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inter-domain differences to be characterized by the variation of area-specific M-quantile 

coefficients. These authors observed, however, that M-quantile estimates of small area 

means are biased with the magnitude of the bias being related to the presence of outliers 

in the data. In this paper we propose a bias adjustment to the M-quantile small area 

estimator of the mean that is based on representing this estimator as a functional of the 
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1. Introduction 

Sample surveys provide a cost effective way of obtaining estimates for characteristics 

of interest at both population and sub-population (domain) level. In most practical 

applications domain sample sizes are not large enough to allow direct estimation. The 

term “small areas” is typically used to describe such domains. When direct estimation is 

not possible, one has to rely upon alternative methods for producing small area estimates. 

Such methods depend on the availability of population level auxiliary information related 

to the variable of interest and are commonly referred to as indirect or model-based 

methods. 

The current industry standard for small area estimation is mixed (random) effects 

models that include area specific random effects to account for between area variation 

beyond that explained by the auxiliary information (Fay and Herriot 1979, Rao 2003). 

Such models depend on Gaussian assumptions and require a formal specification of the 

random effects structure. In a recent paper Chambers and Tzavidis (2006) proposed a 

new approach to small area estimation based on modelling quantile-like coefficients of 

the conditional distribution of the target variable given the covariates. With M-quantile 

models we avoid imposing strong distributional assumptions. Formal specification of the 

random part of the model is also not required. Instead, inter-domain variation is captured 

by variation in area-specific quantile coefficients. However, Chambers and Tzavidis 

(2006) also observed that M-quantile estimates of the small area means are biased, with 

the magnitude of the bias being related to the presence of outliers in the data. In this 

paper we propose a bias corrected M-quantile estimator of the small area mean. Our 

proposal is based on representing this estimator as a functional of the estimated 
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distribution function within the small area. The method is then generalized for estimating 

any quantile of the small area distribution function.  

The structure of the paper is as follows: In Section 2 we review random effects models 

and M-quantile models for small area estimation. In Section 3 we propose a bias adjusted 

M-quantile estimator for the small area mean and extend this idea for estimating other 

quantiles of the small area population distribution function. In Section 4 we discuss 

approaches for estimating the mean squared error of the M-quantile-based small area 

estimators. In Section 5 we assess the performance of the different small area estimation 

methods using both simulated and real data. Finally, in Section 6 we summarize our main 

findings.  

2.  Models for Small Area Estimation 

In what follows we assume that a vector of auxiliary variables p ijx  is known for each 

population unit in small area  and that information for the variable of interest  is 

available for units in the sample. The target is to use these data to estimate various area 

specific quantities, including (but not only) the small area mean of 

i j y

jm y . 

The most popular method employs linear mixed effects models for this purpose.  In the 

general case a linear mixed effects model has the following form 

= + +T T
ij ij ij j ijy x zβ γ ε , i = 1, …, n, j = 1, …, d,  (1) 

where jγ  denotes a vector of random effects and  denotes a vector of auxiliary 

variables whose values are known for all units in the population. Domain specific means 

are estimated by 

ijz
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1 ˆ ˆˆ .
j j

T T
j j i i i j

i s i r

m N y x zβ γ−

∈ ∈

⎛ ⎞
= + +⎜⎜

⎝ ⎠
∑ ∑ ⎟⎟    (2) 

where js  denotes jn  sampled units in area  and j jr  denotes  the remaining −j jN n units 

in the area. Estimator (2) is typically referred to as the Empirical Best Linear Unbiased 

Predictor (EBLUP) of 
 

 (Henderson 1953). The role of the random effects in the model 

is to characterise differences in the conditional distribution of y given x between the small 

areas. 

mj

An alternative approach to small area estimation is based on the use of quantile or M-

quantile regression models. In the linear case, quantile regression leads to a family (or 

“ensemble”) of planes indexed by the value of the corresponding percentile coefficient 

(Koenker and Bassett 1978). For each value of q, the corresponding model 

shows how Q , the q

q ∈(0,1)

q (x) th quantile of the conditional distribution of y given x, varies with 

x. A linear model for the qth conditional quantile y given x is (x) = T
qQ x qβ . The vector 

qβ  is estimated by minimising 

( ) ({ }
1

(1 ) 0 0
=

− − − ≤ + − >∑
n

T T
i i i i i i

i

y x b q I y x b qI y x b )T  

with respect to b (Koenker and D’Orey, 1987). Quantile regression can be viewed as a 

generalisation of median regression. M-quantile regression (Breckling and Chambers, 

1988) provides a “quantile-like” generalisation of regression based on influence functions 

(M-regression).  

The M-quantile of order q for the conditional density of y given x is defined as the 

solution ( ; )qQ x ψ  of the estimating equation ( ) ( | ) 0− =∫ q y Q f y x dyψ , where ψ  denotes 
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the influence function associated with the M-quantile. A linear M-quantile regression 

model is one where we assume that . That is, we allow a different set 

of regression parameters for each value of q. For specified q and 

( ; ) ( )= T
qQ x x qψψ β

ψ , an estimate  

of 

ˆ ( )qψβ

( )qψβ  can be obtained by solving 

1
( ) 0

=

,=∑
n

q iq i
i

r xψψ     (3) 

where , ˆ ( )= − T
iq i ir y x qψ ψβ ψ q (riqψ ) = 2ψ (s−1riqψ ) qI (riqψ > 0) + (1− q)I (riqψ ≤ 0){ } and s is 

a suitable robust estimate of scale for example, the MAD estimate 

s = median riqψ / 0.6745 . 

Chambers and Tzavidis (2006) extended the use of M-quantile models to small area 

estimation. Following their development, we index population units by i and, following 

Kokic et.al (1997) and Aragon et.al. (2005), characterise the conditional variability 

across the population of interest by the M-quantile coefficients of the population units. 

For unit i with values  and yi ix , this coefficient is the value q  such that i ( ; ) =
iq iQ x yiψ . 

Note that these M-quantile coefficients are determined at the population level. 

Consequently, if a hierarchical structure does explain part of the variability in the 

population data, then we expect units within clusters defined by this hierarchy to have 

similar M-quantile coefficients. Consequently, if the conditional M-quantiles follow a 

linear model, with ( )qψβ a sufficiently smooth function of , the following first order 

approximation holds 

q

( )1 1 1 ( )
( ) ( )− − −

∈ ∈ ∈ ∈ ∈

⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂
= + ≈ + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠

∑ ∑ ∑ ∑ ∑
j j j j j

jT T T
j j i i i j i i j j i i

i s i r i s i r i r j

m N y x q N y x N x qψ
ψ ψ

β θ
− jβ β θ θ

θ
. 
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Typically the first term on the right hand side of the above expression will dominate, 

suggesting a predictor of the form  

   1 ˆˆ ( )
j j

T
j j i i j

i s i r
m N y x ψβ θ−

∈ ∈

⎛ ⎞
= +⎜⎜

⎝ ⎠
∑ ∑ ⎟⎟ ,   (4) 

where a “hat” represents an estimator of the unknown quantity. Here ˆ
jθ  is the average 

value of the M-quantile coefficients of the units in area . However, alternative 

definitions of  

j

ˆ
jθ  are possible for example, the area median of the unit M-quantile 

coefficients. 

j

3. A Bias Adjusted M-quantile Estimator for the Small Area Mean  

We revisit small area estimation via mixed effects and M-quantile models using a 

unified estimation framework under which small area estimators are expressed as a 

functionals of the small area population distribution function. 

Consider a finite population  P  of N units clustered within small areas of interest. For 

small area   the area specific population distribution function is j

( )1( ) ( ) .
j j

j j i i
i s i r

F t N I y t I y t−

∈ ∈

⎛ ⎞
= ≤ +⎜⎜

⎝ ⎠
∑ ∑ ≤ ⎟⎟

)≤

    (5) 

The problem of estimating 
  

 essentially reduces to predicting the
 

’s for the non-

sampled units in small area  . This is achieved using a model suitable for small area 

estimation. Under a general linear model for small area estimation 

Fj (t) yij

j

   ,   (6) (1 ˆˆ ( ) ( )
j j

T
j j i i j

i s i r

F t N I y t I x tβ−

∈ ∈

⎛ ⎞
= ≤ +⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑
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where ˆ
jβ  are the estimated model parameters for small area . If we use an M-quantile 

model to predict ’s for out of sample units, 

j

y

     (1 ˆ ˆˆ ( ) ( ) ( )
j j

T
j j i i j

i s i r

F t N I y t I x tψβ θ−

∈ ∈

⎛ ⎞
= ≤ +⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑ )≤

j

and the Chambers and Tzavidis (2006) estimator of the small area mean (4) is obtained as 

  1 ˆ ˆˆˆ ( ) ( )
j j

T
j j j i i

i s i r

m tdF t N y x ψβ θ
∞

−

∈ ∈−∞

⎛ ⎞
= = +⎜⎜

⎝ ⎠
∑ ∑∫ ⎟⎟

)≤

j

.   (7) 

The same is true when a mixed effects model is used  

     (1 ˆˆ ˆ( ) ( )
j j

T T
j j i i i j

i s i r

F t N I y t I x z tβ γ−

∈ ∈

⎛ ⎞
= ≤ + +⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑

and the EBLUP estimator (2) is obtained as  

   1 ˆˆ ˆˆ ( )
j j

T T
j j j i i i

i s i r

m tdF t N y x zβ γ
∞

−

∈ ∈−∞

⎛ ⎞
= = + +⎜⎜

⎝ ⎠
∑ ∑∫ ⎟⎟ .  (8)  

Chambers and Tzavidis (2006) observed that (4) can produce biased estimates of small 

area means, particularly when small areas contain outliers. Hereafter, we refer to small 

area estimators derived under (6) as naïve estimators. Insight as to what might cause this 

bias is provided below.  

Chambers (1986) considered the problem of estimating the finite population total, T , in 

the presence of representative outliers. The term representative, as opposed to non-

representative, outliers is used to characterise observations that are correct but extreme 

relatively to the bulk of the data.  It is well known that the Best Linear Unbiased 

Predictor of the finite population total of is (Royall 1970) y
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LS i LS i
i s i r

T y β
∈ ∈

= +∑ ∑ x ,   (9) 

where LSβ  is the generalised least squares estimator. However, it is also well known that 

 is sensitive to outliers. A first step in making (9) less sensitive to outliers might be to 

replace 

LST

LSβ  by an outlier robust alternative. Although this approach stabilizes the 

variance of (9) in the presence of outliers, it does not address the problem of robust 

prediction of  in the presence of outliers leading to bias in the estimation of the total. 

Chambers (1986) proposes the use of an alternative estimator  such that the 

distribution of the prediction error  is unaffected by sample outliers. The general 

form of this estimator is    

LST

nT

nT T−

( )n i i i
i s i r i s

T y x y ixβ ψ β
∈ ∈ ∈

= + + −∑ ∑ ∑ .   (10) 

Chambers’s (1986) proposal suggests that  can be made more outlier robust by 

curtailing the influence of sample outliers based on the third term in the right hand side of 

(10). The robustness of (10) depends on the choice of 

LST

β  and ψ . 

Closely related to the work of Chambers (1986) is the work of Chambers and Dusntan 

(1986), hereafter denoted in formulae with subscript CD. These authors proposed an 

estimator of the distribution function, which under a general model and without any 

reference to the small area problem is of the following form 

( )1 1 ˆˆ ˆ( ) ( ) T
CD i k i i

i s i s k r

F t N I y t n I x y y tβ− −

∈ ∈ ∈

⎧ ⎫⎪ ⎪⎪ ⎪⎡ ⎤= ≤ + + −⎨ ⎬≤⎢ ⎥⎣ ⎦⎪ ⎪⎪ ⎪⎩ ⎭
∑ ∑∑ , (11) 

where β̂  are the estimated model parameters and ˆˆ = T
i iy x β . The Chambers-Dunstan 

estimator of the distribution function is a bias adjusted version of (6). The adjustment is 
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by the residual . Welsh and Ronchetti (1998) considered the problem of estimating 

the population distribution function in the presence of outliers. To achieve this, they 

combine estimators of the form of (10) with the Chambers-Dunstan estimator of the 

distribution function.  

ˆiy y− i

Following these authors we propose a biased adjusted M-quantile estimator of the small 

area mean in the presence of outliers by combining the M-quantile small area model with 

the Chambers-Dunstan estimator. In this case an estimator of the population distribution 

function of small area j is  

( )1 1
,

ˆ ˆˆ ˆ( ) ( ) ( )
j j j

T
CD j j i j k j i i

i s i s k r

F t N I y t n I x y y tβψ θ− −

∈ ∈ ∈

⎧ ⎫⎪ ⎪⎪ ⎪⎡ ⎤= ≤ + + −⎨ ⎬≤⎢ ⎥⎣ ⎦⎪ ⎪⎪ ⎪⎩ ⎭
∑ ∑∑ , 

where . The proposed biased adjusted estimator of the small area mean is 

then  

ˆ ˆˆ ( )T
i i jy x βψ θ=

1
,

ˆ ˆˆˆ ˆ( ) ( ) [ ]
j j j

j jadj T
j CD j j i i j i

i s i r i sj

N n
m tdF t N y x y y

n
β

∞
−

ψ
∈ ∈ ∈−∞

⎛ ⎞−
= = + θ +⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑ ∑∫ i− .  (12) 

The derivation of (12) is given in the appendix. Estimator (4) adapts only the first step of 

the Chambers (1986) proposal i.e. the use of a robust β  such as the one estimated under 

an M-quantile model. However, this step does not protect us against the bias introduced 

when estimating the mean in the presence of outliers. In contrast, the proposed biased 

adjusted M-quantile estimator (12) is of the Chambers (1986) form where ψ  is the 

identity function. Using different definitions for the ψ  function, alternative bias-adjusted 

small area estimators of the small area mean are possible. Such estimators are considered 

in the empirical evaluations in section 5. An alternative, heuristic, approach to reducing 

the bias in the M-quantile estimate of the small area mean is to use expectile regression 
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(Newey and Powell 1987). To achieve this one can increase the tuning constant of the 

influence function ψ ,  c . Expectile versions of (4) are also included in the 

empirical evaluations. 

→∞

Although our main aim is to develop a bias adjusted M-quantile estimator of the small 

area mean, two further extensions are possible. Firstly, a modified version of the EBLUP 

estimator (2) is proposed by combining the mixed effects model (1) with the Chambers-

Dunstan estimator  

1
,

ˆˆ ˆˆ ˆ( ) [ ]
j j j

j jadj T T
j CD j j i i i j i

i s i r i sj

N n
m tdF t N y x z y y

n
β γ

∞
−

∈ ∈ ∈−∞

⎛ ⎞−
= = + + +⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑ ∑∫ i−

j

, (13) 

where ˆ ˆˆ T T
i i iy x zβ γ= + .  It is well known that when the assumptions of the mixed model 

hold, (2) is the Empirical Best Linear Unbiased Predictor. It is of interest, however, to 

examine the usefulness of (13) when the model assumptions are wrongly specified. 

Secondly, the approach that we followed for defining the M-quantile bias adjusted 

estimator leads naturally to resolving the problem of estimating other 

quantiles, ( )0,1jq ∈ , of the population distribution function in a small area. This can be 

achieved using either an M-quantile or a mixed effects model and the Chambers-Dunstan 

estimator or estimator (6). In the former case a numerical solution to the following is 

required  

,
ˆ ( )

jm

CD j jdF t q
−∞

=∫ .     (14) 

4. MSE Estimation 

For fixed q, the estimator of the M-quantile regression coefficient βψ (q)  is 

, where  denotes the β̂ψ (q) = (Xs
TWs (q)Xs )−1 Xs

TWs (q)ys Xs n × p  matrix of sample 
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covariate values and  is the n-vector of sample y-values. The diagonal matrix W  

contains the final set of weights produced by the iteratively reweighted least squares 

algorithm used to compute . It immediately follows that , where w  

is the vector of area j weights 

ys s (q)

β̂ψ (q) 1ˆ adj T
j j jm N w−= sy j

 1ˆ ˆ1 ( ) ( ( ) )j jT
j sj s j s s s j s rj sj

j j

N N
w W X X W X t

n n
θ θ −

⎛ ⎞−
= + −⎜⎜

⎝ ⎠

jn
t ⎟⎟ . (15) 

Here  is the n-vector with i1sj
th component equal to one whenever the corresponding 

sample unit is in area j and is zero otherwise,  is the sum of the non-sample covariate 

values in area j  and 

trj

sjt  is the sum of the sample covariate values in area j. 

We use the fact that the M-quantile estimator of βψ (q)  is linear in the sample values of 

y to develop an estimator of the mean squared error of the naïve M-quantile estimator. 

Note that our approach assumes  is constant, which leads to a first order approximation 

to the actual mean squared error. Mean squared error estimation of  can be carried 

out using standard methods for robust estimation of the mean squared error of unbiased 

weighted linear estimators (Royall and Cumberland, 1978). That is, the prediction 

variance can be approximated by 

θ̂ j

ˆ adj
jm

2 2ˆ( ) ( ) (
j j

adj adj
j j j ij i i

i s i r

var m m N u var y var y−

∈ ∈

⎛ ⎞
− ≈ +⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑ ) ,                             

with ( ) j j j
j ij

j

N w w
u u

w
−

= = ∑
∑

 (see also Chandra and Chambers 2005). We interpret 

 conditionally (i.e. specific to the area j from which  is drawn) and hence ( )ivar y yi
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replace  in the first (sample) term on the right hand side above by 

 and the second term by 

( )ivar y

2ˆ ˆ( (T
i i jy x ψβ θ− ))

(N j − nj )(nj −1)−1 {yi − xi
Tβ̂ψ (θ̂ j )}

2

i∈s j

∑ . 

Our estimator of the prediction variance in area j is therefore  

 2ˆ ˆˆ ( (
j

T
j ij i i

j i s
V y x ψλ β θ

∈

= − ))j∑∑ , (16) 

whereλij = N j
−2 uij

2 + I (i ∈ j)(N j − nj ) / (nj − 1)( ). Next suppose . 

Then 

E(yi | xi ,i ∈ j) = xi
Tβ j

 1 1

j

T T
j ij i j j ij i j i j

i s j i s i j

E N w y m N w x xβ β− −

∈ ∈

⎛ ⎞⎛ ⎞− ≈ −⎜⎜ ⎟ ⎜⎝ ⎠ ⎝ ⎠
∑ ∑∑

∈
⎟⎟∑ ,  

where the summation over k on the right hand side above is over the set of areas 

represented in the sample. An estimate of the bias is 

 1 ˆ ˆ ˆ ˆˆ ( ) ( )
j

T T
j j ij i j i j

j i s i j

B N w x xβ θ β−

∈ ∈

⎛ ⎞
= −⎜⎜

⎝ ⎠
∑∑ ∑ θ ⎟⎟

rjt

. (17) 

Our final estimator of the mean squared error of is therefore  

           .                              (18) M̂ j = V̂j + B̂j
2

The proposed mean squared error estimator is similar to the mean squared estimator of 

the naïve M-quantile estimator proposed by Chambers and Tzavidis (2006). The 

difference is that for estimating the mean squared error of the naïve M-quantile estimator, 

instead of using the weights given by (15), we there use the weights  

        .         (19) 1ˆ ˆ1 ( ) ( ( ) )T
j sj s j s s s j sw W X X W Xθ θ −= +
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5. Simulation Studies 

In this section we present results from two simulation studies that were used to compare 

the performance of the different small area estimators presented in section 3. The first is a 

model-based simulation in which small area population and sample data were simulated 

based on a two level hierarchical linear model with different parametric assumptions for 

the level one and level two variance components. The second is a design based 

simulation in which a fixed population containing a number of small areas was repeatedly 

sampled, holding the sample size in each small area fixed.  

5.1  Model –based Simulations 

In each simulation we generated N = 232,500 population values of x and y in H = 30 

small areas with    in area h. For each area h we took a simple random sample 

(without replacement) of size n

Nh = 500h

h = 30 , leading to an overall sample size of n = 900. The 

sample values of y and the population values of x were then used to estimate the small 

area target parameters -small area means and other quantiles of the small area distribution 

function- of y and the resulting estimation errors. This process was repeated 1000 times. 

Two scenarios for generating the data were used 

Scenario 1: ,  2~ ( , / 36)ih h hx N µ µ ~ (0,1),h Nγ ~ (0,64)ih Nε , with ~ [40,120]h Uµ  held 

fixed over simulations. 

Scenario 2: 2~ (ih h )x dχ , , , with the 2~ (3ihε χ ) )2~ (1hγ χ 'ih sε  and 'h sγ  centred 

around their means, and , held fixed over simulations. This second scenario 

is used to examine the effect of mis-specifying the Gaussian assumptions of a random 

effects model. 

~ [1,200]hd U
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Population values were then generated using yij 5ih ih h ihy x γ ε= + + + . Two different 

methods of small area estimation were applied to the sample data obtained in the 

simulations, based on fitting linear models under (a) a random intercepts specification 

and (b) an M-quantile specification. The random intercepts model in (a) is based on 

fitting a linear mixed model to the sample data using the default settings of the lme 

function (Venables & Ripley, 2002, section 10.3) in R. The M-quantile regression fit 

underpinning (b) was obtained using a modified version of the rlm function (Venables & 

Ripley, 2002, section 8.3) in R.  

For estimating small area means and other quantiles of the small area distribution 

function we employed either estimator (6) or the Chambers-Dunstan estimator (11). In 

general, we refer to estimators derived under (6) as the M-quantile naïve and the random 

intercepts naïve estimators and estimators derived under (11) as the M-quantile and the 

random intercepts bias adjusted estimators.  

Biases and mean squared errors over these simulations, averaged over the 30 areas, are 

set out in Table 1 (under normality assumptions) and in Table 2 (under chi-square 

assumptions). When the model assumptions hold all approaches perform reasonably well. 

The Chambers-Dunstan adjustment offers bias correction mainly when estimating 

quantiles other than the median but the differences are not very pronounced. The 

differences between the naïve and the Chambers-Dunstan estimators are more 

pronounced when data are generated under chi-square assumptions. The use of the naïve 

estimator leads to biased estimates of the quantiles of the small area distribution function. 

In contrast, the Chambers-Dunstan estimator bias corrects the unadjusted estimators. This 

is true both for the M-quantile and the random intercepts model. In general, when the 
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model assumptions are not met the bias adjusted versions of the M-quantile and the 

random effects estimators perform well both in bias and mean squared error terms.  

In Table 3 we report coverage rates of confidence intervals for the regional mean 

estimates based on the M-quantile naïve and the M-quantile bias adjusted estimators and 

the mean squared error estimator (18) with weights given by (19) or the mean squared 

error estimator (18) with weights given by (15) respectively. We conclude that the mean 

squared estimator of the bias adjusted M-quantile estimator of the mean exhibits good 

coverage properties. 

5.2 Design-Based Simulations 

The data on which these simulations were based were obtained from a sample of 1652 

broadacre farms spread across 29 regions (Region) of Australia. This is the same dataset 

as the one employed by Chambers and Tzavidis (2006). We decided to use the same 

dataset in order to examine any potential gains from using the proposed biased adjusted 

small area estimators. The y-variable of interest is the Total Cash Costs (TCC) of the 

farm business in the reference year. Auxiliary information available for each farm 

included the farm’s sample weight, the total area of the farm in hectares (FarmArea) and 

the climatic zone in which the farm is situated. This information was used to classify the 

farms into six SizeZone strata (1 = pastoral zone and a farm area of 50000 hectares or 

less; 2 = pastoral zone and a farm area of more than 50000 hectares; 3 = wheat-sheep 

zone and a farm area of 1500 hectares or less; 4 = wheat-sheep zone and a farm area of 

more than 1500 hectares; 5 = high rainfall zone and a farm area of 750 hectares or less; 6 

= high rainfall zone and a farm area of more than 750 hectares). Individual (farm) level 

values for FarmArea, SizeZone and Region were assumed known at the population level. 

 15



The aim of this simulation study was to compare estimation of regional means of TCC 

under repeated sampling using both mixed effects models and M-quantile models. The 

study itself was implemented in two steps as follows:  (1) A population of N = 81982 

farms was created by sampling N times with replacement from the above sample of 1652 

farms and with probability proportional to a farm’s sample weight. Scatterplots of the 

distribution of y and x in this population show that it is highly heteroskedastic, with many 

outlying values. (2) Five hundred independently stratified random samples of the same 

size as the original sample were selected from this simulated population. Stratum (i.e. 

region) sample sizes were fixed to be the same as in the original sample. The same 

specification was used by all estimation methods, defined by the main effects and 

interactions for the Farmarea and SizeZone variables.  

Small area mean estimates were obtained using a range of naïve and bias-adjusted 

estimators based both on the M-quantile and the random intercepts approaches. More 

specifically, under the M-quantile approach we can change the tuning constant of the 

influence function. For example when we obtain expectile versions of the small 

area estimators. In addition, under the Chambers-Dunstan estimator of the distribution 

function one can use either an estimate of the raw residuals or an estimate of the 

huberized residuals for reducing the effect of large residuals. We consider both expectile 

versions -referred to as expectile estimators- of the M-quantile small area estimators as 

well as small area estimators that are derived using the Chambers-Dunstan estimator and 

either raw or huberized residuals -referred to as huberized estimators-. 

c →∞

The results set out in Table 4 focus on estimation of regional means under different M-

quantile small area estimators. These show that the naïve M-quantile estimator of the 
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small area mean is severely biased (see also Chambers and Tzavidis 2006). The bias 

reduces significantly once we consider a set of alternative M-quantile estimators that are 

based on the use of the Chambers-Dunstan estimator of the distribution function. The 

adjusted M-quantile estimators exhibit good performance also in terms of relative root 

mean squared error. An interesting picture emerges for estimators based on mixed effects 

models (Table 5). Firstly, we expect that the naïve random intercepts estimator is not 

optimal any more because the model assumptions are violated due to the presence of 

outliers in the data. The use of adjusted  random intercepts estimators offer a clear 

improvement. 

Finally, in Table 6 we report coverage rates of confidence intervals for regional mean 

estimates based on the M-quantile bias adjusted estimator and the mean squared error 

estimator (18) with weights given by (15). We see that in general we derive good 

coverage rates, which can be attributed to the fact that we bias correct the naïve M-

quantile estimator. Significant under-coverage still exists for 3 areas where we know that 

large outliers exist. 

6. Summary 

In the present paper we propose a bias adjustment to the naïve M-quantile estimator of 

the small area mean that is based on the Chambers-Dunstan estimator of the population 

distribution function. The bias-adjusted M-quantile estimator is more efficient than the 

naïve M-quantile estimator particularly in the presence of outliers. We further illustrate 

that the use of a Chambers-Dunstan adjustment may improve the estimation of small area 

means obtained from a random intercepts model when the assumptions of such models 

are violated. The problem of estimating other quantiles of the small area distribution 
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function is considered and results indicate that this can be achieved by employing the 

Chambers-Dunstan estimator of the distribution function either with M-quantile or with 

mixed effects models.  
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APPENDIX 

 
Derivation of the small area estimator of the mean under the Chambers-Dunstan 
estimator of the distribution function 
 
Let denote an estimator of the sample empirical distribution. ˆ ( )F t
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We now employ the Chambers-Dunstan estimator of the small area distribution function 
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An estimator of the small area mean under the Chambers-Dunstan estimator is then given 
by  
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which can be expressed as 
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Applying (A1) to the previous expression we obtain the adjusted estimator of the small 
area mean (12) 
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MODEL -BASED SIMULATIONS 
 
Table 1. Model-based simulation results of estimating a range of parameters of the small 
area distribution function when data are generated under Gaussian assumptions, 
averaged over 30 small areas.  
 
Method  q10   q25   q50  Mean   q75 q 90 
                             

                     Relative Bias (%) 
Random Intercepts Naïve 0.088 0.041 -0.002 -0.002 -0.036 -0.062 
Random Intercepts CD 0.083 0.046  0.051 -0.002  0.072  0.160 
M-quantile Naïve 0.090 0.044  0.003  0.003  -0.030 -0.055 
M-quantile CD 0.058 0.003 -0.003 -0.002  0.008  0.064 
                                                                      
                                                                                 RRMSE (%) 
Random Intercepts Naïve 0.36 0.29 0.25 0.23 0.24 0.24 
Random Intercepts CD 0.42 0.31 0.27 0.24 0.26 0.31 
M-quantile Naïve 0.57 0.48 0.42 0.41 0.39 0.38 
M-quantile CD 0.43 0.32 0.27 0.24 0.26 0.30 

 

Table 2. Model-based simulation results of estimating a range of parameters of the small 
area distribution function when data are generated under chi-square assumptions, 
averaged over 30 small areas.  
 
Method  q10   q25   q50  Mean   q75 q 90 
                             

                     Relative Bias (%) 
Random.Intercepts Naïve 22.48 9.731 0.420  0.024 -4.708 -6.969 
Random .Intercepts CD 0.374 0.205 0.079 -0.018 -0.073 -0.186 
M-quantile Naïve 17.24 5.653 -2.641 -1.794 -7.021 -8.787 
M-quantile CD 0.373 0.176 0.027 -0.018 -0.085 -0.188 
                                                                      
                                                                                 RRMSE (%) 
Random.Intercepts Naïve 23.11 10.81 3.62 1.97 5.60 7.44 
Random.Intercepts CD 4.09 3.87 3.78 2.01 4.19 4.84 
M-quantile Naïve 17.69 7.31 4.49 2.49 7.68 9.18 
M-quantile CD 4.09 3.88 3.93 2.01 4.36 4.82 
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Table 3. Simulated data under normality assumptions, coverage rates of ‘two-sigma’ 
confidence intervals. Intervals are defined by the M-quantile naïve and M-quantile bias-
adjusted estimates plus or minus twice their corresponding standard errors using (18) 
with weights given by (19) or (18) with weights given by (15) respectively 
 

Area Coverage Rates for naïve M-quantile 
estimator 

Coverage Rates for bias adjusted M-
quantile estimator 

1 100 100 
2 93 99 
3 90 98 
4 95 100 
5 91 99 
6 91 100 
7 89 100 
8 88 96 
9 80 96 

10 84 94 
11 85 94 
12 83 96 
13 86 97 
14 87 93 
15 79 96 
16 82 93 
17 84 97 
18 81 91 
19 78 97 
20 80 97 
21 83 97 
22 87 91 
23 81 93 
24 88 93 
25 81 94 
26 85 97 
27 87 89 
28 77 95 
29 82 96 
30 84 94 

Mean 85.37 95.73 
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DESIGN-BASED SIMULATIONS 

 
Table 4. Australian farms study, relative bias and relative root mean squared error 
estimates of regional means of Total Cash Costs under a range of M-quantile (Mq) small 
area estimators in design-based simulation study. Row entries correspond to a region 
with the last row reporting the column mean. 
 

Mq 
Naïve 

Mq 
Expectile 

Naive 

Mq CD 
Huberized 

c=5 

Mq 
Expectile 

CD 

Mq 
CD 

Mq 
Naive 

Mq 
Expectile 

Naive 

Mq CD 
Huberized 

c=5 

Mq 
Expectile 

CD 

Mq 
CD 

       Relative Bias                                                 Relative Root Mean Squared Error 
-14.20 -10.95 -1.29 -0.21 -0.43 15.88 13.72 11.49 12.31 11.96 
-31.29 -25.13 -17.36 -0.18 -0.16 31.50 25.42 18.71 31.26 31.32 
-15.17 -9.09 -6.84 -0.38 -0.33 15.58 9.83 9.02 9.73 9.83 
-23.76 -18.5 -6.22 -0.66 -0.50 24.07 19.05 8.81 9.03 9.46 
-16.18 -9.11 -6.31 -0.18 -0.15 16.81 10.31 9.27 9.14 9.28 
10.87 18.93 -1.71 0.54 0.46 14.21 21.58 15.94 18.15 17.30 
-12.27 -5.31 -4.35 0.26 0.23 13.19 7.60 7.92 10.08 10.34 
-14.89 -8.70 -2.66 0.01 0.00 15.56 10.51 8.28 9.21 9.21 
-26.39 -20.14 -23.53 -1.42 -1.46 26.74 21.35 24.62 104.31 104.02 
-19.05 -13.48 -5.84 0.05 -0.02 19.41 14.04 8.94 9.23 9.58 
-22.20 -12.16 -7.28 -2.99 -2.53 31.89 25.64 38.82 37.84 38.64 
-10.71 2.95 -6.96 3.21 0.38 13.05 16.10 12.35 23.71 16.68 
-22.90 -21.38 -4.45 -0.17 0.04 23.92 24.09 14.48 17.04 14.92 
-16.61 -15.85 -0.25 0.11 0.14 17.67 16.86 7.59 7.77 7.46 
-14.56 -7.18 -6.29 -0.93 0.02 15.44 9.33 10.97 16.08 18.78 
-15.87 -3.06 -3.61 0.73 -0.10 17.18 12.12 8.91 9.93 9.00 
-4.43 12.34 -2.62 0.27 0.24 12.65 18.27 13.98 14.32 14.20 
-21.31 0.72 -15.68 10.80 -3.76 37.38 40.10 34.14 41.95 34.44 
-12.90 -0.20 -3.10 1.09 0.45 14.81 10.03 9.45 13.77 11.32 
2.84 12.30 0.53 0.46 0.53 7.02 13.74 7.01 7.36 7.01 
-8.20 -1.59 -1.34 0.34 0.17 9.11 4.75 6.54 7.65 7.05 
-21.29 -14.96 -8.98 -0.41 -0.45 21.78 15.74 11.97 8.85 9.08 
-14.12 -0.13 1.18 1.67 1.76 24.32 24.36 25.96 32.22 25.48 
6.81 15.91 0.22 -0.22 0.25 15.51 20.98 11.43 12.85 11.41 

-29.46 -24.31 -11.01 -1.71 -0.31 29.62 24.54 12.52 11.79 15.86 
-10.06 -3.77 3.85 3.12 2.05 13.74 11.43 11.80 15.42 12.54 
-30.97 -25.09 -10.39 -0.57 -0.59 31.23 25.43 13.34 10.67 11.12 
-31.51 -24.87 -8.60 -1.06 -0.43 31.90 25.39 13.22 15.23 17.06 
-29.13 -14.65 -13.98 -1.23 -1.37 30.88 23.47 19.15 23.13 24.32 
-16.17 -7.81 -6.03 0.36 -0.20 20.41 17.78 14.02 18.97 18.23 
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Table 5. Australian farms study, relative bias and relative root mean squared error 
estimates of regional means of Total Cash Costs under a range of random effects small 
area estimators in design-based simulation study. Row entries correspond to a region 
with the last row reporting the column mean. 
 

Random  
Intercepts Naive 

Random 
Intercepts 

CD 

Random 
Intercepts CD 
Huberized c=5 

Random  
Intercepts 

Naive 

Random 
Intercepts CD 

Random Intercepts CD 
Huberized c=5 

   Relative Bias                                                 Relative Root Mean Squared Error 
-4.59 -0.21 -0.86 10.37 12.24 12.17 
-7.78 -0.16 -13.98 17.05 31.25 16.37 
2.44 -0.41 -5.27 11.65 9.60 8.46 
-2.72 -0.65 -3.90 8.98 9.08 8.05 
-0.07 -0.21 -4.02 7.68 9.09 8.58 
25.62 0.30 -0.70 34.91 22.12 21.53 
7.08 0.34 -2.79 15.51 9.96 7.43 
4.83 0.04 -1.31 16.24 9.25 8.51 

-10.49 -1.42 -19.08 29.85 104.64 21.15 
-1.60 0.15 -3.51 7.46 9.00 7.88 
12.12 -1.58 -1.64 22.13 33.79 33.71 
1.94 2.75 3.03 17.84 22.77 20.14 
-7.10 -0.25 -1.64 14.43 16.26 16.17 
-10.51 0.20 0.00 14.21 7.79 7.89 
2.10 -1.07 -3.57 18.07 15.39 10.87 
4.55 0.91 0.65 12.20 11.03 11.87 
12.35 -0.01 -0.44 20.55 15.21 15.06 
50.54 42.85 39.03 98.51 91.09 92.68 
9.15 1.17 5.37 17.43 16.76 15.60 
15.36 0.36 0.75 21.21 8.25 8.00 
6.26 0.44 0.73 17.54 8.22 7.42 
-2.55 -0.34 -4.01 7.72 8.73 9.45 
3.57 0.08 0.13 19.63 33.05 32.99 
30.66 -0.52 -0.50 36.66 13.89 13.90 
-6.33 -1.48 -5.58 11.13 12.16 9.62 
1.08 3.16 6.35 11.45 15.06 14.05 
-6.21 -0.44 -3.79 11.27 10.43 10.53 
-7.87 -0.99 -5.72 15.24 15.17 12.28 
-4.77 -1.53 -6.84 21.52 22.93 19.81 
4.04 1.43 -1.14 19.60 20.84 16.62 
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Table 6. Australian farms study, coverage rates of ‘two-sigma’ confidence intervals for 
regional population means of Total Cash Costs. Intervals are defined by the M-quantile 
bias-adjusted estimates plus or minus twice their corresponding standard errors using 
(18) with weights given by (15)  
 

Region Coverage Rates 
1 0.955 
2 0.705 
3 0.900 
4 0.895 
5 0.923 
6 0.968 
7 0.953 
8 0.958 
9 0.308 

10 0.913 
11 0.980 
12 0.888 
13 0.948 
14 0.985 
15 0.875 
16 0.953 
17 0.930 
18 0.923 
19 0.985 
20 0.973 
21 0.965 
22 0.933 
23 0.983 
24 1.000 
25 0.878 
26 0.935 
27 0.948 
28 0.933 
29 0.770 

Mean 0.906 
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