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We develop a theoretical model to describe two-beam energy exchange in a hybrid

photorefractive inorganic-cholesteric cell. A cholesteric layer is placed between two inorganic

substrates. One of the substrates is photorefractive (Ce:SBN). Weak and strong light beams are

incident on the hybrid cell. The interfering light beams induce a periodic space-charge field in the

photorefractive window. This penetrates into the cholesteric liquid crystal (LC), inducing a

diffraction grating written on the LC director. In the theory, the flexoelectric mechanism for

electric field-director coupling is more important than the LC static dielectric anisotropy

coupling. The LC optics is described in the Bragg regime. Each beam induces two circular

polarized waves propagating in the cholesteric cell with different velocities. The model thus

includes optical rotation in the cholesteric LC. The incident light beam wavelength can fall

above, below, or inside the cholesteric gap. The theory calculates the energy gain of the weak

beam, as a result of its interaction with the pump beam within the diffraction grating. Theoretical

results for exponential gain coefficients are compared with experimental results for hybrid cells

filled with cholesteric mixture BL038/CB15 at different concentrations of chiral agent CB15.

Reconciliation between theory and experiment requires the inclusion of a phenomenological

multiplier in the magnitude of the director grating. This multiplier is cubic in the space-charge

field, and we provide a justification of the q-dependence of the multiplier. Within this paradigm,

we are able to fit theory to experimental data for cholesteric mixtures with different spectral

position of cholesteric gap relative to the wavelength of incident beams, subject to the use of

some fitting parameters. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4867479]

I. INTRODUCTION

Significant progress has been made in recent years in the

study of liquid crystal (LC) photorefractive cells. These cells

are used in beam-coupling experiments, and it is of interest

to understand particular liquid crystal properties which opti-

mize the beam-coupling effect. This involves not only add-

ing molecular chiral dopants (or switching to a chiral

nematic compound) but also the addition of various types of

impurity, including nanocolloids of various types.

In this paper, we study hybrid organic-inorganic photo-

refractives, in which a LC sample is placed adjacent to a

photorefractive layer containing photo-generated space

charges. A whole set of analogous photorefractive liquid

crystalline systems have been treated in the literature.1–6 The

resulting space-charge electric fields then penetrate into the

adjacent LC, causing a director-modulation-induced grating.

The incident light beams are diffracted by the grating, lead-

ing to an exchange of intensity between them. One of the

beams is amplified, and in a LC beam-coupling geometry the

exponential gain coefficients can reach values more than two

orders of magnitude larger than those in solid inorganic pho-

torefractive crystals.7–12 Many of these systems involve a

thin LC sample between two photorefractive layers. This is

the so-called “dual photorefractive window geometry,” and

can be contrasted with the “single photorefractive window

geometry,” in which a photorefractive slab is present on only

one side of the liquid crystal cell.

Theoretical models for these systems were first developed

by Tabiryan and Umeton,13 and by Jones and Cook,14 who sup-

posed the beam-coupling mechanisms in hybrid organic-

inorganic photorefractives to be similar to those in conventional

LC cells. Coupling between the director and the light-induced

space-charge electric field would then be caused by the LC

static dielectric anisotropy. This hypothesis predicts the maxi-

mal energy transfer to occur when the grating spacing and the

LC cell thickness are of comparable dimension. But apparently

this is not the case.10–12 Rather, this maximum occurs when the

ratio of grating spacing to cell thickness is rather small.

The present authors have carried out some previous

studies of these systems.15–17 The maximal energy transfer

paradox has been resolved, but involves two unexpected phe-

nomena. One is that the director deformation is governed by

the flexoelectric interactions, rather than by static dielectric

anisotropy coupling. The second is that the magnitude of the

director grating is a non-linear function of the space-charge

electric field. In Ref. 15, we have discussed possible mecha-

nisms for this puzzling nonlinearity.
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JOURNAL OF APPLIED PHYSICS 115, 103103 (2014)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Download to IP:  152.78.209.106 On: Wed, 23 Mar

2016 09:51:45

http://dx.doi.org/10.1063/1.4867479
http://dx.doi.org/10.1063/1.4867479
http://dx.doi.org/10.1063/1.4867479
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4867479&domain=pdf&date_stamp=2014-03-11


In Ref. 16, we have extended previous experimental

beam-coupling studies to hybrid cholesteric LC cells. These

systems exhibit a significant additional feature not observed

in hybrid nematic LC cells. Here, the sign of the gain coeffi-

cient changes as the grating spacing is increased. In Ref. 17,

we have extended Ref. 15 in order to address this problem.

Theory and experiment are in qualitative agreement, if opti-

cal rotation can be neglected, and if nematic regions very

close to the surfaces shield the surfaces from the bulk chiral

system. This might be the consequence of chiral molecule

segregation following from director-concentration coupling.

Here, we discuss a particular set of experimental

results16 obtained in a single photorefractive window geome-

try. In these experiments, the wavelength of the incident line-

arly polarized wave falls either in the cholesteric gap or very

close to it, and is close to the pitch of the cholesteric sample.

However, the theory developed in Ref. 17, although in prin-

ciple applicable, fails to describe these results. In Fig. 1, we

compare the results of the experiments with predictions gen-

erated by the theory of Ref. 17, for two values of the choles-

teric pitch.

This resolution of the apparent paradox principally

involves a more accurate description of the chiral nature of

the material. The single window geometry permits observa-

tions in which optical rotation is significant. In the choles-

teric gap regime, we may recall, the cholesteric reflects

almost completely one circular polarization optical mode,

while transmitting the other. The correct model of beam-

coupling involves, in addition to elements discussed previ-

ously, the decomposition of the incident linear polarized

beam into its two circularly polarized components, and an

explicit treatment of polarization rotation inside the sample.

In addition, to fit the experimental data, we also have to

modify slightly the details of the non-linear dependence of

the magnitude of the director grating on the space-charge

electric field discussed in Ref. 15. Our analysis not only

explains the experiments for wavelengths in the cholesteric

gap but also provides an alternative explanation of data pre-

viously discussed.17

The paper is organized as follows. In Sec. II, we intro-

duce the model of hybrid cholesteric cell in the field of the

interfering incident light beams and define the evanescent

photorefractive field in the LC cell. In Sec. III, we derive

equations for the LC director subject to this electric field and

solve them. In Sec. IV, we discuss light propagation in the

LC, starting with expressions for the dielectric tensor, going

on to equations for the two coupled light modes and expres-

sions for the exponential gain coefficient in the LC cell. In

Sec. V, we make comparisons with experimental results and

in Sec. VI present some brief conclusions.

II. PHOTOREFRACTIVE ELECTRIC FIELD IN LIQUID
CRYSTAL CELL

Let the z-axis be directed perpendicular to the planes of

hybrid photorefractive cell and the cholesteric LC is bounded

by the planes z ¼ �L=2 and z ¼ L=2 (Fig. 2). The director

boundary conditions are homogeneous in the x-direction (in-

plane). We shall suppose that the cholesteric pitch inside the

cell is uniform. This requires that there are an integer number

n of chiral director twists between the cell walls. If the cho-

lesteric pitch is p, then 2p ¼ nL. We remark that, in practice,

the thickness of the cell will not be exactly commensurate

with the equilibrium cholesteric pitch, and that in order to fit

an integral number of rotations into the sample, the value of

the pitch in the sample will be slightly displaced from its

equilibrium value. This problem has been addressed in the

literature18–20 but we shall not address it here, as it is not

directly pertinent to the present optical study. A further com-

plicating factor is possible non-uniformity of the helical

pitch, induced by non-uniformity in the chiral dopant con-

centration, which we shall similarly neglect. We note, how-

ever, that in practice, this is also likely to be present, and

indeed we have invoked this possibility in our previous

study17 of two-beam coupling in cholesteric mixtures away

from the cholesteric gap.

The hybrid cell is illuminated by two intersecting coher-

ent light beams E1 ¼ A1e1exp ik1r�ix tð Þ and

E2 ¼ A2e2exp ik2r � ix tð Þ. The bisector of the beams is

directed along the z-axis, and the wave vectors k1; k2 lie in

the xz-plane. On the entrance plane z ¼ �L=2, the polariza-

tion vectors e1; e2 of the beams lie in the xz-plane. As the

FIG. 1. Gain coefficient versus grating spacing: comparison of theory17 with experiments16 for 5 lm hybrid cell filled with cholesteric mixture BL038/CB15,

showing inadequacy of previous theory. Note particularly that trends are incorrectly predicted. (a) cholesteric pitch: p¼ 0.44 lm, (b), p¼ 0.65 lm. Legend:

theory from Ref. 17—curves; experimental data16—boxes.
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beams propagate across the cholesteric cell, however, they

can rotate. On the exit plane z ¼ L=2, the polarization

plane may, in general, possess an orientation different from

that on the entrance plane.

For cells with two photorefractive substrates, the en-

trance and exit photorefractive substrates are then illumi-

nated by light fields with different polarizations. The

photorefractive electric field arising in the photorefractive

substrates thus possess unequal orientations, which compli-

cates the analysis of the diffraction grating.15,17 However, in

the experimental setup considered here, the hybrid photore-

fractive cell contains only a single photorefractive substrate

(Ce:SBN) deposited on the entrance plane at z ¼ �L=2. The

exit substrate siding at z ¼ L=2 is non-photorefractive

(glass).

The beams produce a light intensity interference pattern

in the photorefractive substrate for z � �L=2,

I zð Þ ¼ I1 þ I2ð Þ 1þ 1

2
m expðiqxÞ þ c:c:ð Þ

� �
; (1)

where we define the modulation parameter

m ¼ 2 cos 2dð ÞA1A�2= I1 þ I2ð Þ, and where 2d is the angle

between incident beams in the photorefractive medium,

I1 ¼ A1A�1, I2 ¼ A2A�2 are the intensities of incident beams,

and q ¼ k1x � k2x ¼ 2ksind � 2kd is the wave number of the

intensity pattern. We shall focus particularly on the interfer-

ence pattern on the photorefractive medium-LC boundary

(i.e., as the light beams enter the liquid); here, we denote

m � mð�L=2Þ ¼ 2 cos 2dð ÞA1ð�L=2ÞA�2ð�L=2Þ= I1 þ I2ð Þ:
(2)

The quantity m ¼ mð�L=2Þ plays a particularly important

role in the theory and will recur frequently in the ensuing

analysis.

Inside the photorefractive substrate, the light intensity

pattern given by Eq. (1) induces a space charge. The space-

charge density is modulated along the x-axis with period

equal to 2p=q and gives rise to an electric potential ~U xð Þ at

the cell boundary:

~UðxÞ ¼ ~U0 þ ~U exp iqxð Þ þ c:c:
� �

; (3)

where ~U0 is an arbitrary constant (which may be taken to be

zero), and

~U ¼
iEsc qð Þ

2q
m: (4)

In particular, in an infinite photorefractive medium and for a

diffusion-dominated space-charge field EscðqÞ takes the fol-

lowing form:21

EscðqÞ ¼
iEd

1þ Ed

Eq

; Ed ¼ q
kbT

e
; Eq ¼ 1� Na

Nd

� �
eNa

e0ePhq
;

(5)

where Ed is the diffusion field, Eq is the so-called saturation

field, Na and Nd are, respectively, the acceptor and donor im-

purity densities, ePh is the dielectric permittivity of photore-

fractive material, and e is the electron charge.

The space-charge electric field penetrates from photore-

fractive substrate into the flexoelectric cholesteric LC. The

photorefractive medium is not infinite, but rather semi-infinite.

The solution for the electric fields in the photorefractive

substrate and the LC is actually a complex coupled problem.

However, if we suppose that Eqs. (3)–(5) remain valid at the

liquid-crystal-photorefractive medium boundary, the electric

field problems in the two media separate, with Eqs. (3)–(5)

now acting as boundary conditions for the electric potential

within the LC cell.

Finally, we note director pretilt at the LC cell bounda-

ries, which we describe, respectively, by angles h01; h02 in

the xz-plane.

The electric field in the cholesteric LC cell can be found

from the Poisson equation

r � ðe0 ~̂e � Eþ Pf Þ ¼ 0; (6)

where the flexopolarization Pf is defined by the expression

Pf ¼ e1nr � nþ e3ðr � n� nÞ,22 ~eij ¼ ~e?dij þ ~eaninj is the

low frequency dielectric permittivity of the cholesteric LC,

ni are the components of the director n, ~ea ¼ ~ek � ~e? is the

dielectric anisotropy, ~ejj and ~e? are the components of the

dielectric tensor along and perpendicular to the director, e1

and e3 are the flexoelectric coefficients.

To solve Eq. (6) inside the cholesteric LC, we use the

relation E x; zð Þ ¼ �rU x; zð Þ, and seek solutions for the

electric potential U x; zð Þ in the form

Uðx; zÞ ¼ U0 zð Þ þ U zð Þexp iqxð Þ þ c:c:
� �

: (7)

We note that the director field nðrÞ responds to the electric

field defined in Eq. (6), and that, generally speaking, it is

necessary to solve Eq. (6) self-consistently with equations

for the director. However, we will consider only small

FIG. 2. Cholesteric LC cell, showing light beams incident from photorefrac-

tive medium, together with associated wave- and polarization vectors. The

quantities kð1;2Þ,a1;2,~a1;2,e1;2,h01;2 are defined in the text. By convention, we

suppose beam 1 to be the signal beam, and beam 2 to be the pump.
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deviations of the director in response to the electric field. In

this case, we can neglect the feedback of the director

response on the electric field and influence of small angles of

the director pretilt at the cell boundaries.

Combining Eqs. (6) and (7), we derive

@2

@z2
U0ðzÞ ¼ 0; (8)

@2

@z2
UðzÞ þ �

~ek þ ~e?
2~e?

q2 � ~eaq2

2~e?
cos2u0ðzÞ

� �
UðzÞ ¼ 0; (9)

where

u0ðzÞ ¼
2p
p
ðzþ L=2Þ ; (10)

and p is the pitch of the cholesteric helix.

Using Eqs. (3)–(5), the boundary conditions for the electric

potentials at the LC boundaries z ¼ 7 L
2

can now be written as

U0 z ¼ 7L=2ð Þ ¼ 0; U z ¼ �L=2ð Þ ¼
iEsc qð Þ

2q
m;

U z ¼ L=2ð Þ ¼ 0: (11)

Equation (9) is Mathieu’s equation.23 For parameters used in

our theory, the second term in square brackets is small in

comparison with the first term over most of the range of

angle u0. Then, to simplify further calculation, we replace

this second term by its average value which equals zero,

yielding

@2

@z2
UðzÞ �

~ek þ ~e?
2~e?

q2UðzÞ ¼ 0: (12)

We solve Eqs. (8) and (12) with boundary conditions

(11), yielding the following expressions for electric field in

the LC cell:

Ex ¼ E0xexp iqxð Þ þ c:c;
Ez ¼ E0zexp iqxð Þ þ c:c:;

(13)

E0x ¼ �
Esc qð Þm

2sinh ~qLð Þ sinh~qðz� L=2Þ;

E0z ¼
i~qEsc qð Þm

2qsinh ~qLð Þ cosh~qðzþ L=2Þ; (14)

where ~q ¼ q
ffiffiffiffiffiffiffiffiffiffi
~e?þ~ek

2~e?

q
.

III. CHOLESTERIC LC DIRECTOR PROFILE

The equilibrium director profile can be found by mini-

mizing the total free energy functional of the cholesteric LC

cell defined by

F ¼ Fel þ Fl þ FE þ Ff l; (15)

where

Fel ¼
1

2

ð
K11 r � nð Þ2 þ K22 n � r � nþ gð Þ2 þ K33 n�r� nð Þ2
h i

dV;Fl ¼ �
e0ea

4

ð
n � Eh�ð Þ2dV;

FE ¼ �
1

2

ð
D � Eð Þ2dV;Ff l ¼ �

ð
Pf � Eð Þ dV:

(16)

The meaning of the quantities in Eq. (16) is as follows:

a) Fel is the bulk elastic energy of a distorted cholesteric

LC layer;

b) Fl is contribution of the light field to the total free

energy functional;

c) FE is the contribution from the dc-electric field created

in the LC cell by the photorefractive layers;

d) Ff l is the contribution from interaction of the dc-electric

field with the LC flexoelectric polarization;

e) K11; K22; K33 are the splay, twist, and bend elastic con-

stants, respectively;

f) g ¼ 2p
p , with p the cholesteric pitch;

g) ea is the anisotropy of the LC dielectric permittivity at

optical frequency;

h) Eh� is the electric vector of the light field in the choles-

teric LC.

Finally, we suppose infinitely rigid director anchoring

on the cell surfaces z ¼ 7L=2 with director pretilt angles in

the xz-plane h01; h02, respectively (Fig. 2).

Some terms in Eqs. (15) and (16) can now be

neglected. The optical frequency LC dielectric anisotropy

ea 	 1, implying neglect of the light field contribution Fl.

The LC dielectric anisotropy term FE can be neglected

with respect to the LC flexopolarization. We refer readers

to Refs. 15 and 17 for a more detailed justification. For

simplicity, we suppose K11 ¼ K22 ¼ K33 ¼ K (see also

Sala and Karpierz24 for a more detailed discussion of the

status of the one-constant approximation in an optical

context).

It is convenient to parameterize the director in the form

n ¼ cosuðx; zð Þsinbðx; zÞ; sinuðx; zÞsinbðx; zÞ; cosbðx; zÞÞ,
where bðx; zÞ is the director polar angle with the z-axis and

uðx; zÞ is the director azimuth angle with respect to the x-axis.

We can then define #ðx; zÞ by #ðx; zÞ ¼ p
2
� bðx; zÞ, where

#ðx; zÞ is a small reorientation with respect to the xy-plane, with

#ðx; zÞ ¼ h0 zð Þ þ ½h zð ÞexpðiqxÞþc:c:
. Likewise, we can

decompose the azimuthal director angle uðx; zÞ ¼ u0 zð Þ þ
½u zð Þexp iqxð Þ þ c:c:
 into a mean value and superimposed

fluctuations.
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After some straightforward algebra, the linearized

Euler-Lagrange equations for h zð Þ, u zð Þ,and h0 zð Þ appropri-

ate to the free energy functional Eq. (15) are now

@2h
@z2
� q2 þ g2
	 


h

¼ r iqcosu0E0z þ
@E0z

@z
� iqcos2uE0x

� �
h0

� �
� r1gsinu0E0x; (17)

@2u
@z2
� q2u ¼ �iqr

1

2
sin2u0E0x þ h0sinu0E0z

� �

þ r1sinu0

@h0

@z
E0x; (18)

@2h0

@z2
� g2h0 ¼ 0; (19)

where r ¼ e1þe3

K ; r1 ¼ e1�e3

K . The boundary conditions for

Eqs. (17)–(19) are

h 7L=2ð Þ ¼ 0; u 7L=2ð Þ ¼ 0; h0 �L=2ð Þ ¼ h01;

h0 L=2ð Þ ¼ h02:
(20)

In our solutions to Eq. (17), we neglect terms of oðh2
0Þ.

Equation (30) below for the dielectric constant requires only

terms of oðh0Þ. In addition, we note that in the experiments16

the condition qL� 1; gL� 1 is satisfied. Considering only

this case, we can simplify expressions for solutions to Eqs. (17)

and (18) by neglecting terms of higher order in e�qL, e�gL. The

solution to Eq. (17), subject to these restrictions, is given by

hðzÞ ¼ iEscðqÞ
2q

dðzÞm; (21)

where

dðzÞ ¼ ½e�ð~q�igÞz � e�ð~q�igþ
ffiffiffiffiffiffiffiffiffi
q2þg2
p

ÞL=2e
ffiffiffiffiffiffiffiffiffi
q2þg2
p

z � eð~q�ig�
ffiffiffiffiffiffiffiffiffi
q2þg2
p

ÞL=2e�
ffiffiffiffiffiffiffiffiffi
q2þg2
p

z
 ðr1gþ ir~qÞqeðig�~qÞL=2

2½~q2 � q2 � 2g2 � 2i~qg

� c:c:; (22)

uðzÞ ¼ iEscðqÞ
2q

f ðzÞm; (23)

where

f ðzÞ ¼ 1

4

ið�1Þnrq~qe�~qL=2

ð~q2 � q2 � 4g2Þ2 þ 16g2 ~q2
½ð~q2 � q2 � 4g2 þ i4g~qÞeð�~qþi2gÞz � ð~q2 � q2 � 4g2 � i4g~qÞeð�~q�i2gÞz

� i8g~qð�1Þnðe�~qL=2eqðz�L=2Þ þ e~qL=2e�qðzþL=2ÞÞ
 � q

2
e�ð~qþgÞL=2½h01Fðz; gÞ � h02Fðz;�gÞ
;

(24)

Fðz; gÞ ¼ ðr~q � r1gÞ½ð~q2 � q2 þ 2~qgÞ þ 2igð~q þ gÞ
eð~qþgÞL=2

ð~q2 � q2 þ 2~qgÞ2 þ 4g2ð~q þ gÞ2
½e�ð~qþg�igÞðzþL=2Þ � ð�1Þne�ð~qþgÞLeqðz�L=2Þ � e�qðzþL=2Þ
 � c:c:

(25)

h0ðzÞ ¼ h01e�gðzþL=2Þ þ h02egðz�L=2Þ: (26)

IV. COUPLED LIGHT MODES

A. General expression for cholesteric dielectric tensor

Using the definition of the cholesteric LC director by the director angles hðx; zÞ and uðx; zÞ, n ¼ cosuðx; zÞð
coshðx; zÞ; sinuðx; zÞcoshðx; zÞ; sinhðx; zÞÞ, the optical frequency dielectric tensor eij ¼ e?dij þ eaninj, takes the form

ê ¼

e? þ eacos2uðx; zÞcos2hðx; zÞ 1

2
easin2uðx; zÞcos2hðx; zÞ 1

2
eacosuðx; zÞsin2hðx; zÞ

1

2
easin2uðx; zÞcos2hðx; zÞ e? þ easin2uðx; zÞcos2hðx; zÞ 1

2
easinuðx; zÞsin2hðx; zÞ

1

2
eacosuðx; zÞsin2hðx; zÞ 1

2
easinuðx; zÞsin2hðx; zÞ e? þ easin2hðx; zÞ

������������

������������
: (27)

Substituting #ðx; zÞ ¼ h0 zð Þ þ h zð Þexp iqxð Þþc:c:
� �

, uðx; zÞ ¼ u0 zð Þ þ ½u zð Þexp iqxð Þ þ c:c:
 into Eq. (27) and neglecting terms

of second order and higher in the angles h zð Þ and u zð Þ, one can rewrite the dielectric tensor ê in Eq. (27) in the following way:
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ê x; zð Þ ¼ ê1 zð Þ þ ê2 zð Þ þ ê3 zð Þexp iqxð Þ þ c:c:
� �

; (28)

where

ê1 ¼
e? þ eacos2u0

1

2
easin2u0 0

1

2
easin2u0 e? þ easin2u0 0

0 0 e?

���������

���������
; ê2 ¼ eah0ðzÞ

�h0cos2u0 � 1

2
h0sin2u0 cosu0

� 1

2
h0sin2u0 �h0sin2u0 sinu0

cosu0 sinu0 h0

����������

����������
; (29)

ê3 ¼ eahðzÞ
�2h0cos2u0 �h0sin2u0 cosu0

�h0sin2u0 �2h0sin2u0 sinu0

cosu0 sinu0 2h0

�������
�������þ eauðzÞ

�sin2u0 cos2u0 �h0sinu0

cos2u0 sin2u0 h0cosu0

�h0sinu0 h0cosu0 0

�������
�������; (30)

where ea ¼ ek � e?, and ek,e? are the principal values of the

optical frequency dielectric tensor.

The first term in Eq. (28) corresponds to a LC with con-

stant cholesteric pitch p and zero director pretilt on the cell

boundaries. The second term takes into account director

inhomogeneity inside the cell resulting from the nonzero

director pretilt on the cell boundaries. The third term

describes the dielectric tensor modulation. This is a conse-

quence of the director modulation driven by the spatially per-

iodic dc photorefractive electric field.

The electric field in the light beams satisfies the usual

vector wave equation

r� r� Eh� �
x2

c2
êðx; zÞEh� ¼ 0; (31)

where in our case the dielectric permittivity is described by

expressions (28)–(30).

B. Light beams in waveguide regime

1. Normal incidence

We will study propagation of plane polarized light beam

incident normally on a cholesteric LC cell. Incident light

beam is polarized along the x-axis at the cell entrance bound-

ary z ¼ �L=2.

First, we suppose that we are in waveguide regime when

the eigenmodes are nearly circular. In this regime, the condi-

tion k > p ðne � n0Þ holds, where k is the free space wave-

length, and n0, ne are, respectively, the ordinary and

extraordinary wave refraction indices. We will also neglect

effects of the wave reflection from the far side of the choles-

teric cell. Then in this case at the normal incidence, we have

in the cholesteric medium with dielectric tensor given by ê1

(Eq. (29)) two circularly polarized modes propagating

along the z-axis with magnitudes given by (see, e.g., Ref. 22;

p. 277)

Eþ ¼Ex þ i Ey ¼ A0eiðx=cÞnð2ÞðzþL=2Þ;

E� ¼ Ex � i Ey ¼ A0eiðx=cÞnð1ÞðzþL=2Þ; (32)

where nð1Þ and nð2Þ are refraction indices for circular polar-

ized waves.

These circular polarized waves create electric fields in

the cholesteric LC, with the following Cartesian components

Ex ¼
Eþ þ E�

2
; Ey ¼

Eþ � E�

2i
: (33)

2. Oblique incidence

Now, we suppose that a light beam, polarized in the xz-

plane, is incident on the cholesteric cell at a small angle a
with respect to the cell normal (the z-axis). The cholesteric

dielectric tensor is now given by ê1 þ ê2 (see Eqs. (28)–(30)),

where ê2 is in some sense small and of order eah0.

We now solve the relevant wave equation Eq. (31) with

appropriate values of êðx; zÞ. The contribution from ê2(z) is

small. Neglecting reflection of the wave from the far side of

the cholesteric cell, we may thus start use Eq. (33) as a zeroth

order approximation in a perturbation scheme. Now, neglect-

ing second order terms in h0 and a, we obtain the following

expressions for the Cartesian components of the electric field:

Ex ¼
1

2
A0ðeiðx=cÞnð1ÞðzþL=2Þ þ eiðx=cÞnð2ÞðzþL=2ÞÞeikxx;

Ey ¼
i

2
A0ðeiðx=cÞnð1ÞðzþL=2Þ � eiðx=cÞnð2ÞðzþL=2ÞÞeikxx;

Ez ¼ ia
n1 þ n2

2

c

e?x
@Ex

@z
� h0ðzÞ

ea

e?
ðcosu0Ex þ sinu0EyÞ :

(34)

We postpone the details of the calculation to Appendix A

(see also discussions of oblique incidence, e.g., in Refs. 22

and 25). We remark that the x and y components of the field

are given by Eqs. (32) and (33), although now modulated by

an exp(ikxx) factor.

In the case under consideration, there are two such light

beams incident on this cholesteric cell boundary, with ampli-

tudes A1 and A2, and angles of incidence a1; a2 (Fig. 2).

Each beam produces a pair of circular polarized waves in the

cholesteric cell. The Cartesian components of each beam are
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likewise described by Eqs. (34), with refraction indices n
ð1;2Þ
i

corresponding to each beam.

From Eq. (34), we can write the electric field vector in

the cholesteric LC in the form

Eh� ¼ E1 þ E2; E1 ¼ iE1x þ jE1y þ kE1z;

E2 ¼ iE2x þ jE2y þ kE2z; (35)

where E1 and E2 are the electric vectors of the two light

beams. Combining Eqs. (34) and (35), we obtain the

Cartesian components of the light beam fields

E1x ¼
1

2
A1ðeiðx=cÞnð1Þ

1
ðzþL=2Þ þ eiðx=cÞnð2Þ

1
ðzþL=2ÞÞeik1xx ;

E1y ¼
i

2
A1ðeiðx=cÞnð1Þ

1
ðzþL=2Þ � eiðx=cÞnð2Þ

1
ðzþL=2ÞÞeik1xx ;

E1z ¼ ia1

n
ð1Þ
1 þ n

ð2Þ
1

2

c

e?x
@E1x

@z

� h0ðzÞ
ea

e?
ðcosu0E1x þ sinu0E1yÞ (36)

and

E2x ¼
1

2
A2ðeiðx=cÞnð1Þ

2
ðzþL=2Þ þ eiðx=cÞnð2Þ

2
ðzþL=2ÞÞeik2xx;

E2y ¼
i

2
A2ðeiðx=cÞnð1Þ

2
ðzþL=2Þ � eiðx=cÞnð2Þ

2
ðzþL=2ÞÞeik2xx;

E2z ¼ �ia2

n
ð1Þ
2 þ n

ð2Þ
2

2

c

e?x
@E2x

@z

� h0ðzÞ
ea

e?
ðcosu0E2x þ sinu0E2yÞ : (37)

C. Light beams in Bragg reflection regime

The Bragg reflection condition is k ¼ �np , where �n is the

average index of refraction. In this case, the light wavelength

falls inside the so called cholesteric gap.22 In this case, an

incident plane polarized beam gives rise only one propagat-

ing circularly polarized mode in the cholesteric medium. The

second mode, circularly polarized in the opposite direction,

lies in the band gap and is evanescent.

We simplify our analysis, assuming strong attenuation

of the evanescent mode (i.e., total reflection) and, as in Sec.

IV B, neglect effects caused when the propagating mode is

reflected from the far side of the cholesteric cell.

To write expressions for propagating waves induced by

two incident beams in Bragg reflection regime, we formally

may use formulas of previous Subsection IV B, but ignoring

the Eþ term in Eqs. (33), (36), and (37).

We obtain expressions for propagating (left polarized)

waves omitting in formulas (35) and (36) terms with

eiðx=cÞnð2Þ
1;2
ðzþL=2Þ and putting n

ð1Þ
1;2 instead of

n
ð1Þ
1;2
þn
ð2Þ
1;2

2
in formulas

for E1;2z:

E1x ¼
1

2
A1eiðx=cÞnð1Þ

1
ðzþL=2Þeik1xx;E1y ¼

i

2
A1eiðx=cÞnð1Þ

1
ðzþL=2Þeik1xx ;

E1z ¼ ia1n
ð1Þ
1

c

e?x
@E1x

@z
� h0ðzÞ

ea

e?
ðcosu0E1xþ sinu0E1yÞ ;

(38)

and

E2x ¼
1

2
A2eiðx=cÞnð1Þ

2
ðzþL=2Þeik2xx;E2y ¼

i

2
A2eiðx=cÞnð1Þ

2
ðzþL=2Þeik2xx;

E2z ¼�ia2n
ð1Þ
2

c

e?x
@E2x

@z
� h0ðzÞ

ea

e?
ðcosu0E2xþ sinu0E2yÞ :

(39)

D. Coupled waves

The coupling between the light waves arises in Eq. (28)

as a result of the additional term ê3ðzÞexp iqxð Þ þ c:c: We fol-

low a procedure analogous to that first outlined by

Kogelnik,26 which we have used in our previous related

papers.15,17 The principle involves setting electric field mag-

nitudes A1 ¼ A1ðzÞ, A2 ¼ A2ðzÞ, and allowing them to vary

slowly across the cell.

We now substitute the electric fields given by Eqs.

(35)–(37) (or corresponding expressions for electric fields in

Bragg regime) into the wave equation (31). The leading

order terms in this substitution cancel because the waves E1

and E2 separately obey the vector wave equation with dielec-

tric tensor ê1 þ ê2.

We adopt the undepleted pump approximation,21 for

which the magnitude of the pump beam jA2j � jA1j and may

be regarded as constant. In this case, the set of coupled equa-

tions for the electric field magnitudes reduces to (see Eq.

(B20) in Appendix B)

@

@z
A1ðzÞ ¼ �iSðzÞA2; (40)

where for the wave guide regime

SðzÞ ¼ x
c

ea

nð1Þ þ nð2Þ
2ek
e?

hðzÞh0ðzÞcos2 h

2
þ g

� �
zþ L

2

� �� �
þ uðzÞsin ðhþ 2gÞ zþ L

2

� �� ��

þ iahhðzÞ n
ð1Þ þ nð2Þ

4e?
sin½gðzþ L=2Þ
 � sin½ðhþ gÞðzþ L=2Þ

� �

;

(41)

h ¼ ðx=cÞðnð1Þ � nð2ÞÞ: (41a)
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For the Bragg reflection regime, the analogous formula is

SðzÞ ¼ x
c

ea

8nð1Þ
hðzÞ 4 1þ ea

4e?

� �
h0ðzÞ � ia

nð1Þ2

e?
sin½gðzþ L=2Þ


( )
�ia

nð1Þ2

e?
uðzÞh0ðzÞcos½gðzþ L=2Þ


" #
: (42)

The details of the derivation of Eq. (40) have been relegated to Appendix B.

The solution to Eq. (40) has the following form:

A1 zð Þ ¼ A1 �L=2ð Þ � iA2

ðz
�L=2

S z0ð Þ dz0: (43)

We now use this solution to investigate energy exchange in the cholesteric cell.

E. Expression for gain coefficient

The signal gain caused by the LC layer in hybrid cell is defined as

C ¼ A1 L=2ð Þ
A1 �L=2ð Þ ; (44)

where from Eq. (43)

A1 L=2ð Þ ¼ A1 �L=2ð Þ � iA2

ðL=2

�L=2

S zð Þ dz: (45)

Substituting SðzÞ from Eq. (41) into Eq. (45) yields the following result for the signal gain:

C ¼ 1� i
x
c

ea

nð1Þ þ nð2Þ
A2

A1 �L=2ð Þ

ðL=2

�L=2

dz 2
ek
e?

hðzÞh0ðzÞcos2 h

2
þ g

� �
zþ L

2

� �� �
þuðzÞsin ðhþ 2gÞ zþ L

2

� �� ��

þiahhðzÞ n
ð1Þ þ nð2Þ

4e?
sin½gðzþ L=2Þ
 � sin½ðhþ gÞðzþ L=2Þ

� �

: (46)

Equation (46) can be rewritten, substituting hðzÞ from Eq. (21) and uðzÞ from Eq. (23). Noting that in the undepleted

pump approximation the formula (2) for m reduces to m � 2cos 2dð ÞA1 �L=2ð Þ=A2, we obtain

C ¼ 1þ x
c

ea

nð1Þ þ nð2Þ
EscðqÞcos 2dð Þ

q

ðL=2

�L=2

dz
2ek
e?

h0ðzÞdðzÞcos2 h

2
þ g

� �
zþ L

2

� �� �
þf ðzÞsin ðhþ 2gÞ zþ L

2

� �� ��

þ iahdðzÞ n
ð1Þ þ nð2Þ

4e?
sin½gðzþ L=2Þ
 � sin½ðhþ gÞðzþ L=2Þ

� �

:

(47)

The integral in Eq. (47) can now be evaluated, by substituting dðzÞ from Eq. (22), f ðzÞ from Eq. (24), h0ðzÞ from Eq. (26). We

express the result in terms of the exponential gain coefficient:15,17

g0 ¼
1

L
lnjCj ¼ 1

2L
lnjð1þ a0A1h01Þ2 þ a2

0ðB1 þ C1Þ2j; (48)

where
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a0 ¼
p
k

n2
e � n2

o

nð1Þ þ nð2Þ
iEscðqÞcos 2dð Þ; A1 ¼ R0Rþ P;

B1 ¼
r~q2=2

ð~q2 � q2 � 4g2Þ2 þ 16g2 ~q2

~q2 � q2 � 4g2 þ 4gh

~q2 þ h2
� ~q2 � q2 � 20g2 � 4gh

~q2 þ ð4gþ hÞ2
� 8gðhþ 2gÞ

q2 þ ðhþ 2gÞ2

" #
;

C1 ¼
k

4pne

� �2

h q R0

A~q � ð2gþ hÞB
~q2 þ ð2gþ hÞ2

þ 2ðhþ gÞB
q2 þ g2 þ ðhþ gÞ2

� A~q þ hB

~q2 þ h2
� A~q � 2gB

~q2 þ 4g2
� 2gB

q2 þ 2g2
þ A

~q

" #
:

(49)

Here

R0 ¼
n2

e=n2
o

ð~q2 � q2 � 2g2Þ2 þ 4~q2g2
;A ¼ g½r1ð~q2 � q2 � 2g2Þ � 2r~q2
;B ¼ ~q½2r1g2 þ rð~q2 � q2 � 2g2Þ
 ;

R ¼ 2½Agþ Bð~q þ gÞ

ð~q þ gÞ2 þ g2

� 2Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ g2

p
þ g
þ Að3gþ hÞ þ Bð~q þ gÞ
ð~q þ gÞ2 þ ð3gþ hÞ2

� Aðgþ hÞ � Bð~q þ gÞ
ð~q þ gÞ2 þ ðgþ hÞ2

� 2Bð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ g2

p
þ gÞ

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ g2

p
þ gÞ2 þ ð2gþ hÞ2

;

P ¼ ð~q þ gÞðr~q � r1gÞ
ð~q2 � q2 þ 2~qgÞ2 þ 4g2ð~q þ gÞ2

~q2 � q2 � 6g2 þ 2gð~q � hÞ
ð~q þ gÞ2 þ ðhþ 3gÞ2

� ~q2 � q2 þ 2g2 þ 2gð~q þ hÞ
ð~q þ gÞ2 þ ðhþ gÞ2

þ 4gðhþ 2gÞ
q2 þ ðhþ 2gÞ2

" #
:

(50)

When the incident light wavelength lies in the choles-

teric gap, we substitute in Eq. (45) expressions (42). In this

case, the exponential gain coefficient is described by the

expression

g0 ¼
1

L
lnj1þ a0B2ðA2h01 þ C2Þj; (51)

where in Eq. (51)

A2 ¼
n2

e þ 3n2
o

4n2
o

Agþ ð~q þ gÞB
ð~q þ gÞ2 þ g2

� B

ðgþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ g2

p
Þ

" #

B2 ¼
1

ð~q2 � q2 � 2g2Þ2 þ 4~q2g2
;

C2 ¼
k

4p
nð1Þ

8n2
0

q
2gAþ ~qB

~q2 þ 4g2
� 2gA

q2 þ 2g2
� B

~q

� �
: (52)

F. Generalization of q-dependence in nonlinear theory

In Ref. 15, we have developed a theory for two beam

energy exchange in hybrid nematic cells. The gain coeffi-

cient g0 contains a phenomenological multiplier nonlinear in

the photorefractive electric field magnitude EscðqÞ. We have

suggested that this multiplier takes the form

EscðqÞ 1þ lðL; qÞE2
scðqÞ

	 

, and thus at small director grating

spacing (high q) lðL; qÞ � lðLÞq2. If lðLÞ is taken as a fit-

ting parameter, these forms are consistent with the experi-

mental dependence of gain coefficient on grating spacing in

hybrid nematic LC,15 as well as with experimental results in

a hybrid cholesteric LC relating to thin cells in a dual photo-

refractive window geometry.17 In Ref. 15, we discussed dif-

ferent physical mechanisms responsible for the nonlinear

dependence of the gain coefficient on EscðqÞ, identifying the

physical separation of LC components with different molec-

ular dipoles as the probably principal physical contribution.

As already noted in Sec. I, the theoretical gain coefficient

with this form of lðL; qÞ fails to describe those experimental

results obtained in a one window geometry. We hypothesize

that this is connected with the form of the multiplier

lðL; qÞ � lðLÞq2, which inaccurately describes the large gra-

ting spacing (low q) regime. In Appendix C, we analyze the q-

dependence of this nonlinear multiplier in the cholesteric cell.

As a result, accounting for a change of spatial distribu-

tion of dipole concentration in cholesteric cell we have to

replace in Eqs. (21)–(26) for director angles and in Eqs. (49),

(50), and (52) for gain coefficient, the flexoelectric parame-

ters r; r1 (denoting here as ri) by their effective values

ri ¼ r0
i 1þ l qþ l1

q

� �2

jEscj2
" #

; (53)

where r0
i are the flexoelectric parameters in the absence of

photorefractive field, and l and l1 are the fitting parameters.

V. COMPARISON WITH EXPERIMENTAL DATA

In this section, we compare our theoretical results

(Subsections IV E and IV F) with experimental data for a sin-

gle photorefractive window hybrid cell obtained by Cook

et al.16 The theory presents results for the dependence of the

exponential gain coefficient on grating spacing, We recall

that in the experiments,16 the hybrid cell was filled with cho-

lesteric mixture by doping the nematic LC BL038 with the

chiral impurity CB15. The LC BC038 is a proprietary mate-

rial prepared by the Merck company (EMD Millipore in

North America), which contains seven components including

some cyanobiphenyl derivatives, one of which is 5CB.28

CB15 is a widely used right-handed chiral agent also avail-

able from Merck-EMD Millipore.

In order to evaluate EscðqÞ, we follow the formulas (5)

and the paper of Cook et al.10 Here, the ratio of the acceptor

to donor impurity densities is estimated to be very small, i.e.,
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Nd � Na, with Na � 3:8� 1021 m�3. The director pretilt

angle at the LC cell substrates was approximately 128, yield-

ing h01 ¼ 128, h02 ¼ �128. The ordinary and extraordinary

refractive indices of the mixture BL038/CB15 are no ¼
1:527 and ne ¼ 1:799, respectively, with low-frequency

dielectric constants ~ek ¼ 21:7 and ~e? ¼ 5:3. The dielectric

permittivity of the photorefractive layers is given by ePh ¼
200 at temperature T¼ 300 K.

The ratios of flexoelectric to elastic moduli in the ab-

sence of photorefractive field r0 ¼ e1 þ e3ð Þ=K and r0
1 ¼

e1 � e3ð Þ=K are not known for BL038/CB15. But these

ratios have been measured in other LC systems,29–32 and a

value of order of magnitude �1 Cm�1N�1 may be regarded

as typical for absolute values of r0 and r0
1 (note that r0

1 < 0).

We describe effective values of the flexoelectric parameters

using Eq. (53), where we evaluate the fitting parameter

l ¼ 8� 10�20 J�2 C2 m4. This value of l was obtained in

our earlier paper17 when fitting the experimental curves for

beam coupling in a cell with same cholesteric mixture, but in

the different dual photorefractive window geometry. Thus,

to fit experimental curves for the single photorefractive win-

dow geometry, we need only the one extra fitting parameter

l1 in Eq. (53).

We note here some details of the experimental data

from Ref. 16, to which we are fitting our theory. The laser

wave length has k¼ 532 nm. The gap is localized by the

notch position (at which there is a decrease in the light trans-

mission). In the two cases considered, the notches occur at

k0¼ 440 nm and at k0¼ 650 nm. The formula for the notch

width is Dk ¼ Dn p ¼ k0
Dn
n ,33 where p is the cholesteric

pitch. In the two experimentally relevant cases, this corre-

sponds, respectively, to Dk ¼ 86 nm and Dk ¼ 120 nm,

which means that the notches are in the range (440 6 43)nm

and (650 6 60)nm. Thus, in the first case, the gap is well

below the wavelength of the incident light, and in the second

case it is well above the light wavelength.

In Figs. 3 and 4, the gain coefficient g0 versus the grating

spacing K ¼ 2p=q is plotted for cells of thickness L ¼ 5 lm.

In Fig. 3, results are presented for cases in which the incident

light wavelength is above (Fig. 3(a)), as well as below (Fig.

3(b)), the cholesteric gap. Fig. 4 shows the case when light

wavelength is inside the cholesteric gap. The best fit of theoret-

ical curves (48) in Fig. 3 and (51) in Fig. 4 with experimental

data occurs for absolute values of parameters r0; r0
1 from the

range 1� 4(r0 > 0; r0
1 < 0). In all cases, the value of fitting

parameter l1 was the same and equal to l1 ¼ 1:3� 1013 m�2.

For light beam wavelengths outside the cholesteric gap,

an additional fitting parameter exists, namely, the difference

between the refraction indices associated with the left-

handed and right-handed circular polarized light waves,

Dn ¼ nð1Þ � nð2Þ. This parameter characterizes the optical

rotation in the cholesteric LC. In both cases, above and

below the cholesteric gap, the value of this parameter did not

exceed 10�3. This corresponds to a numerical value for the

optical rotation of the light beam passing through the cell

equal to 2p
k Dn L � 3:58, and is consistent with earlier experi-

mental results,16 in which in a similar experimental setup,

there appeared to be no noticeable change in the light beam

polarization.

VI. CONCLUSIONS

We have developed a theoretical model describing

energy gain of a weak signal beam interacting with a strong

FIG. 3. Gain coefficient g0 versus grating spacing K in hybrid cell containing cholesteric LC mixture BL038/CB15. Theoretical results—curves, experimental

data—boxes. k ¼ 0:532 lm (a) above cholesteric gap, notch position k0¼ 440 nm; (b); below cholesteric gap, notch position k0¼ 650 nm. Note: the black and

white boxes correspond to two different cells, with experiments carried out at different times. The results of the two sets of experiments are consistent, showing

that the data are reproducible, apart from errors due to minor differences in experimental preparation conditions.

FIG. 4. Gain coefficient g0 versus grating spacing K in hybrid cell contain-

ing cholesteric LC mixture BL038/CB15. Experimental data—boxes. Light

wavelength inside the cholesteric gap; notch position k0¼ 532 nm. Black

and white boxes correspond to different experiments on different cells, as

discussed in Fig. 3 caption.
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pump beam at a diffraction grating in a hybrid

photorefractive-cholesteric cell. The grating is written on the

director of the cholesteric LC cell by the space-charge field

induced by interfering light beams in the photorefractive

substrate which penetrate into the LC. The model includes

the fact that, in these systems, flexoelectric electric field-

director coupling is more important than LC static dielectric

anisotropy coupling.

Each beam induces two circular polarized waves propa-

gating in the cholesteric across the cell, with different veloc-

ities. The model thus also includes optical rotation in the

cholesteric LC. We have studied cases when the wavelength

of incident plane polarized light beams falls above, below or

inside the cholesteric gap. In the last case, only a single cir-

cular polarized wave propagates across the cholesteric cell.

In hybrid cells filled with cholesteric mixtures

BL038/CB15, a consistent explanation of the experimental

results also requires the inclusion of an extra multiplier in the

magnitude of the director grating. This multiplier is non-linear

in the photorefractive electric field. We have been able to jus-

tify, at least in principle, the q-dependence of the non-linear

multiplier, but this part of the model requires further justifica-

tion in terms of microscopic physics. We have then calculated

two-beam energy exchange, subject to a small number of fit-

ting parameters. Our theoretical curves describe well experi-

mental data for gain coefficient versus grating spacing in all

cholesteric mixtures used in a single window geometry.

Finally, we pose the question of other applications of

this theory, which might at the same time subject the theory

to a more severe experimental test. We note first the exis-

tence of chiral dopants which are widely tunable with UV

light.34 Using such a dopant, in the same cell, one could in

principle tune the cholesteric gap through the wavelength of

the ambient laser light. In this system, the beam coupling

would be observed to change as a function of the intensity of

the imposed UV irradiation. This system would be one for

which the present theory should be applicable. It would only

be necessary theoretically to establish the fitting parameters

at one value of the chirality. Thus, the theory would be sub-

ject to an unambiguous test.

A second application might use an aligning layer with

tunable anchoring; this could in principle be either the

anchoring energy or the director pretilt.35 By utilizing this

type of aligning, one could check how the beam coupling is

sensitive to the anchoring. Finally, we raise the possibility of

using an inhomogeneous cholesteric, in which there exists a

pitch gradient.36 In this case, it is possible that the initial

pitch gradient may result in an initially nonzero flexopolari-

zation, which is not the case for a cholesteric with a homoge-

neous spiral. We have elsewhere speculated that the

flexopolarisation is an important factor in the LC director

reorientation.15 Hence, altering the initial flexopolarization

may increase the cell sensitivity to the space-charge field.
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APPENDIX A: EQUATIONS FOR THE ELECTRIC FIELD
FOR OBLIQUELY INCIDENT LIGHT BEAMS

Let the cholesteric LC dielectric tensor be

êðzÞ ¼ ê1ðzÞ þ ê2ðzÞ. A light beam polarized in the xz-plane

is incident on the cell, with small angle of incidence a with

respect to the cell normal (the z-axis). In the cholesteric LC

cell under consideration, the light beam electric vector

depends on coordinates x; z, and satisfies the wave equation

r� r� Eðx; zÞ � x2

c2
êðzÞEðx; zÞ ¼ 0: (A1)

We note that

r�r� E ¼ r�

i j k

@

@x

@

@y

@

@z

Exðx; zÞ Eyðx; zÞ Ezðx; zÞ

��������

��������
¼ r� �i

@

@z
Ey � j

@

@x
Ez �

@

@z
Ex

� �
þ k

@

@x
Ey

� �

¼

i j k

@

@x

@

@y

@

@z

� @

@z
Ey � @

@x
Ez �

@

@z
Ex

� �
@

@x
Ey

�����������

�����������
¼ i

@

@z

@

@x
Ez �

@

@z
Ex

� �
� j

@2

@x2
Ey þ

@2

@z2
Ey

� �

� k
@

@x

@

@x
Ez �

@

@z
Ex

� �
¼ i

@2

@z@x
Ez �

@2

@z2
Ex

� �
� j

@2

@x2
þ @2

@z2

� �
Ey � k

@2

@x2
Ez �

@2

@x@z
Ex

� �
:

Thus, the wave equation (A1) takes the form
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@2Ex

@z2
� @

2Ez

@z@x
þ x2

c2
exiðzÞEi ¼ 0 ;

@2Ey

@x2
þ @

2Ey

@z2
þ x2

c2
eyiðzÞEi ¼ 0 ;

@2Ez

@x2
� @

2Ex

@z@x
þ x2

c2
eziðzÞEi ¼ 0 :

(A2)

We seek a solution to the system of Eqs. (A2), in the form

E ¼ A0exp½iðk � r � xtÞ
; (A3)

where wave vector k ¼ k sina; 0; cosað Þ. The terms
@2Ey;z

@x2 in

Eqs. (A2) are proportional to the square of small angle a and

can be neglected. The system of Eqs. (A2) then reduces to

@2Ex

@z2
� @

2Ez

@z@x
þ x2

c2
exiðzÞEi ¼ 0 ;

@2Ey

@z2
þ x2

c2
eyiðzÞEi ¼ 0 ;

� @
2Ex

@z@x
þ x2

c2
eziðzÞEi ¼ 0 :

(A4)

Using Eq. (29) for êðzÞ ¼ ê1ðzÞ þ ê2ðzÞ), we can linearize

Eqs. (A4) with respect to small angles a,h0, yielding

@2

@z2

Ex

Ey

� �
� @2

@z@x

Ez

0

� �
þ x2

c2

e? þ eacos2u0

1

2
easin2u0

1

2
easin2u0 e? þ easin2u0

0
BB@

1
CCA Ex

Ey

� �
þ eah0

x2

c2

cosu0

sinu0

� �
Ez ¼ 0

� @
2Ex

@z@x
þ x2

c2
½eah0ðcosu0Ex þ sinu0EyÞ þ e?Ez
 ¼ 0:

(A5)

Equation (A5) yields an expression for the z-component of

the electric vector:

Ez ¼
c2

e?x2

@2Ex

@z@x
� h0

ea

e?
ðcosu0Ex þ sinu0ÞEy: (A6)

Substituting (A6) into Eq. (A5), and neglecting second order

terms in the small quantities a,h0, we obtain

@2

@z2

Ex

Ey

 !
þx2

c2

e?þ eacos2u0

1

2
easin2u0

1

2
easin2u0 e?þ easin2u0

0
BB@

1
CCA Ex

Ey

 !
¼ 0:

(A7)

Equation (A7) coincides with those for a light beam nor-

mally incident on the cholesteric LC cell,22 which have al-

ready been obtained. In order to obtain the solution to Eq.

(A6), it then only necessary to substitute into Eq. (A6) for

the z-component of electric vector.

APPENDIX B: EQUATIONS FOR SIGNAL BEAM
AMPLITUDE IN SLOWLY VARYING AMPLITUDE
APPROXIMATION

Two intersecting light beams propagate in the cholesteric

LC cell with a director grating: a small signal beam with ampli-

tude A1 and a strong pump beam with amplitude A2. The direc-

tor grating induces a spatially modulation of the dielectric

tensor of cholesteric cell (see Eq. (28)), which in turn couples

the light beams. We here obtain equations for the amplitudes of

the light beams as a function of position. This permits an analy-

sis of the effect of the director grating parameters on the beam-

coupling and hence on the amplitude of the signal beam.

The electric field vector of the beams satisfies Eq. (31)

with dielectric tensor (28) and has a form described by Eqs.

(35)–(37). To solve Eq. (31), we first consider the wave

equation in a cholesteric LC characterized by a dielectric

tensor ê1þê2 (see Eq. (29)) that does not contain a spatially

modulated term. In this case, the wave equation for the elec-

tric vector of both light beams E ¼ E1 þ E2 takes the form:

r�r� E� x2

c2
ðê1þê2ÞE ¼ 0: (B1)

Equation (B1) can be decomposed into equations for the

light vector of each beam

r�r� E1 �
x2

c2
ð̂e1þê2ÞE1 ¼ 0;

r�r� E2 �
x2

c2
ð̂e1þê2ÞE2 ¼ 0; (B2)

where E1 and E2 are defined by Eqs. (36) and (37) and pos-

sess constant amplitudes A1 and A2, respectively.

In a cholesteric LC, characterized by a dielectric tensor

with periodic modulation ê1þê2þ ê3ðzÞexp iqxð Þ þ c:c:
� �

(see

Eq. (28)), the light beam electric vector ~E satisfies the modi-

fied equation:

r � r � ~E � x2

c2
ê1þê2þ ê3exp iqxð Þ þ c:c:½ 
ð Þ~E ¼ 0:

(B3)

We now seek a solution to Eq. (B3) in the form

~E ¼ A1ðzÞ
A1

E1 þ
A2ðzÞ

A2

E2; (B4)

in which the amplitude of the electric vector of each beam is

now z-dependent.

Combining Eqs. (B3) and (B4), we now obtain
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r�r� A1ðzÞ
A1

E1 þ
A2ðzÞ

A2

E2

� �
� x2

c2
ê1þê2ð

þ ê3exp iqxð Þ þ c:c:½ 
Þ A1ðzÞ
A1

E1 þ
A2ðzÞ

A2

E2

� �
¼ 0 : (B5)

A solution for Eq. (B5) can be found in the limit in which

A1ðzÞ and A2ðzÞ are weakly dependent on z. This involves

omitting second derivatives of A1ðzÞ and A2ðzÞ in Eq. (B5),

yielding

rA1ðzÞ
A1

r � E1 þ
A1ðzÞ

A1

rðr � E1Þ þ rE1z
@

@z

A1ðzÞ
A1

þrA2ðzÞ
A2

r � E2 þ
A2ðzÞ

A2

rðr � E2Þ

þrE2z
@

@z

A2ðzÞ
A2

� 2
@

@z

A1ðzÞ
A1

@

@z
E1 þ

@

@z

A2ðzÞ
A2

@

@z
E2

� �
� A1ðzÞ

A1

r2E1 þ
A2ðzÞ

A2

r2E2

� �

�x2

c2
ê1þê2þ ê3exp iqxð Þ þ c:c:½ 
ð Þ A1ðzÞ

A1

E1 þ
A2ðzÞ

A2

E2

� �
¼ 0 :

(B6)

Combining Eqs. (B2) and (B6) now yields

rA1ðzÞ
A1

r � E1 þrE1z
@

@z

A1ðzÞ
A1

þrA2ðzÞ
A2

r � E2 þrE2z
@

@z

A2ðzÞ
A2

� 2
@

@z

A1ðzÞ
A1

@

@z
E1 þ

@

@z

A2ðzÞ
A2

@

@z
E2

� �
� x2

c2
ê3exp iqxð Þ þ c:c:½ 
 A1ðzÞ

A1

E1 þ
A2ðzÞ

A2

E2

� �
¼ 0 : (B7)

After some algebra, we obtain the following equation:

ðkr � E1 þrE1z � 2
@

@z
E1Þ

@

@z

A1ðzÞ
A1

þ kr � E2 þrE2z � 2
@

@z
E2

� �
@

@z

A2ðzÞ
A2

¼ x2

c2
ê3exp iqxð Þ þ c:c:½ 
 A1ðzÞ

A1

E1 þ
A2ðzÞ

A2

E2

� �
;

(B8)

where k is a unit Cartesian vector. Now, recalling that

q ¼ k1x � k2x, E1 � expðik1xxÞ, E2 � expðik2xxÞ, we collect

terms with the same exponents exp ik1xxð Þ and exp ik2xxð Þ in

Eq. (B8). This identifies the following system of two coupled

equations:

ðkr � E1 þrE1z � 2
@

@z
E1Þ

@

@z

A1ðzÞ
A1

¼ x2

c2
ê3eiqxE2

A2ðzÞ
A2

;

(B9)

ðkr � E2 þrE2z � 2
@

@z
E2Þ

@

@z

A2ðzÞ
A2

¼ x2

c2
ê�3e�iqxE1

A1ðzÞ
A1

:

(B10)

Further, recalling Eqs. (36) and (37)

r � E1;2 ¼ ik1;2xE1;2x þ
@

@z
E1;2z;

rE1;2z ¼ ik1xiE1;2z þ k
@

@z
E1;2z;

Eqs. (B9) and (B10) can now be rewritten as

½ik1xkE1x þ ik1xiE1z � 2
@

@z
ðiE1x þ jE1yÞ


@

@z

A1ðzÞ
A1

¼ x2

c2
ê3eiqxE2

A2ðzÞ
A2

; (B11)

�
ik2xkE2x þ ik2xiE2z � 2

@

@z
ðiE2x þ jE2yÞ

�
@

@z

A2ðzÞ
A2

¼ x2

c2
ê�3e�iqxE1

A1ðzÞ
A1

: (B12)

Left-multiplying both sides of Eq. (B11) by E*
1, and of

Eq. (B12) by E*
2 yields�

ik1xðE1xE�1z þ E�1xE1zÞ � 2

�
E�1x

@

@z
E1x þ E�1y

@

@z
E1y

��

� @

@z

A1ðzÞ
A1

¼ x2

c2
E*

1ê3E2eiqx A2ðzÞ
A2

; (B13)

�
ik2xðE�2zE2x þ E�2xE2zÞ � 2

�
E�2x

@

@z
E2x þ E�2y

@

@z
E2y

��

� @

@z

A2ðzÞ
A2

¼ x2

c2
E*

2ê
�
3E1e�iqx A1ðzÞ

A1

: (B14)

Equations (B13) and (B14) can now be examined, isolating

leading order terms in the small angles a and h0. The left-

hand terms in the square brackets are now second order in

the small angles a,h0 and can be omitted, yielding the fol-

lowing set of coupled equations:�
E�1x

@

@z
E1x þ E�1y

@

@z
E1y

�
@

@z

A1ðzÞ
A1

¼ � x2

2c2
E*

1ê3E2eiqx A2ðzÞ
A2

;

(B15)
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�
E�2x

@

@z
E2xþE�2y

@

@z
E2y

�
@

@z

A2ðzÞ
A2

¼� x2

2c2
E*

2ê
�
3E1e�iqx A1ðzÞ

A1

:

(B16)

We now recall that beam 1 is the signal and beam 2 is

the pump, with the consequence that the pump magnitude

jA2j � jA1j. In the undepleted pump approximation,21 the

signal has a negligible effect on the pump amplitude, which

may consequently be regarded as constant, A2ðzÞ ¼ A2. In

this case, the set of coupled Eqs. (B15)–(B16) reduces to the

single equation�
E�1x

@

@z
E1x þ E�1y

@

@z
E1y

�
@

@z

A1ðzÞ
A1

¼ � x2

2c2
E*

1ê3E2eiqx:

(B17)

We now discuss the case in which the wave vectors of

the light beams are symmetric with regard to the cell normal,

so that the incidence angles are equal, a1 ¼ a2 � a. Since

the angle a is small, the refractive indices for waves with the

same circular polarization may be regarded as equal,

n
ð1Þ
1 ¼ n

ð1Þ
2 ¼ nð1Þ; n

ð2Þ
1 ¼ n

ð2Þ
2 ¼ nð2Þ. We define

h ¼ ðx=cÞðnð1Þ � nð2ÞÞ.
Now suppose that the conditions are such that the wave

guide regime (Sec. IV B) applies. Then, using Eqs. (35) and

(36) for E1, E2 and Eq. (30) for ê3 we can calculate expres-

sions in left and right sides of Eq. (B17)

E�1x

@

@z
E1x þ E�1y

@

@z
E1y ¼ 2iðx=cÞ A1

2

� �2

ðnð1Þ þ nð2ÞÞ;

(B18)

E*
1ê3E2eiqx¼�A1A2ea uðzÞsin

�
ðhþ2gÞ zþL

2

� ��
þ2hðzÞ h0ðzÞ 1þ ea

e?

� �
cos2

�
h

2
þg

� �
zþL

2

� ��"
þia

nð1Þ2�nð2Þ2

8e?

(

� sinu0� sin ðhþgÞ zþL

2

� �� �� ���
: (B19)

Substituting Eqs. (B18) and (B19) into Eq. (B17), we obtain the following equation for the signal beam amplitude:

@A1ðzÞ
@z

¼ �i
x
c

ea

nð1Þ þ nð2Þ
2

ek
e?

hðzÞh0ðzÞcos2 h

2
þ g

� �
zþ L

2

� �" #
þia

n
ð1Þ2
1 � n

ð2Þ2
1

4e?
hðzÞ

"

� sin½gðzþ L=2Þ
 � sin½ðhþ gÞðzþ L=2Þ

� 

þuðzÞsin hþ 2gð Þ zþ L

2

� �� ��
A2 : (B20)

Now we can use Eq. (B20) to calculate amplitude of the signal beam in the wave guide regime (see Subsections IV D and

IV E).

On the other hand, in the Bragg reflection regime, analogous calculations yield

E�1x

@

@z
E1x þ E�1y

@

@z
E1y ¼ 2iðx=cÞ A1

2

� �2

nð1Þ; (B21)

E*
1ê3E2eiqx ¼ 1

8
eaA1A2 hðzÞ �4h0ðzÞ 1þ ea

4e?

� �
þ ia

nð1Þ2

e?
sin½gðzþ L=2Þ


" #
þia

nð1Þ2

e?
uðzÞh0ðzÞcos½gðzþ L=2Þ


( )
: (B22)

Substituting Eqs. (B21), (B22) into Eq. (B17) yields the following equation for the amplitude in the Bragg regime:

@

@z
A1ðzÞ ¼ �i

x
c

ea

8nð1Þ
hðzÞ 4 1þ ea

4e?

� �
h0ðzÞ � ia

nð1Þ2

e?
sin½gðzþ L=2Þ


" #
� ia

nð1Þ2

e?
uðzÞh0ðzÞcos½gðzþ L=2Þ


( )
A2: (B23)

The solution to Eq. (B23) enables the signal beam amplitude in the Bragg regime (Subsections IV D and IV E) to be obtained.
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APPENDIX C. ESTIMATING THE Q-DEPENDENCE OF
THE NONLINEAR MULTIPLIER

In this appendix, we discuss the microscopic founda-

tions for the phenomenological form of the effective flexo-

electric parameters ri used in Eq. (53). The LC

flexoelectric coefficients e1; e3 depend on concentration

and values of dipoles of the LC molecular components. It

is a commonplace observation to note that the electric field

acting in the LC cell reorients the LC director. In the con-

text of this paper, it is also helpful to note if the concentra-

tion of the LC dipoles is inhomogeneous, then this too is

changed by imposing an electric field. Thus, in principle, in

an inhomogeneous photorefractive electric field, the flexo-

electric coefficients e1; e3 will vary with position within in

the LC cell.

Now, the equations for the cholesteric director angles

(Eqs. (17)–(19)) contain the flexoelectric coefficients.

However, these are not now constant but are determined

self-consistently together with equations for the LC dipole

concentrations. Here, we make an ansatz in which we

describe this effect approximately by replacing the true

position-dependent flexoelectric coefficients by effective val-

ues which depend on the average dipole concentration. The

problem remains to understand the dependence of the effec-

tive flexoelectric coefficients on the wave number q of the

director grating.

Here, we simplify the problem by considering a choles-

teric LC with only a single dipole component. Denoting the

dipole concentration by nðrÞ and the dipole particle velocity

by vðrÞ, we can write the dipole flux in an electric field as

nðrÞ vðrÞ and the dipole flux due to the dipole concentration

gradient as �DrnðrÞ, where D is a diffusion coefficient. In

equilibrium, the total flux is zero, leading to the detailed bal-

ance equation

nðrÞ vðrÞ � DrnðrÞ ¼ 0: (C1)

Using Stokes’ law and the fluctuation-dissipation theorem,27

we can write

v ¼ D

kBT
F; (C2)

where F ¼ ðd � rÞkE is the force acting on a dipole d in the

external electric field E, and where k is a depolarization pa-

rameter which corrects for the difference between the local

and imposed electric fields.

Substituting expression (C2) into Eq. (C1), we write the

polarization vector as PðrÞ ¼ nðrÞdðrÞ. Then, projecting Eq.

(C1) on the z-axis (the direction perpendicular to the cell

substrates) we get

@

@z
n ¼ 1

kBT
kðP � rÞEz: (C3)

In Ref. 15, we have shown that the contribution to the

photorefractive field interaction of the flexoelectric polariza-

tion is one order of magnitude larger than that due to the

field-induced polarization, P ¼ e0aE. Thus, we can identify

PðrÞ in Eq. (C3) with the flexopolarization vector

Pf ¼ e1nr � nþ e3ðr � n� nÞ.22

Evidently, an electric field gradient along the x-axis

mainly influences the dipole distribution parallel to the cell

substrate. To estimate the z-dependence of dipole concentra-

tion, we neglect the influence of the electric field gradient

along the x-axis (and also of the diffusion along this direc-

tion) on the z-dependence of dipole concentration and use

instead of Eq. (C3) the simpler equation

@

@z
n ¼ 1

kBT
kPf z

@

@z
Ez: (C4)

Using the definition of the cholesteric director angles

Eqs. (21)–(26), we can calculate Pf z. Then, we substitute Pf z

and expression for the electric field from Eqs. (13) and (14)

into Eq. (C4). After that averaging Eq. (C4) over the x-coor-

dinate, we derive the following equation:

@

@z
n ¼ � ie3km

2kBT
ðiEscÞ~q2cosu0½hðzÞ � c:c:
e�~qðzþL=2Þ: (C5)

We solve Eq. (C5) to lowest order by considering the

flexoelectric coefficients on the right hand side of Eq. (C5) to

correspond to LC in the zero photorefractive field limit. Then,

substituting Eqs. (10), (21), and (22) for the director angles into

Eq. (C5) and neglecting small terms of order e�qL and e�gL we

obtain a solution for the dipole concentration in the form:

nðzÞ ¼ nð0Þ � e3km2

4kBT
iEscð Þ2 ~q2Im

½r1ð~q2 � q2 � 2g2Þ � 2r~q2
gþ i~q½rð~q2 � q2 � 2g2Þ þ 2r1g2

ð~q2 � q2 � 2g2Þ2 þ 4~q2g2

� ~qðigþ ~qÞeði2g�2~qÞðzþL=2Þ þ ðg2 þ ~q2Þe�2~qðzþL=2Þ

~qðg2 þ ~q2Þ
þ 2ðig� ~q �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ g2

p
Þe�ðigþ~qþ

ffiffiffiffiffiffiffiffiffi
q2þg2
p

ÞðzþL=2Þ þ c:c:

g2 þ ð~q þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ g2

p
Þ2

" #
:

(C6)

Equation (C6) describes the inhomogeneity of the flexoelectric coefficients induced by dipole separation in an inhomoge-

neous photorefractive field.

We now use the effective flexoelectric coefficients, which are proportional to dipole concentration averaging over the total

region over which the system is inhomogeneous. Then, averaging nðzÞ in Eq. (C6) over the area near the cell substrate,

½�L=2; �L=2þ D
, we obtain
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�n ¼ nð0Þ 1þ e3rkm2

16nð0ÞkBTg2

~e?þ~ek
2~e?

q2FðqÞjEscj2
" #

; (C7)

where

FðqÞ ¼ 2g2=r

~q2 � q2 � 2g2
	 
2 þ 4~q2g2

�
4~qð~q þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ g2

p
Þ½rð~q2 � q2 � 2g2Þ þ 2r1g2


g2 þ ð~q þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ g2

p
Þ2

� r½ð~q2 � q2 � 2g2Þðg2 þ 2~q2Þ � 2~q2g2
r1g2ð5~q2 � q2Þ
g2 þ ~q2

þ 2

3
D2fg2½r1ð~q2 � q2 � 2g2Þ � 2r~q2
 � ~qð~q �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ g2

p
Þ½rð~q2 � q2 � 2g2Þ þ 2r1g2
g

�
:

(C8)

The dipole concentration is inhomogeneous in the region in

which the inhomogeneous photorefractive electric field acts.

Then according to Eq. (14) for the photorefractive electric

field, we can substitute in (C8) D � 1=q ¼ K=2p.

Fig. 5 shows the dependence of the function FðqÞ on the

grating spacing K for parameter values used in experiments16

for the cholesteric mixture BL038/CB15 and for some values

of parameter D. In the experimental range of K, ð0:5; 5Þlm,

FðqÞ can change appreciably depending on the parameters of

system. However, the behavior of FðqÞ can be approximated

by a simpler function F1ðqÞ ¼ ð1þ l1=q2Þ2, where l1 is

used as a fitting parameter.

In result, we can approximate Eq. (C7) for the average

dipole concentration near the cell substrate by the formula

�n ¼ nð0Þ 1þ l qþ l1

q

� �2

jEscj2
" #

: (C9)

Then, assuming the flexoelectric coefficients to be propor-

tional to the concentration of molecular dipoles, the expression

in square brackets of Eq. (C9) describes the q-dependence of

effective flexoelectric parameters (see Eq. (53)).
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