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Abstract—We consider differential spatial modulation (DSM)5
operating in a block fading environment and propose sparse uni-6
tary dispersion matrices (DMs) using algebraic field extensions.7
The proposed DM sets are capable of exploiting full transmit8
diversity and, in contrast to the existing schemes, can be con-9
structed for systems having an arbitrary number of transmit10
antennas. More specifically, two schemes are proposed: 1) field-11
extension-based DSM (FE-DSM), where only a single conventional12
symbol is transmitted per space–time block; and 2) FE-DSM13
striking a diversity–rate tradeoff (FE-DSM-DR), where multiple14
symbols are transmitted in each space–time block at the cost15
of a reduced transmit diversity gain. Furthermore, the FE-DSM16
scheme is analytically shown to achieve full transmit diversity, and17
both proposed schemes are shown to impose decoding complexity,18
which is independent of the size of the signal set. It is observed19
from our simulation results that the proposed FE-DSM scheme20
suffers no performance loss compared with the existing DM-based21
DSM (DM-DSM) scheme, whereas FE-DSM-DR is observed to22
give a better bit-error-ratio performance at higher data rates than23
its DM-DSM counterpart. Specifically, at data rates of 2.25 and24
2.75 bits per channel use, FE-DSM-DR is observed to achieve25
about 1- and 2-dB signal-to-noise ratio (SNR) gain with respect26
to its DM-DSM counterpart.27

Index Terms—Decoding complexity, differential spatial modula-28
tion (DSM), dispersion matrices (DMs), diversity, field extension.29

I. INTRODUCTION30

31 I T is widely recognized that multiple-input multiple-output32

(MIMO) communication systems provide significant spec-33

tral efficiency improvements compared with single-input–34

single-output systems, owing to their higher degrees of freedom35
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[1]. However, the benefit of increased spectral efficiency comes 36

at the cost of high decoding complexity at the receiver, since 37

the transmitted symbols interfere with each other at the receiver 38

due to the simultaneous activation of multiple transmit antennas 39

(TAs). For instance, in the classic Vertical Bell Laboratories 40

Layered Space–Time architecture [2], the decoding complex- 41

ity of the maximum-likelihood (ML) receiver exponentially 42

increases with the number of TAs. An additional overhead in 43

MIMO systems is that of estimating the channel coefficients 44

between each TA and receive antenna (RA) pair and tracking 45

their changes over the entire transmission duration for coherent 46

detection [4]. Spatial modulation (SM) [5]–[8] is a beneficial 47

multiantenna scheme that overcomes some of these drawbacks. 48

Unlike the conventional MIMO system, the SM system acti- 49

vates only a single TA in each symbol duration, thereby avoid- 50

ing the interference of transmitted symbols with each other at 51

the receiver. As a further substantial benefit, it only requires a 52

single radio frequency (RF) chain, as opposed to Nt chains, 53

albeit this potentially precludes having a transmit diversity 54

gain. More specifically, the bitstream is divided into blocks of 55

log2(MNt) bits, and in each block, log2(M) bits are used to 56

select a symbol from an M -ary alphabet to be transmitted from 57

a TA chosen from Nt TAs based on log2(Nt) bits. 58

The SM system has been extensively studied with regard to 59

various system parameters, which include its transmit diversity 60

order [9]–[12], low-complexity near-ML detection [13]–[17], 61

TA subset selection for performance versus complexity en- 62

hancement [18]–[22], and the impact of channel estimation 63

error on the attainable performance [23]–[25]. A significant 64

research effort was spent on increasing the transmit diversity 65

order of the SM system, since achieving transmit diversity 66

gain in the SM system was not straightforward, owing to 67

the constraint of a single RF chain at the transmitter. This 68

problem was partly addressed by conceiving space–time-coded 69

SM schemes [9]–[12], which operate in an open-loop scenario, 70

and by employing TA subset selection [20], [21], which operate 71

in a closed-loop scenario. Note that both these approaches 72

require accurate channel estimation and tracking at the receiver. 73

Furthermore, the SM system has been studied in nonco- 74

herent communication scenarios [26]–[29], where the high- 75

complexity channel estimation and tracking are dispensed with 76

by employing differential encoding of the transmitted symbols. 77

Naturally, this complexity reduction is achieved at 3-dB per- 78

formance loss. This scheme is referred to as differential SM 79

(DSM) throughout this paper. More specifically, Bian et al. 80

in [26] have extended the conventional SM to a noncoherent 81

scenario by obtaining dispersion matrices (DMs) from a set of 82
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TABLE I
COMPARISON OF VARIOUS EXISTING DSM SCHEMES

(Nt ×Nt) permutation matrices having only a single nonzero83

element in every row and column, where each nonzero ele-84

ment is drawn from an M -ary phase-shift keying (PSK) signal85

set. This scheme is referred to as permutation-based DSM86

(P-DSM). In [27], a fixed set of sparse complex-valued DMs87

is used in conjunction with a set of diagonal matrices, whose88

elements are drawn from an M -ary PSK signal set. In this89

scheme, a higher transmit diversity order is shown to be achiev-90

able, albeit at the cost of a reduced transmission rate. We refer91

to this scheme as DM-based DSM (DM-DSM). More recently,92

a DM set construction was specifically proposed for two TAs93

[28], where a transmit diversity order of 2 is guaranteed to be94

achieved. This scheme, which employs a cyclic signal structure95

based on diagonal matrices along with a set of fixed DMs, is96

referred to as cyclic-signaling-based DSM (CS-DSM) in this97

paper. Table I compares these schemes, where Q denotes the98

number of DMs, Q′ represents the number of diagonal matrices99

used for signaling [28], d is the transmit diversity order, and100

�a�2p denotes the largest integer that is a power of 2 and101

smaller than a, where d is assumed to divide Nt with a zero102

remainder.103

It is clear from Table I that the DM-DSM achieves the same104

throughput as that of P-DSM for d = 1 and Q = �Nt!�2p ,105

but this will not yield any diversity advantage. To achieve106

the same throughput as that of P-DSM with full diversity,107

Q should be equal to MNt−1�Nt!�2p . Similarly, CS-DSM is108

capable of achieving the same throughput as that of P-DSM109

for Q′ = MNt and Q = log2(�Nt!�2p). However, CS-DSM is110

specifically designed for the Nt = 2 case, where Q has been111

restricted to 2 [28]. Furthermore, CS-DSM is different from112

DM-DSM in the sense that only matrices are used for encoding113

the information bits, which is in contrast to the DM-DSM,114

where a set of DMs and a conventional signal set are used for115

encoding the information bits. To the best of our knowledge,116

there is no systematic method of obtaining the number of DMs117

required to achieve a desired throughput and transmit diversity118

order in systems with arbitrary Nt. Hence, in this paper, we119

focus on constructing structured DMs for DM-DSM schemes.120

Against this background, the contributions of this paper are121

as follows.122

123

1) We propose a systematic method of obtaining the set of124

DMs for DSM systems for an arbitrary Nt by exploiting125

the related results from algebraic field extensions. More126

specifically, we show that the companion matrix of an 127

irreducible polynomial over a certain base field will be 128

unitary, when the base field is a cyclotomic field [30], and 129

exploit these unitary companion matrices for constructing 130

DMs to be used in DSM. Additionally, we analytically 131

show that the proposed scheme is capable of achieving 132

full transmit diversity. 133

2) Furthermore, we generalize the proposed field-extension- 134

based DSM (FE-DSM) scheme to strike a flexible trade- 135

off between attainable diversity and multiplexing gain. 136

3) Finally, we evaluate the decoding complexity of ML 137

detection of the proposed schemes and show that they 138

offer significantly reduced complexity, owing to the DM- 139

based approach of encoding information by exploiting 140

results from [34]. 141

The rest of this paper is organized as follows. Section II 142

provides the system model of DSM. In Section III, the proposed 143

DM set construction, as well as the diversity analysis of the pro- 144

posed scheme, are presented. Specifically, Section III-A gives 145

a brief overview of algebraic field extensions. Section III-B 146

provides the proposed DM construction and our diversity 147

analysis. In Section III-C, we conceive the low-complexity 148

decoding method for the proposed schemes. Section IV 149

provides our simulation results, and Section V concludes 150

this paper. 151

Notations: If S1 and S2 are two sets, then S3 = S1 × S2 152

represents the Cartesian product of sets S1 and S2. Lowercase 153

and uppercase boldface letters represent vectors and matrices, 154

respectively. Furthermore, ‖ · ‖ represents the 2-norm of a 155

vector or the Frobenius norm of a matrix. The notations of (·)T 156

and (·)H indicate the transpose and Hermitian transpose of a 157

vector/matrix, respectively, whereas | · | represents the cardi- 158

nality of a given set or the magnitude of a complex quantity. 159

Furthermore, ⊗ defines the Kronecker product of two matrices. 160

CN (μ, σ2) denotes a complex Gaussian random variable with 161

mean μ and variance σ2. R and C represent the field of real 162

and complex numbers, respectively. If F is a field, then F [X ] 163

represents the ring of polynomials in X over F . A([a : b], :) 164

defines a matrix with rows a, a+ 1, . . . , b− 1, b of A, and 165

A(:, [a : b]) is a matrix with columns a, a+ 1, . . . , b− 1, b of 166

A. In represents an n× n identity matrix. If x is an n-length 167

vector, then diag(x) represents an n× n diagonal matrix whose 168

(i, i)th element is xi. 169
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II. DIFFERENTIAL SPATIAL MODULATION SYSTEM170

Consider a MIMO system having Nr RAs and Nt TAs oper-171

ating in a Rayleigh flat-fading channel, which is characterized by172

Yi =
√
ρHiXi +Ni (1)

where Yi ∈ CNr×Nt is the received space–time matrix (STM);173

Xi ∈ CNt×Nt is the transmitted STM; Ni ∈ CNr×Nt andHi ∈174

CNr×Nt are the noise and channel matrices, respectively, whose175

entries are from CN (0, 1); and ρ denotes the average signal-to-176

noise ratio (SNR) at each RA. The subscript i in all matrices177

indicates the block index.178

A. DSM System179

Differential encoding [31], [32] of the transmitted STM is180

given by181

Xi = Xi−1Si

where Si ∈ CNt×Nt is the unitary STM to be transmitted182

during the symbol period of the ith block. For the transmitted183

STM Xi to become unitary, it is sufficient to ensure that X0 be184

unitary. In this paper, we consider X0 to be INt
. Furthermore,185

each column of Si is assumed to have only a single nonzero186

element, since the SM system employs only a single RF chain187

at the transmitter. Assuming that the channel remains constant188

over a period of two successive blocks, we have189

Yi−1 =
√
ρHiXi−1 +Ni−1

and hence, (1) can be written as190

Yi = Yi−1Si +Ni −Ni−1Si.

Assuming that there is no channel state information at the191

receiver, the optimal differential receiver [31] is given by192

Ŝi = argmin
S∈S

‖Yi −Yi−1S‖2 (2)

where S is the set of transmit STMs.193

B. DM-DSM194

In the case of DM-DSM, each transmitted STM is of the195

following form:196

Si = D(s)Aq (3)

where we have s=[s1, s2, . . . , sNt
], D(s)∈D= {diag(s)|si ∈197

Li − PSK}, and Aq ∈ A, where A = [A1,A2, . . . ,AQ] is the198

set of DMs. The rate achieved by DM-DSM is given by199

RDM−DSM =
log2 (Q · L1 · · · LNt

)

Nt
bpcu.

In the following section, we propose a method for construct-200

ing the set D having diagonal or block-diagonal matrices as its201

elements and the set of DMs A, such that they enable the DSM202

scheme to achieve full transmit diversity.203

C1: We emphasize the condition that each element of A 204

should be a unitary matrix [32] and should have only a single 205

nonzero element in each column and row. The latter condition is 206

necessary since the SM system can transmit only one symbol in 207

each channel use, owing to a single RF chain at the transmitter. 208

III. DISPERSION MATRIX SET CONSTRUCTION 209

Here, we provide a brief overview of algebraic field exten- 210

sions as required for our exposition on the proposed DM set 211

construction. For further details, see [30] and [33]. 212

A. Review of Field Extensions 213

Definitions: Let J be an extension of a field L and I be a 214

subset of J , i.e., I ⊂ J . Field J is said to be generated by I 215

if J is obtained by adjoining1 the elements of I to L, and it 216

is denoted by J = L(I). If set I is finite, then the extension, 217

which is denoted by J/L, is said to be finitely generated. 218

If β ∈ J , then the minimal polynomial of β is the monic 219

polynomial of least degree among the polynomials in L[X ] 220

having β as a root. The extended field J can be viewed as 221

a vector space, where its elements are considered as vectors, 222

and the elements of L are viewed as scalars. The dimension of 223

the vector space J is termed as the degree of extension, and it 224

is denoted by [J : L]. Furthermore, the extension J/L is said 225

to be an algebraic extension, if every element in J is a root 226

of a nonzero polynomial with coefficients in L. An algebraic 227

extension J/L is said to be normal if J is a splitting field of 228

the family of polynomials L[X ], i.e., each polynomial in L[X ] 229

splits or decomposes into linear factors over J . Furthermore, an 230

algebraic extension H of J is said to be a normal closure of 231

the algebraic extension J/L, if it is the only subfield of H that 232

contains J and if a normal extension of L is H itself. 233

Let S be a conventional signal set, such as M -PSK, and F = 234

Q(S) be the extended field of rationals over S. If α is a root of 235

a minimal polynomial over F , which is given by 236

p(x) = xn + an−1x
n−1 + an−2x

n−2 + · · ·+ a0 (4)

then F can be extended by adjoining α to obtain K = F (α). 237

The degree of extension [K : F ] is equal to n, since p(x) is 238

irreducible over F . Any element k ∈ K can be expressed as 239∑n−1
i=0 fiα

i, where fi∈F ∀ 0 ≤ i ≤ n−1. From [30, Sec. 7.3], 240

there exists a natural mapping k �→ λk∀k ∈ K that embeds K 241

in Mn(F ), where λk is a linear transformation of K into itself. 242

The regular representation of λk maps any v ∈ K to kv. The 243

linear transformation λα associated with α is given by 244

M =

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 0 −a0
1 0 · · · 0 −a1
0 1 · · · 0 −a2
...

...
. . .

...
...

0 0 · · · 1 −an−1

⎤
⎥⎥⎥⎥⎥⎦
∈ Fn×n (5)

1The adjoining operation refers to including all the elements resulting from
field operations considering the elements from the extended set I ∪ L.
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which is the companion matrix of p(x). Thus, for any k =245 ∑n−1
i=0 fiα

i ∈ K , the associated λk is given by
∑n−1

i=0 fiM
i.246

Lemma 1: Let K , F , and S be defined as above. For any247

k = k1 − k2, k1 �= k2 ∈ K , λk ∈ Mn(F ) is invertible.248

Proof: The proof directly follows from K being a field,249

which guarantees the existence of the inverse for every nonzero250

element in K , and the fact that the natural mapping k �→ λk is251

a one-to-one mapping. �252

Lemma 2: If L is a normal closure of K/F and σi, i =253

0, 1, 2, . . . , n− 1 are distinct F -homomorphisms from K to L;254

then, for any element k ∈ K , we have det(λk) = NK/F (k) =255 ∏n−1
i=0 σi(k), where NK/F (k) is the norm of the element k from256

K to F [33, Th. 8].257

B. Proposed DM Set for DSM258

We propose to use the DM set given by259

A = {In,M,M2, . . . ,Mn−1} (6)

where M is as in (5), and n is chosen to be equal to Nt.260

However, to meet C1, every element of A has to be unitary.261

Note that it is sufficient to ensure that M is unitary for all262

the elements of A to be unitary. Hence, we have to satisfy the263

following equation:264

MMH = In. (7)

Note that (MMH)1,1= |a0|2 and (MMH)i,i=1+|ai−1|2 for265

2 ≤ i ≤ n− 1. Thus, by choosing a0 to be an element from the266

unit circle and ai = 0 for 1 ≤ i ≤ n− 1, C1 can be satisfied.267

Thus, while constructingA, we have to consider polynomials of268

the form xn+a0 with |a0|=1 values that are irreducible overF .269

Since we have |A| = n = Nt, our construction results in a max-270

imum ofNt DMs, i.e., Q≤Nt. Furthermore, we assume that the271

set D has scaled identity matrices of the form sIn, where s ∈ S.272

Note that F should contain the specific signal set S from which273

s is chosen. Thus, the following conditions have to be met:274275

1) S ⊂ F ; and276

2) p(x)=xn+a0 with |a0|=1 should be irreducible over F .277

We satisfy the given conditions by choosing F = Q(S, a0),278

where a0 is any transcendental element over Q(S) lying on the279

unit circle. In the following, we shall explain the method of280

constructing set A in detail.281

Let S be a conventional M -PSK signal set denoted by282

{ωi
M}M−1

i=0 , where we have ωM = ej2π/M and a0 = −eju1 ,283

with u1 being algebraic over Q. For instance, u1 can be
√

3,284

which is a root of the polynomial x2 − 3. Note that a0 is285

transcendental over Q(S), and we can choose F = Q(S, eju1).286

Thus, the polynomial xn + a0 = xn − eju1 (for any n) is ir-287

reducible over F . Therefore, we can have the extension K =288

F (α), where α is the primitive nth root of eju1 . Thus, the289

associated companion matrix is given by290

M =

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 0 eju1

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

⎤
⎥⎥⎥⎥⎥⎦
∈ Fn×n. (8)

Example 1: Consider n = Nt = 4 and a0 = −ej
√
3. Then, 291

the elements of set A are given by I4 292

M=

⎡
⎢⎢⎣

0 0 0 ej
√
3

1 0 0 0
0 1 0 0
0 0 1 0

⎤
⎥⎥⎦, M2=

⎡
⎢⎢⎣

0 0 ej
√
3 0

0 0 0 ej
√
3

1 0 0 0
0 1 0 0

⎤
⎥⎥⎦

M3=

⎡
⎢⎢⎣

0 ej
√
3 0 0

0 0 ej
√
3 0

0 0 0 ej
√
3

1 0 0 0

⎤
⎥⎥⎦.

Remark 1: Note that a0 has to be chosen in conjunction with 293

the specific signal set S that maximizes a certain performance 294

metric, such as the coding gain. This can be achieved by 295

searching for an optimal a0 over a large set of closely spaced 296

transcendental elements on the unit circle. 297

We term the DSM scheme employing the proposed FE-DMs 298

as an FE-DSM scheme. Since the set of transmit STMs is given 299

by S = D ×A, the rate achieved by the proposed scheme is 300

RFE−DSM =
log2 (|D||A|)

Nt

=
log2(MNt)

Nt
bpcu.

1) Diversity Gain: The achievable transmit diversity order 301

under differential detection [31, Sec. III-C] of (2) is given by 302

d = min
S1 �=S2∈S

rank(S1 − S2). (9)

Proposition 1: The proposed FE-DSM scheme achieves a 303

transmit diversity order of Nt, i.e., d = Nt. 304

Proof: The proof is given in Appendix A. � 305

2) Coding Gain: The coding gain of the proposed scheme is 306

given by 307

G = min
S1 �=S2∈S

∣∣det [(S1 − S2)(S1 − S2)
H
]∣∣ 1

n . (10)

In the following, we shall provide a simple expression for 308

the determinant term in (10) that allows us to optimize the 309

exponential a0 in conjunction with an arbitrary M -PSK signal 310

set to achieve a high coding gain. 311

Proposition 2: Consider an FE-DSM system using anM -PSK 312

signal set and Nt=n TAs. If S=ej(2πp/M)Ml and S2= 313

ej(2πq/M)Mm, where 0 ≤ p, q ≤ M−1 and 0≤ l,m≤n−1 314

such that S1 �=S2, then | det[(S1−S2)(S1−S2)
H ]| is given by 315

4n
n−1∏
r=0

sin2
(
π(p− q)

M
+

(2πr + u1)(m− l)

2n

)
. (11)

Proof: The proof is provided in Appendix B. � 316

In the following section, we provide a DM set construction 317

based on two levels of field extensions, which facilitate a 318

flexible tradeoff between the attainable transmit diversity and 319

multiplexing gain. 320
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C. FE-DSM With Diversity–Rate Tradeoff321

The DM set construction presented in the previous section322

achieves a transmit diversity order of Nt, while transmitting323

only a single symbol from anM -PSK signal set. Note that when324

the channel conditions are good, it may not be necessary to325

exploit the full transmit diversity order. Under these conditions,326

we may aim at trading off the diversity gain for increasing327

the transmission rate. In the following, we shall provide a328

systematic method of constructing a DM set that achieves329

the desired diversity order and transmission rate. The DM set330

construction presented in the previous section may be viewed331

as a special case.332

Let Nt be factored as g · h. We construct a DM set that allows333

us to transmit h independent M -PSK symbols in each transmit334

STM and achieve transmit diversity order g. Considering F =335

Q(S,−eju1) as before and the extension K = F (α), where α336

is a primitive gth root of the polynomial p1(x) = xg − eju1 , we337

obtain the DM set given by338

A′ = {Ig,M,M2, . . . ,Mg−1} (12)

where M ∈ F g×g is the companion matrix of p1(x). We define339

D to be a set of block-diagonal matrices given by340

D={diag(s1A1,s2A2, . . . ,shAh)|si∈M−PSK,Ai∈A′, ∀ i}.
(13)

Let us now consider the field extension L = K(β) associated341

with the polynomial p2(x) = xh − eju2 , where eju2 is tran-342

scendental overK , and β is the primitivehth root of eju2 . Then,343

the regular representation of an element l =
∑h−1

i=0 kiβ
i ∈ L344

is given by
∑h−1

i=0 kiN
i, where ki ∈ K , 0 ≤ i ≤ h− 1, and345

N ∈ Kh×h is the companion matrix of p2(x). We define the346

DM set as347

A =
{
In,N

′,N′2, . . . ,N′h−1
}

(14)

where N′ = N⊗ Ig . The transmit STM set is given by348

S = D ×A as before. We refer to this scheme as the FE-DSM349

arrangement exhibiting a flexible diversity–rate tradeoff (FE-350

DSM-DR). Note that the DSM scheme requires each transmit351

STM to be unitary. The following proposition shows that this352

condition is satisfied.353

Proposition 3: If S is the set of transmit STMs of FE-DSM-354

DR, then each element in S is unitary.355

Proof: The proof is provided in Appendix C. �356

In the following, we shall provide an example construction357

to further illustrate the given set of points.358

Since we have |D| = (Mg)h and |A| = h, the rate achieved359

by the FE-DSM-DR is given by360

RFE−DSM−DR =
h log2(Mg) + log2(h)

Nt
bpcu. (15)

Note that when we have g = Nt, FE-DSM-DR reduces to the361

FE-DSM scheme.362

Example 2: Let n = Nt = 4, g = h = 2, u1 =
√

2, and 363

u2 =
√

3. The elements of set D are 364

⎡
⎢⎢⎣
s1 0 0 0
0 s1 0 0
0 0 s2 0
0 0 0 s2

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0 s1e
j
√
2 0 0

s1 0 0 0
0 0 s2 0
0 0 0 s2

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0 s1e
j
√
2 0 0

s1 0 0 0
0 0 0 s2e

j
√
2

0 0 s2 0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣
s1 0 0 0
0 s1 0 0
0 0 0 s2e

j
√
2

0 0 s2 0

⎤
⎥⎥⎦

where s1 and s2 are from the classic M -PSK signal set. The 365

elements of the DM set A are 366

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0 0 ej
√
3 0

0 0 0 ej
√
3

1 0 0 0
0 1 0 0

⎤
⎥⎥⎦ .

Remark 2: Note that eju1 and eju2 have to be optimized 367

in conjunction with the signal set S to maximize the coding 368

gain. Unlike FE-DSM, the STM matrices of the FE-DSM-DR 369

scheme are not representations of field elements, and hence, no 370

closed-form expression is derived for the determinant of the 371

codeword difference matrix. We resort to numerical search to 372

arrive at the optimal values of u1 and u2. 373

D. ML Decoding Complexity 374

Here, we evaluate the complexity order of ML decoding 375

for the proposed schemes. We show that the ML decoding 376

complexity of both proposed schemes is independent of the size 377

of the signal set S. 378

1) FE-DSM: Let χ = {sei|1 ≤ i ≤ Q, s ∈ S}, where ei is 379

the ith column of IQ. Furthermore, let G=[vec(A1), vec(A2), 380

. . . , vec(AQ)]∈CN2
t ×Q, whereAi values are the elements ofA. 381

Considering the optimal detection rule of (2), we have 382

Ŝi = argmin
S∈S

‖Yi −Yi−1S‖2 (16)

≡ arg min
s∈S,Aq∈A

‖Yi −Yi−1(sAq)‖2 (17)

≡ argmin
s∈χ

∥∥Ȳi − (INt
⊗Yi−1)Gs

∥∥2 (18)

where Ȳi = vec(Yi) ∈ CNrNt×1. Since we have |χ| = Q|S|, 383

the decoding complexity order is O(QM), when S is an 384

M -PSK signal set. However, owing to the interference-free 385

nature of transmit vectors, the decoding complexity can be 386

reduced from O(QM) to O(Q) with the aid of hard-limiting 387

(HL)-based detection [34]. In other words, the ML decoding 388

complexity of the FE-DSM scheme does not scale with the size 389

of the signal set. By contrast, the existing full-diversity DSM 390

scheme in [28] does not allow such low decoding complexity. 391
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2) FE-DSM-DR: The optimal detection rule of (2) yields392

Ŝi = argmin
S∈S

‖Yi −Yi−1S‖2 (19)

≡ arg min
D∈D,Aq∈A

‖Yi −Yi−1DAq‖2 (20)

≡ arg min
0≤k≤h−1

{
min
D∈D

∥∥∥Yi−Yi−1DN′k
∥∥∥2
}

(21)

(
k̂, D̂(k̂)

)
≡ arg min

0≤k≤h−1

∥∥∥Z(k)
i −Yi−1D̂

(k)
∥∥∥2 (22)

where D̂(k)=minD∈D‖Z(k)
i −Yi−1D‖2, andZ(k)

i =Yi(N
′k)

H
393

for 0 ≤ k ≤ h− 1. Since D is block diagonal, we have394

D̂(k) = min
D∈D

∥∥∥Z(k)
i −Yi−1D

∥∥∥2

(23)

≡
h∑

l=1

min
sl∈S,Ail

∈A′

∥∥∥Z(k)
i (:, Il)−Yi−1(:, Il) (slAil)

∥∥∥2

(24)

where Il = [g(l − 1) + 1 : gl]. By invoking the HL-based395

detector in [34], the search complexity of the minimization396

problem, i.e.,397

min
sl∈S,Ail

∈A′

∥∥∥Z(k)
i (:, Il)−Yi−1(:, Il) (slAil)

∥∥∥2 (25)

can be reduced from O(|S||A′|) to O(|A′|) = O(g). Specifi-398

cally, this is achieved by converting (25) into an interference-399

free system analogous to (18) and then employing the detector400

in [34]. Thus, the ML decoding complexity order of FE-DSM-401

DR is independent of the size of the signal set, and it is given402

by O(|A′||A|) = O(gh) = O(Nt).403

E. Computational Complexity404

Here, we compare the computational complexity of the ML405

detector of various existing schemes with that of the proposed406

scheme. Specifically, we show that all the existing schemes407

essentially impose the same computational complexity when408

operating at a given rate. However, since the ML decoding409

complexity order of the proposed schemes does not scale with410

the signal set, the computational complexity involved in ML411

decoding remains constant, when the size of the signal set is412

increased to increase the transmission rate.413

Considering the ML detection rule of (2), we have414

Ŝi = argmin
S∈S

‖Yi −Yi−1S‖2 (26)

where S is the set of transmit STMs. The number of real-valued415

multiplications in evaluating (26) is 6NrNt|S|, where |S| is the416

cardinality of the set of transmit STMs. When the transmission417

rate is fixed, |S| is essentially the same across all the existing418

schemes [26]–[28]. The direct evaluation of (26) results in the419

same computational complexity across all the schemes, since420

the number of nonzero elements in each S ∈ S is the same421

in all of them. However, the proposed FE-DSM (DM-DSM422

[27]) scheme has the property that S = S ×A, which makes423

Fig. 1. Variation of coding gain as a function of u1 in FE-DSM employing a
BPSK signal set for various Nt values.

it amenable to HL-based ML detection (HL-ML) [34]. The 424

computational complexity imposed by the HL-ML detector can 425

be shown to be (10NtNr + 9)|A|.2 In the following section, we 426

compare the computational complexity imposed by the direct 427

ML solution in (26) to that of the HL-ML solution [34] by 428

considering various system parameters and transmission rates. 429

IV. SIMULATION RESULTS AND DISCUSSIONS 430

Simulation Parameters: In all our simulations, we have used 431

block Rayleigh fading channels. In evaluating the bit error ratio 432

(BER) of 10−t, we have used at least 10t+2 bits. For DM-DSM 433

schemes operating at different rates, the optimal DM sets are 434

obtained by optimizing the coding gain over a large set of 435

feasible matrices in conjunction with the associated M -PSK 436

signal set. The parameter eju1 of FE-DSM and the parameters 437

(eju1 , eju2) of FE-DSM-DR are optimized in conjunction with 438

the associated signal sets to obtain the optimal set of DMs. For 439

the FE-DSM scheme using an M -PSK signal set, it is observed 440

that u1 = 2π/M is optimal for any value of Nt. Fig. 1 shows 441

the achievable coding gain of FE-DSM employing a binary 442

phase-shift keying (BPSK) signal set. It is clear in Fig. 1 that 443

the value of u1 = π remains optimal even when Nt is varied. 444

Fig. 2 compares the BER performance of the FE-DSM and 445

DM-DSM schemes, both having Nt = 2 and employing 4-PSK 446

as well as 16-PSK signal sets that achieve a throughput of 1.5 447

and 2.5 bpcu, respectively. The BER performance of P-DSM is 448

also provided to highlight the transmit diversity gain achieved 449

by the DM-DSM scheme. Furthermore, the BER performance 450

of the proposed codebooks in the coherent scenario is also pro- 451

vided. Fig. 3 compares the BER performance of the FE-DSM 452

and DM-DSM schemes, both having Nt = 4 and employing 453

4-PSK, as well as 16-PSK signal sets that achieve a throughput 454

of 1 and 1.5 bpcu, respectively. It is clear in Figs. 2 and 3 that 455

2It takes 4NtNr|A| multiplications to compute (INt ⊗Yi−1)G and
(6NtNr + 9)|A| multiplications to compute various decision metrics of the
HL-ML detector [34]. For further details, see [34, Sec. IV-B].
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Fig. 2. BER performance of the DM-DSM and FE-DSM schemes, having
Nt = 2 and employing 4-PSK and 16-PSK signal sets. The BER performance
of the P-DSM scheme is provided to highlight the transmit diversity gain
achieved in DM-DSM and FE-DSM.

Fig. 3. BER performance of the DM-DSM and FE-DSM schemes, having
Nt = 4 and employing M -PSK signal sets.

the proposed FE-DSM scheme suffers from no performance456

loss compared with the DM-DSM scheme, and there is a 3-457

dB performance loss with respect to the coherent counterparts,458

which is as expected.459

Fig. 4 compares the BER performance of FE-DSM-DR and460

DM-DSM that trades off diversity gain against throughput.461

Both the systems are assumed to haveNt = 4. Specifically, four462

data rates are considered for comparison. For h = g = 2, FE-463

DSM-DR achieves throughput values of 1.25, 1.75, 2.25, and464

2.75 bpcu when employing BPSK, quaternary phase-shift key-465

ing, 8-PSK, and 16-PSK signal sets, respectively. The DM-466

DSM scheme is assumed to have a set of four DMs as proposed467

in [27] and employs M = [(L1, L1), (L2, L2)], where L1 and468

L2 correspond to the sizes of the PSK signal sets encoding sym-469

bols s1 and s2, respectively. To elaborate, L1 and L2 are chosen470

so that the rates achieved by the proposed scheme and the471

FE-DSM scheme are the same. When operating at 1.25 bpcu,472

Fig. 4. BER performance of the DM-DSM and FE-DSM-DR schemes, having
Nt = 4 and employing M -PSK signal sets.

Fig. 5. Comparison of the computational complexity imposed by the ML
detector in the existing schemes with that of the proposed scheme in systems
having Nt = 2, 4 and Nr = 2 and employing various transmission rates.

it can be observed in Fig. 4 that FE-DSM-DR suffers from a 473

1.5-dB SNR loss at a BER of 10−4 compared with DM-DSM. 474

However, as the rate is increased from 1.25 to 2.75 bpcu, the 475

performance of FE-DSM-DR improves, which is evident in 476

Fig. 4. Specifically, when operating at 2.25 and 2.75 bpcu, it is 477

observed that the FE-DSM-DR scheme achieves an SNR gain 478

of about 1 dB and about 2 dB at a BER of 10−4, respectively. 479

Fig. 5 gives the computational complexity imposed by the 480

ML detector in various existing schemes along with that of the 481

proposed FE-DSM scheme in systems having Nt = 2, 4 and 482

Nr = 2 and employing various transmission rates. In the case 483

of Nt = 2, the P-DSM scheme is assumed to employ BPSK, 484

4-PSK, 8-PSK, and 16-PSK to achieve a transmission rate of 485

3, 5, 7, and 9 bpcu, respectively, and in the case of Nt = 4, 486

the same signal sets achieve a transmission rate of 8, 12, 16, 487

and 20 bpcu, respectively. In the case of FE-DSM, the size 488

of the DM set is fixed to 2 and 4 in the case of Nt = 2 and 489

Nt = 4, respectively, and the size of the signal set (or the 490
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number of cyclic matrices in the case of CS-DSM [26] when491

Nt = 2) is assumed to vary to increase the transmission rate. It492

is clear in Fig. 5 that the HL-ML detector results in significant493

complexity reductions over the direct ML solution. Specifically,494

at a transmission rate of 5 and 8 bpcu, a reduction of about495

670 multiplications in the case of Nt = 2 and about 11934496

multiplications in the case of Nt = 4 is observed, respectively.497

Future Work: While the proposed DM set constructions cater498

to the requirements of the SM scheme relying on differential499

encoding, it would be interesting to study the feasibility of ex-500

tending the proposed schemes to generalized SM (GSM) [35],501

where more than one TAs are activated during each channel use.502

Note, however, that this is not straightforward, since503
504

1) the transmitted STMs in GSM may not be unitary in505

general; and506

2) the product of any two distinct transmit STMs does not507

satisfy the sparsity constraint analogous to condition C1508

given in Section II-B.509

As inferred from Fig. 4, the FE-DSM-DR-based DMs are not510

optimal at low rates (unlike the FE-DSM scheme). Furthermore,511

considering algebraic structures for designing DM sets would512

enable us to quantify the achievable diversity order and the cod-513

ing gain in addition to attaining the benefits of a simple and sys-514

tematic encoding at the transmitter. Thus, worth investigating515

are other representations of algebraic structures such as division516

algebras for their suitability in obtaining sparse, full-diversity,517

and optimal DM sets for differential SM/GSM schemes.518

V. CONCLUSION519

We have proposed a systematic method for obtaining a DM520

set for DSM with the aid of algebraic field extensions. It was521

analytically shown that the proposed FE-DSM achieves full522

transmit diversity. Furthermore, a closed-form expression was523

derived for the determinant of the codeword difference matrix.524

The proposed FE-DSM scheme was then further extended to525

FE-DSM-DR, which stroke a flexible tradeoff between diver-526

sity gain and throughput. Both the proposed schemes were527

shown to offer ML decoding complexity, which is independent528

of the size of the signal set. Our simulation results have shown529

that the FE-DSM scheme achieves the same BER performance530

as the DM-DSM scheme, whereas FE-DSM-DR is observed to531

give a better BER performance at higher rates compared with532

its DM-DSM counterpart.533

APPENDIX A534

PROOF OF PROPOSITION 1535

Let S1 = sMi and S2 = s′Mj , where s, s′ ∈ S ⊂ F =536

Q(S, a0). Recall that S1 and S2 are regular representations537

of k1 = sαi and k2 = s′αj , respectively. Then, we have λk =538

S1 − S2, where k = k1 − k2. From Lemma 1, we see that λk is539

invertible for all k1, k2 ∈ K and k1 �= k2. Thus, we have S1 −540

S2 as invertible. In other words, we have rank(S1 − S2) = n =541

Nt, ∀S1 �= S2 ∈ S. Thus, we have minS1 �=S2∈S rank(S1 −542

S2) = Nt. This concludes the proof.543

APPENDIX B 544

PROOF OF PROPOSITION 2 545

Ifλk=S1−S2, then the elementk associated withλk is given 546

by sαm−s′αl, where s = ej(2πp/M), s′=ej(2πq/M), andα is the 547

primitive nth root of −a0. From Lemma 2, we have det(λk) = 548

det (S1 − S2) =
∏n−1

r=0 σr(k), where we have σr : α �→ αr, 549

such that αr, 0 ≤ r ≤ n− 1 are the nth roots of −a0 = eju1 . 550

Therefore, we have 551

det (S1 − S2) =

n−1∏
r=0

σr(k) =

n−1∏
r=0

σr(sα
m − s′αl) (27)

=

n−1∏
r=0

(
s (σr(α))

m − s′ (σr(α))
l
)

(28)

=

n−1∏
r=0

(
ej

2πp
M +

(2πr+u1)m
n − ej

2πq
M +

(2πr+u1)l
n

)
.

(29)

Thus, we have 552

det
[
(S1 − S2)(S1 − S2)

H
]

=

∣∣∣∣∣
n−1∏
r=0

(
ej

2πp
M +

(2πr+u1)m
n − ej

2πq
M +

(2πr+u1)l
n

)∣∣∣∣∣
2

(30)

= 4n
n−1∏
r=0

sin2
(
π(p− q)

M
+

(2πr + u1)(m− l)

2n

)
. (31)

This concludes the proof. 553

APPENDIX C 554

PROOF OF PROPOSITION 3 555

Let S ∈ S such that S = diag(s1A1, s2A2, . . . , shAh)N
′k 556

for some 0 ≤ k ≤ h− 1, si ∈ M -PSK signal set, Ai ∈ A′ for 557

1 ≤ i ≤ h. Consider SSH = DN′kN′kHDH , where D = 558

diag(s1A1, s2A2, . . . , shAh). SinceN′k=(N⊗Ig)
k=Nk⊗Ig, 559

we have 560

N′kN′kH = (Nk ⊗ Ig)(N
k ⊗ Ig)

H

=
(
NkNkH ⊗ Ig

)

= Ih ⊗ Ig = In.

Thus, we have 561

SSH =DDH

=diag
(
A1A

H
1 ,A2A

H
2 , . . . ,AhA

H
h

)

=diag(Ig, Ig, . . . , Ig) = In.

This concludes the proof. 562
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Abstract—We consider differential spatial modulation (DSM)5
operating in a block fading environment and propose sparse uni-6
tary dispersion matrices (DMs) using algebraic field extensions.7
The proposed DM sets are capable of exploiting full transmit8
diversity and, in contrast to the existing schemes, can be con-9
structed for systems having an arbitrary number of transmit10
antennas. More specifically, two schemes are proposed: 1) field-11
extension-based DSM (FE-DSM), where only a single conventional12
symbol is transmitted per space–time block; and 2) FE-DSM13
striking a diversity–rate tradeoff (FE-DSM-DR), where multiple14
symbols are transmitted in each space–time block at the cost15
of a reduced transmit diversity gain. Furthermore, the FE-DSM16
scheme is analytically shown to achieve full transmit diversity, and17
both proposed schemes are shown to impose decoding complexity,18
which is independent of the size of the signal set. It is observed19
from our simulation results that the proposed FE-DSM scheme20
suffers no performance loss compared with the existing DM-based21
DSM (DM-DSM) scheme, whereas FE-DSM-DR is observed to22
give a better bit-error-ratio performance at higher data rates than23
its DM-DSM counterpart. Specifically, at data rates of 2.25 and24
2.75 bits per channel use, FE-DSM-DR is observed to achieve25
about 1- and 2-dB signal-to-noise ratio (SNR) gain with respect26
to its DM-DSM counterpart.27

Index Terms—Decoding complexity, differential spatial modula-28
tion (DSM), dispersion matrices (DMs), diversity, field extension.29

I. INTRODUCTION30

31 I T is widely recognized that multiple-input multiple-output32

(MIMO) communication systems provide significant spec-33

tral efficiency improvements compared with single-input–34

single-output systems, owing to their higher degrees of freedom35
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[1]. However, the benefit of increased spectral efficiency comes 36

at the cost of high decoding complexity at the receiver, since 37

the transmitted symbols interfere with each other at the receiver 38

due to the simultaneous activation of multiple transmit antennas 39

(TAs). For instance, in the classic Vertical Bell Laboratories 40

Layered Space–Time architecture [2], the decoding complex- 41

ity of the maximum-likelihood (ML) receiver exponentially 42

increases with the number of TAs. An additional overhead in 43

MIMO systems is that of estimating the channel coefficients 44

between each TA and receive antenna (RA) pair and tracking 45

their changes over the entire transmission duration for coherent 46

detection [4]. Spatial modulation (SM) [5]–[8] is a beneficial 47

multiantenna scheme that overcomes some of these drawbacks. 48

Unlike the conventional MIMO system, the SM system acti- 49

vates only a single TA in each symbol duration, thereby avoid- 50

ing the interference of transmitted symbols with each other at 51

the receiver. As a further substantial benefit, it only requires a 52

single radio frequency (RF) chain, as opposed to Nt chains, 53

albeit this potentially precludes having a transmit diversity 54

gain. More specifically, the bitstream is divided into blocks of 55

log2(MNt) bits, and in each block, log2(M) bits are used to 56

select a symbol from an M -ary alphabet to be transmitted from 57

a TA chosen from Nt TAs based on log2(Nt) bits. 58

The SM system has been extensively studied with regard to 59

various system parameters, which include its transmit diversity 60

order [9]–[12], low-complexity near-ML detection [13]–[17], 61

TA subset selection for performance versus complexity en- 62

hancement [18]–[22], and the impact of channel estimation 63

error on the attainable performance [23]–[25]. A significant 64

research effort was spent on increasing the transmit diversity 65

order of the SM system, since achieving transmit diversity 66

gain in the SM system was not straightforward, owing to 67

the constraint of a single RF chain at the transmitter. This 68

problem was partly addressed by conceiving space–time-coded 69

SM schemes [9]–[12], which operate in an open-loop scenario, 70

and by employing TA subset selection [20], [21], which operate 71

in a closed-loop scenario. Note that both these approaches 72

require accurate channel estimation and tracking at the receiver. 73

Furthermore, the SM system has been studied in nonco- 74

herent communication scenarios [26]–[29], where the high- 75

complexity channel estimation and tracking are dispensed with 76

by employing differential encoding of the transmitted symbols. 77

Naturally, this complexity reduction is achieved at 3-dB per- 78

formance loss. This scheme is referred to as differential SM 79

(DSM) throughout this paper. More specifically, Bian et al. 80

in [26] have extended the conventional SM to a noncoherent 81

scenario by obtaining dispersion matrices (DMs) from a set of 82
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TABLE I
COMPARISON OF VARIOUS EXISTING DSM SCHEMES

(Nt ×Nt) permutation matrices having only a single nonzero83

element in every row and column, where each nonzero ele-84

ment is drawn from an M -ary phase-shift keying (PSK) signal85

set. This scheme is referred to as permutation-based DSM86

(P-DSM). In [27], a fixed set of sparse complex-valued DMs87

is used in conjunction with a set of diagonal matrices, whose88

elements are drawn from an M -ary PSK signal set. In this89

scheme, a higher transmit diversity order is shown to be achiev-90

able, albeit at the cost of a reduced transmission rate. We refer91

to this scheme as DM-based DSM (DM-DSM). More recently,92

a DM set construction was specifically proposed for two TAs93

[28], where a transmit diversity order of 2 is guaranteed to be94

achieved. This scheme, which employs a cyclic signal structure95

based on diagonal matrices along with a set of fixed DMs, is96

referred to as cyclic-signaling-based DSM (CS-DSM) in this97

paper. Table I compares these schemes, where Q denotes the98

number of DMs, Q′ represents the number of diagonal matrices99

used for signaling [28], d is the transmit diversity order, and100

�a�2p denotes the largest integer that is a power of 2 and101

smaller than a, where d is assumed to divide Nt with a zero102

remainder.103

It is clear from Table I that the DM-DSM achieves the same104

throughput as that of P-DSM for d = 1 and Q = �Nt!�2p ,105

but this will not yield any diversity advantage. To achieve106

the same throughput as that of P-DSM with full diversity,107

Q should be equal to MNt−1�Nt!�2p . Similarly, CS-DSM is108

capable of achieving the same throughput as that of P-DSM109

for Q′ = MNt and Q = log2(�Nt!�2p). However, CS-DSM is110

specifically designed for the Nt = 2 case, where Q has been111

restricted to 2 [28]. Furthermore, CS-DSM is different from112

DM-DSM in the sense that only matrices are used for encoding113

the information bits, which is in contrast to the DM-DSM,114

where a set of DMs and a conventional signal set are used for115

encoding the information bits. To the best of our knowledge,116

there is no systematic method of obtaining the number of DMs117

required to achieve a desired throughput and transmit diversity118

order in systems with arbitrary Nt. Hence, in this paper, we119

focus on constructing structured DMs for DM-DSM schemes.120

Against this background, the contributions of this paper are121

as follows.122

123

1) We propose a systematic method of obtaining the set of124

DMs for DSM systems for an arbitrary Nt by exploiting125

the related results from algebraic field extensions. More126

specifically, we show that the companion matrix of an 127

irreducible polynomial over a certain base field will be 128

unitary, when the base field is a cyclotomic field [30], and 129

exploit these unitary companion matrices for constructing 130

DMs to be used in DSM. Additionally, we analytically 131

show that the proposed scheme is capable of achieving 132

full transmit diversity. 133

2) Furthermore, we generalize the proposed field-extension- 134

based DSM (FE-DSM) scheme to strike a flexible trade- 135

off between attainable diversity and multiplexing gain. 136

3) Finally, we evaluate the decoding complexity of ML 137

detection of the proposed schemes and show that they 138

offer significantly reduced complexity, owing to the DM- 139

based approach of encoding information by exploiting 140

results from [34]. 141

The rest of this paper is organized as follows. Section II 142

provides the system model of DSM. In Section III, the proposed 143

DM set construction, as well as the diversity analysis of the pro- 144

posed scheme, are presented. Specifically, Section III-A gives 145

a brief overview of algebraic field extensions. Section III-B 146

provides the proposed DM construction and our diversity 147

analysis. In Section III-C, we conceive the low-complexity 148

decoding method for the proposed schemes. Section IV 149

provides our simulation results, and Section V concludes 150

this paper. 151

Notations: If S1 and S2 are two sets, then S3 = S1 × S2 152

represents the Cartesian product of sets S1 and S2. Lowercase 153

and uppercase boldface letters represent vectors and matrices, 154

respectively. Furthermore, ‖ · ‖ represents the 2-norm of a 155

vector or the Frobenius norm of a matrix. The notations of (·)T 156

and (·)H indicate the transpose and Hermitian transpose of a 157

vector/matrix, respectively, whereas | · | represents the cardi- 158

nality of a given set or the magnitude of a complex quantity. 159

Furthermore, ⊗ defines the Kronecker product of two matrices. 160

CN (μ, σ2) denotes a complex Gaussian random variable with 161

mean μ and variance σ2. R and C represent the field of real 162

and complex numbers, respectively. If F is a field, then F [X ] 163

represents the ring of polynomials in X over F . A([a : b], :) 164

defines a matrix with rows a, a+ 1, . . . , b− 1, b of A, and 165

A(:, [a : b]) is a matrix with columns a, a+ 1, . . . , b− 1, b of 166

A. In represents an n× n identity matrix. If x is an n-length 167

vector, then diag(x) represents an n× n diagonal matrix whose 168

(i, i)th element is xi. 169
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II. DIFFERENTIAL SPATIAL MODULATION SYSTEM170

Consider a MIMO system having Nr RAs and Nt TAs oper-171

ating in a Rayleigh flat-fading channel, which is characterized by172

Yi =
√
ρHiXi +Ni (1)

where Yi ∈ CNr×Nt is the received space–time matrix (STM);173

Xi ∈ CNt×Nt is the transmitted STM; Ni ∈ CNr×Nt and Hi ∈174

CNr×Nt are the noise and channel matrices, respectively, whose175

entries are from CN (0, 1); and ρ denotes the average signal-to-176

noise ratio (SNR) at each RA. The subscript i in all matrices177

indicates the block index.178

A. DSM System179

Differential encoding [31], [32] of the transmitted STM is180

given by181

Xi = Xi−1Si

where Si ∈ CNt×Nt is the unitary STM to be transmitted182

during the symbol period of the ith block. For the transmitted183

STM Xi to become unitary, it is sufficient to ensure that X0 be184

unitary. In this paper, we consider X0 to be INt
. Furthermore,185

each column of Si is assumed to have only a single nonzero186

element, since the SM system employs only a single RF chain187

at the transmitter. Assuming that the channel remains constant188

over a period of two successive blocks, we have189

Yi−1 =
√
ρHiXi−1 +Ni−1

and hence, (1) can be written as190

Yi = Yi−1Si +Ni −Ni−1Si.

Assuming that there is no channel state information at the191

receiver, the optimal differential receiver [31] is given by192

Ŝi = argmin
S∈S

‖Yi −Yi−1S‖2 (2)

where S is the set of transmit STMs.193

B. DM-DSM194

In the case of DM-DSM, each transmitted STM is of the195

following form:196

Si = D(s)Aq (3)

where we have s=[s1, s2, . . . , sNt
], D(s)∈D= {diag(s)|si ∈197

Li − PSK}, and Aq ∈ A, where A = [A1,A2, . . . ,AQ] is the198

set of DMs. The rate achieved by DM-DSM is given by199

RDM−DSM =
log2 (Q · L1 · · · LNt

)

Nt
bpcu.

In the following section, we propose a method for construct-200

ing the set D having diagonal or block-diagonal matrices as its201

elements and the set of DMs A, such that they enable the DSM202

scheme to achieve full transmit diversity.203

C1: We emphasize the condition that each element of A 204

should be a unitary matrix [32] and should have only a single 205

nonzero element in each column and row. The latter condition is 206

necessary since the SM system can transmit only one symbol in 207

each channel use, owing to a single RF chain at the transmitter. 208

III. DISPERSION MATRIX SET CONSTRUCTION 209

Here, we provide a brief overview of algebraic field exten- 210

sions as required for our exposition on the proposed DM set 211

construction. For further details, see [30] and [33]. 212

A. Review of Field Extensions 213

Definitions: Let J be an extension of a field L and I be a 214

subset of J , i.e., I ⊂ J . Field J is said to be generated by I 215

if J is obtained by adjoining1 the elements of I to L, and it 216

is denoted by J = L(I). If set I is finite, then the extension, 217

which is denoted by J/L, is said to be finitely generated. 218

If β ∈ J , then the minimal polynomial of β is the monic 219

polynomial of least degree among the polynomials in L[X ] 220

having β as a root. The extended field J can be viewed as 221

a vector space, where its elements are considered as vectors, 222

and the elements of L are viewed as scalars. The dimension of 223

the vector space J is termed as the degree of extension, and it 224

is denoted by [J : L]. Furthermore, the extension J/L is said 225

to be an algebraic extension, if every element in J is a root 226

of a nonzero polynomial with coefficients in L. An algebraic 227

extension J/L is said to be normal if J is a splitting field of 228

the family of polynomials L[X ], i.e., each polynomial in L[X ] 229

splits or decomposes into linear factors over J . Furthermore, an 230

algebraic extension H of J is said to be a normal closure of 231

the algebraic extension J/L, if it is the only subfield of H that 232

contains J and if a normal extension of L is H itself. 233

Let S be a conventional signal set, such as M -PSK, and F = 234

Q(S) be the extended field of rationals over S. If α is a root of 235

a minimal polynomial over F , which is given by 236

p(x) = xn + an−1x
n−1 + an−2x

n−2 + · · ·+ a0 (4)

then F can be extended by adjoining α to obtain K = F (α). 237

The degree of extension [K : F ] is equal to n, since p(x) is 238

irreducible over F . Any element k ∈ K can be expressed as 239∑n−1
i=0 fiα

i, where fi∈F ∀ 0 ≤ i ≤ n−1. From [30, Sec. 7.3], 240

there exists a natural mapping k �→ λk∀k ∈ K that embeds K 241

in Mn(F ), where λk is a linear transformation of K into itself. 242

The regular representation of λk maps any v ∈ K to kv. The 243

linear transformation λα associated with α is given by 244

M =

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 0 −a0
1 0 · · · 0 −a1
0 1 · · · 0 −a2
...

...
. . .

...
...

0 0 · · · 1 −an−1

⎤
⎥⎥⎥⎥⎥⎦
∈ Fn×n (5)

1The adjoining operation refers to including all the elements resulting from
field operations considering the elements from the extended set I ∪ L.
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which is the companion matrix of p(x). Thus, for any k =245 ∑n−1
i=0 fiα

i ∈ K , the associated λk is given by
∑n−1

i=0 fiM
i.246

Lemma 1: Let K , F , and S be defined as above. For any247

k = k1 − k2, k1 �= k2 ∈ K , λk ∈ Mn(F ) is invertible.248

Proof: The proof directly follows from K being a field,249

which guarantees the existence of the inverse for every nonzero250

element in K , and the fact that the natural mapping k �→ λk is251

a one-to-one mapping. �252

Lemma 2: If L is a normal closure of K/F and σi, i =253

0, 1, 2, . . . , n− 1 are distinct F -homomorphisms from K to L;254

then, for any element k ∈ K , we have det(λk) = NK/F (k) =255 ∏n−1
i=0 σi(k), where NK/F (k) is the norm of the element k from256

K to F [33, Th. 8].257

B. Proposed DM Set for DSM258

We propose to use the DM set given by259

A = {In,M,M2, . . . ,Mn−1} (6)

where M is as in (5), and n is chosen to be equal to Nt.260

However, to meet C1, every element of A has to be unitary.261

Note that it is sufficient to ensure that M is unitary for all262

the elements of A to be unitary. Hence, we have to satisfy the263

following equation:264

MMH = In. (7)

Note that (MMH)1,1= |a0|2 and (MMH)i,i=1+|ai−1|2 for265

2 ≤ i ≤ n− 1. Thus, by choosing a0 to be an element from the266

unit circle and ai = 0 for 1 ≤ i ≤ n− 1, C1 can be satisfied.267

Thus, while constructingA, we have to consider polynomials of268

the form xn+a0 with |a0|=1 values that are irreducible overF .269

Since we have |A| = n = Nt, our construction results in a max-270

imum ofNt DMs, i.e., Q≤Nt. Furthermore, we assume that the271

set D has scaled identity matrices of the form sIn, where s ∈ S.272

Note that F should contain the specific signal set S from which273

s is chosen. Thus, the following conditions have to be met:274275

1) S ⊂ F ; and276

2) p(x)=xn+a0 with |a0|=1 should be irreducible overF .277

We satisfy the given conditions by choosing F = Q(S, a0),278

where a0 is any transcendental element over Q(S) lying on the279

unit circle. In the following, we shall explain the method of280

constructing set A in detail.281

Let S be a conventional M -PSK signal set denoted by282

{ωi
M}M−1

i=0 , where we have ωM = ej2π/M and a0 = −eju1 ,283

with u1 being algebraic over Q. For instance, u1 can be
√

3,284

which is a root of the polynomial x2 − 3. Note that a0 is285

transcendental over Q(S), and we can choose F = Q(S, eju1).286

Thus, the polynomial xn + a0 = xn − eju1 (for any n) is ir-287

reducible over F . Therefore, we can have the extension K =288

F (α), where α is the primitive nth root of eju1 . Thus, the289

associated companion matrix is given by290

M =

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 0 eju1

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

⎤
⎥⎥⎥⎥⎥⎦
∈ Fn×n. (8)

Example 1: Consider n = Nt = 4 and a0 = −ej
√
3. Then, 291

the elements of set A are given by I4 292

M=

⎡
⎢⎢⎣

0 0 0 ej
√
3

1 0 0 0
0 1 0 0
0 0 1 0

⎤
⎥⎥⎦, M2=

⎡
⎢⎢⎣

0 0 ej
√
3 0

0 0 0 ej
√
3

1 0 0 0
0 1 0 0

⎤
⎥⎥⎦

M3=

⎡
⎢⎢⎣

0 ej
√
3 0 0

0 0 ej
√
3 0

0 0 0 ej
√
3

1 0 0 0

⎤
⎥⎥⎦.

Remark 1: Note that a0 has to be chosen in conjunction with 293

the specific signal set S that maximizes a certain performance 294

metric, such as the coding gain. This can be achieved by 295

searching for an optimal a0 over a large set of closely spaced 296

transcendental elements on the unit circle. 297

We term the DSM scheme employing the proposed FE-DMs 298

as an FE-DSM scheme. Since the set of transmit STMs is given 299

by S = D ×A, the rate achieved by the proposed scheme is 300

RFE−DSM =
log2 (|D||A|)

Nt

=
log2(MNt)

Nt
bpcu.

1) Diversity Gain: The achievable transmit diversity order 301

under differential detection [31, Sec. III-C] of (2) is given by 302

d = min
S1 �=S2∈S

rank(S1 − S2). (9)

Proposition 1: The proposed FE-DSM scheme achieves a 303

transmit diversity order of Nt, i.e., d = Nt. 304

Proof: The proof is given in Appendix A. � 305

2) Coding Gain: The coding gain of the proposed scheme is 306

given by 307

G = min
S1 �=S2∈S

∣∣det [(S1 − S2)(S1 − S2)
H
]∣∣ 1

n . (10)

In the following, we shall provide a simple expression for 308

the determinant term in (10) that allows us to optimize the 309

exponential a0 in conjunction with an arbitrary M -PSK signal 310

set to achieve a high coding gain. 311

Proposition 2: Consider an FE-DSM system using anM -PSK 312

signal set and Nt=n TAs. If S=ej(2πp/M)Ml and S2= 313

ej(2πq/M)Mm, where 0 ≤ p, q ≤ M−1 and 0≤ l,m≤n−1 314

such that S1 �=S2, then | det[(S1−S2)(S1−S2)
H ]| is given by 315

4n
n−1∏
r=0

sin2
(
π(p− q)

M
+

(2πr + u1)(m− l)

2n

)
. (11)

Proof: The proof is provided in Appendix B. � 316

In the following section, we provide a DM set construction 317

based on two levels of field extensions, which facilitate a 318

flexible tradeoff between the attainable transmit diversity and 319

multiplexing gain. 320
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C. FE-DSM With Diversity–Rate Tradeoff321

The DM set construction presented in the previous section322

achieves a transmit diversity order of Nt, while transmitting323

only a single symbol from an M -PSK signal set. Note that when324

the channel conditions are good, it may not be necessary to325

exploit the full transmit diversity order. Under these conditions,326

we may aim at trading off the diversity gain for increasing327

the transmission rate. In the following, we shall provide a328

systematic method of constructing a DM set that achieves329

the desired diversity order and transmission rate. The DM set330

construction presented in the previous section may be viewed331

as a special case.332

Let Nt be factored as g · h. We construct a DM set that allows333

us to transmit h independent M -PSK symbols in each transmit334

STM and achieve transmit diversity order g. Considering F =335

Q(S,−eju1) as before and the extension K = F (α), where α336

is a primitive gth root of the polynomial p1(x) = xg − eju1 , we337

obtain the DM set given by338

A′ = {Ig,M,M2, . . . ,Mg−1} (12)

where M ∈ F g×g is the companion matrix of p1(x). We define339

D to be a set of block-diagonal matrices given by340

D={diag(s1A1,s2A2, . . . ,shAh)|si∈M−PSK,Ai∈A′, ∀ i}.
(13)

Let us now consider the field extension L = K(β) associated341

with the polynomial p2(x) = xh − eju2 , where eju2 is tran-342

scendental overK , and β is the primitive hth root of eju2 . Then,343

the regular representation of an element l =
∑h−1

i=0 kiβ
i ∈ L344

is given by
∑h−1

i=0 kiN
i, where ki ∈ K , 0 ≤ i ≤ h− 1, and345

N ∈ Kh×h is the companion matrix of p2(x). We define the346

DM set as347

A =
{
In,N

′,N′2, . . . ,N′h−1
}

(14)

where N′ = N⊗ Ig. The transmit STM set is given by348

S = D ×A as before. We refer to this scheme as the FE-DSM349

arrangement exhibiting a flexible diversity–rate tradeoff (FE-350

DSM-DR). Note that the DSM scheme requires each transmit351

STM to be unitary. The following proposition shows that this352

condition is satisfied.353

Proposition 3: If S is the set of transmit STMs of FE-DSM-354

DR, then each element in S is unitary.355

Proof: The proof is provided in Appendix C. �356

In the following, we shall provide an example construction357

to further illustrate the given set of points.358

Since we have |D| = (Mg)h and |A| = h, the rate achieved359

by the FE-DSM-DR is given by360

RFE−DSM−DR =
h log2(Mg) + log2(h)

Nt
bpcu. (15)

Note that when we have g = Nt, FE-DSM-DR reduces to the361

FE-DSM scheme.362

Example 2: Let n = Nt = 4, g = h = 2, u1 =
√

2, and 363

u2 =
√

3. The elements of set D are 364

⎡
⎢⎢⎣
s1 0 0 0
0 s1 0 0
0 0 s2 0
0 0 0 s2

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0 s1e
j
√
2 0 0

s1 0 0 0
0 0 s2 0
0 0 0 s2

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0 s1e
j
√
2 0 0

s1 0 0 0
0 0 0 s2e

j
√
2

0 0 s2 0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣
s1 0 0 0
0 s1 0 0
0 0 0 s2e

j
√
2

0 0 s2 0

⎤
⎥⎥⎦

where s1 and s2 are from the classic M -PSK signal set. The 365

elements of the DM set A are 366

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0 0 ej
√
3 0

0 0 0 ej
√
3

1 0 0 0
0 1 0 0

⎤
⎥⎥⎦ .

Remark 2: Note that eju1 and eju2 have to be optimized 367

in conjunction with the signal set S to maximize the coding 368

gain. Unlike FE-DSM, the STM matrices of the FE-DSM-DR 369

scheme are not representations of field elements, and hence, no 370

closed-form expression is derived for the determinant of the 371

codeword difference matrix. We resort to numerical search to 372

arrive at the optimal values of u1 and u2. 373

D. ML Decoding Complexity 374

Here, we evaluate the complexity order of ML decoding 375

for the proposed schemes. We show that the ML decoding 376

complexity of both proposed schemes is independent of the size 377

of the signal set S. 378

1) FE-DSM: Let χ = {sei|1 ≤ i ≤ Q, s ∈ S}, where ei is 379

the ith column of IQ. Furthermore, let G=[vec(A1), vec(A2), 380

. . . , vec(AQ)]∈CN2
t ×Q, whereAi values are the elements ofA. 381

Considering the optimal detection rule of (2), we have 382

Ŝi = argmin
S∈S

‖Yi −Yi−1S‖2 (16)

≡ arg min
s∈S,Aq∈A

‖Yi −Yi−1(sAq)‖2 (17)

≡ argmin
s∈χ

∥∥Ȳi − (INt
⊗Yi−1)Gs

∥∥2
(18)

where Ȳi = vec(Yi) ∈ CNrNt×1. Since we have |χ| = Q|S|, 383

the decoding complexity order is O(QM), when S is an 384

M -PSK signal set. However, owing to the interference-free 385

nature of transmit vectors, the decoding complexity can be 386

reduced from O(QM) to O(Q) with the aid of hard-limiting 387

(HL)-based detection [34]. In other words, the ML decoding 388

complexity of the FE-DSM scheme does not scale with the size 389

of the signal set. By contrast, the existing full-diversity DSM 390

scheme in [28] does not allow such low decoding complexity. 391



6 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY

2) FE-DSM-DR: The optimal detection rule of (2) yields392

Ŝi = argmin
S∈S

‖Yi −Yi−1S‖2 (19)

≡ arg min
D∈D,Aq∈A

‖Yi −Yi−1DAq‖2 (20)

≡ arg min
0≤k≤h−1

{
min
D∈D

∥∥∥Yi−Yi−1DN′k
∥∥∥2
}

(21)

(
k̂, D̂(k̂)

)
≡ arg min

0≤k≤h−1

∥∥∥Z(k)
i −Yi−1D̂

(k)
∥∥∥2 (22)

where D̂(k)=minD∈D‖Z(k)
i −Yi−1D‖2, andZ(k)

i =Yi(N
′k)

H
393

for 0 ≤ k ≤ h− 1. Since D is block diagonal, we have394

D̂(k) = min
D∈D

∥∥∥Z(k)
i −Yi−1D

∥∥∥2 (23)

≡
h∑

l=1

min
sl∈S,Ail

∈A′

∥∥∥Z(k)
i (:, Il)−Yi−1(:, Il) (slAil)

∥∥∥2

(24)

where Il = [g(l− 1) + 1 : gl]. By invoking the HL-based395

detector in [34], the search complexity of the minimization396

problem, i.e.,397

min
sl∈S,Ail

∈A′

∥∥∥Z(k)
i (:, Il)−Yi−1(:, Il) (slAil)

∥∥∥2 (25)

can be reduced from O(|S||A′|) to O(|A′|) = O(g). Specifi-398

cally, this is achieved by converting (25) into an interference-399

free system analogous to (18) and then employing the detector400

in [34]. Thus, the ML decoding complexity order of FE-DSM-401

DR is independent of the size of the signal set, and it is given402

by O(|A′||A|) = O(gh) = O(Nt).403

E. Computational Complexity404

Here, we compare the computational complexity of the ML405

detector of various existing schemes with that of the proposed406

scheme. Specifically, we show that all the existing schemes407

essentially impose the same computational complexity when408

operating at a given rate. However, since the ML decoding409

complexity order of the proposed schemes does not scale with410

the signal set, the computational complexity involved in ML411

decoding remains constant, when the size of the signal set is412

increased to increase the transmission rate.413

Considering the ML detection rule of (2), we have414

Ŝi = argmin
S∈S

‖Yi −Yi−1S‖2 (26)

where S is the set of transmit STMs. The number of real-valued415

multiplications in evaluating (26) is 6NrNt|S|, where |S| is the416

cardinality of the set of transmit STMs. When the transmission417

rate is fixed, |S| is essentially the same across all the existing418

schemes [26]–[28]. The direct evaluation of (26) results in the419

same computational complexity across all the schemes, since420

the number of nonzero elements in each S ∈ S is the same421

in all of them. However, the proposed FE-DSM (DM-DSM422

[27]) scheme has the property that S = S ×A, which makes423

Fig. 1. Variation of coding gain as a function of u1 in FE-DSM employing a
BPSK signal set for various Nt values.

it amenable to HL-based ML detection (HL-ML) [34]. The 424

computational complexity imposed by the HL-ML detector can 425

be shown to be (10NtNr + 9)|A|.2 In the following section, we 426

compare the computational complexity imposed by the direct 427

ML solution in (26) to that of the HL-ML solution [34] by 428

considering various system parameters and transmission rates. 429

IV. SIMULATION RESULTS AND DISCUSSIONS 430

Simulation Parameters: In all our simulations, we have used 431

block Rayleigh fading channels. In evaluating the bit error ratio 432

(BER) of 10−t, we have used at least 10t+2 bits. For DM-DSM 433

schemes operating at different rates, the optimal DM sets are 434

obtained by optimizing the coding gain over a large set of 435

feasible matrices in conjunction with the associated M -PSK 436

signal set. The parameter eju1 of FE-DSM and the parameters 437

(eju1 , eju2) of FE-DSM-DR are optimized in conjunction with 438

the associated signal sets to obtain the optimal set of DMs. For 439

the FE-DSM scheme using an M -PSK signal set, it is observed 440

that u1 = 2π/M is optimal for any value of Nt. Fig. 1 shows 441

the achievable coding gain of FE-DSM employing a binary 442

phase-shift keying (BPSK) signal set. It is clear in Fig. 1 that 443

the value of u1 = π remains optimal even when Nt is varied. 444

Fig. 2 compares the BER performance of the FE-DSM and 445

DM-DSM schemes, both having Nt = 2 and employing 4-PSK 446

as well as 16-PSK signal sets that achieve a throughput of 1.5 447

and 2.5 bpcu, respectively. The BER performance of P-DSM is 448

also provided to highlight the transmit diversity gain achieved 449

by the DM-DSM scheme. Furthermore, the BER performance 450

of the proposed codebooks in the coherent scenario is also pro- 451

vided. Fig. 3 compares the BER performance of the FE-DSM 452

and DM-DSM schemes, both having Nt = 4 and employing 453

4-PSK, as well as 16-PSK signal sets that achieve a throughput 454

of 1 and 1.5 bpcu, respectively. It is clear in Figs. 2 and 3 that 455

2It takes 4NtNr |A| multiplications to compute (INt ⊗Yi−1)G and
(6NtNr + 9)|A| multiplications to compute various decision metrics of the
HL-ML detector [34]. For further details, see [34, Sec. IV-B].
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Fig. 2. BER performance of the DM-DSM and FE-DSM schemes, having
Nt = 2 and employing 4-PSK and 16-PSK signal sets. The BER performance
of the P-DSM scheme is provided to highlight the transmit diversity gain
achieved in DM-DSM and FE-DSM.

Fig. 3. BER performance of the DM-DSM and FE-DSM schemes, having
Nt = 4 and employing M -PSK signal sets.

the proposed FE-DSM scheme suffers from no performance456

loss compared with the DM-DSM scheme, and there is a 3-457

dB performance loss with respect to the coherent counterparts,458

which is as expected.459

Fig. 4 compares the BER performance of FE-DSM-DR and460

DM-DSM that trades off diversity gain against throughput.461

Both the systems are assumed to haveNt = 4. Specifically, four462

data rates are considered for comparison. For h = g = 2, FE-463

DSM-DR achieves throughput values of 1.25, 1.75, 2.25, and464

2.75 bpcu when employing BPSK, quaternary phase-shift key-465

ing, 8-PSK, and 16-PSK signal sets, respectively. The DM-466

DSM scheme is assumed to have a set of four DMs as proposed467

in [27] and employs M = [(L1, L1), (L2, L2)], where L1 and468

L2 correspond to the sizes of the PSK signal sets encoding sym-469

bols s1 and s2, respectively. To elaborate, L1 and L2 are chosen470

so that the rates achieved by the proposed scheme and the471

FE-DSM scheme are the same. When operating at 1.25 bpcu,472

Fig. 4. BER performance of the DM-DSM and FE-DSM-DR schemes, having
Nt = 4 and employing M -PSK signal sets.

Fig. 5. Comparison of the computational complexity imposed by the ML
detector in the existing schemes with that of the proposed scheme in systems
having Nt = 2, 4 and Nr = 2 and employing various transmission rates.

it can be observed in Fig. 4 that FE-DSM-DR suffers from a 473

1.5-dB SNR loss at a BER of 10−4 compared with DM-DSM. 474

However, as the rate is increased from 1.25 to 2.75 bpcu, the 475

performance of FE-DSM-DR improves, which is evident in 476

Fig. 4. Specifically, when operating at 2.25 and 2.75 bpcu, it is 477

observed that the FE-DSM-DR scheme achieves an SNR gain 478

of about 1 dB and about 2 dB at a BER of 10−4, respectively. 479

Fig. 5 gives the computational complexity imposed by the 480

ML detector in various existing schemes along with that of the 481

proposed FE-DSM scheme in systems having Nt = 2, 4 and 482

Nr = 2 and employing various transmission rates. In the case 483

of Nt = 2, the P-DSM scheme is assumed to employ BPSK, 484

4-PSK, 8-PSK, and 16-PSK to achieve a transmission rate of 485

3, 5, 7, and 9 bpcu, respectively, and in the case of Nt = 4, 486

the same signal sets achieve a transmission rate of 8, 12, 16, 487

and 20 bpcu, respectively. In the case of FE-DSM, the size 488

of the DM set is fixed to 2 and 4 in the case of Nt = 2 and 489

Nt = 4, respectively, and the size of the signal set (or the 490
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number of cyclic matrices in the case of CS-DSM [26] when491

Nt = 2) is assumed to vary to increase the transmission rate. It492

is clear in Fig. 5 that the HL-ML detector results in significant493

complexity reductions over the direct ML solution. Specifically,494

at a transmission rate of 5 and 8 bpcu, a reduction of about495

670 multiplications in the case of Nt = 2 and about 11934496

multiplications in the case of Nt = 4 is observed, respectively.497

Future Work: While the proposed DM set constructions cater498

to the requirements of the SM scheme relying on differential499

encoding, it would be interesting to study the feasibility of ex-500

tending the proposed schemes to generalized SM (GSM) [35],501

where more than one TAs are activated during each channel use.502

Note, however, that this is not straightforward, since503
504

1) the transmitted STMs in GSM may not be unitary in505

general; and506

2) the product of any two distinct transmit STMs does not507

satisfy the sparsity constraint analogous to condition C1508

given in Section II-B.509

As inferred from Fig. 4, the FE-DSM-DR-based DMs are not510

optimal at low rates (unlike the FE-DSM scheme). Furthermore,511

considering algebraic structures for designing DM sets would512

enable us to quantify the achievable diversity order and the cod-513

ing gain in addition to attaining the benefits of a simple and sys-514

tematic encoding at the transmitter. Thus, worth investigating515

are other representations of algebraic structures such as division516

algebras for their suitability in obtaining sparse, full-diversity,517

and optimal DM sets for differential SM/GSM schemes.518

V. CONCLUSION519

We have proposed a systematic method for obtaining a DM520

set for DSM with the aid of algebraic field extensions. It was521

analytically shown that the proposed FE-DSM achieves full522

transmit diversity. Furthermore, a closed-form expression was523

derived for the determinant of the codeword difference matrix.524

The proposed FE-DSM scheme was then further extended to525

FE-DSM-DR, which stroke a flexible tradeoff between diver-526

sity gain and throughput. Both the proposed schemes were527

shown to offer ML decoding complexity, which is independent528

of the size of the signal set. Our simulation results have shown529

that the FE-DSM scheme achieves the same BER performance530

as the DM-DSM scheme, whereas FE-DSM-DR is observed to531

give a better BER performance at higher rates compared with532

its DM-DSM counterpart.533

APPENDIX A534

PROOF OF PROPOSITION 1535

Let S1 = sMi and S2 = s′Mj , where s, s′ ∈ S ⊂ F =536

Q(S, a0). Recall that S1 and S2 are regular representations537

of k1 = sαi and k2 = s′αj , respectively. Then, we have λk =538

S1 − S2, where k = k1 − k2. From Lemma 1, we see that λk is539

invertible for all k1, k2 ∈ K and k1 �= k2. Thus, we have S1 −540

S2 as invertible. In other words, we have rank(S1 − S2) = n =541

Nt, ∀S1 �= S2 ∈ S. Thus, we have minS1 �=S2∈S rank(S1 −542

S2) = Nt. This concludes the proof.543

APPENDIX B 544

PROOF OF PROPOSITION 2 545

Ifλk=S1−S2, then the elementk associated withλk is given 546

by sαm−s′αl, where s = ej(2πp/M), s′=ej(2πq/M), andα is the 547

primitive nth root of −a0. From Lemma 2, we have det(λk) = 548

det (S1 − S2) =
∏n−1

r=0 σr(k), where we have σr : α �→ αr, 549

such that αr, 0 ≤ r ≤ n− 1 are the nth roots of −a0 = eju1 . 550

Therefore, we have 551

det (S1 − S2) =

n−1∏
r=0

σr(k) =

n−1∏
r=0

σr(sα
m − s′αl) (27)

=
n−1∏
r=0

(
s (σr(α))

m − s′ (σr(α))
l
)

(28)

=
n−1∏
r=0

(
ej

2πp
M +

(2πr+u1)m
n − ej

2πq
M +

(2πr+u1)l
n

)
.

(29)

Thus, we have 552

det
[
(S1 − S2)(S1 − S2)

H
]

=

∣∣∣∣∣
n−1∏
r=0

(
ej

2πp
M

+
(2πr+u1)m

n − ej
2πq
M

+
(2πr+u1)l

n

)∣∣∣∣∣
2

(30)

= 4n
n−1∏
r=0

sin2
(
π(p− q)

M
+

(2πr + u1)(m− l)

2n

)
. (31)

This concludes the proof. 553

APPENDIX C 554

PROOF OF PROPOSITION 3 555

Let S ∈ S such that S = diag(s1A1, s2A2, . . . , shAh)N
′k 556

for some 0 ≤ k ≤ h− 1, si ∈ M -PSK signal set, Ai ∈ A′ for 557

1 ≤ i ≤ h. Consider SSH = DN′kN′kHDH , where D = 558

diag(s1A1, s2A2, . . . , shAh). SinceN′k=(N⊗Ig)
k=Nk⊗Ig, 559

we have 560

N′kN′kH = (Nk ⊗ Ig)(N
k ⊗ Ig)

H

=
(
NkNkH ⊗ Ig

)

= Ih ⊗ Ig = In.

Thus, we have 561

SSH =DDH

=diag
(
A1A

H
1 ,A2A

H
2 , . . . ,AhA

H
h

)

=diag(Ig, Ig, . . . , Ig) = In.

This concludes the proof. 562
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