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target population than just the data observed in the survey. In some cases this extra
information can be incorporated via calibration of survey weights. However, model
fitting using weights often leads to increased standard errors. Also, weights are usually
calibrated to a relatively small set of variables, while population data may be known for
many more variables. Here we use the general approach to maximum likelihood
estimation for complex surveys described in Breckling et al. (1994) to develop methods
for efficiently incorporating external population information into model fitting using
survey data. In particular, we focus on two simple, but very popular, models fitted to
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Abstract

Analysis of survey data does not happen in a vacuum. We typically know more about the target
population than just the data observed in the survey. In some cases this extra information can be
incorporated via calibration of survey weights. However, model fitting using weights often leads
to increased standard errors. Also, weights are usually calibrated to a relatively small set of
variables, while population data may be known for many more variables. Here we use the general
approach to maximum likelihood estimation for complex surveys described in Breckling et. al.
(1994) to develop methods for efficiently incorporating external population information into
model fitting using survey data. In particular, we focus on two simple, but very popular, models

fitted to survey data. These are the linear regression model and the logistic regression model.



1. Introduction

Analysis of survey data does not happen in a vacuum. A model for the number of children
ever born to a woman from a particular target population could depend on a number of factors,
e.g. her age, her education level, her labour force status, her household income, her ethnic
background and her access to family planning information, perhaps measured by presence or
absence of a family planning clinic within a specified distance of her home. All of these variables
are measured for women taking part in the survey, and the classical approach is to consider them
‘in isolation’ in the modelling process, implicitly assuming that the model fitted to these sample
data is also appropriate for the population from which the sample is drawn. Sometimes, if this is
felt to be too big an assumption, and survey weights are available, these are included in the model
fitting process, assuming that they correct the parameter estimation process for potential sample
selection bias.

However, we typically know a lot more about the target population than just the data
observed in the survey. In particular we may know the total number of women in the population,
their average number of children, their average age, their labour force participation rate and their
ethnic distribution in the population. By ‘know’ here we mean either the actual population value
or at least an accurate estimate. The question here is how to integrate this auxiliary population
information into the model fitting process described above.

In some cases, this information is incorporated in the survey weights, through the process
of calibration (Deville and Sarndal, 1992). That is, these weights are constructed so that weighted
averages for selected variables measured in the survey equal corresponding known (or highly
accurate estimates of) population values. One approach to using this auxiliary information would
therefore be to use such calibrated weights in estimation. However, this has two major problems.

First, such weights typically lead to increased standard errors compared to unweighted analysis.
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Second, weights are usually calibrated to a fixed and relatively small set of variables (e.g. age by
sex population distributions, regional population distributions), while population data are often
known for many more variables.

Alternative, more model-based, ways of incorporating auxiliary population information
when modelling survey data have been explored in the econometrics literature, mainly in the
context of analysis of linked data sets. An early example is Imbens and Lancaster (1994), who
suggest a generalised method of moments approach to the problem of incorporating knowledge
of the population expected value of the response variable Y into a sample-based linear regression
of Y on an explanatory variable X. More recently, Qin (2000) has considered the same problem
using a combination of empirical and parametric likelihood.

This paper focuses on developing methods for efficiently using auxiliary population
information when survey data are used to fit a statistical model for a target population. In
particular, we look at how maximum likelihood methods can be modified to incorporate this
information. The approach we take is based on the general approach to maximum likelihood
estimation for complex surveys described in Breckling et. al. (1994), hereafter referred to as
BCDTW. In particular, we focus on two simple, but very popular, models fitted to survey data.

These are the linear regression model and the linear logistic regression model.

2. MLE for a linear model given auxiliary population information

Consider the following situation. A sample survey measures the values y; and x; of two
scalar variables, Y and X respectively, for a sample s of n units from a population U of N units.
The variable X is a population covariate, i.e. we know the values of X for every unit in the

population and the sampling method is non-informative given these values. Our aim is to use the



sample survey data to fit a simple normal linear model to the population values of Y and X. That
is, we want to use the survey data to estimate the parameters «, £ and o that characterise the
population model

o (Y, —a— px)~iid N(0,1). (1)

Given this set-up, the maximum likelihood estimates (MLEs) for o, £ and o are

~

Birie = (sti (% — Xs))lzsxi i —¥s)

A

&smle =Y, - ﬂsmleis

Oanie = n_lzs(yi — Qs — ﬁolsxi)z :
We use a subscript of smle above to indicate that these MLEs are just based on the sample values
of Y and X. However, suppose we also know the population mean ¥, of Y. This can happen, for
example, if the variable Y is also measured in a census, and census tabulations are published. In
this case the OLS estimators above are no longer the MLEs fora, B and o®. In order to obtain
the “full information” MLEs that include this additional information, we first observe that the

population level score function for 8 = (a, 5, %) is defined by the components

sc,(0) =02 (v, — = fx,) (2a)
SC, () = O:ZZU X (y; —a = X)) (2b)
sCy(8)=—N /20" + > (y,—a—px) 120" (2c)

In what follows we let E, and Var, denote the expectation and variance operators respectively

that condition on the ‘available data’ for use in analysis. In this case these data correspond to the

sample values of Y and X, the non-sample values of X and the population mean of Y. We refer to

the score function for «, B and & given these data as the full information score function for



these parameters. BCDTW show that this full information score function is the conditional
expectation of the corresponding population level score function given these data. Denoting the

components of this full information score function by an additional subscript of s, we have

s¢,(0) = O'izzu (Es(yi) —a—px) (32)
5C,s(8) = 072> % (E.(¥;) — o — ;) (3b)
$Co,(0) = =N /20° +[ 3 (E,(y) - = Bx ) + . Var,(y) |/ 20*. (3¢c)

Since E,(y;) =Y, and Var,(y,) =0 for sampled population units, all we need to do is to determine

these conditional moments for population units not in sample. To do this, we note that for non-

sample unit i,

(yi|x -N
%) "N e+ ) (N—ny e (N —n)te?

r

\ {(cﬁﬂxi\{ o (N—n)‘lazﬂ_

Here x, denotes the population values of X, y, denotes the non-sample population average of Y

and X, denotes the corresponding non-sample average of X. Hence
Vil X0, %, ~ N[ 7, + B(x - X),0* @- (N =n)™)]. (4)
Combining (3) and (4) leads to
s¢,(0)= o[ X (v~ = Ax)+ (N =n)(¥, — - 5%,) ] (52)
5,0 (0) = 7| X X (¥ — = Bx) + (N =X (J, - = X,) | (5b)
$Cy, (8)=—(N+1)/20” +[ Y. (v — = Bx ) + (N =)y, —a - A% |/20*.  (50)

Setting these score components to zero and solving for «, £ and o gives the full information

MLEs in this case. They are



DX =¥+ X (T, — V) + (N =X, (F, - V)

3 . = 6a
ﬂﬂmle zsxi(xi _Ys)—i_nis(ys _YU)—’_(N _n)ir(ir _YU) ( )
&fimle =Yu = BiimeXy (6b)
i = (N + 1)7lzs(yi ~ Qe — ﬁfimlexi)z + (N =n)(Y, = X — Iéﬂmkjr)z - (6¢)

These estimators are identical to the estimators defined by a weighted least squares (WLYS) fit to
an extended sample consisting of the data values in s (each with weight equal to one) plus an

additional data value (with weight equal to N — n) defined by the non-sample means y, and X, .
Intuitively, one expects the extra information from knowing Y, to contribute mainly to

estimation of « in (1). To see that this is the case we now write down the variances of (6a) and
(6b). This can be done by differentiating the score functions (5), changing signs and evaluating at
the MLEs (6) to get the observed information matrix for these parameters. This matrix can then
be inverted to get the (asymptotic) variances and covariances of these MLEs. Alternatively,
exploiting their equivalence to a WLS fit, we can obtain the variances of the regression

coefficients (6a) and (6b) directly. These are

4o %P —(@=nNES - x2))
7 RO R N (X %2
S r r U

Var(&fimle) =n

n—102

~X?+ NN (X* -%)

var(Byme) = x@

Here X* is the mean of the squares of the sample X-values. In an X-balanced sample (X, = X, =

X, ) it is easy to see that Var(,éﬁm,e) = Var(Bsm,e) while Var(a,,,,) = Var(a,,,)—-n"1-nN"o?,

smle

confirming our intuition above.
As noted earlier, the full information MLE approach used to derive (6) is not necessarily

the only way one might attempt to use the fact that we know Y, . From a survey estimation point
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of view, the situation set out above is one where we have three calibration identities. We know
the population size N, population total of X and the population total of Y. We could therefore

calibrate the survey weights to recover these population totals. That is, if w, denotes the initial
survey weight for sample unit i (e.g. the inverse of its sample inclusion probability), we replace
this weight by w;, where > w; =N, > w/x, = NX, and > wy, = N, . There are standard
methods for doing this (e.g. Deville and Séarndal, 1992; Chambers, 1996). For simple random

sampling, a least squares calibration criterion leads to weights w™ = (w; ), where

vl Ly, Ux (0

. N _
w = Fln + N[ln Y Xs] ygln ygys y;Xs Lyu - ySJ '
X1, XY XX

Here 1, denotes an n-vector of ones, and y., X, are vectors containing the sample values of Y

and X respectively. The calibrated weights are then used to estimate «, £ and o® by weighted

least squares. That is, we estimate these parameters via

~ . _ _q . _
ﬂcalw = (zswi Xi (Xi - st)) zswi Xi (y| - yws) (7a)
&calw = yws - ﬁcalwiws (7b)
&falw =N -+ SWi* (yl - &calw - ﬁcalwxi )2 . (7C)

Here Vo = > WY, /D W =¥, and X, =D WX /D> W =X,.

Although use of calibrated weights may seem natural from a survey statistician’s point of
view, such an approach is not the most obvious if one considers the problem from a standard
statistical modelling perspective. Here it makes sense to incorporate our population information

(the values of ¥, and X ) via constraints on the estimates of the parameters of interest. Under (1)

E(Y)=a+ BE(X), so an obvious constraint is Y, =&+BYU. This is the general approach



described in Handcock, Rendall and Cheadle (2005), where the likelihood generated by the
sample values of Y and X is maximised subject to this constraint. In the context of (1) this is the

same as estimating « and £ by minimising the sum of squared errors subject to this constraint.
It is not difficult to see that this leads to the estimators

Prn =[ 2.4~ %) +0(% - %, | [2 (% - %)% ~ ) + (% - %) - )] (82)

N

=Y = Bean¥y (8b)

~

con = n_lz (yl con I) (8C)

A slight generalisation of this approach (Li-Chun Zhang, private communication) is to maximise

the sample-data likelihood subject to the predictive mean E()‘/U |VS,YS,¥,) of y, equalling its

N

known value. This is equivalent to requiring that our estimates of « and S satisfy a =y, — AX..

Maximising the sample-data likelihood subject to this constraint leads to estimators of the form

Pt = 2 (6 =% ) +0(% %) | [ 2, (% = %) - ¥ +n(% - %)(T, - %,) ] (92)

A~

pred yr ﬂpred ir (gb)
pred =n z (y| pred predx ) (9C)
In a balanced sample (X, =X, =X,), ,Hf,m,e, /}con and ﬁpred all reduce to the sample-based MLE

A

B aNd ;. = @, - In general, the differences between the constraint-based estimators (8) and

(9) and the full information MLEs defined by (6) will be small.
In most applications it is unlikely that individual population data on the explanatory
variable X in (1) will be available. It is far more likely that only sample data for Y and X will be

available, along with the corresponding population means of these variables. Following the



BCDTW approach in this case then requires us to condition on this more limited information set,
rather than on the information set assumed in the previous section. However, from (5) we see that
the full information score functions in the complete X data case actually only depend on the non-
sample X-values through their average X, . This average is known given X, and X;. Using Result
2 of Chambers, Dorfman and Wang (1998) we conclude that the full information MLEs for this
case (only X, known) are also given by (6).

Suppose now that X, is also unknown (so X, is unknown). That is, the only population
level data we have is the value of Y, . The formal BCDTW framework for calculating the MLEs
of the parameters of (1) still applies in this ‘limited information’ case, however, and the

component score functions (5) become

5¢,(0) = 02 D (i — = Bx)+ (N =n)(¥, — &t - AE,(X,) | (10a)
. (6)- G_{ > X —a— Bx)+ } (100
(N - n) {Es(yr)(yr - a_ﬁEs(ir)) _Wars(ir)}
50, (0) =5 45 Zolham puys (100
20" 207 | (N=n){(y, —a— FE,(X,)) + FVar,(X,)

where E,(X,) and Var,(X.) denote the expected value and variance of X, conditional on the
available data, i.e. the sample values of Y and X and the value Y, . The solutions to the estimating

equations defined by (10) are then

B = ¥ X0 =9+ IR (7, =)+ (N — EL(X )T, %)
X0 = X) + R (X, — B (%)) + (N = {EL(R)(E, (%)~ E,(X,)) + Var,(X,) }

(11a)

C’%Iimmle = VU - ﬂlimmleEs (YU) (11b)



~9 _ Zs (yl - &Iimmle - ﬂlimmlexi )2 + (N - n) {(yr - 6}Iimmle - ﬁlimmleEs (Yr ))2 + lglfmmlevars (ir)}
limmle —
n+1

(11c)

where E (X,)=N"[nX, +(N-n)E,(X,)]. Note that mutual independence of population units
under (1) implies E.(X,)=E(X, | y,) and Var,(X,) =Var(X, | y,) . Assuming random sampling and
a sample size n large enough to ensure that the joint distribution of y,, y,, X, and X, can be well
approximated by multivariate normal distribution, we can then write down the approximations

E.(X)~X +E(X -X.|Y, - V.)=% + Bo (o + Fc?) (7, - V,) (12)
and

var,(x,) ~ (N -n)*| o - Fot (o2 + Fo?) ' |. (13)
Here o} denotes the population marginal variance of X. Estimated values of E (X, ) and

Var,(X.) can be calculated by substituting the sample-based estimates 4., and &7

smle

for g and

o, and the sample variance of X for &2, in the right hand sides of (12) and (13). Substituting

these estimates into (11) then leads to simple approximations to the maximum likelihood
estimates for the parameters of (1) in this limited information situation.

Although there is no obvious extension of the prediction estimators (9) to where only
population mean of Y is known, it is relatively easy to modify the calibration approach (7) for this
case. Here there are two, rather than three, constraints defined by our knowledge of the
population size (N) and the population mean of Y (y,, ), and so the calibrated weights become

wi =1 N[ ys]{la1n %ysr[_ ° _] .

n Yolo YY) \W Y
The calibration estimators defined by these ‘limited information” weights are denoted by

LIMCAL in Table 1, where we show simulation results for the performances of the different
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estimators defined so far (with names given by their corresponding subscripts). The simulations
are model-based, with population values first simulated, then sample values drawn from this
population using simple random sampling without replacement (SRSWOR). A total of 1000
simulations were carried out for each scenario.

Not surprisingly, the results set out in Table 1 support our earlier comment that estimation
of «a should benefit most from inclusion of the extra information about the population mean of Y.
It is also clear that the full information MLEs (6) perform well (although their results are omitted,
the constrained predictive estimators (9) were almost as efficient). With respect to RMSE, the
estimators (7) based on full information calibrated weights are inefficient, even relative to the
unconstrained sample-based MLEs that ignore the auxiliary information, while the limited
information calibration and MLE estimators performed relatively poorly at small sample sizes. In
the case of the MLE this was due to outlying estimates generated in a small number of samples
where the estimation error for the population mean of X was large and negative. In the case of the
calibration estimators this was due to negative weights being generated in these samples. A better
assessment of the comparative efficiencies of the various estimators is therefore obtained by
looking at their median absolute errors (MAE) in Table 1. Here we see a more consistent picture,
with increased amounts of auxiliary population information leading to better inference, at least as
far as « is concerned, with MLE-based methods that incorporate this inference clearly
preferable.

The results shown in Table 1 mask another story, however, which is the change in the bias
of the different estimators as the Y-balance of the sample changes. In Figure 1 we illustrate this

by plotting the estimation errors for « against the corresponding rank of the sample mean y, for

one of the scenarios considered in Table 1. Here we see that the sample-based MLE has a
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substantial conditional bias, while the two limited information estimators also exhibit evidence of
a conditional bias. This bias essentially disappears under full information ML estimation.

So far, our analysis has focussed on the improvement in efficiency that can be obtained
when we include auxiliary information about the distribution of the model variables in the target
population. Another advantage when this information is included, however, is that it can help
protect inference from bias in cases where sample inclusion probabilities depend on these
variables. To illustrate this, in Table 2 we report simulation results for the same scenarios
explored in Table 1 but now where sample inclusion probabilities are either approximately
proportional to X (PPX sampling) or approximately proportional to Y (PPY sampling).

The gains from using the full information MLEs under both PPX and PPY sampling are
clear in Table 2. In contrast, the calibration-based estimators LIMCAL and CALW become quite
unstable. The limited information MLE (LIMMLE) performs comparably with the sample-based
MLE (SMLE) under PPX sampling, but is superior under PPY sampling. Although we do not
show it here, the conditional bias properties of the different estimators of « under PPX and PPY
sampling are qualitatively similar to those under SRSWOR (see Figure 1). In particular, the
sample-based MLE is clearly conditionally biased, particularly under PPY sampling, while the
limited information MLE has reduced conditional bias. The full information MLE of this

parameter has essentially zero conditional bias.

3. MLE for a linear logistic model given auxiliary population information
Here Y is a zero-one variable but X is an arbitrary real-valued variable. As in the previous
section we initially assume sample values of Y and X are available, together with auxiliary

information corresponding to the non-sample total t, of Y and the non-sample values of X. We
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wish to combine the sample data and this auxiliary information in order to model the relationship
between Y and X in the population using a linear logistic model. For simplicity we assume

independent population elements and simple random sampling.
For population element i, put z(x;)=Pr(y, =1|x)=exp(ca+ %)L+ exp(a + £x)) .

The population level component score functions for 6 = («, ) are then
sc,(0) = Zu (y; — 7(x;))

SC,(0) = Zu X; (y; — 7(X;))
so the full information component score functions become

SCys 0)= Zu Yi — Zu ”(Xi) (14a)

$Co0(0) = X X (% — 7(x ) + E, (X, %y - X, x2(x). (14b)
For arbitrary non-sample population element i, let r(i) denote the remaining N — n — 1 non-

sampled population elements. Without loss of generality we assume t,, >0, so the conditional

expectation in (14b) can be written

E(Zryixi |Zryi :try’xr)z eriE(yi |2ryj' :tryixr)
=eri Pr(yi =1|Zryj :try,xr)
X Pr(yi =1 Y=ty —1|xr)

Pr(zryj =1, |xr)
= zrxi”(xi)Rli

—1
where R;; = (Pr(zryj =t, |xr)) Pr{2...Y =ty —1I xr(i)). The full information score function
components defined by (14) are therefore

sC,,(8) = Zu (y; — (%)) (15a)
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SC,(8) = ZS X (y; — (X)) — Zr %7(X)1-Ry). (15b)
A saddlepoint approximation to the second term on the right hand side of (15b) is developed in

the Appendix. This is

5C,(0) ~ zs X (yi - ”(Xi))_ zr Xi”(xi)(l_ [1+1-7z(x )){b(try) - 1}]71) (15c)

with b(t, ) = exp {Zrn(xj)(l— n(xj))]'l[zrn(xj)—try]}

As noted already in section 2, it is extremely unlikely in practice that the actual non-sample X
values will be known. Since the full information score function (15) depends directly on these values,
we need to revise this function when non-sample X values are unavailable. In general, the score

function for « and £ is then defined by
sc, (0) =, ¥i - .. 7(x) - E, (2, #(x)) (16a)

SC,,(0) = ZS X (y; — (%)) + E, (Zr X;Y; )‘ E, (Zr Xi”(xi)) (16b)
where E, denotes expectation after conditioning on the actual auxiliary information that we have (we

continue to assume that t,, is known). Suppose we know the non-sample mean X, of X. We can then

approximate the conditional expectations ES(erz(xi)) and ES(eriz(xi)) using a smearing

approach (Duan, 1983). This is based on the assumption that, for an arbitrary function f of x that

depends on some parameter &, we can write
LZ f(xﬂ):Lz f(x +(x.—i),6’)zlz f (X =X, +x,0).
N —n r i N —n r r i r n s r s i

Put A =X, —X,. The smearing approximation to E (Zr”(xi)) is then

ES(Zrﬂ(xi))z N _nzsﬂ'(A-f-Xi).

n
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We therefore replace the score component (16a) by

-N

o 0) = ¥ = 3 204) = S (A +x). (172)

A corresponding smearing approximation to (16b) that includes a saddlepoint approximation is given
by (A.7) in the Appendix. This allows us to replace this component score by

N-n

SCosmear (0) = zs X (yi - ”(Xi))_( ) ZS(A + X )”(A +%;)
(17b)
+[ A ”) > (A x)m(a+x)[1+ - z(a+ xi)}{los,mr(try)-1}]’1

n

where

Byrear (1) = €XP {[ZSE(A +x)(1-7z(A+ Xi))]l{zs;z(A +X%)— ﬁtw }}

Finally, there is the case where even X, is unknown. In this case we can still use (17), but
replace X, by an appropriate sample-based estimate. This will depend on the characteristics of the

sample design and the nature of the auxiliary population information available to us. For the case of

simple random sampling and no auxiliary information it is natural to estimate X, by X, i.e. use
expansion estimation. This is equivalent to setting A=0 in (17). To avoid confusion with the full
information MLEs approximated by (15a) and (15c), we refer to estimators of « and £ obtained by
setting (17) to zero and solving for these parameters as smearing MLEs when the actual value of X,
is used (subscript smear) and as expansion MLEs when X, is replaced by X, (subscript exp).

The simulation results set out in Table 3 allow one to compare the root mean squared
and ,&S

errors and median absolute errors of the sample-based MLEs « of « and g (i.e. the

smle mle

estimators that only use the sample values of Y and X, denoted SMLE) with those of the MLESs

that use the auxiliary information in t_ as well as differing amounts of information about the
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population distribution of X. These are the full information MLEs «,,, and ﬁﬁm,e (FIMLE) that

and /}

smear

assume knowledge of the non-sample values of X, the smearing estimators o

smear

(SMEAR) that only require the non-sample mean of X and the expansion estimators &exp and

A

By, (EXP) that do not require any information about the non-sample distribution of X. The

sample-based MLEs were computed using the glm function in R, with its default options, while
the MLEs utilising auxiliary information were calculated using the nlm function in R, with

starting values « =log(y,)—log(1-Yy,) and g=0. In each of 1000 independent simulations, a

population of N independent and identically distributed values for X was generated from the
standard lognormal distribution and corresponding values for Y generated under the linear logistic
model. A sample of size n was then taken from this population using SRSWOR.

We see that there can be substantial gains when auxiliary population information is
included in the modelling process, particularly when the probability that Y = 1 is small. We also
note in passing that these gains become even more substantial as the sample size n decreases,
however then greater care has to be taken with solution of the ML estimating equations. Observe
that the expansion MLE sometimes provides the best RMSE performance, although this is not the
case when one looks at MAE. However, the expansion MLE is conditionally biased, as is evident
when one looks at the plots in Figure 2. This also shows that the sample-based MLE has a strong

conditional bias, while both the smearing and full information MLESs are much better behaved.
4. MLE for a linear logistic model under case-control sampling
In the previous section we assumed simple random sampling from the population of

interest. However, in many important applications of logistic modelling, particularly in medicine,
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the sample data are obtained via some form of case-control sampling. In such cases the
assumptions underpinning the saddlepoint and smearing approximations used in the development
in the previous section are no longer valid. However, the basic strategy of using the approach of
BCDTW to incorporate auxiliary population information into inference can still be used,
provided the fact that the sample data are obtained via an informative sampling method (case-
control sampling) is allowed for when taking conditional expectations. More specifically, we
adopt the setup described in Scott and Wild (1997), and assume the existence of two sampling

frames, one for the N, population units with values Y =1 and one for the N, units with Y = 0.
Independent simple random samples of size n, and n, respectively are then taken from these

frames. Values of X are observed on the sample, and the aim again is to fit a linear logistic model

to these data. By definition, we know N, and hence t, =N, —n,.

Again, we consider the same three situations corresponding to different levels of
knowledge of X. The first is where we know the non-sample values of this variable. In the
standard case-control situation this is highly unlikely. However, it could correspond to a situation
where a separate administrative register contains these values, and the case-control study is being
used to forge a link between the Y registers and the X register. The second is where no X register

exists, but the value of X, (or an accurate estimate of this quantity) is known. The third is the

conventional case-control situation, where no X knowledge is available outside the sample. In all
three cases, the ML estimating equations for the parameters « and g of the assumed population
level linear logistic model are theoretically defined as the conditional expectations of the
population level ML estimating equations given the sample data and the known population

information. However, in this case the random variables underpinning these conditional

17



expectations no longer follow the same logistic model as in the population, so the approximations
to the ML score function derived in the previous section need modification.

To start, consider the first situation described above, where individual X values for non-
sample population units are known, but the corresponding values of Y are not. We continue to use

the notation introduced in the previous section. From (14), we see that the key unknown quantity

in the score function is ES(eriyi ) where now, because of the case-control sampling, the vy,

values in the summation no longer follow the assumed population level logistic model. Following
Scott and Wild (1997), we use Bayes Theorem to approximate the distribution of these values as

N — n independent Bernoulli realisations with

Nil(Nl —n)z(x)
N, (N, = ny)7z(x) + Ng* (Ng —ng ) (1= 72(%))

m(x)=Pr(y,=1|i erx )=

With this set up, we can use the same saddlepoint arguments as in the previous section to
approximate ES(eriyi , replacing z(x;) in that development by 7, (x;) above. This leads to a

“full information’ score function with component (15a) as before, but with (15c) replaced by

SC,,(0) = sti (yi - ”(Xi))+ Z:rxi”r(xi)[l+ (1_ Ty (Xi))(br (ty) _1)]71 - eri”(xi) (18)

where b, (t,) = exp([Zrzzr(xi)(l— 7, (xi))]_l[zrnr(xi) - tyrD.

In the previous section, we used smearing to approximate the score function in the case
where the individual non-sample X values are unknown, but their mean X, is known. This
approach needs modification under case-control, because sample and non-sample averages no
longer have the same expected values. In particular, for the case-control design assumed here, we
need to apply smearing approximations separately for cases and controls. That is, for an arbitrary

function f of x characterised by a parameter &, we use the approximation
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D FO MY f(A +%,0)+ Mgt Y F(Ay+X,6).
Here sd denotes the sample units with Y = d and A, denotes our best estimate of the difference

between the non-sample and sample means of X for those units with Y = d. Since we know the

overall non-sample mean X, of X, we calculate A, using a regression type estimate, i.e.

Ad = /1d nc;lsid (ﬂqznl_lsle + /15”51350 )71 (Xr - /1'1?51 - /10?50)
where 4, =(Ny—ny)/(N-n) and X, s, denote the mean and variance of X for the sample

units with Y = d. The case-control version of the smearing approximation (17a) is then

SCygmear )= Zu Yi — Zs”(xi) - Z Ny =1y st ”(Ad + Xi) (19a)

o Ny

while the corresponding case-control version of (17b) is

n

Sanne 0= 2,50~ 700)- X[ B3 (8 40}t )

\ (19b)
+§[ Ndn; nd] Zs(Ad + X ), (Ag + Xi)[1+ fl—r7 (A, + xi)}{bgniear(try) _1}]_1
where
TNy =n TSN, —n \
bscncﬂear(try) ) eXpd:Z dI’l d ZSd ﬁ'(Ad + Xi)(l_ ﬁr(Ad + Xi)):| |:Z dn : st ”,(Ad + Xi)—tyr:b .

When X, is also unknown, we replace X, by X, above. This is equivalent to setting
A4 =0 in (19) and corresponds to using stratified expansion estimators for the expected values

of the unknown non-sample components of the score function.
In what follows we use the same notation as in the previous section, denoting estimates
obtained by setting (15a) and (18) to zero by FIMLE , and referring to them as full information

MLEs. Estimates obtained by setting (19) to zero and solving are referred to as smearing MLEs
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and are denoted by SMEAR. Finally, those obtained by solving (19) with A, =0 are referred to

as expansion MLEs and are denoted by EXP.

Table 4 sets out simulation results for the above approximate MLEs as well as for the

standard sample-based MLEs «,,,. and ,5’5 (SMLE). Prentice and Pyke (1979) showed that

smle mle

A

LS. Provides a good approximation to the actual MLE of this parameter under case-control

sampling. In addition we show results for the maximum pseudo-likelihood estimates, defined by

solving weighted versions of the sample-based MLE estimating equations, with weights given by
w, = N,ng'1(y; = 0)+ N,n*I(y, =1), and are denoted by WTD. We also computed the maximum

‘pseudo-model’ likelihood estimates proposed by Scott and Wild (1997) for case-control
sampling, but do not show results for them since these were almost identical to those for SMLE

for S and tended to be unstable for « .

The simulation methodology used to obtain the results in Table 4 is identical to that used
in Table 3, with the exception that sampling here is carried out using the stratified case-control
design described at the start of this section. Note that SMLE and WTD estimates were computed
using the glm function in R (without and with weights respectively) and with default settings. The
FIMLE, SMEAR and EXP approximations to the MLEs that utilised auxiliary information were
all computed by using the nlm function in R to solve the relevant estimating equations.

The results set out in Table 4 confirm once again that inclusion of population level
auxiliary information can bring substantial gains in maximum likelihood-based inference. This is
particularly the case where this information is strong, as in the FIMLE. However, there are still
gains when the auxiliary information used is much weaker, as in SMEAR. Not surprisingly, we

see that the SMLE is biased for « but well behaved for £.

20



4. Discussion

The two most important conclusions that we draw from the results set out in this paper is that
it pays to include population level auxiliary information when modelling sample survey data, and that
the BCDTW likelihood framework offers a viable approach to achieving this aim. Obviously, the
more auxiliary information one has available, the more significant the improvement in one’s
inference. However, even marginal information (e.g. knowledge of population means for the model
variables) can be extremely useful when integrated with the sample data within this framework. In
general, use of the BCDTW framework requires the evaluation of conditional expectations that
depend both on the assumed population model as well as on the method used to select the sample.
For the important case of a logistic population model, the saddlepoint and smearing approximations
to these conditional expectations that we describe in this paper seem to work well and should be
useful in extending our results in practice.

This paper does not include results on interval estimation when auxiliary population data are
integrated into likelihood inference. The BCDTW framework also covers this situation, and in the
Appendix we show how the information function can be extended to allow for the auxiliary
information in the case of a logistic model, including appropriate saddlepoint approximations. An
important use of this function is in evaluating the extra information for parametric inference provided
by the auxiliary information, e.g. along the lines set out in Steel et. al. (2004).

Finally, we note that the auxiliary population information is assumed to be known precisely.
In reality population marginal information may in fact be estimated, typically from another, larger,

survey. The impact of the resulting imprecision on our results requires further research.
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Appendix
A. Saddlepoint Approximations
We first consider approximation of R;,. Let y, be the mean of Y over the set v, with N,

the corresponding number of observations. Further, let g, (d)=Pr(y,=d|x,) and 7z, = z(x,).

Then, fortry >0

N | ( N
Rli _ gr(l) {(try 1)/ Nr(|)} _ Ll‘*‘ (1_ 7Z'i) gr(i)(try / Nr(i)) —l . (Al)
70, {(ty =1/ Nygy b+ (A= 7)9,6(ty /N, Gy {ty — 1/ Ny }

It follows that the major problem is to approximate [g,(i) {(try—l)/Nrm }Tgr(i)(try/Nr(i))

accurately. Now the cumulant generating function of zvyj is K,(u)= zvlog{zrje” +@-7;)}.

Forany d €(0,1) the saddlepoint approximation to g,(d) is then

hv(d) exp{Kv(ud)_ Nvudd}

27K (uy)3
where u, is called the saddlepoint, and is defined as the solution of
Ki(u)/N, =d. (A.2)

Standard arguments can be used to show that h (d) = gv(d){l+O(Niv)} under general regularity

conditions. That is, the saddlepoint approximation has relative error of order N.*. Substituting

d=d, =t /N, ord=d,=(t,-1)/ N in h(d), we then have

r(i) r(i)

gr(i)(try / Nr(i)) — hr(i)(try / Nr(i))
9ry {(try -1/ Nr(i)} hr(i) {(try -1/ Nr(i)}

{1+0(@)} =exp{-u, H1+O0(H)} (A3

where the last equation is due to the identity

Kr(i)(udl)_ Nr(i)udldl - {Kr(i)(ud2 )— Nr(i)ud2d2 } Nr(i)udl (d, —d,)+ O(%): —Uy + O(ﬁ) .
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From the central limit theorem N;sz(yj—ﬂj)% N(,7?) as N, —>oo, where

y? =lim N;lzvﬂj(l—ﬂj). It follows that we can focus on the normal deviation values of

5~ Dy O(\/W) For such values of t,,, u, =O(N™?). Infact, from (A.2), it can be
seen that
t, —2 7 t. —> 1.
U, :w—m+o[ij:w—f7rl+o[ij_ (A4)
Za7il=7;) N Ir(-m;) N

By (A.1), (A.3) and (A.4), an approximation to R;; is then

Ri=[1+@1-m) dt,)-1}] {1+0(%}} (A.5)

with bi(t,)=exp {zrﬂ'j(l—ﬂ'j)}l[zrﬂ'j —tw]}. It immediately follows that (15b) can be
approximated by
sc,(B)~ > X (% —m)- > xm (- [+ (@- 7 {b(t,) - 13]™). (A6)
When non-sample values of X are unavailable, but their mean X, is known, we can

combine the saddlepoint approximation developed above with a smearing approximation to again
approximate the logistic score function. In particular, this procedure can be used together with
(A.6) to approximate the second part of (16b). We continue to use (17a) to approximate (16a). By

(A.6),

s, (A) = Y X —7) -3 AR+ (% - %)} é—[u - ﬂi){b(try)—l}]_l)
=Y X - (N;”)Z (X, - X, +%)7, adj( [1+(1—ﬂi,adj){b(try)—1}]1) (A7)
<3 50w~ E %) [ € ) ) 1))

where
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Toag = OXP{B(X, = X)+ a+ px; } [ 1+ exp {B(X, - %)+ a + B }]

and

badj (try) = exp {[zsﬂi,adj (1_ 7T adi )i|_l|:zsﬂi,adj - ﬁtry:” .

Note that the last two approximation steps in (A.7) used smearing approximations repeatedly.
B. The Information Function in the Logistic Case
Within the BCDTW framework the information function for parametric likelihood
inference is the conditional expectation of the population level information function minus the
conditional variance of the population level score function. As always, conditioning here is with
respect to the observed survey data as well as the auxiliary information. In the logistic case the
information function components are therefore given by
info, (o, @) = E, (info(e, @) ) Var, (sc(a))
=, 70— 7(x) - Var, (3, (% - 7(x)))
=3 a(x)L-7(x))
info, (a, B) = E, (info(a, B))— Cov, (sc(e), sc(p))
= B, (6 (A- (%)) = Cov, (X, (¥ = 7)) 2 % (%, = 7(x,))
=3 xa(x)L- (%))
info, (B, ) = E, (info(B, ) )— Var, (sc(p))
= Y X)L 7(x) = Var, (2, % (v — 7(x) )
= 3 XA - 7(x)) —Var, (3, %, )

where

Var, (ZU YiX, ): Var(zryixi 12 :try,xr)
- E(Zierzjayiijixj |Zryi :try,xr)»[E(Zryixi |Zryi :try'Xr)T

with
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E(Zierzjeryiijixj |ZrYi :tryixr): ZrXiZE(yi |Zryk :try’xr)
+Zigrz]‘¢ierxiij(yiyj |Z yj :try7xr)
=zrxi2”(xi)R1i+zierzji,er X7 (%) 72 (X; )Ry

B | 22 (%) Pr r(i)yj:try—1|xr(i))2
[E(Z W lZ h =X )} - Pr(zryk:t,ylxr)

:erfyﬂ(xi)Rfi +Zierzj¢| XX () (xR,
and R,; = [Pr(z Ve =ty [X; )J i Yk = -2 r(”)) It follows

Var (Z y' ') Z X ”(X )Rll (1 H(X )R1| )+ Z|er21¢|er X'Xlﬂ-(x )”(X )(RZ'J 1J)
A saddlepoint approximation to R,; similar to that developed above for R;; can be written down.
This is based on the fact that the denominator of R,; can be expressed as
Pr(zryk =t | X, ): I, Pr(zr(ij)yk =t, — 2] Xr(ij))
+ -+ @ m)m (S g v =ty - X )

+ (11— )AL —7;)Pr iy Ve = Ly |Xr(”))

leading to

-1
PriZ iV« =t, — 1| X PriZ. Ve =ty | X
Ry = {”” + (7 + 7y - 2mry) G =ty -1l (”)+(1—7ri)(1—7rj) Cuuh 7 fcw) } .

Pr(Zr(ij)yk =ty —2] Xr(ij)) Pr(Zr(ij)yk =ty —2] Xr(ij))
Using the same saddlepoint approximation technique as that used for R, the two ratios in this

expression can be approximated by b(t, —1) and bz(try —1) respectively. That is,

Ry = {m; + (m + 7 - 277, )b(t,, - D+ (- m)(A- )b’ (t, - 1) H1+ O (%)}
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Table 1 Root mean squared errors (RMSE) and median absolute errors (MAE) under SRSWOR

and a linear population model with & =5, =1 and &° =1. Values of X drawn from the

standard lognormal distribution.

RMSE MAE

N=500 N=1000 N=5000 N=500 N=1000 N=5000
n=20 n=50 n =200 n=20 n=>50 n =200

@  SMLE 0.3217 0.1929 0.0922 0.2132 0.1339 0.0594
LIMCAL 0.5935 0.2100 0.0977 0.2274 0.1276 0.0601
LIMMLE 3.3769 0.3668 0.0676 0.1948 0.1015 0.0429
CALW 1.3925 0.1658 0.0654 0.1803 0.0947 0.0421
FIMLE 0.2554 0.1408 0.0631 0.1582 0.0869 0.0399

B SMLE 0.1679 0.0867 0.0374 0.0935 0.0517 0.0234
LIMCAL 0.4109 0.0977 0.0429 0.1018 0.0557 0.0246
LIMMLE 3.2881 0.3327 0.0494 0.1270 0.0655 0.0310
CALW 0.8008 0.0994 0.0391 0.1069 0.0553 0.0254
FIMLE 0.1550 0.0843 0.0375 0.0884 0.0522 0.0234

o> SMLE 0.3154 0.1975 0.1022 0.2350 0.1361 0.0741
LIMCAL 0.4186 0.2033 0.1024 0.2557 0.1398 0.0743
LIMMLE  107.4689 0.8051 0.1019 0.2440 0.1341 0.0738
CALW 0.4258 0.2152 0.1036 0.2692 0.1509 0.0735
FIMLE 0.3089 0.1957 0.1017 0.2315 0.1345 0.0737
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Table 2 Root mean squared errors (RMSE) and median absolute errors (MAE) under PPX and

PPY sampling and a linear population model with & =5, B =1and ¢° = 1. Values of X drawn

from the standard lognormal distribution.

RMSE MAE

N=500 N=1000 N =5000 N=500 N=1000 N =5000
n=20 n=50 n =200 n=20 n=50 n =200

PPX Sampling
a SMLE 0.3285 0.1993 0.0927 0.2065 0.1312 0.0629
LIMCAL 1.3901 3.3726 0.1824 0.3057 0.1939 0.1320
LIMMLE 0.2359 0.1715 0.1170 0.1665 0.1224 0.0943
CALW 5.0604 2.5311 0.0466 0.1552 0.0763 0.0270
FIMLE 0.1116 0.0611 0.0263 0.0651 0.0410 0.0169
Y/j SMLE 0.0715 0.0369 0.0157 0.0368 0.0224 0.0102
LIMCAL 0.7589 1.8295 0.0413 0.0934 0.0500 0.0187
LIMMLE 0.0817 0.0414 0.0170 0.0386 0.0231 0.0109
CALW 2.9475 1.6181 0.0272 0.0901 0.0411 0.0152
FIMLE 0.0612 0.0316 0.0139 0.0319 0.0197 0.0091
o’ SMLE 0.3272 0.1984 0.1020 0.2429 0.1362 0.0675
LIMCAL 0.6624 0.9780 0.1137 0.2723 0.1567 0.0786
LIMMLE 0.3416 0.2110 0.1076 0.2280 0.1356 0.0698
CALW 1.8410 0.5481 0.1155 0.2877 0.1579 0.0782
FIMLE 0.3174 0.1954 0.1020 0.2347 0.1362 0.0677

PPY Sampling
a SMLE 0.3558 0.2483 0.1906 0.2310 0.1825 0.1726
LIMCAL 5.3714 1.6835 3.9844 0.2343 0.1723 0.1474
LIMMLE 0.6531 0.1500 0.0939 0.1589 0.0945 0.0689
CALW 2.2143 4.8633 16.6698 0.1626 0.1059 0.0873
FIMLE 0.1953 0.0958 0.0408 0.0974 0.0558 0.0255
Yij SMLE 0.1253 0.0580 0.0251 0.0619 0.0337 0.0158
LIMCAL 3.8975 1.1988 2.4283 0.0957 0.0633 0.0519
LIMMLE 0.5743 0.0880 0.0310 0.0671 0.0376 0.0183
CALW 1.2909 2.9607 10.1346 0.0981 0.0644 0.0527
FIMLE 0.1178 0.0555 0.0232 0.0603 0.0311 0.0136
o SMLE 0.3160 0.2035 0.0998 0.2343 0.1462 0.0682
LIMCAL 0.9376 0.3779 0.5802 0.2552 0.1563 0.0759
LIMMLE 2.1472 0.2027 0.0974 0.2252 0.1473 0.0672
CALW 0.9910 1.1900 2.7521 0.2926 0.1802 0.0914
FIMLE 0.3110 0.2031 0.0972 0.2253 0.1461 0.0666
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Table 3 Root mean squared errors (RMSE) and median absolute errors (MAE) for the linear
logistic model under SRSWOR and given different amounts of auxiliary information on X. In all

cases N = 5000 and n = 200.Values of X drawn from the standard lognormal distribution.

True (a, f) (-3,1) (-5, 2) (-5, 1) (-8, 2)
RMSE
o SMLE 0.4150 0.8039 0.9372 143.0808
EXP 45191 1.0254 0.7968 2.7469
SMEAR 0.7845 2.4532 0.7735 2.6343
FIMLE 0.3352 0.7060 0.7619 3.6909
yij SMLE 0.1899 0.3746 0.2497 39.8094
EXP 2.2092 0.5105 0.2275 0.7696
SMEAR 0.4121 1.2314 0.2329 0.7513
FIMLE 0.1852 0.3605 0.2346 1.0223
MAE
a SMLE 0.2519 0.4845 0.5040 1.1760
EXP 0.2293 0.4826 0.4439 1.1852
SMEAR 0.2152 0.4713 0.4312 1.1657
FIMLE 0.2035 0.4382 0.3894 1.1216
Jij SMLE 0.1165 0.2327 0.1309 0.3361
EXP 0.1165 0.2342 0.1286 0.3388
SMEAR 0.1112 0.2307 0.1283 0.3325
FIMLE 0.1117 0.2332 0.1265 0.3281
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Table 4 Root mean squared errors (RMSE) and median absolute errors (MAE) for the linear

logistic model under case-control sampling and given different amounts of auxiliary information

on X. In all cases N = 5000 and n, =n, =100. Values of X drawn from the standard lognormal

distribution.
True (a, f) (-3,1) (-5, 2) (-5, 1) (-8, 2)
RMSE
o SMLE 1.2100 1.2717 2.3204 2.2361
WTD 0.2964 0.5971 0.4797 1.6615
EXP 0.2828 0.5558 3.3436 1.2723
SMEAR 0.2804 0.5483 0.3956 1.2928
FIMLE 0.2738 0.5339 0.3241 0.9561
yij SMLE 0.1735 0.3122 0.1546 0.4282
WTD 0.1827 0.3346 0.1983 0.5607
EXP 0.1741 0.3117 10.3296 0.4406
SMEAR 0.1621 0.3015 0.1521 0.4330
FIMLE 0.1509 0.2730 0.1003 0.2760
MAE
o SMLE 1.1911 1.1947 2.3248 2.0940
WTD 0.2015 0.4063 0.3026 0.8445
EXP 0.1910 0.3615 0.2480 0.6714
SMEAR 0.1909 0.3619 0.2459 0.6623
FIMLE 0.1864 0.3454 0.1983 0.5617
yij SMLE 0.1131 0.2026 0.0942 0.2207
WTD 0.1178 0.2126 0.1225 0.2819
EXP 0.1120 0.2002 0.1096 0.2320
SMEAR 0.1069 0.1957 0.1015 0.2243
FIMLE 0.1002 0.1734 0.0629 0.1660
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Figure 1 Simulated estimation errors for « in the linear model (1). The true value of « is 5 and
sampling is SRSWOR with N = 1000 and n = 50. Errors are ordered along the horizontal axis by
the rank of the sample Y-mean Y, . Solid red line shows median estimation error by decile group
of these sample means. Errors greater than 0.5 in absolute value are not shown. Out of a total of
1000 simulated errors, there were 9 such values for SMLE, 22 for LIMCAL, 30 for LIMMLE, 9
for CALW and 4 each for PRED and FIMLE.
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Figure 2 Simulated estimation errors for « in the linear logistic model. The true value of (&, £)

Is (-5, 1) and sampling is SRSWOR with N = 5000 and n = 200. Errors are ordered along the
horizontal axis by the corresponding rank of the sample Y-mean Y, . Solid red line shows median

estimation error within each decile group of these sample Y-means.

QuickTime™ and a
TIFF (Uncompressed) decompressor
are needed to see this picture.

QuickTime™ and a
TIFF (Uncompressed) decompressor
are needed to see this picture.

QuickTime™ and a
TIFF (Uncompressed) decompressor
are needed to see this picture.

QuickTime™ and a
TIFF (Uncompressed) decompressor
are needed to see this picture.

32



