Numerical analysis using 2D modeling of optical fiber poled by induction


Huang, Ding, De Lucia, Francesco, Corbari, Costantino, Healy, Noel and Sazio, Pier (2016) Numerical analysis using 2D modeling of optical fiber poled by induction At SPIE Photonics West 2016, United States. 13 - 18 Feb 2016. (doi:10.1117/12.2211660).

Download

[img] PDF Huang, De Lucia, Corbari, Healy, Sazio, Numerical analysis using 2D modeling of ooptical fiber poled by induction.pdf - Accepted Manuscript
Available under License Creative Commons Attribution.

Download (1MB)

Description/Abstract

Thermal poling, a technique to introduce effective second-order nonlinearities in silica optical fibers, has found widespread applications in frequency conversion, electro-optic modulation, switching and polarization-entangled photon pair generation. Since its first demonstration around 25 years ago, studies into thermal poling were primarily based on anode-cathode electrode configurations. However, more recently, superior electrode configurations have been investigated that allow for robust and reliable thermally poled fibers with excellent second order nonlinear properties. Very recently, we experimentally demonstrated an electrostatic induction poling technique that creates a stable second-order nonlinearity in a twin-hole fiber without any direct physical contact to internal fiber electrodes whatsoever. This innovative technique lifts a number of restrictions on the use of complex microstructured optical fibers (MOF) for poling, as it is no longer necessary to individually contact internal electrodes and presents a general methodology for selective liquid electrode filling of complex MOF geometries. In order to systematically implement these more advanced device embodiments, it is first necessary to develop comprehensive numerical models of the induction poling mechanism itself. To this end, we have developed two-dimensional (2D) simulations of space-charge region formation using COMSOL finite element analysis, by building on current numerical models.

Item Type: Conference or Workshop Item (Paper)
Digital Object Identifier (DOI): doi:10.1117/12.2211660
Venue - Dates: SPIE Photonics West 2016, United States, 2016-02-13 - 2016-02-18
Related URLs:
Subjects:
Organisations: Optoelectronics Research Centre
ePrint ID: 389746
Date :
Date Event
13 February 2016Published
Date Deposited: 21 Mar 2016 11:55
Last Modified: 17 Apr 2017 03:56
Further Information:Google Scholar
URI: http://eprints.soton.ac.uk/id/eprint/389746

Actions (login required)

View Item View Item