education and experience in di¤erent speci�cations

In all three speci�cations, the calculated value of the test-statistic exceeds

the critical values at any signi�cance level �. Hence, the null hypothesis of joint

exogeneity of education and experience is rejected. Not surprisingly, education

and experience turn out to be jointly endogenous. However, in this case (J >

K) the endogeneity problem can be dealt with by using the nonparametric IV

estimator discussed earlier.

5.2 Testing for exogeneity of education in Angrist and

Krueger (1991)

The grouping of the years of education, which we were forced to impose because

of the small sample size in Card�s (1995) framework might be seen as a loss of

information, since the marginal e¤ect of an additional year of schooling cannot be

identi�ed. Therefore, we provide an additional example in which endogeneity of

education is tested with the larger dataset used in Angrist and Krueger (1991).

The data is available online11 and consists of observations from 1980 Census

documented in Census of Population and Housing, 1980: Public Use Microdata

Samples. The sample consists of men born in the United States between 1930-

1949 divided into two cohorts: those born in the 30�s (329509 observations)

and those born in the 40�s (486926 observations). Angrist and Krueger (1991)

11At http://economics.mit.edu/faculty/angrist/data1/data/angkru1991.
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estimate the conventional linear earnings function

ln(wagei) = �Educi +
X
c

�cYci +

SX
s=1


sWsi + "i (37)

for each cohort separately, by 2SLS using the quarter of birth as an instrument

for (assumed) endogenous education. They observe that individuals born earlier

in the year (�rst two quarters) have less schooling than those born later in the

year. It is a consequence of the compulsory schooling laws, as individuals born in

the �rst quarters of the year reach the minimum school leaving age at the lower

grade and might legally leave school with less education. The (sample) support

of education consists of K = 21 values (years of education between 0 and 20) and

the support of the instrument is J = 4. In the linear model (37), Yci is a dummy

variable indicating whether an individual was born in year c, c = 1; :::; 10 and

W denotes the standard set of exogenous covariates.

To begin an investigation of endogeneity of education, we consider a nonpara-

metric simpli�ed version of (37), in which (log) wage is a function of education

and the year of birth (W is excluded). Hence, we have a model with one po-

tentially endogenous regressor (education) and one exogenous covariate (year of

birth). As mentioned in Section 4.1.1, we can divide the observations into sub-

samples corresponding to di¤erent values of exogenous regressors, i.e. di¤erent

years of birth. Table 12 shows the results of testing for exogeneity of education

in each subsample and for the full cohort. The critical values are calculated by

using the chi-square approximation to the weighted sum of chi-square variables.
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critical values

year of birth Rn 1% 5% 10%

1930 0.6139 14.9057 9.6479 7.4103

1931 0.3670 17.7219 11.4240 8.7507

1932 8.4177 20.5510 13.6590 10.6751

1933 2.8771 18.9001 12.6327 9.9115

1934 5.8959 25.1629 16.4850 12.7607

1935 3.4247 19.9431 13.0420 10.0829

1936 9.2843 28.0781 17.8537 13.5379

1937 0.9321 12.9027 8.6420 6.7889

1938 0.7996 21.8865 14.4882 11.2930

1939 5.2867 21.5534 14.3601 11.2414

full cohort 38.044 85.933 72.138 65.465

Table 12: The value of the test-statistic and critical values for testing exogeneity

of education for 1930�s cohort

Surprisingly, the calculated value of the test statistic is lower than the ob-

tained critical values at any signi�cance level, which implies that the null hy-

pothesis of exogeneity of education cannot be rejected. Since only education is

used to explain the variation in wages, the omission of other relevant regressors

should clearly result in endogeneity of schooling. However, the test suggests

that education is exogenous, which we doubt to believe. Nonetheless, this ques-

tionable outcome does not suggest that our testing procedure fails in detecting

endogeneity of education. The possible explanation is that the quarter of birth

is not a valid instrument for education. It is obvious that the performance of

the test is a¤ected by the quality of instruments used, and provides reliable re-

sults only when instruments are appropriate. The main criticism of Angrist and

Krueger (1991) analysis, pointed out by Bound, Jaeger and Baker (1995) is that

the quarter of birth is a weak instrument. As discussed in Hahn, Ham and Moon

(2011) even the standard Hausman (1978) test for exogeneity is invalid in the

presence of weak instruments. Therefore, we might expect our testing procedure

to provide misleading results if the instruments do not satisfy the instrumental

relevance condition. A second criticism of Angrist and Krueger (1991) results,

discussed by Bound and Jaeger (1996) is that quarter of birth might be correlated
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with unobserved ability and hence does not satisfy the instrumental exogeneity

condition. This leads to the conclusion that the quarter of birth might not be

a valid instrument and that the outcome of our exogeneity testing procedure

remarkably depends on the validity of instruments.

This view might be supported by the analysis of the 1940�s cohort summarized

in Table 13.

critical values

year of birth Rn 1% 5% 10%

1940 2.9915 22.6885 14.7948 11.4127

1941 12.3195 20.9773 13.7668 10.6693*

1942 8.1070 33.0513 20.9644 15.8623

1943 93.2736 54.4804* 34.6581* 26.2979*

1944 11.9499 32.8291 21.0770 16.0995

1945 33.8664 26.2149* 17.3642* 13.5449*

1946 19.1200 22.5649 14.6112* 11.2136*

1947 24.3138 32.4185 21.3369* 16.5725*

1948 38.2687 45.3827 28.8280* 21.8547*

1949 35.8060 34.5416* 22.5009* 17.3578*

full cohort 278.703 138.344* 114.551* 103.182*

Table 13: The value of the test-statistic and critical values for testing exogeneity

of education for 1940�s cohort

The calculated values of the test statistic are reported in column 1. The

critical values lower than the calculated value of the test statistic are indicated

with stars. The results for the cohort born in the 1940�s di¤er slightly from

what was presented for the 1930�s cohort. In some subsamples, the calculated

value of the test statistic exceeds the critical values and education is con�rmed

to be endogenous, as expected. The results of testing for exogeneity of education

with other exogenous explanatory variables (race and region of residence) are

presented in the Appendix C. Note that the dataset contains additional variables,

which are relevant to explain the variation in wages, such as marital status and

family background characteristics. These variables could not be included in the

analysis, as there are not enough observations for all possible combinations of

the values of these regressors. However, all of the results presented here con�rm
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the endogeneity of education in some subsamples, but fail to detect it in others.

An important lesson learnt from Angrist and Krueger (1991) example is that the

validity of our test is highly related to the validity of instruments.

5.3 Testing for point-identi�ability of linear functionals

In order to show how our test for point identi�ability of some linear functionals

might be use in practice, we go back to Card�s (1995) model and consider a

simpli�ed model with endogenous education regressor, but without any exoge-

nous explanatory variables. The interest of applied researchers typically lies in

estimating the marginal e¤ects i.e. the change in the dependent variable for a

unit (or percentage) change in the regressor. Suppose that we want to recover

these marginal e¤ects in the nonparametric speci�cation. Therefore, we want to

estimate the di¤erence in the conditional expectations of the dependent variable

given some values of the regressor, i.e. the change in the average wage for one

year increase in education. Additionally, given a linear regression speci�cation

the marginal e¤ects are constant for all values of the explanatory variable. We

might also be interested in checking whether these e¤ects are constant in the

nonparametric speci�cation.

Recall that �k = h(xk), where xk denotes the years of schooling. In the

sample, x1 = 2 and x17 = 18 years of education. Let L(�) = c0� = c01�1 + c02�2

be a linear functional of the elements of �. From Proposition 2 it follows that

the linear functional of dimension J = 2 might be point identi�ed. Let

c1 =

"
1

�1

#

and c2 be (K � J) = 15 vector of zeros. Suppose that we are interested in

estimating the di¤erence in earnings between individuals with 6 and 7 years of

education. Partitioning � comfortably into �1 = [h(7) h(6)]0 and �2 with all

remaining h(xk) provides

L(�) = [h(7)� h(6)] : (38)

Using the test-statistic in (13), we test whether the linear functional (38) is point

identi�ed. The 5% critical value from �215 distribution is 25:00. The calculated
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value of the test statistic equals 1:9332 which is lower than the critical value.

Therefore, the null hypothesis that this linear functional is point identi�ed cannot

be rejected. This implies that the di¤erence in earnings between individuals with

6 and 7 years of schooling is point identi�ed and can be consistently estimated

by bL(�) = c01b��11 b� = 0:1017; (39)

but we can learn nothing from the data about any linear combination of all

remaining K � J average wages.

Table 14 summarizes the results of testing the point-identi�ability of some

di¤erences in average wage of individuals with di¤erent educational levels. The

estimates of di¤erences which are point identi�ed are given in column 3.

linear combination Gn bL(�)
h(3)� h(2) 0.1356 0.0040

h(4)� h(3) 0.8188 0.0103

h(5)� h(4) 0.4673 0.0273

h(6)� h(5) - -

h(7)� h(6) 1.9332 0.1017

h(8)� h(7) 0.1494 0.2395

h(9)� h(8) 26.5527 -

h(10)� h(9) 75.2217 -

h(11)� h(10) 4.7003 0.1317

h(12)� h(11) 13.5271 0.2499

h(13)� h(12) 38.6814 -

h(14)� h(13) 61.5525 -

h(15)� h(14) 33.4315 -

h(16)� h(15) 80.0153 -

h(17)� h(16) 10.7344 -0.1900

h(18)� h(17) 74.1413 -

Table 14: The value of the test-statistic and esimated linear functional for dif-

ferences in returns to schooling

Note that the point-identi�ability of the di¤erence h(6) � h(5) could not be

tested as the matrix of joint probabilities P1 is singular in that case. There are
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some di¤erences that are not point identi�ed, and in order to learn something

about them alternative methods (discussed in Section 2.3.2) must be employed.

Here, we would like to compare our estimates in Table 14 with interval estimates

obtained by using Chesher�s (2004) method. Our exercise follows an empirical

example 6:2 in Horowitz (2011). In order to apply Chesher�s (2004) approach,

the monotonicity condition (17) must be satis�ed, which requires that

Pr [X � xkjZ = 1] � Pr[X � xk�1jZ = 0]: (40)

Table 15 provides the relevant empirical probabilities that the years of education

is less than or equal to certain values from 2 to 18 conditional on the instrument.

years of schooling Z=1 Z=0

2 0.0005 0.0010

3 0.0015 0.002

4 0.002 0.0041

5 0.0044 0.0093

6 0.0083 0.0177

7 0.0141 0.0355

8 0.0282 0.0763

9 0.0482 0.1181

10 0.0862 0.1673

11 0.1359 0.2269

12 0.4559 0.5773

13 0.5504 0.6683

14 0.6459 0.7384

15 0.7068 0.7750

16 0.8656 0.9141

17 0.9192 0.9570

18 1 1

Table 15: Empirical probabilities for di¤erent years of education

There are some years of education for which condition (40) is satis�ed, for

example for 6; 7; 8; 10 and 11 years of schooling. Therefore, we can estimate the
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bounds on the di¤erences:

0:0365 � [h(7)� h(6)] � 0:2895
�0:1732 � [h(8)� h(7)] � 0:352
�0:0:57 � [h(11)� h(10)] � 0:3187:

The analogous estimated values in Table 14 lie within the calculated intervals.

The presented exercise shows that both methods of estimating the di¤erences

in conditional expectations are complementary. Chesher�s (2004) bounds can be

used in cases when our method fails, for example, the di¤erence h(9) � h(8)

is not point identi�ed, but can be bounded between [�0:2742; 0:1334]. On the
other hand, we provide consistent estimates for cases, which do not satisfy the

monotonicity assumption required by Chesher (2004), e.g. when the years of

schooling equals 3. For situations in which both methods could be applied, the

results do not contradict each other. Clearly, there are some cases in which none

of the proposed methods can be used and learning about the unknown function

of interest requires di¤erent approaches.
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6 Conclusions and further work

This thesis has been concerned with nonparametric additive error models with

discrete regressors. Even though nonparametric techniques have become very

popular recently, there is still a range of problems that remains unexplored. Our

�rst contribution to the existing literature is the observation that the nonpara-

metric model with discrete regressors can be reinterpreted as a linear model and

the standard nonparametric estimators translate into standard regression estima-

tors. This knowledge allows us to use the well-established regression techniques

without making strong assumptions on the underlying population of interest and

data generating process. We have discussed the notion of nonparametric exogene-

ity and presented the consequences of the presence of endogenous regressors in the

nonparametric model. We also emphasized the necessity of testing whether the

exogeneity assumption holds. Additionally, the identi�cation analysis for models

with endogenous discrete regressors was presented and the conditions for point

and partial identi�cation were summarized. The nonparametric point identi�ca-

tion requires that the instrumental variable has at least as many support points

as endogenous regressor. Under identi�cation failure endogeneity implies the

nonexistence of any consistent estimator for some interest-parameters without

further assumptions. However, it has been shown that some linear functionals

of the conditional mean function h(�) might be point identi�ed, while the entire
function remains unknown. One of the contributions of this dissertation was to

provide a test for point-identi�ability of these linear functionals. It has been

demonstrated that the test can easily be applied in practical problems.

This dissertation has also provided two consistent tests for exogeneity. To the

best of our knowledge, there exist no such tests for nonparametric models with

discrete regressors. In the models that point identify the unknown function of in-

terest, the test is built on a quadratic form of a di¤erence between two estimators,

one of which is consistent only under exogeneity and the other is consistent under

both scenarios. This testing framework follows closely the Durbin-Wu�Hausman

type of test. It has been shown that under the null hypothesis of exogeneity,

the test statistic follows asymptotically a chi-square distribution with degrees

of freedom equal to the number of points of support in the regressor X less 1.

The test is consistent against �xed alternatives with well established asymptotic

distribution under local alternatives.
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In the models that partially identify the entire structure of interest, the

Durbin-Wu-Hausman methodology is not available, as there exists no consistent

estimator under the alternative hypothesis. Hence, the test-statisic is derived

from a constrained minimization problem. We have shown that the proposed

test is consistent, but with a non-standard asymptotic null distribution. Three

possible ways of computing critical values for practical applications have been

presented, and e¢ ciency of these methods has been examined in Monte Carlo

simulations. The experiments demonstrate that both tests have adequate size

and satisfactory power properties in �nite samples. An interesting �nding is

that the power of both tests increases with the di¤erence between the number

of points of support of the regressor and instrument. This observation might be

useful for empirical researchers if they have a choice between di¤erent instru-

mental variables. Another useful, practical information revealed in simulations

is that the probability of detecting endogeneity is higher if there is a similar

number of observations for each support point of the regressor.

Generalizations of our testing procedures to models that are widely used in

empirical applications have also been discussed. We have provided a testing

framework for nonparametric models with multiple regressors, using multiple

instruments, in the presence of multiple exogenous explanatory variables. An

interesting result of our discussion is that in this case nonparametric identi�cation

does not depend on the actual number of instruments, but only on the product of

the numbers of their support points. Therefore, theoretically, many endogenous

regressors could be instrumented by a single variable with large enough support.

The empirical examples provided in the �nal section of this thesis, showed

that the proposed tests are easily applicable in practice and con�rmed endo-

geneity of education is some classic applied work concerned with estimating the

returns to schooling in standard wage equations. Under endogeneity, models of

Card (1995) and Angrist and Krueger (1991) are nonparametrically unidenti-

�ed, but point-identi�cation and the consistent estimation of di¤erences in the

average wage for distinct years of education were proved to be feasible.

The analysis presented above can be extended in many directions. Our �rst

idea is to consider increasing dimensions of variables. Since the identi�cation of

the unknown function of interest h(�) depends on the support of the instrument
Z relative to the support of the endogenous regressor X, it is interesting to

examine the impact of changes in J and K, if we let them both to grow with the
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sample size.

Suppose that X is exogenous and we allow the support of X to increase with

the sample size. The study of the asymptotic distribution of standard estimators

as both K and n increases follows two routes. The �rst approach searches for the

fastest growth rate of K that is consistent with standard asymptotic normality

and consistency results. It has been shown that the condition K = o(n) is

necessary, but often insu¢ cient.

The increasing K asymptotics were �rstly discussed in the context of M-

estimation. Huber (1973) shows that the standard OLS estimator is consistent

and asymptotically normal, when K increases with n, but only if K
n
! 0 (this

is a necessary condition). He proves normality of the M-estimator of the linear

regression model under the stronger condition that K3

n
! 0. This rate was im-

proved by Yohai and Maronna (1979) to K2

n
! 0 for consistency and K5=2

n
! 0 for

asymptotic normality, and by Portnoy (1984,1985) to K logK
n

! 0 for consistency

and (K logK)1:5

n
! 0 for asymptotic normality.

In our model, in the standard case with K �xed, if E["i] = 0 and E["2i ] <1
then for the OLS estimator b�, we have �b� � �

�0
(L0XLX)

�b� � �
�
= Op(1). The

su¢ cient condition for the consistency of b� is that the smallest eigenvalue of
(L0XLX) tends to in�nity. For the cases in which K ! 1, the conditions for
K�1

�b� � �
�0
(L0XLX)

�b� � �
�
to be bounded in probability can be derived from

Huber�s (1973) result.

In the model of form

yi =

KX
k=1

I(xsi = xk)�k + "i;

with "i iid (0; �2), a necessary and su¢ cient condition for all least square esti-

mates of form b� =PK
k=1 ak�k to be asymptotically normal is that

max
i

ii ! 0 as n!1,
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where 
ii is the i
th diagonal element of PLX . Note that in our case,


ii =
KX
k=1

I(xsi = xk)

nk
=

8><>:
1
n1
if xsi = x1

:::
1
nK
if xsi = xK

9>=>; :

Hence max1�i�n(
ii) = maxkf 1
nk
g = minkfnkg; k = 1; :::; K. Note that nk; k =

1; :::; K are the eigenvalues of (L0XLX). Therefore, the su¢ cient condition for

consistency is Kminkfnkg ! 0.

The second approach of increasing K asymptotics looks for alternative as-

ymptotic distributions of the estimators keeping K
n
positive. The assumption

that K grows proportionally with n, i.e. K
n
! $, with 0 < $ < 1, is typ-

ically used in classical many instruments asymptotic theory of Bekker (1994)

and in the theory of large random matrices (e.g. Bai (1999), Ledoit and Wolf

(2004)). This framework rules out the cases of few regressors, as K ! 1 and

$ > 0 and the cases with K = o(n) discussed above. In order to introduce

the increasing dimension of X, the normalization technique employed by Cai

(2007) in time varying-coe¢ cient model and discussed by Feng et al. (2015) to

deal with varying-coe¢ cient panel data models, might be used. Suppose that

X 2 f0; 1; 2; :::; v(n)� 1g, where v(n)!1 and v(n)=n! $ for 0 < $ <1 as

n!1. In this case, model (1) can be written as

Y = h

�
X

v(n)

�
+ ";

and h(�) can be treated as a function with continuous covariates.
Under endogeneity of X, the identi�cation of the unknown h(:) depends on

the support of the instrument Z. For �xed value of K, if we let J to grow with

the sample size, it might be possible that the model that is only set identi�ed in

small samples (J < K) is going to point identify h(:) in the large samples.

The cases of �xed K and increasing J were broadly discussed by Bekker

(1994), Hansen et. al. (2008) and van Hasselt (2010) among others. They provide

the multivariate approximations to the distributions of standard estimators (e.g.

OLS and 2SLS), using a parameter sequence with the number of instruments

increasing with the sample size.

The second possible extension of our work is to relax the iid assumption and to
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consider models with correlated errors. Although many researchers concentrated

on exogeneity testing in nonparametric models, we are not aware of any attempt

to incorporate the dependence in the error term. It is extremely important to

extend our testing procedures to cases with correlated disturbances, since then

our tests could be used with time-series data. Many modern nonparametric

techniques are now applied in time series analysis. A natural extension of the

model to a dynamic case with discrete time observations might be given by

Yt = h(Xt) + "t;

where (Yt; Xt) is a joint Markov process and

E["jYt�1; Xt�1] = 0:

If we use the lagged variables (Yt�1; Xt�1) as instruments, all the theory presented

above can be applied. The results can also be extended to stationary and ergodic

processes and to nonstationary data.

The �nal generalization of nonparametric exogeneity testing framework is to

relax the assumption of additivity of the error term and consider a nonseparable

model of form

Y = h(X; "): (41)

These nonparametric models were broadly discussed by Roehrig (1988), Matzkin

(2003), Imbens and Newey (2009), Chesher (2003,2005) among others. There is a

convenient interpretation of h in (41). Under the assumption that " is Unif(0; 1)

and h is a function which is strictly increasing in ", h represents a nonparametric

conditional quantile function.

As in the additive error model, the consistent estimation of the unknown

structural function h(�) is feasible if the regressors X are exogenous. The iden-

ti�cation and estimation in this context is discussed, for example in Matzkin

(2003). In the presence of endogeneity, instrumental variables estimation is rec-

ommended. An interesting feature of nonseparable models is that the identifying

properties of the model depend on whether the endogenous regressor is continuos

or discrete. If X is continuously distributed, under mild regularity conditions

the model point identi�es the structure of interest h(�) (see, Chesher (2003) and
Imbens and Newey (2009)). However, when the endogenous regressor is discrete,
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the models are only set identifying (Chesher (2005)). Therefore, testing for ex-

ogeneity of regressors in (41) when X is discrete, is essentially testing point vs.

partial identi�cation. We believe that such tests would be a great contribution

to existing knowledge, since the literature on speci�cation testing in partially

identi�ed models is very sparse.
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Appendix A: Proofs

Proof of Proposition 2

For some permutation of the elements of � the equations � = �� can be split

into

�1�1 +�2�2 = �;

with �1 J � J and non-singular, and �2 (K � J)� 1. Thus, the solutions satisfy

�1 = �
�1
1 (� � �2�2):

Varying �2 2 RK�J generates all solutions to (5). Partitioning c conformably
into J � 1 vector c1 and (K � J)� 1 vector c2;

L(�) = c01�1 + c02�2 = c01�
�1
1 � + (c02 � c01�

�1
1 �2)�2: (42)

Vectors b in the null space of � satisfy b1 = ���11 �2b2, and c is orthogonal to
null(�) i¤ (c02 � c01�

�1
1 �2)b2 = 0 for all b2; i.e., c02 � c01�

�1
1 �2 = 00. Thus, for

linear combinations c orthogonal to the null space, L(�) = c0� = c01�
�1
1 � is point

identi�ed. On the other hand, for any vector c such that (c02�c01��11 �2) 6= 00; L(�)
is completely unrestricted, because there is a b2 such that(c02 � c01�

�1
1 �2)b2 6= 0;

and one can choose �2 = 
b2. Then, by varying 
, any value for L(�) in equation

(42) can be achieved. Note that c1 corresponds to linear combinations that are

point identi�ed, and c2 to those which are completely undetermined.

Proof of Proposition 3

It is clear that the condition is su¢ cient, since for � 2 S�

C 0� = C 0�0 + C 0V 
 = C 0�0

is constant. To show that the condition is necessary, we need to show that

C 0� is a maximal invariant under the group of transformations on S� given by

� ! � + V 
; 
 2 RK�J . Invariance is obvious. Hence, we just need to show
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that, for �1; �2 2 S�,

C 0�1 = C 0�2 ) �2 = �1 + V 
�, for some 
� 2 RJ :

This follows, because for �1; �2 2 S�,

C 0�1 = C 0�2 () C 0(�1 � �2) = 0

() �2 = �1 + V 
, for some 
 2 RK�J ;

which is a transformation by a group element, as required. The results then

follow from Theorem 6.1.4. in Muirhead (1982), which says that the functions

that are invariant under a group action are functions only of a maximal invariant.

Proof of Theorem 2.1

For part (i), let p = vec(P ) and bp = vec( bP ); both JK � 1 vectors: Since bP is

a matrix of sample proportions it follows from the multivariate CLT (Severini

(2005), p.377-378) that

p
n (bp� p)!d N (0; Dp � pp0) ;

where Dp = diagfpg. Now,

bP�11 bP2 = hP1 + � bP1 � P1

�i�1 h
P2 +

� bP2 � P2

�i
;

and in this expression both
� bP1 � P1

�
and

� bP2 � P2

�
are Op(n�

1
2 ): Write the

product as:

P�11

h
IJ +

� bP1 � P1

�
P�11

i�1 h
P2 +

� bP2 � P2

�i
:

Since
� bP1 � P1

�
P�11 is a square matrix, for large n the inverse here can be

expanded as12h
IJ +

� bP1 � P1

�
P�11

i�1
= IJ �

� bP1 � P1

�
P�11 +Op(n

�1):

12Using the matrix geometric series (see e.g. Theorem 10.26 in Rosenblatt and Bell (1999)).
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Therefore

bP�11 bP2 =
h
P�11 � P�11

� bP1 � P1

�
P�11 +Op(n

�1)
i h
P2 +

� bP2 � P2

�i
= P�11 P2 + P�11

� bP2 � P2

�
� P�11

� bP1 � P1

�
P�11 P2 +Op(n

�1):

Thus, for �xed (c1; c2);

c02�c01 bP�11 bP2 = �c02 � c01P
�1
1 P2

�
�c01P�11

� bP2 � P2

�
+c01P

�1
1

� bP1 � P1

�
P�11 P2+Op(n

�1);

and under Hc
0; c

0
2 � c01P

�1
1 P2 = 00: By Theorem 2 in Magdalinos (1992), the

distribution of c02�c01 bP�11 bP2 can be approximated by the asymptotic distribution
of the (row) vector

c01P
�1
1

��p
n
� bP1 � P1

�
;
p
n
� bP2 � P2

���P�11 P2
�IK�J

��
= z0UA; (43)

say, where z0 = c01P
�1
1 ; U =

p
n( bP � P ); and A =

�
P�11 P2
�IK�J

�
:

Consider an arbitrary linear combination

gn(t) = z0UAt = tr [z0Uv] = tr[vz0U ];

where v = At: Given the relation between trace and vectorization operators, it

follows that

gn(t) = a0vec(U);

with a0 = (vec(zv0))0 = (v1z
0; :::; vKz

0): Since vec(U) !d N(0; Dp � pp0)); for

every t;

gn(t)!d N(0; a0(Dp � pp0)a):

But the variance here is

a0(Dp � pp0)a = a0Dpa� a0pp0a;

and

a0p = (vec(zv0))
0
vec(P ) = trace [vz0P ]

= trace[z0Pv] = z0Pv = 0;
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since PA = (P1 P2)
�
P�11 P2
�IK�J

�
= 0; so the variance reduces to

a0Dpa = t0A0DAt;

where

D = diagfc01P�11 DkP
0�1
1 c1; k = 1; :::; Kg;

with Dk the J � J diagonal matrix with the elements in column k of P on the

diagonal.

It follows from Cramer�s characterization theorem that, under Hc
0;

p
n
�
c02 � c01

bP�11 bP2�0 !d N(0; VP );

with

VP =

�
P�11 P2
�IK�J

�0
D
�
P�11 P2
�IK�J

�
;

as claimed. VP can be consistently estimated by replacing unknown probability

matrices with their sample equivalents. The null distribution of Gn given in part

(ii) of Theorem 2.1 follows immediately.

Proof of Theorem 2.2

The asymptotic distribution of the OLS estimator b� follows immediately from
Lemma 3.1 (the proof of Lemma 3.1 can be found below). As, under exogeneity

1p
n
L0X"n !d N(0; �2DX)

and n�1L0XLX !p DX , by Slutsky Theorem we have

p
n
�b� � �

�
=

�
L0XLX
n

��1
L0X"np
n
!d N

�
0; �2D�1

X

�
;

as required.
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Alternative ways to determine the asymptotic distribution

of the OLS estimator

Robbins�CLT

Suppose that we have a random variable Y = X1 + ::: + XN =
PN

i=1Xi, but

N is itself a random variable. Assume that X 0
is are iid and N is independent

of the X 0
is. The distribution function of N depends on a parameter � and is

determined by the values wl = Pr[N = l] for l = 0; 1; :::, where wl are functions

of �, such that wl � 0 and
P1

l=0wl = 1. Let

� = E[N ] =
1X
l=0

wll;

�2 = E[N2] =
1X
l=0

wll
2 (�nite),


2 = V ar[N ] = �2 � �2

be a functions of parameter �. The quantities independent of � are

a = E[Xi];

b2 = E[X2
i ];

c2 = V ar[Xi] =
�
b2 � a2

�
<1:

Then, we have the following moments of Y :

E[Y ] = �a;

V ar[Y ] = �c2 + 
2a2 � �2:

Let the normalized variable Z be

Z =
Y � E[Y ]

[V ar(Y )]
1
2

=
Y � �a

�
;

and assume that as �!1

�2 !1, 
 = o(�2): (44)
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Theorem 6.1 (Robbins (1948)) If (44) holds and if as �!1

a2
2 = o(�);

then Z !d N(0; 1) and Y is asymptotically N(�a; �2).

Corollary 1 (Robbins (1948)) If N is asymptotically normal (�; 
2) then Y

is asymptotically normal (�a; �2):

In our case, consider b�k � �k =
1
nXk

Pn
i=1 "iI(x

s
i = x1) � 1

nXk

P
nXk
"i. And let

Y =
P

nXk
"i, that is the sum of random number of random variables. Using the

notation of Robbins (1948), we have

a = E["i] = 0

and

c2 = V ar["i] = �2:

Now nXk is a random variable that can take any value from 0 to n. In order to

proceed, we need to know its distribution function. Since nXk is the multiplicity of

xk in the sample of n observations (�number of successes in n trials), nXk follows

the Binomial distribution with the probability of success equal to Pr[X = xk] =

pk, i.e.

nXk � Bin(n; pk):

Then

� = E[nXk ] = npk


2 = V ar[nXk ] = npk(1� pk):

If n is large enough, the reasonable approximation of Bin(n; pk) is given by the

normal distribution N(npk; npk(1� pk)). Therefore

nXk �appr: N(npk; npk(1� pk)) as n!1:

Using the Corollary 1, we get

Y !d N(�a; �2);
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where �a = 0 and �2 = �c2 + 
2a2 = npk�
2. This implies that

Yp
n
!d N(0; �2pk)

or
1p
n

nX
i=1

"iI(x
s
i = xk)!d N(0; �2pk):

We have shown the marginal convergence of the each element of 1p
n
L0X"n. Next,

consider the components
�

1p
n

Pn
i=1 "iI(x

s
i = xk);

1p
n

Pn
i=1 "iI(x

s
i = xl)

�
for k 6=

l. By independence, we have

E

"
1

n

 
nX
i=1

"iI(x
s
i = xk)

! 
nX
i=1

"iI(x
s
i = xl)

!#

= E

"
1

n

nX
i=1

"2i I(x
s
i = xk)I(x

s
i = xl)

#
= 0;

because I(xsi = xk)I(x
s
i = xl) = 0, the events cannot occur simultaneously.

Therefore, the vector0B@
1p
n

Pn
i=1 "iI(x

s
i = x1)

:::
1p
n

Pn
i=1 "iI(x

s
i = xK)

1CA!d N(0; �2DX);

and the asymptotic distribution of
p
n(b� � �) follows instantly.

Anscombe�s Theorem

An alternative way of obtaining the asymptotic distribution of sums of random

numbers of iid random variables is given in

Theorem 6.2 (Anscombe (1952)) Suppose that �1; �2; :::; �n; ::: are iid ran-
dom variables with mean 0 and variance 1. Let Sn = �1 + �2 + ::: + �n. Let

further v(t) denote a positive integer-valued random variable for any t > 0 such

that v(t)
t
converges for t!1 in probability to a constant c > 0. Then

lim
t!1

P

 
Sv(t)p
v(t)

< x

!
= �(x) = N(0; 1):
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In our case, let Ui � "ip
V ar("i)

= "i
�
. Then U1; U2; :::; Un is a sequence of inde-

pendent and identically distributed random variables with mean 0 and variance

1 (since "0is are iid with mean 0 and variance �
2). Let SnXk =

PnXk
i=1 Ui, where

nXk is a positive integer-valued random variable. We know that nXk
n
!p Pr[X =

xk] = pk > 0. Then
SnXkp
nXk

!d N(0; 1):

This implies that P
nXk
"ip

nXk
!d N(0; �2):

As
p
nXk

�b�k � �k

�
=

P
nX
k
"ip

nXk
, we have that

q
nXk

�b�k � �k

�
!d N

�
0; �2

�
;

and
p
n
�b�k � �k

�
!d N(0; �2p�1k ):

Proof of Theorem 2.3

The asymptotic distribution of the IV estimator b�IV follows immediately from
Lemma 3.1, which provides:

1p
n
L0Z"n !d N(0; �2DZ):

Additionally, we have already shown that

L0XLZ
n

!p P 0 and
�
L0ZLZ
n

��1
!p D�1

Z :

Since b�IV is given by
b�IV�� = (L0XPLZLX)�1 L0XPLZ"n = �L0XLZ(L0ZLZ)�1L0ZLX��1 L0XLZ(L0ZLZ)�1L0Z"n;
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it follows that

p
n(b�IV � �) =

 
L0XLZ
n

�
L0ZLZ
n

��1
L0ZLX
n

!�1
L0XLZ
n

�
L0ZLZ
n

��1
L0Z"np
n

! dN
�
0; �2

�
P 0D�1

Z P
��1�

:

Proof of Lemmas 3.1, 3.2 and Theorem 3.1

The crucial result underlying the distribution theory of the results presented

in this thesis is the joint asymptotic distribution of un = n�1L0Z"n and vn =

n�1L0X"n. Therefore, we �rst prove Lemma 3.1 and use it to obtain the other

results.

Write

wn = n�
1
2

nX
i=1

"iAi; (45)

where Ai is the i� th column of the (J +K)� n matrix (LZ ; LX)0, i.e.

Ai =

0BBBBBBBBB@

I(zsi = z1)

:::

I(zsi = zJ)

I(xsi = x1)

:::

I(xsi = xK)

1CCCCCCCCCA
;

and each Ai contains exactly two non-zero elements, both unity. The components

Vni = n�
1
2 "iAi are independent, but not iid; so we need the Lindeberg-Feller CLT

(see, e.g. van der Vaart (1998), Section 2.8) to establish asymptotic normality

for wn. Under H0 it is clear that E(wn) = 0; as E[unj] = n�1EZ [
P

i I(z
s
i =

zj)E["ijzsi ]] = 0 for each j = 1; :::J , and for each k = 1; :::K,

E[vnk] = n�1
X
i

EX [I(x
s
i = xk)E["ijxsi ]] = 0:
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The covariance matrix is, under Assumptions 1 - 5,

Cov(wn) = EZ;XE"jZ;X
�
n�1 (LZ ; LX)

0 "n"
0
n(LZ ; LX)

�
= �2EZ;X

�
n�1 (LZ ; LX)

0 (LZ ; LX)
�

= �2

"
DZ P

P 0 DX

#
:

which is clearly �nite. To verify the asymptotic normality of wn it remains to

verify the Lindeberg condition. To do so, note that

kVnik2 =



n� 1

2 "iAi




2 = 2n�1"2i ;
so the required condition is that, as n!1; for all � > 0;

2n�1
nX
i=1

E

�
"2i I

�
j"ij >

r
n

2
�

��
! 0:

This sum contains n identical terms, and so is equal to

2E

�
"21I

�
j"1j >

r
n

2
�

��
which evidently (since the variance of "1; the integral over the whole line, is

�nite) converges to zero as n ! 1: The Lindeberg condition therefore does

hold, proving the Lemma.

For Lemma 3.2 recall that

z1n =
p
nC 0KL

0
XLZ(L

0
ZLZ)

�1 (un � L0ZLX(L
0
XLX)

�1
vn)

= C 0KL
0
XLZ(L

0
ZLZ)

�1 �IJ ; � L0ZLX(L
0
XL

�1
X

�
wn

and the asymptotic distribution follows at once by Slutsky�s Theorem.

Finally, we need to prove that �11 is positive de�nite. To do so, �rst observe

that neither the support of Z; nor that of X; can a¤ect the properties of wn:

That is to say, such properties must be invariant to the support of Z (or X);

and hence hold for arbitrary support vectors z (or x). Now, the key matrix in

�11 is DZ � PD�1
X P 0 = DZ � PD�1

X DXD
�1
X P 0.
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Let z denote an arbitrary J-vector of hypothetical support points of Z; and

consider the quadratic form in the matrix DZ � PD�1
X DXD

�1
X P 0:

z0DZz �
�
z0PD�1

X

�
DX

�
D�1
X P 0z

�
: (46)

The �rst term is EZ [Z2] = EX [EZjX [Z
2jX]] - the second moment of Z when its

support is z. The term D�1
X P 0z is the vector of conditional means E[ZjX = xk],

k = 1; :::; K, so the whole second term is EX [EZjX [ZjX]2]. Hence, the complete
expression in (46) can be interpreted as

EX
�
EZjX

�
Z2 � EZjX [ZjX]2

�
jX
�
= EX [V ar(ZjX)] > 0;

i.e. the expectation of the conditional variance of Z given X when the support

of Z is z: Since this must hold for all z; it follows that the matrix DZ �PD�1
X P 0

is positive de�nite as required. The only exception would be if the conditional

variance of Z given X vanished for each value of X, which we rule out. The

result in Theorem 3.1 follows immediately.

Proof of Proposition 4

Under �xed alternatives (21):

p lim
n!1

n�
1
2wn = p lim

n!1

 
un

vn

!
=

 
0

�

!
;

since p limn!1 vn = p limn!1 (n
�1L0X"n) = EX [L

0
XE ["njXn = LXx]] = EX [L

0
X�] =

� by assumption. Additionally,

p lim
n!1

n�
1
2 z1n = p lim

n!1
C 0KL

0
XLZ(L

0
ZLZ)

�1 (un � L0ZLX(L
0
XLX)

�1
vn)

= �C 0KP 0D�1
Z PD�1

X �:

It follows immediately that p limn!1 n
�1Tn is a positive constant.
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Proof of Lemma 3.3 and Theorem 3.2

Under the sequence of local alternatives of order n�
1
2 :

E [wn] = E
h
n�

1
2 (LZ ; LX)

0"n

i
= n

1
2E
�
n�1(LZ ; LX)

0"n
�

=

 
0

�

!
;

since E [n�1L0X"n] = n�
1
2�. The covariance matrix remains the same as under

H0; because the departures from the null distribution are only local (see, for

example Cox and Hinkley (1974), p. 317-318). Although the mean of the as-

ymptotic distribution has changed, the asymptotic variance remains the same.

The asymptotic distribution follows again from the Lindeberg-Feller CLT (we

omit the details). The distribution of z1n is then straightforward to obtain by

Slutsky Theorem. Then it follows immediately that as n�1y0MLXy !p ��2 :

Tn !d �2

��2
�2(K�1)(�

2):

Since the noncentral chi-squared distribution is a Poisson-weighted mixture of

central chi-squared distribution and given the fact that �2(K�1) is equivalent to

Gamma(K�1
2
; 2), we use the scaling property for the gamma distribution to ob-

tain the required asymptotic distribution.

Proof of Theorem 3.3

The argument is given in the text. We have already shown that � is positive

de�nite, so the positivity of the !j will follow from the positive de�niteness of


:

The argument is similar to that used to prove that � is positive de�nite,

which we have already shown in the Proof of Lemma 3.1. Since the inverse of a

positive de�nite matrix is positive de�nite itself, we only have to prove that 
 is

positive de�nite. The �rst term in

a0
a = a0PD�1
X DXD

�1
X P 0a� a0qZq

0
Za
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is familiar (it also appears in the proof of positive de�niteness of �) and is

EX
�
EZjX [ZjX]2

�
:

The second term is simply (EZ [Z])
2 =

�
EX
�
EZjX [ZjX]

��2
. Hence, the complete

expression is

EX
�
EZjX [ZjX]2

�
�
�
EX
�
EZjX [ZjX]

��2
= V ar

�
EZjX [ZjX]

�
> 0;

the variance of the conditional expectation of Z given X. Since this must again

be true for every support vector a. It follows that the matrix 
 = PD�1
X P 0�qZq0Z

is positive de�nite as required. The only case, in which this term would be zero

is when EZjX [ZjX] is a constant i.e. the expectation of Z does not vary with X.
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Appendix B: More on Monte Carlo simulations

This Appendix contains additional results of Monte Carlo simulations. For vari-

ous combinations of numbers of support points of the instrument and endogenous

regressor, Tables 16 and 17 provide empirical power for J � K case, and Tables

18, 19 and 20 for J < K case. To produce results in Table 19, the critical values

were obtained by the �rst method described in Section 3.2.5, i.e. by simulating

the distribution of a weighted sum of chi-square (1) variables. For results in

Tables 18 and 20, we computed critical values using the chi-square approxima-

tion. Notice that both methods produced very similar results, but the chi-square

approximation approach was substantially faster.
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�= 0:2 �= 0:5 �= 0:9

1% 5% 10% 1% 5% 10% 1% 5% 10%

 sample size J=2

0.35 100 1.60 6.05 11.90 2.85 9.55 17.55 12.75 30.50 42.35

200 1.65 6.15 12.05 5.05 14.60 22.75 31.50 55.65 67.40

400 1.95 7.25 13.80 9.05 23.15 33.80 64.65 85.35 91.45

1000 3.80 11.15 18.30 26.55 50.70 63.70 98.35 99.70 99.80

0.7 100 1.90 8.20 14.65 11.95 27.55 39.40 69.50 86.90 93.05

200 3.60 12.50 20.85 26.60 51.20 62.95 96.65 99.20 99.65

400 6.30 17.50 27.15 57.50 80.10 87.75 100 100 100

1000 19.30 39.85 51.35 97.45 99.40 99.65 100 100 100

J=3

0.35 100 1.45 6.55 12.60 2.90 11.25 18.70 17.70 38.35 50.05

200 1.55 7.10 13.35 8.05 20.20 30.25 47.10 71.45 80.90

400 2.70 10.45 17.20 16.65 36.50 49.30 85.55 94.95 97.50

1000 6.60 17.90 26.30 51.30 76.15 84.55 100 100 100

0.7 100 2.15 7.95 15.05 11.70 29.40 42.20 61.10 83.90 90.75

200 2.75 11.75 19.85 28.15 51.05 64.60 95.30 99.05 99.55

400 6.15 18.90 29.80 61.45 82.35 90.35 100 100 100

1000 21.05 42.10 55.15 98.00 99.60 99.85 100 100 100

J=4

0.35 100 1.20 5.95 11.35 3.30 11.40 19.20 21.15 41.80 54.25

200 1.60 7.60 13.10 9.90 24.45 35.10 52.70 76.30 84.70

400 3.35 10.70 18.15 20.55 43.25 55.65 91.65 97.40 98.80

1000 7.10 19.15 27.45 61.60 82.60 90.35 100 100 100

0.7 100 1.65 6.90 13.75 7.35 20.75 31.20 37.85 67.15 80.50

200 2.65 10.40 18.45 20.60 42.10 54.40 82.95 94.85 97.60

400 4.25 14.80 24.40 48.65 70.95 82.30 99.60 100 100

1000 15.20 33.05 46.90 92.85 98.40 99.25 100 100 100

Table 16: Proportion of rejections under the alternative hypothesis in the point

identi�ed model; K=2
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�= 0:2 �= 0:5 �= 0:9

1% 5% 10% 1% 5% 10% 1% 5% 10%

 sample size J=3

0.35 100 1.85 7.70 13.05 4.75 16.40 26.15 46.45 71.85 82.40

200 1.90 8.25 14.55 9.45 24.95 36.95 87.50 96.60 98.20

400 2.80 11.10 18.65 26.30 50.80 63.15 100 100 100

1000 6.45 18.45 29.10 71.60 88.45 93.45 100 100 100

0.7 100 2.35 10.40 17.50 21.40 44.85 57.10 97.50 99.65 99.80

200 5.75 16.40 25.75 56.10 76.35 84.10 100 100 100

400 10.75 27.15 39.55 90.85 97.60 98.75 100 100 100

1000 36.35 60.25 72.55 100 100 100 100 100 100

J=4

0.35 100 1.40 5.20 10.85 5.30 18.25 28.40 56.60 76.75 84.55

200 2.15 8.05 15.80 13.55 32.20 44.25 91.30 97.90 98.85

400 3.60 12.25 19.05 35.60 60.85 73.30 99.90 100 100

1000 9.60 25.25 35.30 86.95 95.75 97.95 100 100 100

0.7 100 2.65 9.70 18.05 16.75 38.55 52.15 88.70 97.45 99.15

200 4.80 14.05 23.50 47.10 69.10 79.85 100 100 100

400 9.25 24.10 36.00 85.90 95.60 97.55 100 100 100

1000 30.30 56.30 68.60 100 100 100 100 100 100

J=5

0.35 100 1.15 6.60 12.70 5.45 18.10 28.25 52.50 75.65 84.75

200 1.80 8.90 16.30 15.10 35.00 48.10 92.50 98.00 99.10

400 3.45 13.05 21.35 43.70 66.45 77.25 100 100 100

1000 12.30 29.25 41.10 91.15 97.05 98.40 100 100 100

0.7 100 1.95 8.40 15.65 11.85 28.60 41.45 62.65 85.35 92.15

200 2.75 10.90 19.55 30.55 56.55 68.45 97.95 99.45 99.75

400 7.10 19.85 29.80 69.90 88.55 94.00 100 100 100

1000 23.30 46.50 59.60 99.70 100 100 100 100 100

Table 17: Proportion of rejections under the alternative hypothesis in the point

identi�ed model; K=3
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�= 0:2 �= 0:5 �= 0:9

1% 5% 10% 1% 5% 10% 1% 5% 10%

 sample size J=2

0.35 100 1.75 7.25 12.85 3.75 11.95 20.00 33.40 58.95 70.25

200 2.05 7.70 13.10 7.90 20.90 30.50 69.30 86.25 92.45

400 2.80 8.60 14.70 17.65 36.65 48.65 95.95 99.10 99.90

1000 5.05 15.80 24.05 50.90 74.30 83.65 100 100 100

0.7 100 3.45 12.25 19.65 28.15 53.10 64.80 99.35 99.95 100

200 6.30 18.50 28.75 60.65 81.90 88.25 100 100 100

400 14.00 30.50 42.75 92.70 97.65 99.05 100 100 100

1000 39.85 65.10 76.45 100 100 100 100 100 100

J=3

0.35 100 1.05 5.50 11.00 2.60 9.70 18.45 20.25 40.10 52.10

200 1.20 5.80 11.30 3.25 11.35 21.00 29.10 51.85 65.65

400 1.25 5.85 12.30 3.30 11.90 22.10 35.60 61.60 75.90

1000 1.40 6.80 12.45 3.75 13.70 24.05 40.85 67.90 79.10

0.7 100 0.95 5.65 11.35 2.60 11.35 18.90 15.85 40.85 57.15

200 1.10 5.70 11.60 2.70 11.50 20.45 22.75 50.20 66.65

400 1.35 5.80 11.75 3.35 14.70 27.90 41.10 74.65 88.10

1000 1.45 6.15 13.25 6.75 29.25 53.90 86.35 97.60 99.35

J=4

0.35 100 1.05 5.30 10.65 2.10 8.20 13.85 11.95 26.55 38.00

200 1.15 5.35 11.65 2.15 8.25 14.60 14.75 30.55 42.60

400 1.20 6.05 11.90 2.20 8.35 14.75 15.20 32.70 46.05

1000 1.35 6.50 12.35 2.25 8.40 15.85 15.45 34.60 49.25

0.7 100 0.95 4.65 9.65 1.15 6.00 11.50 3.10 11.15 18.45

200 1.10 5.65 10.80 1.50 6.15 12.25 3.95 11.30 18.60

400 1.35 5.70 11.10 1.65 7.35 13.30 4.05 11.80 20.10

1000 2.00 6.40 11.55 2.30 7.90 13.65 4.15 12.60 20.85

Table 18: Proportion of rejections under the alternative hypothesis in the par-

tially identi�ed model; K=5; with approximated critical values
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�= 0:2 �= 0:5 �= 0:9

1% 5% 10% 1% 5% 10% 1% 5% 10%

 sample size J=2

0.35 100 1.95 7.25 13.45 4.20 13.30 21.90 34.40 58.30 70.05

200 2.00 7.65 13.90 8.10 20.80 31.00 69.90 87.65 92.75

400 2.15 9.35 16.90 17.95 39.65 52.45 96.65 99.15 99.70

1000 5.60 16.75 25.70 50.85 73.80 82.95 100 100 100

0.7 100 3.65 12.85 21.15 27.45 51.90 65.40 99.25 99.95 100

200 6.10 16.95 27.95 59.10 82.15 88.95 100 100 100

400 14.00 31.95 43.75 93.10 98.15 99.50 100 100 100

1000 41.95 66.50 77.20 100 100 100 100 100 100

J=3

0.35 100 1.25 5.35 10.85 2.40 11.35 19.45 21.05 40.95 53.45

200 1.30 5.60 11.75 2.90 12.05 21.20 32.05 53.75 66.10

400 1.35 6.00 11.85 3.40 12.40 21.25 37.25 62.05 74.60

1000 1.50 6.55 12.25 4.00 13.10 21.65 44.00 68.50 79.90

0.7 100 1.15 5.45 11.15 2.10 9.95 18.70 17.05 40.90 55.65

200 1.35 6.00 11.35 2.70 11.10 21.70 21.90 51.50 68.50

400 1.45 6.20 11.75 3.25 14.50 26.75 43.10 74.50 87.25

1000 1.65 7.25 13.75 6.95 31.20 54.35 87.30 97.80 99.65

J=4

0.35 100 0.90 5.10 10.20 1.75 7.15 13.05 13.25 29.00 40.30

200 1.05 5.30 10.35 2.10 8.60 16.25 14.95 31.70 43.30

400 1.15 5.30 10.95 2.25 9.10 16.30 15.65 34.65 47.45

1000 1.40 6.70 12.30 2.30 9.75 17.10 16.55 35.60 49.40

0.7 100 0.85 4.95 9.35 1.35 6.35 12.40 2.35 7.45 17.55

200 1.15 5.00 9.80 1.65 6.80 13.45 3.35 11.05 19.55

400 1.30 5.25 9.85 1.90 7.25 13.60 3.65 11.80 19.95

1000 1.55 6.85 11.60 1.95 7.65 14.20 3.75 11.95 20.10

Table 19: Proportion of rejections under the alternative hypothesis in the par-

tially identi�ed model; K=5
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�= 0:2 �= 0:5 �= 0:9

1% 5% 10% 1% 5% 10% 1% 5% 10%

 sample size J=3

0.35 100 0.85 5.95 11.90 3.55 12.90 21.70 37.40 61.55 74.25

200 1.20 6.55 12.10 4.60 14.50 23.90 52.40 74.00 84.65

400 1.30 6.75 12.45 4.95 17.20 29.40 63.50 83.60 91.40

1000 1.45 6.80 12.55 5.90 20.15 32.60 74.20 90.20 95.05

0.7 100 1.35 6.60 12.60 4.20 18.55 31.30 49.05 78.55 89.75

200 1.40 6.75 13.30 5.90 23.55 42.90 77.60 94.60 98.30

400 1.75 7.00 14.50 13.75 45.30 67.90 97.20 99.65 99.85

1000 2.10 11.10 21.65 62.10 95.05 95.05 100 100 100

J=4

0.35 100 0.85 5.35 10.40 2.60 9.70 17.55 23.80 43.70 58.40

200 1.15 5.55 11.65 2.90 9.95 19.00 28.70 49.60 63.75

400 1.35 6.20 11.85 2.90 10.60 19.45 32.35 57.35 70.80

1000 1.50 6.50 12.85 3.20 11.35 20.55 37.90 65.10 78.45

0.7 100 1.25 5.45 10.85 1.95 7.70 14.40 6.10 17.50 30.10

200 1.35 5.75 11.35 2.15 8.40 14.65 6.25 18.40 30.45

400 1.40 6.05 11.75 2.25 8.45 15.30 6.70 20.35 34.65

1000 1.45 6.35 12.55 2.85 9.30 17.05 8.80 27.95 44.75

J=5

0.35 100 0.90 4.80 10.20 1.70 9.05 15.70 13.40 29.60 41.80

200 1.20 5.05 11.15 2.15 9.25 15.70 16.75 33.15 45.20

400 1.40 5.15 11.90 2.40 9.65 16.25 17.45 34.85 46.65

1000 1.55 6.30 12.60 2.75 9.90 17.90 18.75 38.25 50.85

0.7 100 0.95 4.70 9.90 1.20 5.85 10.25 2.50 8.70 14.85

200 1.20 5.05 10.40 1.30 6.35 11.85 3.35 10.75 16.75

400 1.35 5.70 11.35 2.35 6.90 12.75 4.45 11.50 17.35

1000 1.70 6.40 11.55 2.45 8.65 13.15 6.05 11.85 18.55

Table 20: Proportion of rejections under the alternative hypothesis in the par-

tially identi�ed model; K=6; with approximated critical values
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Appendix C: More on empirical applications

This Appendix contains additional results on testing for exogeneity of education

in Angrist and Krueger (1991) dataset.

critical values

Rn 1% 5% 10%

1930 0.4090 11.9661 8.0781 6.3941

1931 1.2137 12.8069 8.5118 6.6681

1932 10.5727 25.2758 16.9509 13.3383

1933 5.9939 20.7990 13.8662 10.8841

1934 7.9563 22.6713 15.2252 11.9953

1935 2.3214 21.9704 14.4460 11.2338

1936 8.3587 24.4301 15.8717 12.2359

1937 1.1957 18.1416 12.0474 9.4237

1938 3.9824 18.0718 12.2732 9.7452

1939 5.2154 21.7390 14.7925 11.7624

full cohort 47.3552 87.3456 74.1745 67.7834

Table 21: The value of the test-statistic and critical values for testing exogeneity

of education for the 1930�s cohort in Angrist and Krueger (1991) with race as an

exogenous covariate

In Table 21, in all cases, the calculated value of the test statistic is lower than

the critical values at any signi�cance level. The null hypothesis of exogeneity of

education is not rejected.
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critical values
Rn 1% 5% 10%

1940 2.9650 22.7767 14.9524 11.6072
1941 15.3934 28.2247 18.0054 13.7108*
1942 4.4649 30.9700 20.0039 15.3551
1943 99.6390 50.2469* 32.0104* 24.3425*
1944 -
1945 42.6505 27.6174* 18.3706* 14.3926*
1946 17.1414 20.1883 13.4045* 10.4866*
1947 24.9107 32.2705 21.6397* 17.0442*
1948 31.3270 39.3458 26.1098* 20.4329*
1949 25.9228 28.5664 19.1873* 15.1345*

full cohort -

Table 22: The value of the test-statistic and critical values for testing exogeneity
of education for the 1940�s cohort in Angrist and Krueger (1991) with race as an
exogenous covariate

In Table 22, note that the results for individuals born in 1944 are not avail-

able, as there are no observations with 1 year of education and race=1 in this

subsample. Therefore, the result for the full cohort could not be obtained. The

critical values lower than the value of the test statistic are indicated with stars.

In some subsamples, the null hypothesis of exogeneity of education is rejected,

as expected.
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critical values

Rn 1% 5% 10%

1930 1.0472 13.6545 9.4202 7.5827

1931 -

1932 7.1465 14.2702 10.1066 8.2666

1933 6.9480 18.1071 12.4645 10.0219

1934 7.7902 21.1294 14.2104 11.2440

1935 3.2778 19.5331 13.4976 10.8701

1936 5.8818 24.2121 15.9695 12.4676

1937 1.2403 15.4051 10.7305 8.6858

1938 5.7139 17.4845 12.4219 10.1790

1939 -

full cohort -

Table 23: The value of the test-statistic and critical values for testing exogeneity

of education for the 1930�s cohort in Angrist and Krueger (1991) with race and

region of residence as exogenous covariates

In Table 23, note that there are no individuals in the sample born in 1931 with

20 years of education, race=1 and smsa=1, and no individuals in the sample born

in 1939 with race=1, smsa=1 and years of education equal to 3 or 19. The results

for the full cohort could not be calculated. The null hypothesis of exogeneity is

not rejected in any subsample.
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