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The inhibitory receptors for MHC class I have a central role in controlling natural killer (NK)
cell activity. Soon after their discovery, it was found that these receptors have a degree
of peptide selectivity. Such peptide selectivity has been demonstrated for all inhibitory
killer cell immunoglobulin-like receptor (KIR) tested to date, certain activating KIR, and
also members of the C-type lectin-like family of receptors.This selectivity is much broader
than the peptide specificity of T cell receptors, with NK cell receptors recognizing peptide
motifs, rather than individual peptides. Inhibitory receptors on NK cells can survey the
peptide:MHC complexes expressed on the surface of target cells, therefore subsequent
transduction of an inhibitory signal depends on the overall peptide content of these MHC
class I complexes. Functionally, KIR-expressing NK cells have been shown to be unexpect-
edly sensitive to changes in the peptide content of MHC class I, as peptide:MHC class
I complexes that weakly engage KIR can antagonize the inhibitory signals generated by
engagement of stronger KIR-binding peptide:MHC class I complexes. This property pro-
vides KIR-expressing NK cells with the potential to recognize changes in the peptide:MHC
class I repertoire, which may occur during viral infections and tumorigenesis. By contrast,
in the presence of HLA class I leader peptides, virus-derived peptides can induce a syner-
gistic inhibition of CD94:NKG2A-expressing NK cells through recruitment of CD94 in the
absence of NKG2A. On the other hand, CD94:NKG2A-positive NK cells can be exquis-
itely sensitive to changes in the levels of MHC class I. Peptide antagonism and sensitivity
to changes in MHC class I levels are properties that distinguish KIR and CD94:NKG2A.
The subtle difference in the properties of NK cells expressing these receptors provides a
rationale for having complementary inhibitory receptor systems for MHC class I.
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INTRODUCTION
Our knowledge of the functional role of natural killer (NK) cells
has greatly increased in recent years. Originally thought to mainly
recognize infected or neoplastic cells, NK cells are now known to
help shape the adaptive immune response through direct interac-
tions with dendritic cells, macrophages, and T cells (1, 2). NK cells
integrate the signals derived from cellular contacts to determine
whether or not effector functions are initiated. Due to a dominance
of inhibitory over activating signals, healthy or quiescent cells do
not activate NK cells. The ability to recognize changes in target
cell state has been related to up-regulation of ligands for activat-
ing receptors (“induced self-recognition”), and down-regulation
of ligands for inhibitory receptors (“missing self-recognition”) (3,
4). In humans, the most important inhibitory receptors for MHC
class I comprise molecules from the killer cell immunoglobulin-
like receptor (KIR) or C-type lectin-like receptor (CD94:NKG2A)
families.

The inhibitory KIR recognize specific HLA-A, -B, and -C alle-
les. In particular, KIR3DL2 binds HLA-A*03 and HLA-A*11;
KIR3DL1 binds HLA-B alleles with the Bw4 serological motif;
KIR2DL1 binds HLA-C alleles with lysine at position 80 (group
2 HLA-C); and both KIR2DL2 and KIR2DL3 bind HLA-C alleles
with asparagine at position 80 (group 1 HLA-C alleles) (5). Thus, it
was originally considered that simple structural motifs determined

the engagement of KIR with MHC. However, detailed analysis of
KIR binding has shown that KIR2DL2 can bind the recombinant
HLA-B*4601 and B*7301 alleles, which have HLA-C-type motifs
at residues 77–83 (6). Furthermore, KIR2DL2 can interact with
a number of group 2 HLA-C alleles, as can KIR2DL3, albeit to a
lesser extent, as the affinity of KIR2DL3 for MHC is lower than that
of KIR2DL2 (7–9). Therefore, although motifs at residues 77–83
appear to dominate the specificity of the interaction between KIR
and MHC, it is clear that these effects can be modified by additional
contacts between KIR and the MHC class I heterotrimer.

PEPTIDE SELECTIVITY OF INHIBITORY RECEPTORS
Key experiments performed in the mid 1990s demonstrated that
the KIR are sensitive to the peptide bound by MHC class I. This
was originally shown for KIR3DL1 and HLA-B*2705, and then
for KIR2DL1 (10–12). Subsequent work extended these findings
to KIR2DL2, KIR2DL3, and KIR3DL2 (13–18). These functional
experiments are supported by co-crystal structures of KIR and
MHC class I. The co-crystal of KIR2DL2 and HLA-Cw*03 with
the GAVDPLLAL peptide demonstrated that specific residues of
KIR directly contact P7 and P8 residues of the bound peptide (13).
Similarly, P8 of the LSSPVTKSF peptide in HLA-B*5701 contacts
residue 166 of KIR3DL1 (19). In the crystal structure of KIR2DL1
with HLA-Cw4, direct contacts between KIR and MHC class I
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peptide are not observed (20). Nevertheless, P8 is solvent acces-
sible and changes in this residue do lead to alterations in NK cell
function, implying secondary effects of MHC class I peptide on
KIR2DL1:HLA-C binding.

The C-type lectin-like receptor NKG2A forms a heterodimer
with a related family member CD94 to recognize the non-classical
MHC class I molecule HLA-E (21–25). In general, this molecule
binds leader peptides derived from HLA-A, -B, and -C mole-
cules (26). Inhibitory signaling by CD94:NKG2A is also critically
dependent on the peptide presented by HLA-E, and a hierarchy
of HLA-E-binding peptides with different inhibitory properties
for NKG2A-positive NK cells has been established (27–29). The
peptide dependence of CD94:NKG2A was confirmed in its co-
crystal structure with HLA-E and the HLA-G leader peptide
VMAPRTLFL (30, 31). These studies showed that binding of
CD94:NKG2A is dominated by the non-signaling CD94 moiety,
and crucially P5, P6, and P8 have contacts with CD94 and P8 con-
tacts NKG2A. The importance of these specific residues has been
confirmed in surface plasmon resonance studies (32). Therefore,
both inhibitory KIR and NKG2A are peptide selective. Further-
more, despite the rapid evolution of the KIR alongside that of
classical MHC class I, this peptide dependence is a feature that has
been retained across divergent KIR lineages (33).

PEPTIDE ANTAGONISM OF KIR-POSITIVE NK CELLS
Using a model system, we have investigated the functional con-
sequences of KIR peptide selectivity. The T2 and 721.174 cell
lines both synthesize HLA-Cw*0102 but have lost the ability to
load peptide onto MHC due to a deficiency in transporter asso-
ciated with antigen processing (TAP) (34). In these cell lines,
MHC class I contains low affinity hydrophobic peptides derived
from signal sequences, and reaches the cell surface but dissoci-
ates rapidly (35, 36). These TAP-deficient cell lines can be readily
loaded with exogenous peptide as was originally demonstrated in
CTL cell assays. HLA-Cw*0102 is of the HLA-C1 group specificity
and hence engages with KIR2DL2 and KIR2DL3. These cell lines
have allowed detailed examination of how KIR-positive NK cells
respond to changes in the peptide content of MHC class I.

VAPWNSLSL is a peptide derived from TIMP1 that was eluted
from an HLA-Cw*0102 transfectant of the MHC class I deficient
721.221 cell line (37). This peptide was used as a backbone to
screen derivatives that differ only at the KIR-binding residues of
P7 and P8 (38). Overall, although all peptides stabilized HLA-
Cw*0102, in assays using KIR-fusion constructs only approxi-
mately a third of the peptides induced significant binding to
KIR2DL2 and KIR2DL3. This allowed the definition of strong,
weak, and null KIR binders, and this binding reactivity correlated
well with their inhibitory potential in assays of NK cell function.
We used the strongest inhibitory peptide VAPWNSFAL (VAP-FA),
and the non-inhibitory peptide VAPWNSDAL (VAP-DA) to study
how NK cells may respond to changes in peptide repertoire (38).
Although it would be predicted that VAP-DA would have a null
effect on the inhibition due to VAP-FA, it was found to modu-
late the inhibition of KIR2DL2/3-positive NK cells. We termed
this phenomenon “peptide antagonism” to indicate that peptides
that act alone have no effect on NK cell function, can modu-
late the inhibition due to inhibitory peptides. The mechanism

for peptide antagonism may be related to a low affinity inter-
action between KIR and peptide:MHC. This phenomenon was
confirmed using a tyrosine P8 substitution in VAP-DA, as tyro-
sine P8 substantially reduces binding of KIR2DL2 to HLA-Cw*03
in surface plasmon resonance studies (13). Further studies have
shown that although VAP-DA does not bind KIR in the fusion
construct assay, it can induce diffuse clustering of KIR2LD3 at
the interface between NK cells and 721.174 cells (39). Addition-
ally, it induces recruitment of SHP-1 to KIR2DL3, but it abrogates
the formation of KIR2DL3 microclusters by VAP-FA, and thus it
prevents downstream inhibitory signaling (Figure 1).

The precise molecular mechanism of antagonism is not clear
at present (40). It appears to be dependent on the presence of
immunoreceptor tyrosine-based inhibitory motifs (ITIMs), as in
their absence there is no effect of the VAP-DA peptide on the
microcluster formation by VAP-FA, although notably much lower
levels of microcluster formation are observed in these experi-
ments (39). Therefore, intracellular signaling events are likely
to be important. It has been shown that rearrangement of the
actin cytoskeleton is important for KIR accumulation at the NK
cell synapse and it may be that this rearrangement is impaired
by antagonist peptides (41). SHP-1 requires tyrosine phospho-
rylation for full activation (42). Therefore, although SHP-1 may
be recruited by VAP-DA, it may not be phosphorylated and
so not fully activated so that downstream inhibitory signaling
events remain uninitiated. Alternatively, the low affinity KIR:HLA-
C:VAP-DA complexes could rapidly dissociate before productive
inhibitory clustering has taken place. By recruiting SHP-1 to these
transient complexes, it could sequester SHP-1 away from the
more stable KIR:HLA-C:VAP-FA complexes and thus prevent an
inhibitory signal being generated. These events require additional
investigation to determine the precise mechanisms governing the
phenomenon of “peptide antagonism.”

PEPTIDE SYNERGY OF NKG2A-POSITIVE NK CELLS
In contrast to the KIR, the C-type lectin-like receptors are rela-
tively conserved in terms of evolution. The human receptor binds
the non-classical HLA-E molecule which in healthy cells presents
peptides derived from the leader sequences of other MHC class I
molecules, including HLA-A, -B, -C, and -G (26). A homologous
receptor:ligand partnership is present in the mouse.

Murine CD94:NKG2A interacts with the non-classical Q-a1
molecule, which also binds a leader sequence, Qdm, derived
from MHC class I (43–45). In the absence of TAP, HLA-E has
been shown to bind a wider variety of peptides (46), and can
also bind viral peptides derived from CMV (VMAPRTLIL), EBV
(SQAPLPCVL), HIV (AISPRTLNA), and HCV (YLLPRRGPRL)
(47–50). In terms of peptide sequence, the CMV peptide is derived
from the signal sequence of UL-40 and the common variant
is identical to the HLA-Cw*03 leader sequence (51). The pep-
tides from EBV, HIV, and HCV have less sequence homology
to MHC class I leader peptides and were identified by func-
tional approaches. Detailed investigation of the HCV core35–44

peptide YLLPRRGPRL demonstrated that although it stabilized
HLA-E on the surface of the TAP-deficient 721.174 cell line, these
peptide-loaded targets did not inhibit NKG2A-positive NK cells
(52). However, it was noted that relatively small amounts of leader
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FIGURE 1 | Peptide antagonism is associated with loss of tight clustering
of KIR. (A) The antagonist peptide induces clustering of KIR and SHP-1
recruitment to the immune synapse. However, the clustering is diffuse and

there is no inhibitory signal generated. (B) An inhibitory peptide induces tight
clustering of KIR, SHP-1 recruitment, and inhibitory signaling. (C) The
antagonist peptide abrogates tight clustering and thence inhibitory signaling.

sequences derived from HLA-A, -B, and -G could inhibit a fraction
of NKG2A-positive NK cells and that addition of HCV core35–44

increased that inhibition. This was also true for the HIV and EBV-
derived peptides as well as the Hsp60 leader peptide, which had
previously been shown to bind to HLA-E and engage the acti-
vating receptor NKG2C. In experiments studying the clustering
of CD94:NKG2A at the interface between NK cells and peptide-
loaded 721.174 cells, it could be demonstrated that HCV core35–44

induced clustering of CD94, but not of NKG2A. Furthermore, this
clustering could be abrogated by mutating P5 of the peptide from
arginine to lysine, a substitution that would be predicted to pre-
vent binding to CD94. As CD94 can exist on the cell surface as
a homodimer, we proposed that the HLA-E:YLLPRRGPRL com-
plex engages the CD94 homodimer, but not the CD94:NKG2A
heterodimer (53, 54). Although CD94 does not have a signaling
motif in its cytoplasmic tail and is not thought to mediate signal-
ing on its own, stabilization of CD94 homodimers could lead to
higher order receptor clustering and augment inhibitory signal-
ing in NKG2A-positive NK cells. Additionally, an HLA-E tetramer
loaded with the HLA-Cw*03 peptide VMAPRTLIL binds well to
NKL which express CD94:NKG2A heterodimers, but not to Jurkat
cells expressing only CD94. This, combined with the functional
data, indicates that CD94:NKG2A and CD94 homodimers have
different peptide specificities.

Further work needs to be performed to define precisely how
the “non-signaling” CD94 molecule influences inhibitory signal-
ing. Unlike antagonism for KIR, it is less likely that intracellu-
lar effects are important because CD94 possesses only a short
intra-cytoplasmic tail, and is not thought to have a signaling
function in isolation or in combination with a signaling adap-
tor protein. Therefore, extracellular effects may be relevant and
one hypothesis could be that CD94 homodimers assist in the

formation of macromolecular aggregates of the CD94:NKG2A
heterodimer. Such aggregates may stabilize receptor:ligand con-
tacts at the immune synapse and augment inhibitory signaling
(Figure 2).

Comparison of the response of NKG2A+ and KIR+ NK cells
to changes in cell-surface MHC class I demonstrate an additional
important difference. The stoichiometry of KIR-mediated inhibi-
tion and MHC class I cell-surface expression is linear, whereas
that of MHC class I with NKG2A exhibits saturation kinetics
(Figure 3). This can be expressed as follows:

Degranulation(KIR+NK Cells) = k1(MHC I)

but

Degranulation(NKG2A+NK Cells) = k2(MHC I)/[x+ (MHC I)]

Thus, an additional factor “x” is required to explain the rela-
tionship of NKG2A-mediated degranulation to MHC class I cell-
surface levels. This additional factor may be a constant or a vari-
able. However, the key feature is that it is more dominant at low
rather than high cell-surface MHC class I levels, thus reflecting
the greater sensitivity of NKG2A-positive NK cells to changes in
MHC class I cell-surface levels as compared to KIR-positive NK
cells (Figure 3). One potential factor could be that CD94:NKG2A
forms macromolecular aggregates, which are facilitated by CD94
homodimers. Conversely, the 2Ig domain KIR may not form aggre-
gates spontaneously. Aggregation of KIR is a contentious issue. KIR
binding to MHC is dependent on the presence of zinc ions, with
KIR having a zinc-binding motif (55, 56). Furthermore, both zinc
and cobalt can mediate aggregate formation in vitro (57, 58). In
crystallographic studies of KIR2DL2 with HLA-Cw*03, KIR2DL2
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FIGURE 2 | Model for peptide synergy. (A) A synergistic peptide
induces recruitment of CD94 homodimers, but not CD94:NKG2A
to the immune synapse. Therefore, there is no inhibitory signal
generated. (B) At low levels of inhibitory peptide CD94:NKG2A is

recruited to the immune synapse and there is inhibitory signaling.
(C) The synergistic peptide augments the inhibitory signaling due
to low levels of inhibitory peptide by stabilizing the immune
synapse.

FIGURE 3 | NKG2A+ NK cells are more sensitive to changes in the
cell-surface levels of MHC class I at low, as compared to high,
surface levels of MHC class I. 721.174 cells were loaded with
increasing concentrations of peptide and used as targets in CD107a
assays. The levels of degranulation of NKG2A+ (A) or KIR2D:2/3+
(B) NK cells were plotted against levels of cognate MHC class
I:peptide. In (A) HLA-E was loaded with increasing concentrations of

the HLA-G leader peptide and in (B) HLA-Cw*0102 was loaded with
increasing concentrations of the VAP-FA peptide. At between 10 and
20% of maximal HLA-E levels, there is an increase of ~20% in the
fraction of degranulating NKG2A+ NK cells (δlo) but between 60 and
70% of maximal HLA-E levels, this change is less than 5% (δhi). For
KIR+ NK cells, δlo and δhi are similar at ~10%. Data were derived from
Cheent et al. (47).

have also demonstrated the formation of multimers and, based
on this feature, a model for KIR aggregation was proposed (59,
60). Subsequently little additional data has been generated on this
model and its in vivo significance is less clear. Conversely for the
3Ig domain KIR, the D0 domain appears to assist in signaling, even
though it does not contact its MHC class I ligand (19, 61). There-
fore, it has been proposed that the D0 domain assists in aggregation
of KIR. The ability to form, or not to form, multi-molecular aggre-
gates may be relevant to the differences we have observed in how

KIR- and NKG2A-positive NK cells respond to changes in peptide.
However, clearly these mechanisms require additional structural
and functional investigation.

CONSIDERATIONS FOR VIRAL INFECTIONS
As both KIR and CD94:NKG2A are peptide selective receptors,
this implies that NK cells may be sensitive to changes in the pep-
tide repertoire presented by MHC class I. Therefore, the content
and economics of peptide presentation is a key consideration in
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determining if this could be a feasible mechanism for changing
NK cell reactivity.

The MHC class I peptidome is a complex mixture of host pep-
tides. The MHC class I repertoire on the cell surface is the result of
several processes: cellular protein degradation; access of peptides
to nascent MHC class I molecules; and the multi-step process
of peptide loading. Viral infection can alter this at many levels,
including switching off host protein synthesis, turning on viral
peptide synthesis, interfering with MHC class I peptide loading,
and changing the recycling of MHC class I, leading to cell-surface
down-regulation (62).

Until recently, it was thought that peptides presented by MHC
class I were derived from the degradation of mature proteins or
“retirees.” However, there can be marked changes in the efficiency
by which specific peptide epitopes are generated (63–65) and
recent data suggest that a substantial fraction of MHC class I pep-
tide derives from defective protein synthesis or “DRiPs” (defective
ribosomal products) (66, 67). Up to 70% of proteins synthesized
may be degraded before forming functional proteins as the result
of defective transcription, failed assembly, mistakes by amino-acyl
t-RNA synthetases, or altered ubiquitin modifications (68).

DRiPs may additionally be derived from alternative open-
reading frames, and the presentation of these “cryptic” epitopes
may make understanding the peptide repertoire more difficult
(69). In a system in which the MHC class I peptidome is derived
from mature proteins, the turnover and abundance of cellular pro-
teins will determine the nature of peptides presented. However, in
the case of DRiPs, this becomes less predictable and the peptide
repertoire becomes determined by both mRNA abundance and
also error rates in protein synthesis. Errors in protein transcription
that ultimately lead to proteins with aberrant sequences are more
likely to be more common for viral, as opposed to host proteins, as
viral RNA polymerases may lack proof reading capacity. Thus, for
the HCV RNA dependent-RNA polymerase, estimated error rates
may be as high as one per 1000 per nucleotide site (70). As the
HCV genome is only 9.3 kb long, there is a substantial probability
of mutation, which on the one hand favors viral escape mutation,
but may also lead to the synthesis of DRiPs. Favoring the DRiPs
model, viral epitopes for CTL have been shown to be generated
from recently synthesized peptides, rather than from mature pro-
teins, confirming the potential of this mechanism for altering the
host peptide repertoire (71). Additionally, the efficiency of presen-
tation of an epitope may depend on the source, viral or cellular,
of the mRNA and there may also be compartmentalization in the
subcellular localization of peptides for class I presentation (65, 72).

Thus, generating a peptide repertoire in the context of a viral
infection is a complex procedure that is not readily predictable.
Analysis of the MHC class I peptidome reveals that after HIV
infection the majority of peptides are self-peptides (73). Con-
versely, in some infections, there can be substantial numbers of
viral peptides presented by MHC class I. For instance, in measles
virus infection, the HLA-A*0201 epitope KLWESPQEI epitope has
been suggested to be as abundant as 5× 104 copies per cell (74).
Quantitation of viral epitopes is therefore a key factor, as although
both KIR-positive and CD94:NKG2A-positive NK cells are sen-
sitive to changes in peptide repertoire, the relative magnitude of
these changes will likely be important. Additionally, it has been

shown that KIR2DL2 can be a driving force on HIV sequence (75)
and the selection of a strong inhibitory peptide may “tip the bal-
ance” in terms of evasion of the immune response by the virus.
However, accurate quantitation is required to determine whether
this is due solely to viral peptides or a combination of host and viral
peptides. Indeed, the broad peptide specificity of KIR implies that
host peptides would be as effective as viral peptides in altering NK
cell reactivity. Interference with host protein synthesis by virus
infection may enhance the formation of DRiPs that could then
lead on to large changes in peptide repertoire (76, 77). Further-
more, a hold-up in protein degradation can feedback negatively
on protein synthesis and translation, additionally modifying the
peptides available for presentation by MHC class I (78). Thus, for-
mation of a peptide repertoire, and how a virus interferes with
it, is a complex procedure, which at present requires much more
detailed understanding before we can learn how this can impact
inhibitory receptor signaling by NK cells.

A number of key questions remain to be answered with respect
to peptide antagonism. At present, this phenomenon has only
been demonstrated for one receptor:ligand system, and whether
this extends to other KIR, or even KIR2DL2/3 with other group
1 HLA-C ligands needs to be examined. When the breadth of
peptide antagonism is understood, then it will be possible to deter-
mine the physiological relevance of it for viral infections, and in
particular how commonly antagonism affects the balance between
inhibition and activation of an NK cell in physiological and patho-
logical situations. Furthermore, individual peptides will need to be
examined in greater detail to understand precisely which peptides
are antagonistic and how this correlates with binding. Comparing
peptides eluted from group 1 HLA-C molecules as described in the
SYFPEITHI database (79), with binding studies using KIR2DL2
fusion constructs (38) suggests that about half of these peptide are
unlikely to bind KIR, which speculatively would correlate with the
number considered to be antagonist. This estimate has the condi-
tion that at present we do not know the limits of binding-affinity
to KIR for antagonist peptides; that is at which point a peptide
has a high enough affinity to act as a weak binder or conversely an
affinity so low that it may be null. This may be determined by the
overall binding of the peptide:MHC complex for KIR, rather than
just the peptide, so different HLA-C alleles may have different fre-
quencies of peptides that fall into the inhibitory, antagonistic, and
null categories. One study in HIV has shown that the majority of
peptides is non-KIR binders and hence could fall into the antag-
onistic or null categories (80). In this work of 217 HIV-derived
peptides tested, 11 were identified that bound HLA-Cw*0102, and
only one of these bound KIR2DL2.

SUBTLY DIFFERENT FUNCTIONS OF KIR AND NKG2A
For CD94:NKG2A, the broadening in peptide specificity afforded
by engagement of CD94 homodimers could be exploited by
viruses, to augment inhibition of NKG2A-positive NK cells. This
contrasts with the observations for KIR, as to date we have found
that peptides engaging KIR2DL2/3 that do not inhibit directly,
can perturb inhibitory the signaling generated by high affinity
KIR:MHC:peptide complexes. As the majority of peptide variants
that we tested are non-KIR binders, this suggests that changes in
peptide repertoire that affect KIR are more likely to result in loss of
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inhibition. This raises the possibility that KIR and CD94:NKG2A
may have subtly different functions. As discussed above, NKG2A-
positive and KIR2DL2/3-positive NK cells respond with different
stoichiometries to changes in the levels of cell-surface MHC class
I. These data imply that NKG2A-positive NK cells are exquisitely
sensitive to changes in MHC class I cell-surface levels at low lev-
els of MHC class I, in our peptide titration experiments at <1%
of maximal cell-surface levels. We thus propose that NKG2A is a
receptor well adapted to changes in the cell-surface quantity of
MHC class I. Conversely, KIR are not specialized for this function
but may be more sensitive to changes in peptide repertoire. It has
been proposed that KIR have a specialization to recognize cells that
have down-regulated specific HLA-A, -B, -C molecules. However,
as most HLA molecules have leader peptides cognate for HLA-E
and CD94:NKG2A, then NKG2A-positive NK cells would serve
this function adequately and, at low levels of MHC class I, most
likely better than KIR. We propose that the HLA-C specific KIR
are specialized to detect changes in peptide repertoire and that this
function complements the role of NKG2A in detecting MHC class
I down-regulation. If KIR-positive and NKG2A-positive NK cells
have these subtly different functions in vivo then this would pro-
vide a rationale for having two distinct inhibitory receptor systems
for MHC class I.

CONCLUSION
In depth study of the peptide selectivity of KIR2DL2/3 and
CD94:NKG2A have given novel insights into the functions of
these receptors. In addition to induced self- and missing self-
recognition, it may be that an “altered self-recognition” is also
important for NK cells expressing these receptors. Testing of these
models in vivo is now required to establish the significance of these
observations for disease.
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