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ABSTRACT 
 
In this paper, an automatic approach to design the 
observation strategy of spent upper stage moving on GTOs 
is presented. More specifically, the design is formulated as a 
multi-objective optimization problem solved by means of a 
multi-objective genetic algorithm (MOGA). This approach 
allows minimizing both the number of total measurements 
required to detect the object and the error on re-entry 
prediction. Within the optimization process a nonlinear OD 
algorithm is run to determine the estimates of both initial 
state and model parameters and the associated covariance 
matrix. The Nonlinear Least Square Estimator (NLSE) 
technique is implemented, exploiting the differential algebra 
framework for Jacobian matrix computation in order to 
reduce the computational effort related to OD problem 
solution. Finally, the software tool IRIS is developed to 
accurately simulate the observation campaign based on 
geometry and constraints of existing sensors currently 
available to the European Space Agency (ESA). Numerical 
simulations are performed to demonstrate the efficiency of 
the proposed approach. 
 

Index Terms— Observation simulator, observation 
strategy design 
 

1 INTRODUCTION 
From 2004 up to the date more than 200 launch vehicles 
operated by five independent nations and two international 
organizations placed satellites in Geostationary Earth Orbit 
(GEO). In almost all cases, each successful launch left one 
or more pieces of debris in Geostationary Transfer Orbits 
(GTO). Particularly, many of this space debris consist of 
large spent upper stages of launch vehicles whose 
atmosphere re-entry might violate the constraint on casualty 
risk of 1/10000: as of 16 October 2014, it is expected that 
about 79 spent upper stages operating on GTOs with an 
inclination lower than 20 degree will enter the Earth 
atmosphere in the next 200 years. Moreover, the GTOs are 
highly eccentric orbits with perigee normally at low 

altitudes (170–650 km) and the apogee near geo-stationary 
altitude (35,780 km). Thus, space debris in GTOs generally 
passes through densely populated regions such as Low Earth 
Orbit (LEO) and GEO regions, being a hazard for the safety 
of other operating spacecraft. In light of the above, the 
improvement of re-entry prediction of GTO spent upper 
stages is a key issue to manage both on-orbit collision risk 
and on-ground casualty risk. 
Currently the only public data source available for re-entry 
prediction of a space object are represented by Two Line 
Elements (TLEs), provided by the United States Strategic 
Command (USSTRATCOM). However, this set of data are 
inaccurate and do not come with uncertainty information, 
making their use in re-entry prediction challenging, 
especially for the GTO space objects. This leads to the need 
of using the observational data to improve the re-entry 
prediction. 
The design of observation strategy for GTO upper stage is 
not trivial. The detection and tracking of space objects on 
GTOs might require more than a single sensor in fact, since 
the distance from the observer has large variation along the 
orbit; this multiple sensors configuration might involve 
problems such as scheduling or data fusion, making the 
observation complex and costly. In addition, design of an 
optimal observation strategy for improvement of re-entry 
prediction involves the definition of a high-accuracy orbit 
determination (OD) algorithm, and the implementation of 
proper methods for uncertainty mapping. This might require 
the definition of accurate dynamical models in order to 
describe the effects of third-body perturbations and the 
Earth’s oblateness and to capture the intricacies of re-entry 
phase, as well as the use of nonlinear technique for orbit 
determination. 
An approach to design the observation strategy is here 
presented. It tackles the detection strategy design problem as 
a multi-objective optimization problem and solves it using a 
genetic algorithm. 
The rest of the paper is organized as follows. In section 2 
the software tool developed for the simulation of 
observation campaigns is presented; in section 3 the orbit 
determination problem is addressed and the Nonlinear Least 



Square Estimator (NLSE) algorithm is briefly summarized; 
section 4 details the proposed approach for the observation 
strategy design; finally section 5 shows the results regarding 
the observation strategy designed for some studied cases.  

2 OBSERVATION SIMULATOR 
The design of the optimal observation strategy requires an 
accurate analysis of space object dynamics as well as the 
characterization of the sensors used for observing. For this 
reason we developed the software tool IRIS, which 
accurately simulates the space object motion and its 
detection through a specific sensor network.  
The developed tool is based on the automatic generation of 
SPICE1 kernels for both space object trajectories and 
observatories: once the user has set the initial space object 
state and the model parameters, such as the object area-to-
mass ratio, the tool computes the object trajectory through a 
high-fidelity orbital propagator, referred to as AIDA, and 
generates its corresponding kernel through SPICE functions; 
similarly, it generates the kernels for the defined list of 
observatories, once the user has set the geodetic coordinates 
for the sensors. Once object and observatories kernels are 
built, IRIS uses all powerful features of SPICE to define the 
relative geometry between space object and observer/s. 
Finally, depending on the user-defined features of the 
sensor, the tool is capable to determine the visibility 
constraints and, then, compute the visibility windows, the 
observables, and the measures (see Fig. 1). 

 
Fig. 1. IRIS tool architecture 

It is worth pointing out that a simplified model for the 
sensor is considered in IRIS. More specifically, all 
measurement errors due to line transmission, optic 
geometry, and so on, are described by a normal distribution 
with mean zero and a standard deviation equal to σ, i.e., 

௥௨௘்.ݏܽ݁ܯ = +ௌ௜௠௨௟௔௧௘ௗ.ݏܽ݁ܯ Յ(0;  (1) .(ߪ
2.1 Visibility Constraints 
The possibility to detect an object orbiting the Earth 
depends on its orbital configuration, on the geographical 
position of the observatory, and on sensor capability. All                                                  
1 https://naif.jpl.nasa.gov/naif/index.html  

these constraints are implemented in IRIS tool and their 
mathematical formulation is described in what follows. 
2.1.1 Geometrical Constraints 
Regardless the type of observatory, the object has to be 
detectable from sensor location. This means that 
azimuth, ߚை௕௝, and elevation, ݈݁ை௕௝, of the space object shall 
be included in the admissible range of the observatory, i.e.  

ெூேை௕௦ߚ < ை௕௝ߚ < ெ஺௑ை௕௦ߚ  
݈݁ெூேை௕௦ < ݈݁ை௕௝ < ݈݁ெ஺௑ை௕௦  (2) 

2.1.2 Optical Sensor Constraints 
When an optical sensor is used to observe the object, the 
illumination conditions are crucial. More specifically, to get 
a measurement from a telescope 

(a) the object must be illuminated by the Sun,  
(b) its brightness must exceed that of the background sky 

by a certain margin,  
(c) the Sun elevation must be lower than a reference value, 

i.e. the observation must occur during the night, 
(d) the sky must be clear enough, and 
(e) the object velocity doesn’t exceed a reference value.  

If the case of a cylindrical Earth shadow is considered, the 
first statement (a) turns out in following condition: 

߶ ൐ ߶ത 
߶ = ଵ ൭ିݏ݋ܿ ࢘ா௔௥௧௛ை௕௝ ∙ ࢘ௌ௨௡ா௔௥௧௛

ฮ࢘ா௔௥௧௛ை௕௝ ∙ ࢘ௌ௨௡ா௔௥௧ ฮ൱ 

߶ത = ଵ ൭ି݊݅ݏ ࢘ா
ฮ࢘ா௔௥௧௛ை௕௝ ฮ൱ 

(3) 

where ࢘ா௔௥ை௕௝  and ࢘ௌ௨௡ா௔௥௧௛ are the position vector between the 
object and the Earth and between the Earth and the Sun 
respectively, whereas ࢘ா  indicates the terrestrial radius. 
For what concerns the object brightness, ܸை௕௝ , it must be 
lower than the maximum detectable apparent magnitude of 
the sensor, തܸ(ߚை௕௝ , ݈݁ை௕௝ , ௘௫௣௢௦௨௥௘), i.e. ܸை௕௝ݐ < തܸ . The 
object brightness can be computed as, [1] 

ܸை௕௝ = −26.78 − ݃݋2.5݈  ቌܣ ∗ ߝ ∗ (߮)ܨ
൫ݎை௕௦ை௕௝൯ଶ ቍ  + 

+ 0.04
cos (2/ߨ − ݈݁ை௕௝) 

(4) 

where ܣ is the sphere’s cross-sectional area, ߝ is the 
satellite’s albedo, −26.78 is the value of apparent visual 
magnitude of the Sun, and ܨ(߮) is a function of phase 
angle, ߮. The phase angle is defined as the angle between 



the direction of the observer and the direction of the Sun as 
seen from the space object. Under the hypothesis of a 
spherical object, the phase function can be computed as, [2] 
and [3],  

(߮)ܨ = 2
ଶߨ3 ሾ(ߨ − ߮) cos(߮) + sin (߮)ሿ (5) 

Note that the last term in Eq.(5) is added to take into 
account the attenuation due to the atmosphere absorption; it 
is singular for ݈݁ை௕௝ = 0, but Eq. (5) is still valid since 
objects with elevation below 5 deg are excluded from 
observations. Moreover, without loss of generality, the 
maximum detectable apparent magnitude of the optical 
sensor is assumed to be constant; in other word its 
dependency from angular velocity and exposure time is 
ignored. 
In addition, to guarantee a dark background during 
observations, the Moon has to be “far enough” from the 
space object; this turns out in a constraint on angle, ߛெைைே, 
between the object-observer vector, ࢘ை௕௦ை௕௝, and Moon-
observer vector ࢘ை௕௦ெ௢௢௡, that is 

ெைைேߛ ൐ ெைைேߛ̅ = 30 ݀݁݃ (6) 
Finally, the optical sensor should be in darkness while 
observing the space object; the necessary degree of darkness 
depends on the apparent magnitude of the space object. 
However, in IRIS we set the nautical twilight as the required 
darkness degree, i.e. ݈݁ௌ௎ே < −12 ݀݁݃, [3]. 
In addition to the aforementioned constraints other 
conditions should occur to allow using an optical sensor for 
space object observation. Firstly, the sky has to be clear of 
clouds. To implement this constraint in IRIS, all 
measurements that do not satisfy the condition 

ܷ(0,1) <  (7) 100/ܲܥܥ
are discarded. In Eq. (7) ܷ(0,1) represents a random sample ∈ ሾ0,1ሿ generated from a uniform distribution, whereas CCP 
(Cloud Coverage Percentage) indicates the percentage of 
nights clear of clouds. Another key aspect in optical 
measuring is the object velocity relative to the observatory. 
In fact, the object should move slowly enough to guarantee 
that tracklet is included in sensor FOV within exposure 
time. 
As illustrated in Fig. 2 different situations can occur when 
the sensor shutter is open: the optical sensor can provide a 
measurement only if cases B, D, or F occur. However, in 
IRIS tool we assume that only case F is admissible; in other 
words, we assume that only the object entirely included in 
sensor FOV are detectable, such that IRIS gives an optical 
measurements only when the following conditions come 
about: 

ሶை௕௝ߚ < ܸܱܨ
 ݁ݎݑݏ݋݌ݔܧ ݂݋ ݁݉݅ܶ

݁ሶ݈ ை௕௝ < ܸܱܨ
 ݁ݎݑݏ݋݌ݔܧ ݂݋ ݁݉݅ܶ

(8) 

 
Fig. 2. Possible positions of the tracklet at the shutter 

actuation time 
2.1.3 Radar Sensor Constraints 
The detectability of an object by means of radar observation 
depends on the radar power budget. Thus, it is important to 
determine the Signal-to-Noise Ratio (SNR) at the receiver to 
determine whether or not an object can be observed. More 
specifically, the received power has to be higher than the 
minimum detectable signal (MDS), i.e. 

௥ܲ ൐  ܵܦܯ
௥ܲ = ௧ܲ ∗ ௑்ܩ ∗ ோ௑ܩ ∗ ଶߣ ∗ ܵܥܴ ∗ ௑்ܮ ∗ ோ௑ܮ

ை௕௝ோ௑ݎ)ଷ(ߨ4) ∗ ை௕௝ݎ ்௑)ଶ  

ܵܦܯ = ௧ܲ ∗ ௑்ܩ ∗ ோ௑ܩ ∗ ଶߣ ∗ തതതതതതܵܥܴ ∗ ௑்ܮ ∗ ோ௑ܮ
ସ(ோ஺஽തതതതതതݎ)ଷ(ߨ4)  

(9) 

In Eq. (9) ௧ܲ is the transmitter power, ܩோ௑/ܩோ௑ is the 
receiver/transmitter gain, ܮோ௑/்ܮ௑  is the loss due to 
atmosphere disturbance in receiver/transmitter track, ߣ is the 
wavelength, and RCS indicate the radar cross-section. ܴܵܥതതതതതത 
and ݎோ஺஽തതതതതത are reference values for radar cross-section and 
distance between object and observer respectively, which 
depends on observatory capability. 

3 ORBIT DETERMINATION 
The objective of orbit determination (OD) is to obtain an 
accurate orbit that accounts for the dynamical environment 
in which the motion occurs, including all relevant forces 
affecting the satellite’s motion, given a large set of tracking 
data. In other words, the goal of OD is to determine initial 
condition for the position and velocity, ࢞଴ = ሾ࢘଴ ࢜଴ሿ் ∈ব௡, as well as for model parameters, ࢖ ∈ ব௦, from the 
sensor measurements. 
The general procedure for OD algorithms is to set up a 
dynamical model of the orbit that uses observations to 
improve the parameters of the orbit by the process of 
differential corrections, [4]. Since dynamics and 
measurement models are generally nonlinear, the OD 



problem solution might be tough: the linear assumption can 
sometimes fail to characterize the true spacecraft dynamics 
and statistics when a system is subject to a highly unstable 
environment or when mapped over a long duration of time. 
In light of the above, in this study we considered nonlinear 
approach for the OD of GTOs objects. Particularly, we 
investigated the Nonlinear Least Squares Estimator (NLSE). 
The advantage of this method is that any type of 
measurement can be processed; moreover, it provides the 
uncertainty of the estimated states. In what follows a brief 
description of NLSE is given.  
3.1 Nonlinear Least Squares Estimator (NLSE) 
The basic idea of least-squares estimation as applied to OD 
problem is to find the trajectory and model parameters for 
which the square of the difference between the modelled 
observations and the actual measurements becomes as small 
as possible, [5]. In order to derive the mathematical 
formulation of NLSE, let  

ࣈ = ሾ࢞(ݐ)  ሿ் (10)࢖
denote a (݊ +  dimensional vector comprising the object-(ݏ
state vector (position and velocity vector, i.e. ࢞(ݐ) =ሾ࢘ ࢜ሿ்) and the parameters ࢖ ∈ ব࢙ that affect the force 
and measurement models. The time evolution of ࢞ can be 
described by an ordinary differential equation of the form, 

ሶ࢞ (ݐ) = ;ݐ)ࢌ  (ࣈ
࢞଴ =  (11) (଴ݐ)࢞

where ݐ)ࢌ;  represents the system dynamics vector with a (ࣈ
dimension ݊. Furthermore, let  

ࢠ = ሾݖଵ …  ௠ሿ் (12)ݖ
denote a ݉-dimensional vector of measurements taken at 
times ݐଵ, … ,  ௠. The observations can be described by theݐ
following model, [5]: 

ࢠ = ;ݐ)ࢍ (ࣈ + ࢜ = ;ݐ)ࢎ ࢞଴, (࢖ + ࢜ (13) 
where ݐ)ࢍ;  ,represents the measurements function (ࣈ
whereas vector ࢜ accounts for measurement errors that 
occur at each observation, assumed to be randomly 
distributed with zero-mean value. Defining the residual error 
associated with the measurement vector as  

ࢋ = ࢠ − ොࢠ = ࢠ − ;ݐ)ࢎ ෝ࢞଴,  ෝ) (14)࢖
the least-squares OD problem is defined as finding the ෝ࢞଴ 
and ࢖ෝ that minimize the loss function  
ܬ = 1

2 ࢋ்ࢋ = ൫ࢠ − ;ݐ)ࢎ ෝ࢞଴, ࢠ൫ࢃෝ)൯்࢖ − ;ݐ)ࢎ ෝ࢞଴,  ෝ)൯, (15)࢖

where ࢃ is a ݉ x ݉ diagonal matrix in which the elements ݓ௞ are set as the reciprocal of the measurement error 
variances. 
Since ݐ)ࢎ; ෝ࢞଴,  ෝ) is a highly non-linear function of the࢖
unknown ෝ࢞଴ and ࢖ෝ, the minimization of function ܬ might be 
difficult. Thus, the NLSE requires, firstly, the linearization 
of ݐ)ࢎ; ෝ࢞଴, ෝ) around a reference state, ෝ࢞௥௘௙࢖ , and a reference 
parameter vector, ࢖௥௘௙, that is  
;ݐ)ࢎ ෝ࢞଴, (ෝ࢖ = ;ݐ൫ࢎ ෝ࢞଴,௥௘௙ , ෝ௥௘௙൯࢖ + ࢎ߲

߲࢞଴
൫ෝ࢞଴ − ෝ࢞଴,௥௘௙൯

+ ࢎ߲
࢖߲ ൫࢖ෝ − ෝ௥௘௙൯࢖ =

= ;ݐ൫ࢎ ෝ࢞଴,௥௘௙ , ෝ௥௘௙൯࢖ + ࡴ ൤߂ෝ࢞࢖߂ෝ൨ 
(16) 

where   
ࡴ = ൤ ࢎ߲

߲࢞଴
ࢎ߲
൨࢖߲ = ൤߲ࢍ

߲࢞
߲࢞

߲࢞଴
ࢍ߲
߲࢞

߲࢞
൨࢖߲ = ሾࡴଵ  ଶሿ (17)ࡴ

and 
ෝ࢞ࢤ =  ൫ෝ࢞଴ − ෝ࢞଴,௥௘௙൯ 

Δ࢖ෝ = ൫࢖ෝ −  ෝ௥௘௙൯ (18)࢖
The OD problem can be reduced to find Δෝ࢞ and Δ࢖ෝ such 
that the loss function, 

ܬ = 1
2 ൬ࢠ߂ − ࡴ ൤߂ෝ࢞࢖߂ෝ൨൰் ࢃ ൬ࢠ߂ − ࡴ ൤߂ෝ࢞࢖߂ෝ൨൰, 

ࢠ߂ = ࢠ − ;ݐ൫ࢎ ෝ࢞଴,௥௘௙ ,  ෝ௥௘௙൯࢖
(19) 

is minimum, that is  
ܬ߲

߲൫ࣈ߂෠ ଴்൯ = ܬ߲
߲(ሾ߂ෝ࢞ (ෝሿ࢖߂ = ૙. (20) 

If the Jacobian matrix H has full rank, the minimization of ܬ 
leads to the following solution,  

൤߂ෝ࢞࢖߂ෝ൨ =  (21) ࢠΔࢃ்ࡴଵି(ࡴࢃ்ࡴ)
Since the nonlinearity of h, the simplified loss function in 
Eq. (19) differs slightly from the rigourous one and the 
estimates ෝ࢞଴ =  ෝ࢞଴,௥௘௙ + Δෝ࢞ and ࢖ෝ = ෝ௥௘௙࢖  +  ෝ don’t࢖߂
represent the exact solution of OD problem. In order to 
improve the OD solution, the NLSE algorithm provides a 
successive approximation procedure that converges to 
accurate least squares estimates, given approximate starting 
values, ෝ࢞଴଴ and ࢖ෝ଴. More specifically, the non-linear problem 
can be solved by following iteration, [6], 

௝ࢠ߂ = ࢠ − ;ݐ൫ࢎ ෝ࢞଴௝ ,  ෝ௝൯ (22)࢖



௝ࣈ߂ = ൤߂ෝ࢞࢖߂ෝ൨௝  = ்,௝ࡴ) ்,௝ࡴ ௝ )ି૚ࡴࢃ   ௝ࢠ߂ࢃ 
ෝ࢞଴௝ାଵ = ෝ࢞଴௝ + ෝ࢞௝߂   
ෝ௝ାଵ࢖ = ෝ௝࢖  +  ෝ௝࢖߂ 

started from ෝ࢞଴଴ = ෝ࢞଴,௥௘௙  and ࢖ෝ଴ = ෝ௥௘௙࢖  and continued until 
the relative change of the loss function ܬ is smaller than a 
prescribed tolerance for successive approximations, that is  

ܬߜ = หܬ௝ − ௝ିଵหܬ
௝ܬ

< ߝ
 ‖ࢃ‖

௝ܬ =  ௝ࢠ߂ࢃ்,௝ࢠ߂
(23) 

Then, the NLSE can be summarized as follow: 
1. Initialize the estimates ෝ࢞଴଴ and ࢖ෝ଴as ෝ࢞଴଴ = ෝ࢞଴,௥௘௙ and 

ෝ଴࢖ = ෝ௥௘௙࢖  respectively; 
2. Compute ࢠ߂௝and ࣈ߂௝ as illustrated in Eqs. (22); 
3. Evaluate the stop criterion ܬߜ reported in Eq. (23); 
4. Update the estimate (see the last in Eqs. (22)) 
5. Repeat steps 2 and 4 until ܬߜ < ߝ ⁄‖ࢃ‖  or the number 

of iterations is smaller than the maximum allowable 
number of iterations, ௜ܰ௧௘௥௠௔௫ . 

It is worth mentioning that we use the differential algebra 
(DA) framework to compute the Jacobian matrix [7] ,ࡴ; this 
approach allows reducing the time required for computation 
of Jacobian matrix with respect to the standard approach 
based on finite differences. It is worth mentioning that DA 
is implemented in a computer environment through a 
software tool, named Differential Algebra Computer Engine 
(DACE), developed by DINAMICA in 2014, [8]. 

4 OBSERVATION STRATEGY DESIGN 
The design of an optimal observation strategy is not a trivial 
task, even when the sensor architecture is given, i.e. the 
type/features of available sensors as well as their locations 
are known. Even in this case, in fact, the choice of the 
“best” strategy depends on the orbital configuration of the 
studied object and on the epoch in which the campaign 
starts, that affects the illumination conditions as well as the 
relative position between the observer and the object. 
This section presents the proposed approach to determine 
the optimal observation strategy when specific sensor 
architecture is used.  
4.1 Optimization Approach 
The proposed approach tackles the detection strategy design 
problem as a multi-objective optimization problem 
(MOOP). More specifically, the method proposed in this 
study is based on the use of a multi-objective evolutionary 
algorithm, such as multi-objective genetic algorithm 
(MOGA). In fact, since evolutionary algorithms deal 
simultaneously with a set of possible solutions (the so-called 

population), they allows finding an entire set of Pareto 
optimal solutions in a single run of the algorithm, instead of 
having to perform a series of separate runs as in the case of 
the traditional mathematical programming techniques. 
Additionally, they are less susceptible to the shape or 
continuity of the Pareto front, whereas these two issues are a 
real concern for mathematical programming techniques, [9]. 
The optimization approach for the strategy design consists 
of the following steps: 

1. Generate Pseudo-observations. For a given object to 
be studied, one has to generate an accurate trajectory 
between the initial epoch, ݐ଴, and the final one, ݐ௙, and 
then simulates the observation campaign through IRIS 
tool (see section 2).  

2. Run MOGA. A MOGA is run in order to minimize the 
number of measurements and the maximum 
uncertainty on the estimated state/parameters given by 
OD algorithm. In light of the above, the objective 
function is given by the following 2-dimensional 
vector, 

௢௣௧൯ࢄ൫ࢌ = ቊ ଵ݂൫ࢄ௢௣௧൯
ଶ݂൫ࢄ௢௣௧൯ቋ = ൜ ைܰ௕௦݉ܽݔ (ߣ௜)ൠ, (24) 

where ைܰ௕௦ is the number of observations, ߣ௜ is i-th 
eigenvalue of the covariance matrix of the OD 
solution. ࢄ௢௣௧  is the optimization vector, defined as a 
bit-string vector: since the aim is to find the optimal 
measurements combination, each individual in MOGA 
is in fact represented by a bit (0 or 1), where 1 
indicates that the corresponding observation is hold 
whereas 0 indicates that the corresponding observation 
is discarded. Therefore, ࢄ௢௣௧  has the form ࢄ௢௣௧ =
ሾ1,0,0,1, … ,0,0,1ሿ  ∈ ℜேೀ್ೞ. At each MOGA iteration 
the NLSE is used to compute the estimates of initial 
state/parameters as well as the associated covariance 
matrix (see section 3.1). The MOGA iterates until a 
Pareto front is computed.  

3. Select a solution on the Pareto-front. The MOGA 
provides a Pareto front of optimal solutions. Among 
them, a solution can be chosen using the following 
relation: 

௢௣௧ࢌ = ߙ ଵ݂ + (1 − (ߙ ଶ݂ (25) 
where ߙ is a constant value assumed to be equal to 0.5; 
this guarantees that both objective functions have the 
same weight.  

It is worth remarking that the definition of the optimal 
observation strategy is based on the performance of the OD 
rather than on the evaluation of the error between the 
predicted state and the real one at the re-entry epoch, 
besides on the number of observations. The real trajectory is 
not known in fact. In light of this, at step 2 a spectral 



decomposition of covariance matrix is performed and the 
largest eigenvalue is minimized. This means that MOGA 
aims at minimizing the maximum uncertainty value 
corresponding to ሾෝ࢞଴,  ෝሿ. However let us note that this࢖
choice doesn’t give any insight on how the uncertainty on 
each component of ሾෝ࢞଴,  ෝሿ affects the re-entry prediction; in࢖
fact, the minimization of a specific eigenvalue of covariance 
matrix might have a greater impact on the re-entry 
prediction. For the sake of the example, let us consider that 
OD goal is to estimate only the initial position, ො࢘଴ ∈ ℜଷ. In 
this case the uncertainty on the estimated initial position can 
be represented by a 3-dimensional ellipsoid, as illustrated in 
Fig. 3. Clearly, each eigenvalue might have a different 
impact on the error at re-entry epoch. Since the nominal 
trajectory is not available, the assessment of the most 
significant direction is not easy to determine; for this reason 
our approach relies on the selection of the maximum 
eigenvalue as an index of OD performance, represented in 
figure by ߣଵ.  

 
Fig. 3. Example of spectral decomposition of the covariance 

matrix in 3 dimensions 
5 RESULTS 

In this study we focus on the GTO spent upper stages for the 
design of optimal observation strategy. In particular, we 
consider five upper stages, each representing a specific class 
identified according to the initial orbital configuration, i.e. 
to i0 and ω0 (see Fig. 4). Table. 1 reports the initial 
inclination and argument of perigee of all selected objects.  

Table. 1. Orbital configuration and A/M for five selected 
objects 

Norad 
ID Name Nominal 

A/M (m2/kg) 
i0 (deg) 

ω0  
(deg) 

37239 Ariane 5 
second stage 0.008423 1.77 169.86 

37211 CZ-3C third stage 0.011697 20.48 179.45 
21990 Atlas IIA second stage 0.012189 26.45 179.06 
07794 Delta 2914 third stage 0.01061 24.75 340.62 
37949 CZ-3A third 

stage 0.011697 55.12 174.84 

 
Fig. 4. Initial inclination and argument of perigee for 25 

GTO objects; the red dots represent the 5 objects 
representative of object clusters 

In what follows the results obtained through the 
optimization approach are illustrated. For the sake of brevity 
only the results concerning the second state of Ariane 
(37239) launcher and the third stage of CZ-3A launcher 
(37949) are shown. In addition we assume that the 
measurements are provided by the sensor network 
consisting of following five observatories:  Teide Observatory (referred to as OGS from now on), 

Tenerife (Canary Islands/Spain);  Zimmerwald observatory (referred to as ZIMLAT from 
now on), Bern (Switzerland);  Tracking & Imaging Radar (TIRA), Bonn (Germany)  Monopulse Surveillance Secondary Radar (MSSR);  Bistatic Surveillance Secondary Radar (BSSR). 

The NLSE algorithm (see section 3.1) is run at each MOGA 
iteration assuming an initial random error on position and 
velocity with a standard deviation of 1 km and 1 m/s 
respectively, and a displacement from the nominal A/M 
value of 5%. 
Finally, an observation campaign of 10 days is simulated 
and IRIS tool is exploited to generate the pseudo-
observation. 
5.1 Ariane 5 Second Stage (37239) 
Figure 4 shows the Pareto front obtained through MOGA. It 
is straightforward that the higher is the numbers of 
observations, the lower is the value of ݉ܽݔ (ߣ௜), i.e. the 
better is the estimates of orbital state and parameters. From 
the same figure, the Pareto front solution corresponding to ߙ = 0.5 is characterized by 14 measures and a maximum 
eigenvalue of 1.22e-5. The position of measurements along 
the orbit corresponding to the same solution is shown in Fig. 
6. Let us point out that the radar measurements are almost 
symmetrically dislocated along the orbit, whereas optical 
observations are all on the same side of the orbit. In fact this 



is the only portion in which optical measures are feasible 
since the position of the Sun relative to the observed object. 
Furthermore, radar measurements are interestingly taken at 
quite large distance from the perigee and close to the 
maximum available bound for this type of sensors. This fact 
is due to the high latitude of TIRA and to the low inclination 
of object orbit.  
Finally, it is worth remarking that MSSR and BSSR are 
never involved into the observation process; they provide a 
high value of minimum detectable signal, making the 
observation of GTO object unfeasible. 

 
Fig. 5. Pareto front deriving from optimization approach for 

object 37239 

 
Fig. 6. Measurements distribution along the orbit 

corresponding to α=0.5 for object 37239; arrows represent 
the Sun-Earth vector at measure epochs 

5.2 CZ-3A Third Stage (37949) 
Figures 7 - 8 illustrate the Pareto-front given by MOGA and 
the measurements distribution along the orbit corresponding 
to ߙ = 0.5 respectively. The Pareto front knee-solution 
ߙ) = 0.5) is characterized by 16 measures and a maximum 
eigenvalue of 1.619e-5. 

From Fig. 8 the optical instruments, i.e. OGS and ZIMLAT, 
detect the object when it moves around the orbit apogee, 
whereas TIRA can observe the object when it is close to 
orbit perigee. In addition, note that TIRA provides measures 
only when the object moves on the part of the orbit above 
the celestial equator. This is mainly due to high inclination 
of orbit (݅଴  =  55.12°) combined with the high latitude of 
TIRA sensor; when the object is under the celestial equator 
it is too far or out of visibility cone of the instrument to be 
detected. 

 
Fig. 7. Pareto front deriving from optimization approach for 

object 37949 

 
Fig. 8. Measurements distribution along the orbit 

corresponding to α=0.5 for object 37949; arrows represent 
the Sun-Earth vector at measure epochs 

6 CONCLUSION 
An automatic approach for observation strategy design of 
spent upper stage in GTO was proposed. It is based on a 
multi-objective genetic algorithm that aims at minimizing 
the number of required measures and maximizing the 
accuracy of deriving orbit determination solution.  



Five GTO upper stages are considered to assess the 
effectiveness of proposed approach. In addition we assumed 
that the measurements are provided by ESA sensor network, 
consisting of 2 telescopes and 3 radars. The results show 
that optimization approach is able to easily generate the 
optimal observation strategy. Moreover, it allows 
determining a relation between the number of measurements 
and the corresponding orbit determination accuracy through 
the Pareto front. On the other hand, it is very demanding in 
term of CPU recourse and computational burden.  
Finally we developed a high accuracy observation simulator, 
IRIS, in order to generate the observables for each 
instrument within the optimization approach.  
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