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covariates and random effects to explain between domain variation. Chambers and
Tzavidis (2006) describe a novel approach to small area estimation that is based on
modelling quantile-like parameters of the conditional distribution of the target variable
given the covariates. This is an outlier robust approach that avoids conventional Gaussian
assumptions and the problems associated with specification of random effects, allowing
inter-domain differences to be characterized by the variation of area-specific M-quantile
coefficients. These authors observed, however, that M-quantile estimates of small area
means are biased with the magnitude of the bias being related to the presence of outliers
in the data. In this paper we propose a bias adjustment to the M-quantile small area
estimator of the mean that is based on representing this estimator as a functional of the
small area distribution function. The method is then generalized for estimating other
quantiles of the distribution function in a small area. The effect of this bias adjustment on
small area estimation with random effects models in the presence of model
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1. Introduction

Sample surveys provide a cost effective way of obtaining estimates for characteristics
of interest at both population and sub-population (domain) level. In most practical
applications domain sample sizes are not large enough to allow direct estimation. The
term “small areas” is typically used to describe such domains. When direct estimation is
not possible, one has to rely upon alternative methods for producing small area estimates.
Such methods depend on the availability of population level auxiliary information related
to the variable of interest and are commonly referred to as indirect or model-based
methods.

The current industry standard for small area estimation is mixed (random) effects
models that include area specific random effects to account for between area variation
beyond that explained by the auxiliary information (Fay and Herriot 1979, Rao 2003).
Such models depend on Gaussian assumptions and require a formal specification of the
random effects structure. In a recent paper Chambers and Tzavidis (2006) proposed a
new approach to small area estimation based on modelling quantile-like coefficients of
the conditional distribution of the target variable given the covariates. With M-quantile
models we avoid imposing strong distributional assumptions. Formal specification of the
random part of the model is also not required. Instead, inter-domain variation is captured
by variation in area-specific quantile coefficients. However, Chambers and Tzavidis
(2006) also observed that M-quantile estimates of the small area means are biased, with
the magnitude of the bias being related to the presence of outliers in the data. In this
paper we propose a bias corrected M-quantile estimator of the small area mean. Our

proposal is based on representing this estimator as a functional of the estimated



distribution function within the small area. The method is then generalized for estimating
any quantile of the small area distribution function.

The structure of the paper is as follows: In Section 2 we review random effects models
and M-quantile models for small area estimation. In Section 3 we propose a bias adjusted
M-quantile estimator for the small area mean and extend this idea for estimating other
quantiles of the small area population distribution function. In Section 4 we discuss
approaches for estimating the mean squared error of the M-quantile-based small area
estimators. In Section 5 we assess the performance of the different small area estimation
methods using both simulated and real data. Finally, in Section 6 we summarize our main
findings.

2. Models for Small Area Estimation

In what follows we assume that a vector of p auxiliary variables x; is known for each

population unit iin small area j and that information for the variable of interest y is
available for units in the sample. The target is to use these data to estimate various area
specific quantities, including (but not only) the small area mean m; of y .
The most popular method employs linear mixed effects models for this purpose. In the
general case a linear mixed effects model has the following form
Vi =X B+ziy;+e,i=1,...nj=1,..4d 1)
where y, denotes a vector of random effects and z; denotes a vector of auxiliary

variables whose values are known for all units in the population. Domain specific means

are estimated by



rﬁijj_l{zyi—sziTﬁ—i_ziT];j]' (2)

iesj ierj
where s; denotes n; sampled units in area j and r; denotes the remaining N, —n, units

in the area. Estimator (2) is typically referred to as the Empirical Best Linear Unbiased

Predictor (EBLUP) of m, (Henderson 1953). The role of the random effects in the model

IS to characterise differences in the conditional distribution of y given x between the small
areas.

An alternative approach to small area estimation is based on the use of quantile or M-
quantile regression models. In the linear case, quantile regression leads to a family (or
“ensemble”) of planes indexed by the value of the corresponding percentile coefficient

g €(0,1) (Koenker and Bassett 1978). For each value of ¢, the corresponding model

shows how Q,(x), the q™ quantile of the conditional distribution of y given x, varies with

x. A linear model for the g™ conditional quantile y given x is Q,(x)= xTﬂq. The vector

B, is estimated by minimising

i‘yi —xinH(l—q)I (vi—x'b<0)+al(y, —xin>0)}

with respect to b (Koenker and D’Orey, 1987). Quantile regression can be viewed as a
generalisation of median regression. M-quantile regression (Breckling and Chambers,
1988) provides a “quantile-like” generalisation of regression based on influence functions
(M-regression).

The M-quantile of order g for the conditional density of y given x is defined as the

solution Q, (x;y) of the estimating equation_[x//q(y—Q) f(y|x)dy =0, where y denotes



the influence function associated with the M-quantile. A linear M-quantile regression

model is one where we assume that Q. (X;y) = xTﬂW (q). That is, we allow a different set

of regression parameters for each value of g. For specified g and , an estimate ,By, (@)

of 5,(q) can be obtained by solving
2 Vq (6, )% =0, ©)
i=1

where t,, =Y, = X, (a), v, (t,,) = 2p/(s ™, ) {al (g, > 0)+ (L- Q)1 (r,, <0) }and siis
a suitable robust estimate of scale for example, the MAD estimate

S= median‘riqw‘/o.6745 .

Chambers and Tzavidis (2006) extended the use of M-quantile models to small area
estimation. Following their development, we index population units by i and, following
Kokic et.al (1997) and Aragon et.al. (2005), characterise the conditional variability
across the population of interest by the M-quantile coefficients of the population units.

For unit i with values y; and x;, this coefficient is the value g; such that Q, (x;w)=y;.

Note that these M-quantile coefficients are determined at the population level.
Consequently, if a hierarchical structure does explain part of the variability in the
population data, then we expect units within clusters defined by this hierarchy to have
similar M-quantile coefficients. Consequently, if the conditional M-quantiles follow a

linear model, with A, (q)a sufficiently smooth function of q, the following first order

approximation holds

0B, (0,
m; = le[z y. +Zx{ﬂw(qi)jz le(Zyi +inTﬂV/(<9j)]+ NS X (%J(qi -0;).
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Typically the first term on the right hand side of the above expression will dominate,

suggesting a predictor of the form

rﬁj:Nj_l[Zyi-i_inTﬂy/(éj)]' 4)

ies; ier;

where a “hat” represents an estimator of the unknown quantity. Here éj is the average
value of the M-quantile coefficients of the units in area j. However, alternative
definitions of éj are possible for example, the area jmedian of the unit M-quantile

coefficients.
3. A Bias Adjusted M-quantile Estimator for the Small Area Mean

We revisit small area estimation via mixed effects and M-quantile models using a
unified estimation framework under which small area estimators are expressed as a
functionals of the small area population distribution function.

Consider a finite population P of N units clustered within small areas of interest. For

small area j the area specific population distribution function is

iesj ier;

Fi(t) =N Zl(yist'(yist)]- )

]

The problem of estimating F, (t) essentially reduces to predicting the y; 'S for the non-

sampled units in small area j. This is achieved using a model suitable for small area

estimation. Under a general linear model for small area estimation

ﬁ,.(t)=N;l[Z|(yi <)+Y1(X 4, St)J , ©)

IGSJ- |erj



where ,3]. are the estimated model parameters for small area j. If we use an M-quantile

model to predict y ’s for out of sample units,
F,(t) = N;{Z H(y, <)+ (x{ﬁw(éj) st)]
and the Chambers and Tzavidis (2006) estimator of the small area mean (4) is obtained as

IESJ- IEI‘J-

rﬁj:Ttdlfj(t):le(ZyﬁZXFI@,(é])]- )

The same is true when a mixed effects model is used
Ifj(t) = Nj‘l[z 1(y, st)+z I (xiT,éJr 27, st)j
and the EBLUP estimator (2) is obtained as

rﬁj:Ttdlfj(t):le(Zyi+foﬁ+zﬁj]. (8)

IESJ- Iel’j

Chambers and Tzavidis (2006) observed that (4) can produce biased estimates of small
area means, particularly when small areas contain outliers. Hereafter, we refer to small
area estimators derived under (6) as naive estimators. Insight as to what might cause this
bias is provided below.

Chambers (1986) considered the problem of estimating the finite population total, T , in
the presence of representative outliers. The term representative, as opposed to non-
representative, outliers is used to characterise observations that are correct but extreme
relatively to the bulk of the data. It is well known that the Best Linear Unbiased

Predictor of the finite population total of y is (Royall 1970)



Ts = Z Yi +ﬂLS Z X s 9)

ies ier
where S, is the generalised least squares estimator. However, it is also well known that
T.s 1s sensitive to outliers. A first step in making (9) less sensitive to outliers might be to
replace f, by an outlier robust alternative. Although this approach stabilizes the
variance of (9) in the presence of outliers, it does not address the problem of robust
prediction of T g in the presence of outliers leading to bias in the estimation of the total.
Chambers (1986) proposes the use of an alternative estimator T, such that the
distribution of the prediction error T, —T is unaffected by sample outliers. The general

form of this estimator is

Tn:Zyi +ﬂzxi+zl/l(yi —B%) - (10)

ies ier ies
Chambers’s (1986) proposal suggests that T, can be made more outlier robust by
curtailing the influence of sample outliers based on the third term in the right hand side of
(10). The robustness of (10) depends on the choice of g and i .
Closely related to the work of Chambers (1986) is the work of Chambers and Dusntan
(1986), hereafter denoted in formulae with subscript CD. These authors proposed an
estimator of the distribution function, which under a general model and without any

reference to the small area problem is of the following form

F“CD(t)zN-l{Zl(yisnwlzzl[x:/?+<yi—9i)3t}}, (11)

ies ies ker
where 3 are the estimated model parameters and v =x /3’ The Chambers-Dunstan

estimator of the distribution function is a bias adjusted version of (6). The adjustment is



by the residual y, —y,. Welsh and Ronchetti (1998) considered the problem of estimating
the population distribution function in the presence of outliers. To achieve this, they
combine estimators of the form of (10) with the Chambers-Dunstan estimator of the
distribution function.

Following these authors we propose a biased adjusted M-quantile estimator of the small
area mean in the presence of outliers by combining the M-quantile small area model with
the Chambers-Dunstan estimator. In this case an estimator of the population distribution
function of small area j is

Feo,; (1) = le{zuyi <O +n, SN A, 0)+(y —Vi)gt}},

i€s; ies; ker;
where §, = x/ ﬁw (é ;). The proposed biased adjusted estimator of the small area mean is

then

e = J-tdlfCDyj(t)=Nj‘l[Zyi+inT,éw(éj)+

4 4 n
IGSJ- IEI’j

N. —n.
I z[yi—m} (12

The derivation of (12) is given in the appendix. Estimator (4) adapts only the first step of
the Chambers (1986) proposal i.e. the use of a robust £ such as the one estimated under
an M-quantile model. However, this step does not protect us against the bias introduced

when estimating the mean in the presence of outliers. In contrast, the proposed biased

adjusted M-quantile estimator (12) is of the Chambers (1986) form where  is the
identity function. Using different definitions for the y function, alternative bias-adjusted

small area estimators of the small area mean are possible. Such estimators are considered
in the empirical evaluations in section 5. An alternative, heuristic, approach to reducing

the bias in the M-quantile estimate of the small area mean is to use expectile regression



(Newey and Powell 1987). To achieve this one can increase the tuning constant of the

influence function w, c¢—oo. Expectile versions of (4) are also included in the

empirical evaluations.

Although our main aim is to develop a bias adjusted M-quantile estimator of the small
area mean, two further extensions are possible. Firstly, a modified version of the EBLUP
estimator (2) is proposed by combining the mixed effects model (1) with the Chambers-

Dunstan estimator

2i=91  (13)

IES]

i = [ tdfp (1) = Nfl[zyi DRV

N;—n,
iesj ierj nJ
where y, = xfﬁ+ ziT;?j . It is well known that when the assumptions of the mixed model

hold, (2) is the Empirical Best Linear Unbiased Predictor. It is of interest, however, to
examine the usefulness of (13) when the model assumptions are wrongly specified.
Secondly, the approach that we followed for defining the M-quantile bias adjusted

estimator leads naturally to resolving the problem of estimating other

quantiles, g, e(O,l), of the population distribution function in a small area. This can be

achieved using either an M-quantile or a mixed effects model and the Chambers-Dunstan
estimator or estimator (6). In the former case a numerical solution to the following is

required
[dFes (0 =q;. (14)

4. MSE Estimation

For fixed g, the estimator of the M-quantile regression coefficient S, (q) is

ﬁA'W(q):(X:WS(q)XS)’lxsTWS(q)yS, where X, denotes the nxp matrix of sample

10



covariate values and vy, is the n-vector of sample y-values. The diagonal matrix W,(q)
contains the final set of weights produced by the iteratively reweighted least squares

sadj

algorithm used to compute ﬁw (q) . It immediately follows that m*¥ = N;'w]y, , where w;

is the vector of area j weights

Nj A T n -1 Nj _ni
Wj :Tlsj +Ws(9j)xs(xsws(01)xs) tfj - n tSJ ) (15)

i i
Here 1, is the n-vector with i component equal to one whenever the corresponding
sample unit is in area j and is zero otherwise, t; is the sum of the non-sample covariate
values in area j and t; is the sum of the sample covariate values in area j.

We use the fact that the M-quantile estimator of ,(q) is linear in the sample values of
y to develop an estimator of the mean squared error of the naive M-quantile estimator.
Note that our approach assumes éj is constant, which leads to a first order approximation
to the actual mean squared error. Mean squared error estimation of nﬁj.’dj can be carried

out using standard methods for robust estimation of the mean squared error of unbiased
weighted linear estimators (Royall and Cumberland, 1978). That is, the prediction
variance can be approximated by

ies; iel’j

2 adj adjy -2
var(m® —-m;®) =~ N; {

uifvar(yi)+2var(yi)],

- Nw, =D w, -
with u; =(u;) =——=-—— (see also Chandra and Chambers 2005). We interpret

2w,

var(y,) conditionally (i.e. specific to the area j from which y, is drawn) and hence

11



replace var(y,) in the first (sample) term on the right hand side above by

(y;—x B,(6,))* and the second term by

(N, —n)(n, - > gy, - xB, (6) .

IESJ-

Our estimator of the prediction variance in area j is therefore

V=2 > 40 -X B,0)), (16)

i ies;
where 4; = N7 (uZ + 1(i € j)(N; —n;)/(n;—1)).  Next suppose E(y; | x.i €j)=x5,.

Then

E(Nj—lz“wijyi —ijz Nj—l(ZZwijxiTﬂj —ZXiT,Bj],

ies j ies; i€j

where the summation over k on the right hand side above is over the set of areas
represented in the sample. An estimate of the bias is

i les; ie]j

B, = NJ-{ZZWH x?ﬂ(e,-)—Zx?ﬂ(ej)]. (17)
Our final estimator of the mean squared error of is therefore
’ 7 52
M, =V, +B:. (18)
The proposed mean squared error estimator is similar to the mean squared estimator of
the naive M-quantile estimator proposed by Chambers and Tzavidis (2006). The

difference is that for estimating the mean squared error of the naive M-quantile estimator,

instead of using the weights given by (15), we there use the weights

Wj ::I'sj +Ws (éj)xs(x;rws (éj)xs)iltrj ' (19)
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5. Simulation Studies

In this section we present results from two simulation studies that were used to compare
the performance of the different small area estimators presented in section 3. The first is a
model-based simulation in which small area population and sample data were simulated
based on a two level hierarchical linear model with different parametric assumptions for
the level one and level two variance components. The second is a design based
simulation in which a fixed population containing a number of small areas was repeatedly
sampled, holding the sample size in each small area fixed.

5.1 Model —-based Simulations

In each simulation we generated N = 232,500 population values of x and y in H = 30

small areas with N, =500h in area h. For each area h we took a simple random sample

(without replacement) of size n, = 30, leading to an overall sample size of n = 900. The

sample values of y and the population values of x were then used to estimate the small
area target parameters -small area means and other quantiles of the small area distribution
function- of y and the resulting estimation errors. This process was repeated 1000 times.

Two scenarios for generating the data were used

Scenario 1: X, ~ N(g,, 4 136), v, ~ N(0,2), g, ~N(0,64), with z, ~U[40,120] held
fixed over simulations.

Scenario 2: x, ~ x°(d,), &, ~ x*@3), 7, ~ x°@Q), with the & 's and y,'s centred
around their means, and d, ~U[1,200], held fixed over simulations. This second scenario

is used to examine the effect of mis-specifying the Gaussian assumptions of a random

effects model.

13



Population y; values were then generated using Y, =5+ X, +y, +¢&,. Two different

methods of small area estimation were applied to the sample data obtained in the
simulations, based on fitting linear models under (a) a random intercepts specification
and (b) an M-quantile specification. The random intercepts model in (a) is based on
fitting a linear mixed model to the sample data using the default settings of the Ime
function (Venables & Ripley, 2002, section 10.3) in R. The M-quantile regression fit
underpinning (b) was obtained using a modified version of the rlm function (Venables &
Ripley, 2002, section 8.3) in R.

For estimating small area means and other quantiles of the small area distribution
function we employed either estimator (6) or the Chambers-Dunstan estimator (11). In
general, we refer to estimators derived under (6) as the M-quantile naive and the random
intercepts naive estimators and estimators derived under (11) as the M-quantile and the
random intercepts bias adjusted estimators.

Biases and mean squared errors over these simulations, averaged over the 30 areas, are
set out in Table 1 (under normality assumptions) and in Table 2 (under chi-square
assumptions). When the model assumptions hold all approaches perform reasonably well.
The Chambers-Dunstan adjustment offers bias correction mainly when estimating
quantiles other than the median but the differences are not very pronounced. The
differences between the naive and the Chambers-Dunstan estimators are more
pronounced when data are generated under chi-square assumptions. The use of the naive
estimator leads to biased estimates of the quantiles of the small area distribution function.
In contrast, the Chambers-Dunstan estimator bias corrects the unadjusted estimators. This

is true both for the M-quantile and the random intercepts model. In general, when the

14



model assumptions are not met the bias adjusted versions of the M-quantile and the
random effects estimators perform well both in bias and mean squared error terms.

In Table 3 we report coverage rates of confidence intervals for the regional mean
estimates based on the M-quantile naive and the M-quantile bias adjusted estimators and
the mean squared error estimator (18) with weights given by (19) or the mean squared
error estimator (18) with weights given by (15) respectively. We conclude that the mean
squared estimator of the bias adjusted M-quantile estimator of the mean exhibits good
coverage properties.

5.2 Design-Based Simulations

The data on which these simulations were based were obtained from a sample of 1652
broadacre farms spread across 29 regions (Region) of Australia. This is the same dataset
as the one employed by Chambers and Tzavidis (2006). We decided to use the same
dataset in order to examine any potential gains from using the proposed biased adjusted
small area estimators. The y-variable of interest is the Total Cash Costs (TCC) of the
farm business in the reference year. Auxiliary information available for each farm
included the farm’s sample weight, the total area of the farm in hectares (FarmArea) and
the climatic zone in which the farm is situated. This information was used to classify the
farms into six SizeZone strata (1 = pastoral zone and a farm area of 50000 hectares or
less; 2 = pastoral zone and a farm area of more than 50000 hectares; 3 = wheat-sheep
zone and a farm area of 1500 hectares or less; 4 = wheat-sheep zone and a farm area of
more than 1500 hectares; 5 = high rainfall zone and a farm area of 750 hectares or less; 6
= high rainfall zone and a farm area of more than 750 hectares). Individual (farm) level

values for FarmArea, SizeZone and Region were assumed known at the population level.

15



The aim of this simulation study was to compare estimation of regional means of TCC
under repeated sampling using both mixed effects models and M-quantile models. The
study itself was implemented in two steps as follows: (1) A population of N = 81982
farms was created by sampling N times with replacement from the above sample of 1652
farms and with probability proportional to a farm’s sample weight. Scatterplots of the
distribution of y and x in this population show that it is highly heteroskedastic, with many
outlying values. (2) Five hundred independently stratified random samples of the same
size as the original sample were selected from this simulated population. Stratum (i.e.
region) sample sizes were fixed to be the same as in the original sample. The same
specification was used by all estimation methods, defined by the main effects and
interactions for the Farmarea and SizeZone variables.

Small area mean estimates were obtained using a range of naive and bias-adjusted
estimators based both on the M-quantile and the random intercepts approaches. More
specifically, under the M-quantile approach we can change the tuning constant of the
influence function. For example when ¢ — oo we obtain expectile versions of the small
area estimators. In addition, under the Chambers-Dunstan estimator of the distribution
function one can use either an estimate of the raw residuals or an estimate of the
huberized residuals for reducing the effect of large residuals. We consider both expectile
versions -referred to as expectile estimators- of the M-quantile small area estimators as
well as small area estimators that are derived using the Chambers-Dunstan estimator and
either raw or huberized residuals -referred to as huberized estimators-.

The results set out in Table 4 focus on estimation of regional means under different M-

quantile small area estimators. These show that the naive M-quantile estimator of the
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small area mean is severely biased (see also Chambers and Tzavidis 2006). The bias
reduces significantly once we consider a set of alternative M-quantile estimators that are
based on the use of the Chambers-Dunstan estimator of the distribution function. The
adjusted M-quantile estimators exhibit good performance also in terms of relative root
mean squared error. An interesting picture emerges for estimators based on mixed effects
models (Table 5). Firstly, we expect that the naive random intercepts estimator is not
optimal any more because the model assumptions are violated due to the presence of
outliers in the data. The use of adjusted random intercepts estimators offer a clear
improvement.

Finally, in Table 6 we report coverage rates of confidence intervals for regional mean
estimates based on the M-quantile bias adjusted estimator and the mean squared error
estimator (18) with weights given by (15). We see that in general we derive good
coverage rates, which can be attributed to the fact that we bias correct the naive M-
quantile estimator. Significant under-coverage still exists for 3 areas where we know that

large outliers exist.
6. Summary

In the present paper we propose a bias adjustment to the naive M-quantile estimator of
the small area mean that is based on the Chambers-Dunstan estimator of the population
distribution function. The bias-adjusted M-quantile estimator is more efficient than the
naive M-quantile estimator particularly in the presence of outliers. We further illustrate
that the use of a Chambers-Dunstan adjustment may improve the estimation of small area
means obtained from a random intercepts model when the assumptions of such models

are violated. The problem of estimating other quantiles of the small area distribution
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function is considered and results indicate that this can be achieved by employing the
Chambers-Dunstan estimator of the distribution function either with M-quantile or with
mixed effects models.
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APPENDIX

Derivation of the small area estimator of the mean under the Chambers-Dunstan
estimator of the distribution function

Let F (t) denote an estimator of the sample empirical distribution.

F(t) = n‘l[z (y, St)j

ies

An estimator of the mean is then given by

jtdF(t) n'>y, since

ies

wtdl y, <t)=vy, (A1)
[ tdi(

We now employ the Chambers-Dunstan estimator of the small area distribution function

Foo (=N, 1{Zl(y,<t)+n ZZI[Xkﬂ(6)+ Y.)<t]l

ies i€s; ker

An estimator of the small area mean under the Chambers-Dunstan estimator is then given
by

M —jtdFCDj(t) N, jtd{Zl(yI<t)+n Zzl[xkﬁ(e)+( §)< t]}

ies ies; ker

which can be expressed as

.—N-ljtd2|(y,<t)+n Y[, 0 <t]+n Y Y[y -9 <t]

ies; ies; kel’ Ies ker

Applying (Al) to the previous expression we obtain the adjusted estimator of the small
area mean (12)

M = (Zy.+2><ﬂ(6)+ ' ‘Z[y. %]

les ler J IES
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MODEL -BASED SIMULATIONS

Table 1. Model-based simulation results of estimating a range of parameters of the small
area distribution function when data are generated under Gaussian assumptions,

averaged over 30 small areas.

Method ql0 g25 g50 Mean g75 g 90
Relative Bias (%)
Random Intercepts Naive 0.088 0.041 -0.002 -0.002 -0.036 -0.062
Random Intercepts CD 0.083 0.046 0.051 -0.002 0.072 0.160
M-quantile Naive 0.090 0.044 0.003 0.003 -0.030 -0.055
M-quantile CD 0.058 0.003 -0.003 -0.002 0.008 0.064
RRMSE (%)
Random Intercepts Naive 0.36 0.29 0.25 0.23 0.24 0.24
Random Intercepts CD 0.42 0.31 0.27 0.24 0.26 0.31
M-quantile Naive 0.57 0.48 0.42 0.41 0.39 0.38
M-quantile CD 0.43 0.32 0.27 0.24 0.26 0.30

Table 2. Model-based simulation results of estimating a range of parameters of the small
area distribution function when data are generated under chi-square assumptions,

averaged over 30 small areas.

Method q10 25 g50 Mean q75 q 90
Relative Bias (%)
Random.Intercepts Naive 22.48 9.731 0.420 0.024 -4.708 -6.969
Random .Intercepts CD 0.374 0.205 0.079 -0.018 -0.073 -0.186
M-quantile Naive 17.24 5.653 -2.641 -1.794 -7.021 -8.787
M-quantile CD 0.373 0.176 0.027 -0.018 -0.085 -0.188
RRMSE (%)
Random.Intercepts Naive 23.11 10.81 3.62 1.97 5.60 7.44
Random.Intercepts CD 4.09 3.87 3.78 2.01 4.19 4.84
M-quantile Naive 17.69 7.31 4.49 2.49 7.68 9.18
M-quantile CD 4.09 3.88 3.93 2.01 4.36 4.82
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Table 3. Simulated data under normality assumptions, coverage rates of ‘two-sigma’
confidence intervals. Intervals are defined by the M-quantile naive and M-quantile bias-
adjusted estimates plus or minus twice their corresponding standard errors using (18)
with weights given by (19) or (18) with weights given by (15) respectively

Area Coverage Rates for naive M-quantile Coverage Rates for bias adjusted M-
estimator guantile estimator

1 100 100
2 93 99
3 90 98
4 95 100
5 91 99
6 91 100
7 89 100
8 88 96
9 80 96
10 84 94
11 85 94
12 83 96
13 86 97
14 87 93
15 79 96
16 82 93
17 84 97
18 81 91
19 78 97
20 80 97
21 83 97
22 87 91
23 81 93
24 88 93
25 81 94
26 85 97
27 87 89
28 77 95
29 82 96
30 84 94

Mean 85.37 95.73
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DESIGN-BASED SIMULATIONS

Table 4. Australian farms study, relative bias and relative root mean squared error
estimates of regional means of Total Cash Costs under a range of M-quantile (Mq) small
area estimators in design-based simulation study. Row entries correspond to a region

with the last row reporting the column mean.

Mq Mg CD Mq Mq Mqg CD Mq
N'Z!r(\q/e Expeptile Huberized  Expectile 'c\:/lg N';/tli?/e Expeptile Huberized Expectile 'c\:/lg
Naive c=5 CD Naive c=5 CD
Relative Bias Relative Root Mean Squared Error
-14.20 -10.95 -1.29 -0.21 -0.43 | 15.88 13.72 11.49 12.31 11.96
-31.29 -25.13 -17.36 -0.18 -0.16 | 31.50 25.42 18.71 31.26 31.32
-15.17 -9.09 -6.84 -0.38 -0.33 | 15.58 9.83 9.02 9.73 9.83
-23.76 -18.5 -6.22 -0.66 -0.50 | 24.07 19.05 8.81 9.03 9.46
-16.18 -9.11 -6.31 -0.18 -0.15 | 16.81 10.31 9.27 9.14 9.28
10.87 18.93 -1.71 0.54 0.46 | 14.21 21.58 15.94 18.15 17.30
-12.27 -5.31 -4.35 0.26 0.23 | 13.19 7.60 7.92 10.08 10.34
-14.89 -8.70 -2.66 0.01 0.00 | 15.56 10.51 8.28 9.21 9.21
-26.39 -20.14 -23.53 -1.42 -1.46 | 26.74 21.35 24.62 104.31 104.02
-19.05 -13.48 -5.84 0.05 -0.02 | 19.41 14.04 8.94 9.23 9.58
-22.20 -12.16 -7.28 -2.99 -2.53 | 31.89 25.64 38.82 37.84 38.64
-10.71 2.95 -6.96 3.21 0.38 | 13.05 16.10 12.35 23.71 16.68
-22.90 -21.38 -4.45 -0.17 0.04 | 23.92 24.09 14.48 17.04 14.92
-16.61 -15.85 -0.25 0.11 0.14 | 17.67 16.86 7.59 7.77 7.46
-14.56 -7.18 -6.29 -0.93 0.02 | 15.44 9.33 10.97 16.08 18.78
-15.87 -3.06 -3.61 0.73 -0.10 | 17.18 12.12 8.91 9.93 9.00
-4.43 12.34 -2.62 0.27 0.24 | 12.65 18.27 13.98 14.32 14.20
-21.31 0.72 -15.68 10.80 -3.76 | 37.38 40.10 34.14 41.95 34.44
-12.90 -0.20 -3.10 1.09 0.45 | 14.81 10.03 9.45 13.77 11.32
2.84 12.30 0.53 0.46 0.53 | 7.02 13.74 7.01 7.36 7.01
-8.20 -1.59 -1.34 0.34 0.17 | 9.11 4.75 6.54 7.65 7.05
-21.29 -14.96 -8.98 -0.41 -0.45 | 21.78 15.74 11.97 8.85 9.08
-14.12 -0.13 1.18 1.67 1.76 | 24.32 24.36 25.96 32.22 25.48
6.81 15.91 0.22 -0.22 0.25 | 15.51 20.98 11.43 12.85 11.41
-29.46 -24.31 -11.01 -1.71 -0.31 | 29.62 24.54 12.52 11.79 15.86
-10.06 -3.77 3.85 3.12 2.05 | 13.74 11.43 11.80 15.42 12.54
-30.97 -25.09 -10.39 -0.57 -0.59 | 31.23 25.43 13.34 10.67 11.12
-31.51 -24.87 -8.60 -1.06 -0.43 | 31.90 25.39 13.22 15.23 17.06
-29.13 -14.65 -13.98 -1.23 -1.37 | 30.88 23.47 19.15 23.13 24.32
-16.17 -7.81 -6.03 0.36 -0.20 | 20.41 17.78 14.02 18.97 18.23
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Table 5. Australian farms study, relative bias and relative root mean squared error
estimates of regional means of Total Cash Costs under a range of random effects small
area estimators in design-based simulation study. Row entries correspond to a region
with the last row reporting the column mean.

Random Random Random Random Random Random Intercepts CD
Intercepts Naive Intercepts Intercepts CD Intercepts Intercepts CD Huberized c=5
CD Huberized c=5 Naive
Relative Bias Relative Root Mean Squared Error
-4.59 -0.21 -0.86 10.37 12.24 12.17
-7.78 -0.16 -13.98 17.05 31.25 16.37
2.44 -0.41 -5.27 11.65 9.60 8.46
-2.72 -0.65 -3.90 8.98 9.08 8.05
-0.07 -0.21 -4.02 7.68 9.09 8.58
25.62 0.30 -0.70 34.91 22.12 21.53
7.08 0.34 -2.79 15.51 9.96 7.43
4.83 0.04 -1.31 16.24 9.25 8.51
-10.49 -1.42 -19.08 29.85 104.64 21.15
-1.60 0.15 -3.51 7.46 9.00 7.88
12.12 -1.58 -1.64 22.13 33.79 33.71
1.94 2.75 3.03 17.84 22.77 20.14
-7.10 -0.25 -1.64 14.43 16.26 16.17
-10.51 0.20 0.00 14.21 7.79 7.89
2.10 -1.07 -3.57 18.07 15.39 10.87
4.55 0.91 0.65 12.20 11.03 11.87
12.35 -0.01 -0.44 20.55 15.21 15.06
50.54 42.85 39.03 98.51 91.09 92.68
9.15 1.17 5.37 17.43 16.76 15.60
15.36 0.36 0.75 21.21 8.25 8.00
6.26 0.44 0.73 17.54 8.22 7.42
-2.55 -0.34 -4.01 7.72 8.73 9.45
3.57 0.08 0.13 19.63 33.05 32.99
30.66 -0.52 -0.50 36.66 13.89 13.90
-6.33 -1.48 -5.58 11.13 12.16 9.62
1.08 3.16 6.35 11.45 15.06 14.05
-6.21 -0.44 -3.79 11.27 10.43 10.53
-7.87 -0.99 -5.72 15.24 15.17 12.28
-4.77 -1.53 -6.84 21.52 22.93 19.81
4.04 1.43 -1.14 19.60 20.84 16.62
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Table 6. Australian farms study, coverage rates of ‘two-sigma’ confidence intervals for
regional population means of Total Cash Costs. Intervals are defined by the M-quantile
bias-adjusted estimates plus or minus twice their corresponding standard errors using
(18) with weights given by (15)

Region Coverage Rates
1 0.955
2 0.705
3 0.900
4 0.895
5 0.923
6 0.968
7 0.953
8 0.958
9 0.308

10 0.913
11 0.980
12 0.888
13 0.948
14 0.985
15 0.875
16 0.953
17 0.930
18 0.923
19 0.985
20 0.973
21 0.965
22 0.933
23 0.983
24 1.000
25 0.878
26 0.935
27 0.948
28 0.933
29 0.770
Mean 0.906
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