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Abstract 

 

Analysis of survey data does not happen in a vacuum. We typically know more about the target 

population than just the data observed in the survey. In some cases this extra information can be 

incorporated via calibration of survey weights. However, model fitting using weights often leads 

to increased standard errors. Also, weights are usually calibrated to a relatively small set of 

variables, while population data may be known for many more variables. Here we use the general 

approach to maximum likelihood estimation for complex surveys described in Breckling et. al. 

(1994) to develop methods for efficiently incorporating external population information into 

model fitting using survey data. In particular, we focus on two simple, but very popular, models 

fitted to survey data. These are the linear regression model and the logistic regression model. 
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1. Introduction 

 Analysis of survey data does not happen in a vacuum. A model for the number of children 

ever born to a woman from a particular target population could depend on a number of factors, 

e.g. her age, her education level, her labour force status, her household income, her ethnic 

background and her access to family planning information, perhaps measured by presence or 

absence of a family planning clinic within a specified distance of her home. All of these variables 

are measured for women taking part in the survey, and the classical approach is to consider them 

‘in isolation’ in the modelling process, implicitly assuming that the model fitted to these sample 

data is also appropriate for the population from which the sample is drawn. Sometimes, if this is 

felt to be too big an assumption, and survey weights are available, these are included in the model 

fitting process, assuming that they correct the parameter estimation process for potential sample 

selection bias. 

 However, we typically know a lot more about the target population than just the data 

observed in the survey. In particular we may know the total number of women in the population, 

their average number of children, their average age, their labour force participation rate and their 

ethnic distribution in the population. By ‘know’ here we mean either the actual population value 

or at least an accurate estimate. The question here is how to integrate this auxiliary population 

information into the model fitting process described above. 

 In some cases, this information is incorporated in the survey weights, through the process 

of calibration (Deville and Särndal, 1992). That is, these weights are constructed so that weighted 

averages for selected variables measured in the survey equal corresponding known (or highly 

accurate estimates of) population values. One approach to using this auxiliary information would 

therefore be to use such calibrated weights in estimation. However, this has two major problems. 

First, such weights typically lead to increased standard errors compared to unweighted analysis. 
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Second, weights are usually calibrated to a fixed and relatively small set of variables (e.g. age by 

sex population distributions, regional population distributions), while population data are often 

known for many more variables. 

 Alternative, more model-based, ways of incorporating auxiliary population information 

when modelling survey data have been explored in the econometrics literature, mainly in the 

context of analysis of linked data sets. An early example is Imbens and Lancaster (1994), who 

suggest a generalised method of moments approach to the problem of incorporating knowledge 

of the population expected value of the response variable Y into a sample-based linear regression 

of Y on an explanatory variable X. More recently, Qin (2000) has considered the same problem 

using a combination of empirical and parametric likelihood. 

 This paper focuses on developing methods for efficiently using auxiliary population 

information when survey data are used to fit a statistical model for a target population. In 

particular, we look at how maximum likelihood methods can be modified to incorporate this 

information. The approach we take is based on the general approach to maximum likelihood 

estimation for complex surveys described in Breckling et. al. (1994), hereafter referred to as 

BCDTW. In particular, we focus on two simple, but very popular, models fitted to survey data. 

These are the linear regression model and the linear logistic regression model. 

 

2. MLE for a linear model given auxiliary population information 

 Consider the following situation. A sample survey measures the values yi  and xi  of two 

scalar variables, Y and X respectively, for a sample s of n units from a population U of N units. 

The variable X is a population covariate, i.e. we know the values of X for every unit in the 

population and the sampling method is non-informative given these values. Our aim is to use the 
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sample survey data to fit a simple normal linear model to the population values of Y and X. That 

is, we want to use the survey data to estimate the parameters α , β  and σ 2  that characterise the 

population model 

 σ i
−1(yi − α − βxi ) ~ iid N(0,1) .       (1) 

Given this set-up, the maximum likelihood estimates (MLEs) for α , β  and σ 2  are 

 β̂smle = xi (xi − xs )
s∑( )−1

xi (yi − ys )
s∑  

 α̂ smle = ys − β̂smlexs  

 σ̂ smle
2 = n−1 (yi − α̂ols − β̂olsxi )

2
s∑ . 

We use a subscript of smle above to indicate that these MLEs are just based on the sample values 

of Y and X. However, suppose we also know the population mean yU  of Y. This can happen, for 

example, if the variable Y is also measured in a census, and census tabulations are published. In 

this case the OLS estimators above are no longer the MLEs forα , β  and σ 2 . In order to obtain 

the ‘full information’ MLEs that include this additional information, we first observe that the 

population level score function for θ = (α ,β,σ 2 )  is defined by the components 

 sc1(θ) = σ −2 (yi − α − βxi )U∑        (2a) 

 sc2 (θ) = σ −2 xi (yi − α − βxi )U∑        (2b) 

 sc3(θ) = −N / 2σ 2 + (yi − α − βxi )
2

U∑ / 2σ 4 .     (2c) 

In what follows we let Es  and Vars  denote the expectation and variance operators respectively 

that condition on the ‘available data’ for use in analysis. In this case these data correspond to the 

sample values of Y and X, the non-sample values of X and the population mean of Y. We refer to 

the score function for α , β  and σ 2   given these data as the full information score function for 
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these parameters. BCDTW show that this full information score function is the conditional 

expectation of the corresponding population level score function given these data. Denoting the 

components of this full information score function by an additional subscript of s, we have 

 sc1s (θ) = σ −2 (Es (yi ) − α − βxi )U∑        (3a) 

 sc2s (θ) = σ −2 xi (Es (yi ) − α − βxi )U∑       (3b) 

 sc3s (θ) = −N / 2σ 2 + (Es (yi ) − α − βxi )
2

U∑ + Vars (yi )U∑⎡⎣ ⎤⎦ / 2σ 4 .  (3c) 

Since Es (yi ) = yi  and Vars (yi ) = 0  for sampled population units, all we need to do is to determine 

these conditional moments for population units not in sample. To do this, we note that for non-

sample unit i, 

 
yi

yr

xU
⎛
⎝⎜

⎞
⎠⎟

~ N
α + βxi

α + βxr

⎛
⎝⎜

⎞
⎠⎟

,
σ 2 (N − n)−1σ 2

(N − n)−1σ 2 (N − n)−1σ 2

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

. 

Here xU denotes the population values of X, yr  denotes the non-sample population average of Y 

and xr  denotes the corresponding non-sample average of X. Hence 

 yi xU , yr ~ N yr + β(xi − xr ),σ 2 1 − (N − n)−1( )⎡⎣ ⎤⎦ .     (4) 

Combining (3) and (4) leads to 

 sc1s (θ) = σ −2 (yi − α − βxi )s∑ + (N − n)(yr − α − βxr )⎡⎣ ⎤⎦     (5a) 

 sc2s (θ) = σ −2 xi (yi − α − βxi )s∑ + (N − n)xr (yr − α − βxr )⎡⎣ ⎤⎦    (5b) 

 sc3s (θ) = −(n + 1) / 2σ 2 + (yi − α − βxi )
2

s∑ + (N − n)(yr − α − βxr )2⎡⎣ ⎤⎦ / 2σ 4 . (5c) 

Setting these score components to zero and solving for α , β  and σ 2  gives the full information 

MLEs in this case. They are 
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 β̂ fimle =
xi (yi − ys )

s∑ + nxs (ys − yU ) + (N − n)xr (yr − yU )
xi (xi − xs ) + nxs (xs − xU ) + (N − n)xr (xr − xU )

s∑
    (6a) 

 α̂ fimle = yU − β̂ fimlexU          (6b) 

 σ̂ fimle
2 = (n + 1)−1 (yi − α̂ fimle − β̂ fimlexi )

2
s∑ + (N − n)(yr − α̂ fimle − β̂ fimlexr )2 .  (6c) 

These estimators are identical to the estimators defined by a weighted least squares (WLS) fit to 

an extended sample consisting of the data values in s (each with weight equal to one) plus an 

additional data value (with weight equal to N – n) defined by the non-sample means yr  and xr . 

 Intuitively, one expects the extra information from knowing yU  to contribute mainly to 

estimation of α  in (1). To see that this is the case we now write down the variances of (6a) and 

(6b). This can be done by differentiating the score functions (5), changing signs and evaluating at 

the MLEs (6) to get the observed information matrix for these parameters. This matrix can then 

be inverted to get the (asymptotic) variances and covariances of these MLEs. Alternatively, 

exploiting their equivalence to a WLS fit, we can obtain the variances of the regression 

coefficients (6a) and (6b) directly. These are 

 Var(α̂ fimle ) = n−1σ 2 xs
(2) − (1 − nN −1)(xs

(2) − xr
2 )

xs
(2) − xr

2 + Nn−1(xr
2 − xU

2 )
⎛
⎝⎜

⎞
⎠⎟

 

 Var(β̂ fimle ) =
n−1σ 2

xs
(2) − xr

2 + Nn−1(xr
2 − xU

2 )
. 

Here xs
(2)  is the mean of the squares of the sample X-values. In an X-balanced sample ( xs  = xr  = 

xU ) it is easy to see that Var(β̂ fimle )  = Var(β̂smle )  while Var(α̂ fimle ) = Var(α̂ smle ) − n−1(1 − nN −1)σ 2 , 

confirming our intuition above. 

 As noted earlier, the full information MLE approach used to derive (6) is not necessarily 

the only way one might attempt to use the fact that we know yU . From a survey estimation point 
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of view, the situation set out above is one where we have three calibration identities. We know 

the population size N, population total of X and the population total of Y. We could therefore 

calibrate the survey weights to recover these population totals. That is, if wi  denotes the initial 

survey weight for sample unit i (e.g. the inverse of its sample inclusion probability), we replace 

this weight by wi
* , where wi

*
s∑ = N , wi

*xis∑ = N xU  and wi
*yis∑ = N yU . There are standard 

methods for doing this (e.g. Deville and Särndal, 1992; Chambers, 1996). For simple random 

sampling, a least squares calibration criterion leads to weights w* = (wi
*) , where 

 w* =
N
n

1n + N[1n ys xs ]
′1n1n ′1n ys ′1n xs

′ys1n ′ysys ′ysxs

′xs1n ′xsys ′xsxs

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−1 0
yU − ys

xU − xs

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

. 

Here 1n  denotes an n-vector of ones, and ys , xs are vectors containing the sample values of Y 

and X respectively. The calibrated weights are then used to estimate α , β  and σ 2  by weighted 

least squares. That is, we estimate these parameters via 

 β̂calw = wi
*xi (xi − xws )

s∑( )−1
wi

*xi (yi − yws )
s∑      (7a) 

 α̂calw = yws − β̂calwxws          (7b) 

 σ̂ calw
2 = N −1 wi

*(yi − α̂calw − β̂calwxi )
2

s∑ .      (7c) 

Here yws = wi
*yis∑ / wi

*
s∑ = yU  and xws = wi

*xis∑ / wi
*

s∑ = xU . 

 Although use of calibrated weights may seem natural from a survey statistician’s point of 

view, such an approach is not the most obvious if one considers the problem from a standard 

statistical modelling perspective. Here it makes sense to incorporate our population information 

(the values of yU  and xU ) via constraints on the estimates of the parameters of interest. Under (1) 

E(Y ) = α + βE(X) , so an obvious constraint is yU = α̂ + β̂ xU . This is the general approach 



 8

described in Handcock, Rendall and Cheadle (2005), where the likelihood generated by the 

sample values of Y and X is maximised subject to this constraint. In the context of (1) this is the 

same as estimating α  and β  by minimising the sum of squared errors subject to this constraint. 

It is not difficult to see that this leads to the estimators 

 β̂con = (xi − xr )2
s∑ + n(xs − xU )2⎡⎣ ⎤⎦

−1
(xi − xs )(yi − ys )

s∑ + n(xs − xU )(ys − yU )⎡⎣ ⎤⎦  (8a) 

 α̂ con = yU − β̂conxU          (8b) 

 σ̂ con
2 = n−1 (yi − α̂ con − β̂conxi )

2
s∑ .       (8c) 

A slight generalisation of this approach (Li-Chun Zhang, private communication) is to maximise 

the sample-data likelihood subject to the predictive mean E yU | ys , xs , xr( ) of yU  equalling its 

known value. This is equivalent to requiring that our estimates of α  and β  satisfy α̂ = yr − β̂xr . 

Maximising the sample-data likelihood subject to this constraint leads to estimators of the form 

 β̂ pred = (xi − xs )2
s∑ + n(xs − xr )2⎡⎣ ⎤⎦

−1
(xi − xs )(yi − ys )

s∑ + n(xs − xr )(ys − yr )⎡⎣ ⎤⎦  (9a) 

 α̂ pred = yr − β̂pred xr          (9b) 

 σ̂ pred
2 = n−1 (yi − α̂ pred − β̂ pred xi )

2
s∑ .       (9c) 

In a balanced sample ( xs = xr = xU ), β̂ fimle , β̂con  and β̂ pred  all reduce to the sample-based MLE 

β̂smle  and α̂ fimle = α̂con . In general, the differences between the constraint-based estimators (8) and 

(9) and the full information MLEs defined by (6) will be small. 

 In most applications it is unlikely that individual population data on the explanatory 

variable X in (1) will be available. It is far more likely that only sample data for Y and X will be 

available, along with the corresponding population means of these variables. Following the 
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BCDTW approach in this case then requires us to condition on this more limited information set, 

rather than on the information set assumed in the previous section. However, from (5) we see that 

the full information score functions in the complete X data case actually only depend on the non-

sample X-values through their average xr . This average is known given xU  and xs . Using Result 

2 of Chambers, Dorfman and Wang (1998) we conclude that the full information MLEs for this 

case (only xU  known) are also given by (6). 

 Suppose now that xU  is also unknown (so xr  is unknown). That is, the only population 

level data we have is the value of yU . The formal BCDTW framework for calculating the MLEs 

of the parameters of (1) still applies in this ‘limited information’ case, however, and the 

component score functions (5) become 

 sc1s (θ) = σ −2 (yi − α − βxi )s∑ + (N − n)(yr − α − βEs (xr ))⎡⎣ ⎤⎦    (10a) 

 sc2s (θ) = σ −2
xi (yi − α − βxi )s∑ +

(N − n) Es (xr )(yr − α − βEs (xr )) − βVars (xr ){ }
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

   (10b) 

 sc3s (θ) = −
n + 1
2σ 2 +

1
2σ 4

(yi − α − βxi )
2

s∑ +

(N − n) (yr − α − βEs (xr ))2 + β 2Vars (xr ){ }
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  (10c) 

where Es (xr )  and Vars (xr )  denote the expected value and variance of xr  conditional on the 

available data, i.e. the sample values of Y and X and the value yr . The solutions to the estimating 

equations defined by (10) are then 

β̂limmle =
xi (yi − ys )

s∑ + nxs (ys − yU ) + (N − n)Es (xr )(yr − yU )
xi (xi − xs ) + nxs (xs − Es (xU )) + (N − n) Es (xr )(Es (xr ) − Es (xU )) + Vars (xr ){ }s∑

 (11a) 

α̂ limmle = yU − β̂limmleEs (xU )          (11b) 
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σ̂ limmle
2 =

(yi − α̂ limmle − β̂limmlexi )
2

s∑ + (N − n) (yr − α̂ limmle − β̂limmleEs (xr ))2 + β̂limmle
2 Vars (xr ){ }

n + 1
 (11c) 

where Es (xU ) = N −1 nxs + (N − n)Es (xr )[ ]. Note that mutual independence of population units 

under (1) implies Es (xr ) = E(xr | yr )  and Vars (xr ) = Var(xr | yr ) . Assuming random sampling and 

a sample size n large enough to ensure that the joint distribution of yr , ys , xr  and xs  can be well 

approximated by multivariate normal distribution, we can then write down the approximations 

 Es xr( )≈ xs + E xr − xs | yr − ys( )= xs + βσ x
2 σ 2 + β 2σ x

2( )−1
yr − ys( )   (12) 

and 

 Vars (xr ) ≈ (N − n)−1 σ x
2 − β 2σ x

4 σ 2 + β 2σ x
2( )−1⎡

⎣
⎤
⎦ .     (13) 

Here σ x
2  denotes the population marginal variance of X. Estimated values of Es xr( ) and 

Vars (xr )  can be calculated by substituting the sample-based estimates β̂smle  and σ̂ smle
2  for β  and 

σ 2 , and the sample variance of X for σ x
2 , in the right hand sides of (12) and (13). Substituting 

these estimates into (11) then leads to simple approximations to the maximum likelihood 

estimates for the parameters of (1) in this limited information situation. 

 Although there is no obvious extension of the prediction estimators (9) to where only 

population mean of Y is known, it is relatively easy to modify the calibration approach (7) for this 

case. Here there are two, rather than three, constraints defined by our knowledge of the 

population size (N) and the population mean of Y ( yU ), and so the calibrated weights become 

 wlim
∗ =

N
n

1n + N[1n ys ]
′1n1n ′1n ys

′ys1n ′ysys

⎡

⎣
⎢

⎤

⎦
⎥

−1 0
yU − ys

⎛
⎝⎜

⎞
⎠⎟

. 

The calibration estimators defined by these ‘limited information’ weights are denoted by 

LIMCAL in Table 1, where we show simulation results for the performances of the different 
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estimators defined so far (with names given by their corresponding subscripts). The simulations 

are model-based, with population values first simulated, then sample values drawn from this 

population using simple random sampling without replacement (SRSWOR). A total of 1000 

simulations were carried out for each scenario. 

 Not surprisingly, the results set out in Table 1 support our earlier comment that estimation 

of α should benefit most from inclusion of the extra information about the population mean of Y. 

It is also clear that the full information MLEs (6) perform well (although their results are omitted, 

the constrained predictive estimators (9) were almost as efficient). With respect to RMSE, the 

estimators (7) based on full information calibrated weights are inefficient, even relative to the 

unconstrained sample-based MLEs that ignore the auxiliary information, while the limited 

information calibration and MLE estimators performed relatively poorly at small sample sizes. In 

the case of the MLE this was due to outlying estimates generated in a small number of samples 

where the estimation error for the population mean of X was large and negative. In the case of the 

calibration estimators this was due to negative weights being generated in these samples. A better 

assessment of the comparative efficiencies of the various estimators is therefore obtained by 

looking at their median absolute errors (MAE) in Table 1. Here we see a more consistent picture, 

with increased amounts of auxiliary population information leading to better inference, at least as 

far as α  is concerned, with MLE-based methods that incorporate this inference clearly 

preferable. 

 The results shown in Table 1 mask another story, however, which is the change in the bias 

of the different estimators as the Y-balance of the sample changes. In Figure 1 we illustrate this 

by plotting the estimation errors for α  against the corresponding rank of the sample mean ys  for 

one of the scenarios considered in Table 1. Here we see that the sample-based MLE has a 
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substantial conditional bias, while the two limited information estimators also exhibit evidence of 

a conditional bias. This bias essentially disappears under full information ML estimation. 

 So far, our analysis has focussed on the improvement in efficiency that can be obtained 

when we include auxiliary information about the distribution of the model variables in the target 

population. Another advantage when this information is included, however, is that it can help 

protect inference from bias in cases where sample inclusion probabilities depend on these 

variables. To illustrate this, in Table 2 we report simulation results for the same scenarios 

explored in Table 1 but now where sample inclusion probabilities are either approximately 

proportional to X (PPX sampling) or approximately proportional to Y (PPY sampling). 

 The gains from using the full information MLEs under both PPX and PPY sampling are 

clear in Table 2. In contrast, the calibration-based estimators LIMCAL and CALW become quite 

unstable. The limited information MLE (LIMMLE) performs comparably with the sample-based 

MLE (SMLE) under PPX sampling, but is superior under PPY sampling. Although we do not 

show it here, the conditional bias properties of the different estimators of α  under PPX and PPY 

sampling are qualitatively similar to those under SRSWOR (see Figure 1). In particular, the 

sample-based MLE is clearly conditionally biased, particularly under PPY sampling, while the 

limited information MLE has reduced conditional bias. The full information MLE of this 

parameter has essentially zero conditional bias. 

 

3. MLE for a linear logistic model given auxiliary population information 

 Here Y is a zero-one variable but X is an arbitrary real-valued variable. As in the previous 

section we initially assume sample values of Y and X are available, together with auxiliary 

information corresponding to the non-sample total try  of Y and the non-sample values of X. We 
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wish to combine the sample data and this auxiliary information in order to model the relationship 

between Y and X in the population using a linear logistic model. For simplicity we assume 

independent population elements and simple random sampling. 

 For population element i, put π (xi ) = Pr(yi = 1 | xi ) = exp(α + βxi ) 1+ exp(α + βxi )( )−1 . 

The population level component score functions for θ = (α,β)  are then 

 sc1(θ) = (yi − π (xi ))U∑  

 sc2 (θ) = xi (yi − π (xi ))U∑  

so the full information component score functions become 

 sc1s (θ) = yiU∑ − π (xi )U∑         (14a) 

 sc2s (θ) = xi (yi − π (xi ))s∑ + Es xi yir∑( )− xiπ (xi )r∑ .    (14b) 

For arbitrary non-sample population element i, let r(i) denote the remaining N – n – 1 non-

sampled population elements. Without loss of generality we assume try > 0 , so the conditional 

expectation in (14b) can be written 

 

E yixir∑ | yir∑ = try ,xr( )= xiE yi | yjr∑ = try ,xr( )r∑
= xi Pr yi = 1 | yjr∑ = try ,xr( )r∑

=
xi Pr yi = 1, yjr(i )∑ = try − 1 | xr( )r∑

Pr yjr∑ = try | xr( )
= xiπ (xi )R1ir∑

 

where R1i = Pr yjr∑ = try | xr( )( )−1
Pr yjr(i )∑ = try − 1 | xr(i )( ). The full information score function 

components defined by (14) are therefore 

 sc1s (θ) = (yi − π (xi ))U∑         (15a) 
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 sc2s (θ) = xi (yi − π (xi ))s∑ − xiπ (xi )(1− R1i )r∑ .     (15b) 

A saddlepoint approximation to the second term on the right hand side of (15b) is developed in 

the Appendix. This is 

 sc2s (θ) ≈ xi yi − π (xi )( )s∑ − xiπ (xi ) 1− [1+ (1− π (xi )){b(try ) − 1}]−1( )r∑   (15c) 

with b(try ) = exp π (xj ) 1− π (x j )( )r∑⎡⎣ ⎤⎦
−1

π (xj )r∑ − try⎡⎣ ⎤⎦{ }. 

 As noted already in section 2, it is extremely unlikely in practice that the actual non-sample X 

values will be known. Since the full information score function (15) depends directly on these values, 

we need to revise this function when non-sample X values are unavailable. In general, the score 

function for α  and β  is then defined by 

 sc1s (θ) = yiU∑ − π (xi )s∑ − Es π (xi )r∑( )      (16a) 

 sc2s (θ) = xi (yi − π (xi ))s∑ + Es xi yir∑( )− Es xiπ (xi )r∑( )    (16b) 

where Es  denotes expectation after conditioning on the actual auxiliary information that we have (we 

continue to assume that try  is known). Suppose we know the non-sample mean xr  of X. We can then 

approximate the conditional expectations Es π (xi )r∑( ) and Es xiπ (xi )r∑( ) using a smearing 

approach (Duan, 1983). This is based on the assumption that, for an arbitrary function f  of x that 

depends on some parameter θ , we can write 

 
1

N − n
f (xi ,θ)

r∑ =
1

N − n
f xr + (xi − xr ),θ( )r∑ ≈

1
n

f xr − xs + xi ,θ( )s∑ . 

Put Δ = xr − xs . The smearing approximation to Es π (xi )r∑( ) is then 

 Es π (xi )r∑( )≈
N − n

n
π (Δ + xi )s∑ . 
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We therefore replace the score component (16a) by 

 sc1smear (θ) = yiU∑ − π (xi )s∑ −
N − n

n
π (Δ + xi )s∑ .    (17a) 

A corresponding smearing approximation to (16b) that includes a saddlepoint approximation is given 

by (A.7) in the Appendix. This allows us to replace this component score by 

 
sc2smear (θ) = xi yi − π (xi )( )s∑ −

N − n
n

⎛
⎝⎜

⎞
⎠⎟ Δ + xi( )π (Δ + xi )s∑

+
N − n

n
⎛
⎝⎜

⎞
⎠⎟ Δ + xi( )π (Δ + xi ) 1+ 1− π (Δ + xi ){ } bsmear (try ) − 1{ }⎡⎣ ⎤⎦

−1

s∑
 (17b) 

where 

 bsmear (try ) = exp π (Δ + xi ) 1− π (Δ + xi )( )s∑⎡⎣ ⎤⎦
−1

π (Δ + xi )s∑ −
n

N − n
try

⎡
⎣⎢

⎤
⎦⎥

⎧
⎨
⎩

⎫
⎬
⎭

. 

 Finally, there is the case where even xr  is unknown. In this case we can still use (17), but 

replace xr  by an appropriate sample-based estimate. This will depend on the characteristics of the 

sample design and the nature of the auxiliary population information available to us. For the case of 

simple random sampling and no auxiliary information it is natural to estimate xr  by xs , i.e. use 

expansion estimation. This is equivalent to setting Δ = 0  in (17). To avoid confusion with the full 

information MLEs approximated by (15a) and (15c), we refer to estimators of α  and β  obtained by 

setting (17) to zero and solving for these parameters as smearing MLEs when the actual value of xr  

is used (subscript smear) and as expansion MLEs when xr  is replaced by xs  (subscript exp). 

 The simulation results set out in Table 3 allow one to compare the root mean squared 

errors and median absolute errors of the sample-based MLEs α̂ smle  and β̂smle  of α  and β  (i.e. the 

estimators that only use the sample values of Y and X, denoted SMLE) with those of the MLEs 

that use the auxiliary information in try  as well as differing amounts of information about the 
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population distribution of X. These are the full information MLEs α̂ fimle  and β̂ fimle  (FIMLE) that 

assume knowledge of the non-sample values of X, the smearing estimators α̂ smear  and β̂smear  

(SMEAR) that only require the non-sample mean of X and the expansion estimators α̂exp  and 

β̂exp  (EXP) that do not require any information about the non-sample distribution of X. The 

sample-based MLEs were computed using the glm function in R, with its default options, while 

the MLEs utilising auxiliary information were calculated using the nlm function in R, with 

starting values α = log(yU ) − log(1− yU )  and β = 0 . In each of 1000 independent simulations, a 

population of N independent and identically distributed values for X was generated from the 

standard lognormal distribution and corresponding values for Y generated under the linear logistic 

model. A sample of size n was then taken from this population using SRSWOR. 

 We see that there can be substantial gains when auxiliary population information is 

included in the modelling process, particularly when the probability that Y = 1 is small. We also 

note in passing that these gains become even more substantial as the sample size n decreases, 

however then greater care has to be taken with solution of the ML estimating equations. Observe 

that the expansion MLE sometimes provides the best RMSE performance, although this is not the 

case when one looks at MAE. However, the expansion MLE is conditionally biased, as is evident 

when one looks at the plots in Figure 2. This also shows that the sample-based MLE has a strong 

conditional bias, while both the smearing and full information MLEs are much better behaved. 

 

4. MLE for a linear logistic model under case-control sampling 

 In the previous section we assumed simple random sampling from the population of 

interest. However, in many important applications of logistic modelling, particularly in medicine, 



 17

the sample data are obtained via some form of case-control sampling. In such cases the 

assumptions underpinning the saddlepoint and smearing approximations used in the development 

in the previous section are no longer valid. However, the basic strategy of using the approach of 

BCDTW to incorporate auxiliary population information into inference can still be used, 

provided the fact that the sample data are obtained via an informative sampling method (case-

control sampling) is allowed for when taking conditional expectations. More specifically, we 

adopt the setup described in Scott and Wild (1997), and assume the existence of two sampling 

frames, one for the N1  population units with values Y  = 1 and one for the N0  units with Y = 0. 

Independent simple random samples of size n1  and n0  respectively are then taken from these 

frames. Values of X are observed on the sample, and the aim again is to fit a linear logistic model 

to these data. By definition, we know N1  and hence try = N1 − n1 . 

 Again, we consider the same three situations corresponding to different levels of 

knowledge of X. The first is where we know the non-sample values of this variable. In the 

standard case-control situation this is highly unlikely. However, it could correspond to a situation 

where a separate administrative register contains these values, and the case-control study is being 

used to forge a link between the Y registers and the X register. The second is where no X register 

exists, but the value of xr  (or an accurate estimate of this quantity) is known. The third is the 

conventional case-control situation, where no X knowledge is available outside the sample. In all 

three cases, the ML estimating equations for the parameters α  and β  of the assumed population 

level linear logistic model are theoretically defined as the conditional expectations of the 

population level ML estimating equations given the sample data and the known population 

information. However, in this case the random variables underpinning these conditional 



 18

expectations no longer follow the same logistic model as in the population, so the approximations 

to the ML score function derived in the previous section need modification. 

 To start, consider the first situation described above, where individual X values for non-

sample population units are known, but the corresponding values of Y are not. We continue to use 

the notation introduced in the previous section. From (14), we see that the key unknown quantity 

in the score function is Es xi yir∑( ), where now, because of the case-control sampling, the yi  

values in the summation no longer follow the assumed population level logistic model. Following 

Scott and Wild (1997), we use Bayes Theorem to approximate the distribution of these values as 

N – n independent Bernoulli realisations with 

 π r (xi ) = Pr yi = 1 | i ∈r, xi( )=
N1

−1(N1 − n1)π (xi )
N1

−1(N1 − n1)π (xi ) + N0
−1(N0 − n0 ) 1− π (xi )( )

. 

With this set up, we can use the same saddlepoint arguments as in the previous section to 

approximate Es xi yir∑( ), replacing π (xi )  in that development by π r (xi )  above. This leads to a 

‘full information’ score function with component (15a) as before, but with (15c) replaced by 

sc2s (θ) = xi yi − π (xi )( )s∑ + xiπ r (xi ) 1 + 1 − π r (xi )( )(br (try ) − 1)⎡⎣ ⎤⎦
−1

r∑ − xiπ (xi )r∑  (18) 

where br (try ) = exp π r (xi ) 1− π r (xi )( )r∑⎡⎣ ⎤⎦
−1

π r (xi )r∑ − tyr⎡⎣ ⎤⎦( ). 

 In the previous section, we used smearing to approximate the score function in the case 

where the individual non-sample X values are unknown, but their mean xr  is known. This 

approach needs modification under case-control, because sample and non-sample averages no 

longer have the same expected values. In particular, for the case-control design assumed here, we 

need to apply smearing approximations separately for cases and controls. That is, for an arbitrary 

function f of x characterised by a parameter θ , we use the approximation 
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 f (xi ,θ)
r∑ ≈ M1n1

−1 f Δ1 + xi ,θ( )s1∑ + M 0n0
−1 f Δ0 + xi ,θ( )s0∑ . 

Here sd  denotes the sample units with Y = d and Δd  denotes our best estimate of the difference 

between the non-sample and sample means of X for those units with Y = d. Since we know the 

overall non-sample mean xr  of X, we calculate Δd  using a regression type estimate, i.e. 

 Δd = λdnd
−1sxd

2 λ1
2n1

−1sx1
2 + λ0

2n0
−1sx0

2( )−1
xr − λ1xs1 − λ0xs0( ) 

where λd = Nd − nd( )/ (N − n)  and xsd , sxd
2  denote the mean and variance of X for the sample 

units with Y = d. The case-control version of the smearing approximation (17a) is then 

 sc1smear (θ) = yiU∑ − π (xi )s∑ −
Nd − nd

nd

π (Δd + xi )sd∑
d =0

1

∑     (19a) 

while the corresponding case-control version of (17b) is 

sc2smear (θ) = xi yi − π (xi )( )s∑ −
Nd − nd

nd

⎛
⎝⎜

⎞
⎠⎟

Δd + xi( )π (Δd + xi )sd∑
d =0

1

∑

+
Nd − nd

nd

⎛
⎝⎜

⎞
⎠⎟

Δd + xi( )π r (Δd + xi ) 1+ 1− π r (Δd + xi ){ } bsmear
cc (try ) − 1{ }⎡⎣ ⎤⎦

−1

s∑
d =0

1

∑
(19b) 

where 

bsmear
cc (try ) = exp

Nd − nd

ndd =0

1

∑ π r (Δd + xi ) 1− π r (Δd + xi )( )sd∑⎡

⎣
⎢

⎤

⎦
⎥

−1
Nd − nd

nd

π r (Δd + xi )sd∑
d =0

1

∑ − tyr
⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝
⎜

⎞

⎠
⎟ . 

 When xr  is also unknown, we replace xrd  by xsd  above. This is equivalent to setting 

Δd = 0  in (19) and corresponds to using stratified expansion estimators for the expected values 

of the unknown non-sample components of the score function. 

 In what follows we use the same notation as in the previous section, denoting estimates 

obtained by setting (15a) and (18) to zero by FIMLE , and referring to them as full information 

MLEs. Estimates obtained by setting (19) to zero and solving are referred to as smearing MLEs 
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and are denoted by SMEAR. Finally, those obtained by solving (19) with Δd = 0  are referred to 

as expansion MLEs and are denoted by EXP. 

 Table 4 sets out simulation results for the above approximate MLEs as well as for the 

standard sample-based MLEs α̂ smle  and β̂smle  (SMLE). Prentice and Pyke (1979) showed that 

β̂smle  provides a good approximation to the actual MLE of this parameter under case-control 

sampling. In addition we show results for the maximum pseudo-likelihood estimates, defined by 

solving weighted versions of the sample-based MLE estimating equations, with weights given by 

wi = N0n0
−1I(yi = 0) + N1n1

−1I(yi = 1) , and are denoted by WTD. We also computed the maximum 

‘pseudo-model’ likelihood estimates proposed by Scott and Wild (1997) for case-control 

sampling, but do not show results for them since these were almost identical to those for SMLE 

for β  and tended to be unstable for α . 

 The simulation methodology used to obtain the results in Table 4 is identical to that used 

in Table 3, with the exception that sampling here is carried out using the stratified case-control 

design described at the start of this section. Note that SMLE and WTD estimates were computed 

using the glm function in R (without and with weights respectively) and with default settings. The 

FIMLE, SMEAR and EXP approximations to the MLEs that utilised auxiliary information were 

all computed by using the nlm function in R to solve the relevant estimating equations. 

 The results set out in Table 4 confirm once again that inclusion of population level 

auxiliary information can bring substantial gains in maximum likelihood-based inference. This is 

particularly the case where this information is strong, as in the FIMLE. However, there are still 

gains when the auxiliary information used is much weaker, as in SMEAR. Not surprisingly, we 

see that the SMLE is biased for α  but well behaved for β . 
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4. Discussion 

 The two most important conclusions that we draw from the results set out in this paper is that 

it pays to include population level auxiliary information when modelling sample survey data, and that 

the BCDTW likelihood framework offers a viable approach to achieving this aim. Obviously, the 

more auxiliary information one has available, the more significant the improvement in one’s 

inference. However, even marginal information (e.g. knowledge of population means for the model 

variables) can be extremely useful when integrated with the sample data within this framework. In 

general, use of the BCDTW framework requires the evaluation of conditional expectations that 

depend both on the assumed population model as well as on the method used to select the sample. 

For the important case of a logistic population model, the saddlepoint and smearing approximations 

to these conditional expectations that we describe in this paper seem to work well and should be 

useful in extending our results in practice. 

 This paper does not include results on interval estimation when auxiliary population data are 

integrated into likelihood inference. The BCDTW framework also covers this situation, and in the 

Appendix we show how the information function can be extended to allow for the auxiliary 

information in the case of a logistic model, including appropriate saddlepoint approximations. An 

important use of this function is in evaluating the extra information for parametric inference provided 

by the auxiliary information, e.g. along the lines set out in Steel et. al. (2004). 

 Finally, we note that the auxiliary population information is assumed to be known precisely. 

In reality population marginal information may in fact be estimated, typically from another, larger, 

survey. The impact of the resulting imprecision on our results requires further research. 
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Appendix 

A. Saddlepoint Approximations 

 We first consider approximation of R1i . Let yv  be the mean of Y over the set v, with Nv  

the corresponding number of observations. Further, let gv (d) = Pr(yv = d | xv )  and π i = π (xi ) . 

Then, for try > 0  

R1i =
gr(i ) (try − 1) / Nr(i ){ }

π igr(i ) (try − 1) / Nr(i ){ }+ (1 − π i )gr (i ) (try / Nr(i ) )
= 1 + (1 − π i )

gr(i ) (try / Nr (i ) )
gr(i ) (try − 1) / Nr(i ){ }− 1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

−1

. (A.1) 

It follows that the major problem is to approximate gr (i ) (try − 1) / Nr(i ){ }⎡⎣ ⎤⎦
−1

gr (i ) (try / Nr(i ) )  

accurately. Now the cumulant generating function of yjν∑  is Kv (u) = log{π je
u + (1− π j )}ν∑ . 

For any d ∈(0,1)  the saddlepoint approximation to gv (d)  is then 

 hv (d) =
Nv

{2π ′′Kv (ud )}1/2 exp{Kv (ud ) − Nvudd}  

where ud  is called the saddlepoint, and is defined as the solution of 

 ′Kv (u) / Nv = d .         (A.2) 

Standard arguments can be used to show that hv (d) = gv (d){1 + O( 1
Nv

)}  under general regularity 

conditions. That is, the saddlepoint approximation has relative error of order Nv
−1 . Substituting 

d = d1 = try / Nr(i )  or d = d2 = (try − 1) / Nr(i )  in hr(i ) (d) , we then have 

 
gr (i ) (try / Nr(i ) )

gr(i ) (try − 1) / Nr(i ){ }=
hr(i ) (try / Nr(i ) )

hr (i ) (try − 1) / Nr(i ){ }{1 + O( 1
N )} = exp{−ud1

}{1 + O( 1
N )}  (A.3) 

where the last equation is due to the identity 

 Kr(i ) (ud1
) − Nr(i )ud1

d1 − Kr(i ) (ud2
) − Nr(i )ud2

d2{ }= Nr(i )ud1
(d2 − d1) + O( 1

N )= −ud1
+ O( 1

N ) . 
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From the central limit theorem Nν
−1/2 (yj − π j )v∑ → N(0,γ 2 )  as Nv → ∞ , where 

γ 2 = lim Nν
−1 π j (1− π j )v∑ . It follows that we can focus on the normal deviation values of 

try :   try − π j = O N( )r(i )∑ . For such values of try , ud1
= O N −1/2( ). In fact, from (A.2), it can be 

seen that 

 ud1
=

try − Σr(i )π j

Σr(i )π j (1− π j )
+ O

1
N

⎛
⎝⎜

⎞
⎠⎟

=
try − Σrπ j

Σrπ j (1− π j )
+ O

1
N

⎛
⎝⎜

⎞
⎠⎟

.    (A.4) 

By (A.1), (A.3) and (A.4), an approximation to R1i  is then 

 R1i = 1+ (1− π i ) b(try ) − 1{ }⎡⎣ ⎤⎦
−1

1+ O
1
N

⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎩

⎫
⎬
⎭

       (A.5) 

with b(try ) = exp π j (1− π j )r∑⎡⎣ ⎤⎦
−1

π jr∑ − try⎡⎣ ⎤⎦{ }. It immediately follows that (15b) can be 

approximated by 

 scs (β) ≈ xi (yi − π i )s∑ − xiπ i 1− [1+ (1− π i ){b(try ) − 1}]−1( )r∑ .   (A.6) 

 When non-sample values of X are unavailable, but their mean xr  is known, we can 

combine the saddlepoint approximation developed above with a smearing approximation to again 

approximate the logistic score function. In particular, this procedure can be used together with 

(A.6) to approximate the second part of (16b). We continue to use (17a) to approximate (16a). By 

(A.6), 

  

scs (β) ≈ xi (yi − π i )s∑ − xr + (xi − xr ){ }π i 1 − 1 + (1 − π i ) b(try ) − 1{ }⎡⎣ ⎤⎦
−1( )r∑

≈ xi (yi − π i )s∑ −
N − n

n
⎛
⎝⎜

⎞
⎠⎟ xr − xs + xi( )π i,adj 1 − 1 + (1 − π i,adj ) b(try ) − 1{ }⎡⎣ ⎤⎦

−1( )s∑

≈ xi (yi − π i )s∑ −
N − n

n
⎛
⎝⎜

⎞
⎠⎟ xr − xs + xi( )π i,adj 1 − 1 + (1 − π i,adj ) badj (try ) − 1{ }⎡⎣ ⎤⎦

−1( )s∑

(A.7) 

where 
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 π i,adj = exp β(xr − xs ) + α + βxi{ }/ 1+ exp β(xr − xs ) + α + βxi{ }⎡⎣ ⎤⎦  

and 

 badj (try ) = exp π i,adj 1− π i,adj( )s∑⎡⎣ ⎤⎦
−1

π i,adjs∑ −
n

N − n
try

⎡
⎣⎢

⎤
⎦⎥

⎧
⎨
⎩

⎫
⎬
⎭

. 

Note that the last two approximation steps in (A.7) used smearing approximations repeatedly. 

B. The Information Function in the Logistic Case 

 Within the BCDTW framework the information function for parametric likelihood 

inference is the conditional expectation of the population level information function minus the 

conditional variance of the population level score function. As always, conditioning here is with 

respect to the observed survey data as well as the auxiliary information. In the logistic case the 

information function components are therefore given by 

 

infos (α ,α ) = Es info(α ,α )( )− Vars sc(α )( )
= Es π (xi )(1 − π (xi ))U∑ − Vars (yi − π (xi ))U∑( )
= π (xi )(1 − π (xi ))U∑

 

infos (α ,β) = Es info(α ,β)( )− Covs sc(α ), sc(β)( )
= Es xiπ (xi )(1 − π (xi ))U∑ − Covs (yi − π (xi ))U∑ , xi (yi − π (xi ))U∑( )
= xiπ (xi )(1 − π (xi ))U∑

 

 

infos (β,β) = Es info(β,β)( )− Vars sc(β)( )
= xi

2π (xi )(1− π (xi ))U∑ − Vars xi (yi − π (xi ))U∑( )
= xi

2π (xi )(1− π (xi ))U∑ − Vars xi yiU∑( )
 

where 

 
Vars yi xiU∑( )= Var yi xir∑ | yir∑ = try ,xr( )

= E yi yj xi x jj∈r∑i∈r∑ | yir∑ = try ,xr( )− E yi xir∑ | yir∑ = try ,xr( )⎡
⎣

⎤
⎦

2  

with 
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E yi yj xi x jj∈r∑i∈r∑ | yir∑ = try ,xr( )= xi
2E yi | ykr∑ = try ,xr( )r∑

+ xi x jE yi yj | yjr∑ = try ,xr( )j ≠ i∈r∑i∈r∑
= xi

2π (xi )R1ir∑ + xi x jπ (xi )π (x j )R2ijj ≠ i∈r∑i∈r∑
 

 
E yi xir∑ | yir∑ = try ,xr( )⎡

⎣
⎤
⎦

2
=

xiπ (xi )Pr yjr (i )∑ = try − 1 | xr (i )( )r∑
Pr ykr∑ = try | xr( )

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

2

= xi
2π 2 (xi )R1i

2
r∑ + xi x jπ (xi )π (x j )R1i R1 jj ≠ i∈r∑i∈r∑

 

and R2ij = Pr ykr∑ = try | xr( )⎡
⎣

⎤
⎦

−1
Pr ykr(ij )∑ = try − 2 | xr(ij )( ). It follows 

 Vars yi xiU∑( )= xi
2π (xi )R1i 1− π (xi )R1i( )

r∑ + xi x jπ (xi )π (x j )(R2ij − R1i R1 j )j ≠ i∈r∑i∈r∑ . 

A saddlepoint approximation to R2ij  similar to that developed above for R1i  can be written down. 

This is based on the fact that the denominator of R2ij  can be expressed as 

 

 

Pr yk = try | xrr∑( )= π iπ j Pr yk = try − 2 | xr (ij )r (ij )∑( )
+ π i (1− π j ) + (1− π i )π j{ }Pr yk = try − 1 | xr(ij )r(ij )∑( )
+ (1− π i )(1− π j )Pr yk = try | xr(ij )r(ij )∑( )

 

leading to 

 
R2ij = π iπ j + (π i + π j − 2π iπ j )

Pr Σr(ij )yk = try − 1 | xr (ij )( )
Pr Σr(ij )yk = try − 2 | xr(ij )( )

⎧
⎨
⎪

⎩⎪
+(1− π i )(1− π j )

Pr Σr(ij )yk = try | xr(ij )( )
Pr Σr(ij )yk = try − 2 | xr(ij )( )

⎫
⎬
⎪

⎭⎪

−1

. 

Using the same saddlepoint approximation technique as that used for R1i , the two ratios in this 

expression can be approximated by b(try − 1)  and b2 (try − 1)  respectively. That is, 

 R2ij = π iπ j + (π i + π j − 2π iπ j )b(try − 1){ + (1− π i )(1− π j )b
2 (try − 1)}1+ O 1

N( ){ }.  
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Table 1 Root mean squared errors (RMSE) and median absolute errors (MAE) under SRSWOR 

and a linear population model with α  = 5,  β  = 1 and σ 2  = 1. Values of X drawn from the 

standard lognormal distribution. 

 RMSE MAE 
 N = 500 

n = 20 
N = 1000 

n = 50
N = 5000

n = 200
N = 500

n = 20
N = 1000 

n = 50 
N = 5000

n = 200
α  SMLE 0.3217 0.1929 0.0922 0.2132 0.1339 0.0594
 LIMCAL 0.5935 0.2100 0.0977 0.2274 0.1276 0.0601
 LIMMLE 3.3769 0.3668 0.0676 0.1948 0.1015 0.0429
 CALW 1.3925 0.1658 0.0654 0.1803 0.0947 0.0421
 FIMLE 0.2554 0.1408 0.0631 0.1582 0.0869 0.0399
β  SMLE 0.1679 0.0867 0.0374 0.0935 0.0517 0.0234
 LIMCAL 0.4109 0.0977 0.0429 0.1018 0.0557 0.0246
 LIMMLE 3.2881 0.3327 0.0494 0.1270 0.0655 0.0310
 CALW 0.8008 0.0994 0.0391 0.1069 0.0553 0.0254
 FIMLE 0.1550 0.0843 0.0375 0.0884 0.0522 0.0234
σ 2  SMLE 0.3154 0.1975 0.1022 0.2350 0.1361 0.0741
 LIMCAL 0.4186 0.2033 0.1024 0.2557 0.1398 0.0743 
 LIMMLE 107.4689 0.8051 0.1019 0.2440 0.1341 0.0738
 CALW 0.4258 0.2152 0.1036 0.2692 0.1509 0.0735
 FIMLE 0.3089 0.1957 0.1017 0.2315 0.1345 0.0737
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Table 2 Root mean squared errors (RMSE) and median absolute errors (MAE) under PPX and 

PPY sampling and a linear population model with α  = 5,  β  = 1 and σ 2  = 1. Values of X drawn 

from the standard lognormal distribution. 

 RMSE MAE 
 N = 500 

n = 20 
N = 1000 

n = 50
N = 5000

n = 200
N = 500

n = 20
N = 1000 

n = 50 
N = 5000

n = 200
 PPX Sampling 
α  SMLE 0.3285 0.1993 0.0927 0.2065 0.1312 0.0629  
 LIMCAL 1.3901 3.3726 0.1824 0.3057 0.1939 0.1320
 LIMMLE 0.2359 0.1715 0.1170 0.1665 0.1224 0.0943
 CALW 5.0604 2.5311 0.0466 0.1552 0.0763 0.0270
 FIMLE 0.1116 0.0611 0.0263 0.0651 0.0410 0.0169
β  SMLE 0.0715 0.0369 0.0157  0.0368 0.0224  0.0102  
 LIMCAL 0.7589 1.8295 0.0413 0.0934 0.0500 0.0187
 LIMMLE 0.0817 0.0414 0.0170 0.0386 0.0231 0.0109
 CALW 2.9475 1.6181 0.0272 0.0901 0.0411 0.0152
 FIMLE 0.0612 0.0316 0.0139 0.0319 0.0197 0.0091
σ 2  SMLE 0.3272 0.1984 0.1020  0.2429 0.1362  0.0675  
 LIMCAL 0.6624 0.9780 0.1137 0.2723 0.1567 0.0786
 LIMMLE 0.3416 0.2110 0.1076 0.2280 0.1356 0.0698
 CALW 1.8410 0.5481 0.1155 0.2877 0.1579 0.0782
 FIMLE 0.3174 0.1954 0.1020 0.2347 0.1362 0.0677
 PPY Sampling 
α  SMLE 0.3558  0.2483  0.1906  0.2310  0.1825  0.1726  
 LIMCAL 5.3714 1.6835 3.9844 0.2343 0.1723 0.1474
 LIMMLE 0.6531 0.1500 0.0939 0.1589 0.0945 0.0689
 CALW 2.2143 4.8633 16.6698 0.1626 0.1059 0.0873
 FIMLE 0.1953 0.0958 0.0408 0.0974 0.0558 0.0255
β  SMLE 0.1253  0.0580  0.0251  0.0619  0.0337  0.0158  
 LIMCAL 3.8975 1.1988 2.4283 0.0957 0.0633 0.0519
 LIMMLE 0.5743 0.0880 0.0310 0.0671 0.0376 0.0183
 CALW 1.2909 2.9607 10.1346 0.0981 0.0644 0.0527
 FIMLE 0.1178 0.0555 0.0232 0.0603 0.0311 0.0136
σ 2  SMLE 0.3160  0.2035  0.0998  0.2343  0.1462  0.0682  
 LIMCAL 0.9376 0.3779 0.5802 0.2552 0.1563 0.0759
 LIMMLE 2.1472 0.2027 0.0974 0.2252 0.1473 0.0672
 CALW 0.9910 1.1900 2.7521 0.2926 0.1802 0.0914  
 FIMLE 0.3110 0.2031 0.0972 0.2253 0.1461 0.0666
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Table 3 Root mean squared errors (RMSE) and median absolute errors (MAE) for the linear 

logistic model under SRSWOR and given different amounts of auxiliary information on X. In all 

cases N = 5000 and n = 200.Values of X drawn from the standard lognormal distribution. 

True (α , β ) (–3, 1) (–5, 2) (–5, 1) (–8, 2)
 RMSE 
α  SMLE 0.4150  0.8039  0.9372  143.0808  
 EXP 4.5191 1.0254 0.7968 2.7469  
 SMEAR 0.7845 2.4532 0.7735 2.6343
 FIMLE 0.3352 0.7060 0.7619 3.6909
β  SMLE 0.1899  0.3746  0.2497  39.8094  
 EXP 2.2092 0.5105 0.2275 0.7696
 SMEAR 0.4121 1.2314 0.2329 0.7513
 FIMLE 0.1852 0.3605 0.2346 1.0223
 MAE 
α  SMLE 0.2519  0.4845  0.5040  1.1760  
 EXP 0.2293 0.4826 0.4439 1.1852
 SMEAR 0.2152 0.4713 0.4312 1.1657
 FIMLE 0.2035 0.4382 0.3894 1.1216
β  SMLE 0.1165  0.2327  0.1309  0.3361  
 EXP 0.1165 0.2342 0.1286 0.3388
 SMEAR 0.1112 0.2307 0.1283 0.3325
 FIMLE 0.1117 0.2332 0.1265 0.3281
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Table 4 Root mean squared errors (RMSE) and median absolute errors (MAE) for the linear 

logistic model under case-control sampling and given different amounts of auxiliary information 

on X. In all cases N = 5000 and n1 = n0 = 100 . Values of X drawn from the standard lognormal 

distribution. 

True (α , β ) (–3, 1) (–5, 2) (–5, 1) (–8, 2)
 RMSE 
α  SMLE 1.2100 1.2717 2.3204 2.2361
 WTD 0.2964 0.5971 0.4797 1.6615
 EXP 0.2828 0.5558 3.3436 1.2723
 SMEAR 0.2804 0.5483 0.3956 1.2928
 FIMLE 0.2738 0.5339 0.3241 0.9561
β  SMLE 0.1735 0.3122 0.1546 0.4282
 WTD 0.1827 0.3346 0.1983 0.5607
 EXP 0.1741 0.3117 10.3296 0.4406
 SMEAR 0.1621 0.3015 0.1521 0.4330
 FIMLE 0.1509 0.2730 0.1003 0.2760
 MAE 
α  SMLE 1.1911 1.1947 2.3248 2.0940
 WTD 0.2015 0.4063 0.3026 0.8445
 EXP 0.1910 0.3615 0.2480 0.6714
 SMEAR 0.1909 0.3619 0.2459 0.6623
 FIMLE 0.1864 0.3454 0.1983 0.5617
β  SMLE 0.1131 0.2026 0.0942 0.2207
 WTD 0.1178 0.2126 0.1225 0.2819
 EXP 0.1120 0.2002 0.1096 0.2320
 SMEAR 0.1069 0.1957 0.1015 0.2243
 FIMLE 0.1002 0.1734 0.0629 0.1660
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Figure 1 Simulated estimation errors for α  in the linear model (1). The true value of α  is 5 and 
sampling is SRSWOR with N = 1000 and n = 50. Errors are ordered along the horizontal axis by 
the rank of the sample Y-mean ys . Solid red line shows median estimation error by decile group 
of these sample means. Errors greater than 0.5 in absolute value are not shown. Out of a total of 
1000 simulated errors, there were 9 such values for SMLE, 22 for LIMCAL, 30 for LIMMLE, 9 
for CALW and 4 each for PRED and FIMLE. 
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Figure 2 Simulated estimation errors for α  in the linear logistic model. The true value of (α , β ) 
is (–5, 1) and sampling is SRSWOR with N = 5000 and n = 200. Errors are ordered along the 
horizontal axis by the corresponding rank of the sample Y-mean ys . Solid red line shows median 
estimation error within each decile group of these sample Y-means. 
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