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Abstract: The extremal index (θ) is the key parameter for extending extreme value theory

results from i.i.d. to stationary sequences. One important property of this parameter is

that its inverse determines the degree of clustering in the extremes. This article introduces

a novel interpretation of the extremal index as a limiting probability characterized by two

Poisson processes and a simple family of estimators derived from this new characterization.

Unlike most estimators for θ in the literature, this estimator is consistent, asymptotically

normal and very stable across partitions of the sample. Further, we show in an extensive

simulation study that this estimator outperforms in finite samples the logs, blocks and runs

estimation methods. Finally, we apply this new estimator to test for clustering of extremes

in monthly time series of unemployment growth and inflation rates and conclude that runs of

large unemployment rates are more prolonged than periods of high inflation.
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1. Introduction

There are different interpretations of the extremal index (θ) in the literature on extreme value theory

for weakly dependent processes. This concept, originated in papers by Loynes [1] and O’Brien [2] and

developed in detail by Leadbetter [3], reflects the effect of clustering of extreme observations on the

limiting distribution of the maximum. Thus, the first author showed that

P{M1,n ≤ un} ≈ F nθ(un), (1)
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with 0 ≤ θ ≤ 1, M1,n = max{X1, . . . , Xn}, un a normalizing sequence and F the unconditional

distribution function of a sequence of weakly dependent random variables {Xi, i ≥ 1}; see also [4,5].

In a similar spirit, [6] showed that the presence of clustering affected the limiting distribution of block

maxima, i.e.,

P{M2,rn ≤ un|X1 > un} −→ θ, (2)

with M2,rn = max{X2, . . . , Xrn}, rn determining a partition of the sample of length n, such that rn →
∞ and rn = o(n).

Alternatively, Leadbetter [3] showed that for stationary sequences exhibiting short range dependence,

the inverse of the extremal index is the limiting mean number of exceedances of un in an interval of

length rn. This result mathematically reads as follows

E

[
rn∑

j=1

I(Xj > un)|
rn∑

j=1

I(Xj > un) ≥ 1

]
−→ θ−1, (3)

with I(X > un) the indicator function. By stationarity, this property is satisfied for any block of rn

consecutive elements defined in the sequence.

Inference about the extremal index parameter has also been extensively studied. The most popular

estimators are the logs method, obtained from operating with the asymptotic results of the distribution

of the maximum, the runs method derived from operating with (2) and the blocks method obtained from

(3). For a careful review of these and other related estimators proposed in the literature, see [5,7,8].

Alternative estimation techniques recently developed are [9–12]. Finally, for a review of the underlying

probability theory, the interested reader can consult [13] or, more recently, [14].

Our first aim in this paper is to build on the results of Leadbetter given in (3) about cluster size and

to introduce an alternative characterization of θ as a limiting probability characterized by two Poisson

processes. This characterization allows an intuitive and simple estimation procedure. Instead of focusing

on the cluster size of extremes in a sequence, our characterizing condition of θ focuses on an extra level

vn satisfying the following property

E

[
rn∑

j=1

I(Xj > vn)|
rn∑

j=1

I(Xj > un) ≥ 1

]
−→ 1. (4)

We will see that this condition implies that the ratio of exceedances of vn and un by the sequence of

block maxima converges asymptotically to θ.

This characterization of the extremal index as a limiting probability naturally yields a family of

estimators that is consistent and converges, after proper standardization, to a normal distribution.

This result is new in the extreme value theory literature. In fact, most estimators of θ proposed in the

literature are inconsistent as the sample size increases. This is due to the Poisson property inherited

from the choice of extreme levels for defining the extremal index estimator. A few exceptions are

the estimators of θ proposed in [9,15] and, more recently, [14]. The first author solves this problem

by using lower levels that allow one to benefit from increasing sample sizes and also by introducing

a standardizing sequence that corrects for increasing cluster sizes. In [15], using this sequence, a

variant of the blocks method is proposed that is asymptotically normal. In a similar context, Novak

and Weissman [9] also prove the consistency and asymptotic normality of the blocks and runs methods.



Econometrics 2015, 3 635

Robert [14] introduces estimators of the limiting cluster size probabilities, which are constructed through

a recursive algorithm. This author derives estimators of the extremal index and studies their asymptotic

and finite-sample properties. Other recent articles generalizing the extreme value theory to models with

serial dependence are, for example, [16–18].

In this paper the characterization of θ and the subsequent estimator determined by two levels makes

statistical inference about the θ parameter possible in a simpler manner. Interestingly, the estimation

procedure is straightforward and not very sensitive to the practical choice of the block length and

threshold un for fixed sample sizes. Similar strategies are pursued in [9,15] and, more recently, [14].

We also show in an extensive simulation study that the nominal coverage of our estimator obtained from

the asymptotic normal distribution is very good for small sample sizes. Finally, our estimator fares very

well in a comparison of finite samples among the logs, blocks and runs methods for a wide class of time

series exhibiting clustering of extremes and widely discussed in the literature.

The paper is structured as follows. Section 2 discusses the new characterization of the extremal

index. Section 3 introduces the family of estimators of θ and its asymptotic properties. In Section 4,

we illustrate these asymptotic results with a simulation experiment for time series exhibiting clustering

of extreme values. In Section 5, our alternative estimation method is applied to test for the presence

of clustering of extremes in monthly macroeconomic time series of unemployment growth and inflation

rates in the United States. Section 6 concludes.

2. Characterization of the Extremal Index

It is well known for sequences of independent and identically distributed (i.i.d.) random variables

following an unknown distribution F that, under some regularity conditions, the asymptotic distribution

of the sample maximum is non-degenerate. In particular, for some suitable constants an > 0, bn, we

have that

P{a−1
n (M1,n − bn) ≤ x} −→ G(x), (5)

where G is the relevant limiting distribution function that must be one of the following types (see [19]),

Type I: (Gumbel) G(x) = e−e−x

, −∞ < x < ∞.

Type II: (Fréchet) G(x) =

{
0 x ≤ 0,

e−x
−

1
ξ

x > 0, ξ > 0.

Type III: (Weibull) G(x) =

{
1 x ≥ 0,

e−(−x)
−

1
ξ x < 0, ξ < 0.

Taking logs in both terms of (5) and denoting un(x) = anx+ bn, we observe that

n(1 − F (un(x)) −→ τ(x) as n → ∞, (6)

with τ(x) a positive real function defined by the exponent of any of the three extreme value distributions

introduced above.

For large n and un sufficiently high, Equation (6) is sufficient to define a family of random variables

Zun(x) :=
n∑

i=1

I(Xi > un(x)) indexed by x that converges in distribution to a family of Poisson random
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variables with mean τ(x); see [20,21]. For the sake of simplicity in the exposition, we will assume

hereafter x fixed and will use un to denote the threshold sequence un(x). Similarly, Zun
denotes the

corresponding random variable.

These important and well-known results of extreme value theory (evt ) can be extended to study the

maximum of a wide class of dependent processes. We concentrate here on stationary sequences where

the extent of long-range dependence is restricted by a distributional mixing condition D(un) introduced

in [3]. This mixing condition is said to hold for a sequence {un} if for any integers 1 ≤ i1 < . . . < ip <

j1 < . . . < jp′ ≤ n for which j1 − ip ≥ ln, we have

D(un) :
∣∣∣Fi1,...,ip,j1,...,jp′

(un)− Fi1,...,ip(un)Fj1,...,jp′
(un)

∣∣∣ ≤ αn,ln, (7)

where αn,ln → 0 as n → ∞ for some ln = o(n) and where Fi1,...,ip(un) denotes P{Xi1 ≤ un, . . . , Xip ≤ un}.

This condition entails the asymptotic serial independence of the extreme events, these defined as

exceedances over the threshold un.

Under this mixing condition, expressions (1) and (5) guarantee that

P{M1,n ≤ un} −→ Gθ(x), as n → ∞. (8)

Furthermore, [3] showed that there exist different partitions of the sequence {Xi, i ≥ 1} of length n

defined by kn blocks of size rn, with kn → ∞, kn = o(n), knln = o(n) with ln, introduced in (7),

rn = [n/kn], with [·] the integer part, such that

P{M1,n ≤ un} − P kn{M1,rn ≤ un} −→ 0, as n → ∞. (9)

This approximation of the asymptotic distribution of the sample maximum under serial dependence and

condition (8) imply, after taking logs, that

kn (1− F1,...,rn(un)) −→ θτ. (10)

In this environment, the random variable Zun
does not consist of independent elements and, in

general, no longer converges in distribution to a Poisson random variable. Nonetheless, this random

variable can be thinned to eliminate the presence of serial short-range dependence in the extremes.

The thinning process consists of dividing the sequence of length n in kn blocks of size rn and choosing

the block maxima that exceed the level un. This method allows one to define a new random variable

denoted Z∗
un

:=
kn∑
j=1

I(M(j−1)rn+1,jrn > un) whose observations, under D(un), are asymptotically

serially independent.

Theorem 4.1 of [3] uses this thinning to define a point process N
(un)
n on the interval (0, 1] consisting

of the elements of Z∗
un

indexed by j/kn, j = 1, . . . , kn and that converges in distribution to a Poisson

process with mean θτ and denoted hereafter N(θτ).

We build on these results, in particular condition (3), to define a sequence of extreme levels vn

characterized by the following condition

E

[
rn∑

j=1

I(Xj > vn) |
rn∑

j=1

I(Xj > un) ≥ 1

]
−→ 1, (11)
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where vn depends on the choice of un and satisfies by construction that vn ≥ un. Further, given that

E

[
rn∑

j=1

I(Xj > vn) |
rn∑

j=1

I(Xj > un) ≥ 1

]
=

rnP{Xj > vn}

P

{
rn⋃
j=1

(Xj > un)

} , (12)

and satisfies (11), it follows by (10) and by multiplying the numerator and denominator on the right term

by kn that

n (1− F (vn)) −→ θτ, with 0 < τ < ∞ as n → ∞. (13)

This condition implies that

P{M1,n ≤ vn} −→ Gθ2 as n → ∞, (14)

and therefore, for appropriate sequences kn and rn, this is equivalent to

kn (1− F1,...,rn(vn)) −→ θ2τ as n → ∞. (15)

The sequence vn defines a further thinning of Z∗
un

given by Z∗
vn

:=
kn∑
j=1

I(M(j−1)rn+1,jrn > vn) and an

associated point process N
(vn)
n in (0, 1], indexed by j/kn, that satisfies the following result:

Theorem 1. Let the stationary sequence {Xi}ni=1 satisfy D(un) where un satisfies (6). Let kn → ∞,

kn = o(n) and knln = o(n) with ln introduced in (7). Let {Xi}ni=1 have extremal index θ, with 0 < θ ≤ 1.

Then, the point process N
(vn)
n , with vn satisfying (11), converges in distribution to a Poisson process

N ′(θ2τ) on (0, 1].

The proof of this result follows from Theorem 4.1 of [3] and the above conditions. This theorem

allows us to introduce an alternative characterization of the extremal index as the ratio of the limiting

point processes N
(vn)
n and N

(un)
n .

Corollary 1. Under assumptions in Theorem 1, the extremal index θ is the ratio of the intensity

parameters of the Poisson processes N ′(θ2τ) and N(θτ), defined as the limits of the processes of N
(vn)
n

and N
(un)
n , respectively.

Alternatively, we observe that by operating with expressions (10) and (15), the extremal index θ can

be characterized as in the following corollary:

Corollary 2. Under assumptions in Theorem 1, the extremal index θ is characterized as the limit of the

probability P
{
M1,rn > vn

∣∣M1,rn > un

}
.

The proof of this result is immediate by observing that

P
{
M1,rn > vn

∣∣M1,rn > un

}
=

1− F1,...,rn(vn)

1− F1,...,rn(un)
−→ θ, as kn → ∞. (16)

The sequences vn and un are extreme levels that determine two point processes that converge in the

limit to the above Poisson processes. In contrast to the standard versions of the logs, blocks and runs
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methods, the family of estimators of θ derived from the new characterizations above are consistent, and

their asymptotic distribution is Gaussian. We explore these properties in the following section.

3. Estimation of the Extremal Index

The extremal index provides a measure of the clustering of the largest observations of a stationary

sequence. We review in this section three of the most popular estimators of θ introduced in the literature:

the logs method, the blocks method and the runs estimator. The section follows with the definition of a

novel consistent and asymptotically normal estimator of θ that stems naturally from our characterization

of the extremal index as the limiting probability defined by the sequences un and vn.

The logs method builds on the approximation of the asymptotic distribution of M1,n given by

P kn{M1,rn ≤ un}, with {kn, rn} an appropriate partition of the sample of size n. The estimator takes

the form

θ̂(1)n =
log(1− Z∗

un
/kn)

rn log(1− Zun
/n)

, (17)

with Zun
/n the empirical counterpart of 1− F (un) and Z∗

un
/kn of 1− F1,...,rn(un).

Alternatively, the concept of extremal index introduced by [3] and given by interpreting θ−1 as the

limiting mean cluster size of the exceedances yields the blocks method:

θ̂(2)n =
Z∗

un

Zun

. (18)

This estimator can be regarded as an approximation of θ̂
(1)
n using the first order expansions of the

logarithm for the numerator and denominator. Another popular estimator is the runs estimator; this

method naturally follows from the characterization of θ in [6] and is given by

θn =
Wun

Zun

, (19)

where Wun
=

n−rn∑
i=1

I(Xi > un)(1− I(Xi+1 > un)) · ·(1− I(Xi+rn > un)).

The first two statistical moments of these estimators are studied in [4]. However, due to the Poisson

character of Z∗
un

entailed by the choice of extreme levels un and the potential strong dependence

between adjacent observations in Zun
, the consistency and asymptotic distribution of these estimators

are compromised and only achieved after cumbersome standardizations; see [15], for example. In what

follows, we introduce a new family of estimators for θ indexed by the sequence rn obtained from the

partition of n in kn blocks and based on the novel characterization of the extremal index in Corollary 2.

Furthermore, under appropriate choices of kn satisfying conditions stated in Theorem 1, this family of

estimators is consistent and asymptotically normal.

Definition 1. Let un and vn be two sequences satisfying D(·), property (11) and the conditions in

Theorem 1. Then, we can define the following family of estimators of θ indexed by rn as

θ̃n(rn) =
Z∗

vn

Z∗
un

. (20)
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This estimator can be interpreted as a refinement of the blocks method in which the sequence vn

satisfies the empirical version of condition (11), that is Z∗
un

= Zvn , and replaces un in (18). This specific

choice of the sequence vn with vn > un implies that our estimator, in contrast to the blocks method,

consists of a ratio of asymptotically i.i.d. processes, and as we will see in the result below, it is consistent

and asymptotically normal. Alternative refinements of the blocks method are given in [9].

Before introducing the consistency and asymptotic normality of θ̃n(rn), we need the

following corollary:

Corollary 3. Let Z∗
un

and Z∗
vn

be quantities defined by sequences un and vn that satisfy D(·),
property (6) and a partition determined by the sequence kn satisfying the conditions in Theorem 1.

Then:

Z∗
un

= kn(1− F1,...,rn(un)) + oP (kn), with kn → ∞ (21)

and

Z∗
vn

= kn(1− F1,...,rn(vn)) + oP (kn), with kn → ∞. (22)

Proof of Corollary 3. For the sake of space, we only show here the proof for the sequence un.

This result can be obtained from applying Chebyshev’s inequality to the quantity 1
kn

kn∑
j=1

I
(
M(j−1)rn+1,jrn > un

)
.

More specifically, from this inequality and given that I
(
M(j−1)rn+1,jrn > un

)
are Bernoulli random

variables with variance (1− F1,...,rn(un))F1,...,rn(un), we know that

P{
∣∣ 1
kn

kn∑

j=1

Ij − (1− F1,...,rn(un))
∣∣ > ε} ≤ (1− F1,...,rn(un))F1,...,rn(un)

knε2
+

2
kn∑
i=1

kn∑
j>i

cov(Ii, Ij)

k2
nε

2
, (23)

where, for the sake of space in the expression, Ij := I
(
M(j−1)rn+1,jrn > un

)
.

By definition of the sequence un and condition D(un), the right term on the preceding expression

converges to zero, for kn → ∞ and for every ε > 0. Then

Z∗
un

:=

kn∑

j=1

I
(
M(j−1)rn+1,jrn > un

)
= kn(1− F1,...,rn(un)) + oP (kn). (24)

Further, the Poisson character of the quantity
kn∑
j=1

I
(
M(j−1)rn+1,jrn > un

)
and (10) imply that

Z∗
un

= θτ + oP (kn), for kn → ∞, (25)

with 0 < τ < ∞ constant.

With these results in place, we are ready to introduce the following results.

Theorem 2. Let un and vn be sequences satisfying D(·), property (11) and the conditions in Theorem 1.

Then

θ̃n(rn) = θ+ oP (1) , as kn → ∞, (26)

and √
kn(1− F1,...,rn(un))

(
θ̃n(rn)− θ

)
d−→ N (0, θ) , as kn → ∞, (27)
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with d denoting convergence in the distribution.

Proof of Theorem 2. Let un and vn be sequences satisfying D(un), D(vn), (11) and the conditions in

Theorem 1. Let θ̃n(rn) be the family of estimators of θ introduced above and θn = 1−F1,...,rn(vn)

1−F1,...,rn (un)
. Now,

by Chebyshev’s inequality applied to the quantity 1
kn

kn∑
j=1

I(M(j−1)rn+1,jrn>vn)
√

1−F1,...,rn(un)
, we obtain

P{
∣∣ 1
kn

kn∑
j=1

I
(
M(j−1)rn+1,jrn > vn

)

√
1− F1,...,rn(un)

− (1− F1,...,rn(vn))√
1− F1,...,rn(un)

∣∣ > ε} ≤ (28)

≤ (1− F1,...,rn(vn))F1,...,rn(vn)

kn(1− F1,...,rn(un))ε2
+

2
kn∑
i=1

kn∑
j>i

cov(I
(
M(i−1)rn+1,irn > vn

)
, I
(
M(j−1)rn+1,jrn > vn

)
)

k2
nε

2
, (29)

that for every ε > 0 converges to zero, by condition D(vn) and given that F1,...,rn(vn) −→ 1, as kn → ∞.

Therefore, it holds that

kn∑
j=1

I
(
M(j−1)rn+1,jrn > vn

)

kn
√

1− F1,...,rn(un)
=

(1− F1,...,rn(vn))√
1− F1,...,rn(un)

+ oP (1). (30)

Now, by Corollary 3,
Z∗

un

kn
= 1− F1,...,rn(un) + oP (1). (31)

The ratio of the last two expressions implies that

θ̃n(rn)√
1− F1,...,rn(un)

=
θn√

1− F1,...,rn(un)
+ oP (1). (32)

Finally, from Corollary 2, it follows that θn = θ + o(1) as kn → ∞. Then

(
θ̃n(rn)− θ

)
= oP

(√
1− F1,...,rn(un)

)
. (33)

For notational convenience, we can write the former result as

√
1− F1,...,rn(un)

(
θ̃n(rn)− θn

)
= oP (1− F1,...,rn(un)) ,

that implies √
1− F1,...,rn(un)

(
θ̃n(rn)− θn

)
= oP (1) ,

given that 1− F1,...,rn(un) −→ 0 as kn → ∞.

For the second result of the theorem, we first note that expression (30) multiplied by the normalizing

rate
√
kn can be written as

1√
kn

kn∑

j=1

(
I(M(j−1)rn+1,jrn > vn)√

1− F1,...,rn(un)
− 1− F1,...,rn(vn)√

1− F1,...,rn(un)

)
. (34)
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Now, by condition D(un), the observations

(
I(M(j−1)rn+1,jrn>vn)√

1−F1,...,rn(un)
− 1−F1,...,rn(vn)√

1−F1,...,rn(un)

)
have zero mean and

are asymptotically serially independent. Furthermore, the variance of each observation is given by

V

(
I(M(j−1)rn+1,jrn > vn)√

1− F1,...,rn(un)

)
=

(1− F1,...,rn(vn))F1,...,rn(vn)

1− F1,...,rn(un)
= θnF1,...,rn(vn). (35)

The observations are indexed by the block size rn corresponding to the partition kn. This implies that

the standard central limit theorem results cannot be applied. Instead, we have to use the triangular array

version of the Lindeberg-Lévy central limit theorem defined by elements Yknj =
I(M(j−1)rn+1,jrn>vn)√

1−F1,...,rn(un)
.

The Lindeberg condition in this framework is

lim
kn→∞

kn∑

j=1

(s−2
kn
)E
[
Y 2
knj

I (|Yknj| ≥ εskn)
]
= 0, (36)

with ε any positive value and where s2kn =
kn∑
j=1

V (Yknj)+2
kn∑
i=1

kn∑
j>i

cov(Ykni, Yknj) with V (Yknj) obtained in

(35) and cov(Ykni, Yknj) −→ 0 as kn → ∞, by the mixing condition D(vn). After some basic algebra, it

is simple to see that (36) is satisfied, and then, as kn → ∞,

1√
kn

kn∑

j=1

(
I(M(j−1)rn+1,jrn > vn)√

1− F1,...,rn(un)
− 1− F1,...,rn(vn)√

1− F1,...,rn(un)

)
d−→ N

(
0, lim

kn→∞
θnF1,...,rn(vn)

)
. (37)

Now, by the consistency result (31) and dividing by
Z∗

un

kn
, we obtain

√
kn(1− F1,...,rn(un))

(
θ̃n(rn)− θn

)
d−→ N

(
0, lim

kn→∞
θnF1,...,rn(vn)

)
. (38)

Finally, the choice of vn implies that F1,...,rn(vn) −→ 1, and we obtain the desired result.

In fact, the true rate of convergence for the consistency is 1√
1−F1,...,rn (un)

. This is so because

(
θ̃n(rn)− θ

)

√
1− F1,...,rn(un)

= oP (1) , as kn → ∞,

and 1−F1,...,rn(un) −→ 0; see the first part of the proof of Theorem 2 for details. This interesting result

implies that √
1− F1,...,rn(un)

(
θ̃n(rn)− θ

)
= oP (1) , as kn → ∞.

Hence, from (27), we achieve, as in standard statistical theory, a
√
kn rate of convergence for the

asymptotic normality.

It is still unresolved how to choose in practice the sequence vn conditional on an appropriate choice

of the sequence un satisfying D(un) and determining Z∗
un

. A suitable choice for vn is the sequence that

satisfies the empirical counterpart of condition (11);

1

Z∗
un

kn∑

j=1

irn∑

i=(j−1)rn+1

I(Xi > v̂n) −→ 1,
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that yields, naturally, the following estimator of vn:

v̂n = F−1

(
1− Z∗

un

n

)
. (39)

With this sequence, we define the process Z∗
v̂n

=
kn∑
j=1

I
(
M(j−1)rn+1,jrn > v̂n

)
and obtain the corresponding

feasible version of the estimator θ̃n(rn), defined now by

θ̃fn(rn) =
Z∗

v̂n

Z∗
un

.

Furthermore, by the consistency result obtained in Corollary 3, we can replace the rate√
kn(1− F1,...,rn(un)) by

√
Z∗

un
and obtain the following statistic:

√
Z∗

un

(
θ̃fn(rn)− θ

)
.

Corollary 4. Let un be a sequence satisfying D(un) and defining the quantity Z∗
un

, and let

v̂n = F−1
(
1− Z∗

un

n

)
, with F (x) the distribution function of a sequence {Xi}ni=1 with extremal index

0 < θ ≤ 1. Furthermore, let kn → ∞, kn = o(n) and knln = o(n) with ln introduced in (7). Then

θ̃fn(rn) = θ+ oP (1) , askn → ∞, (40)

and √
Z∗

un

(
θ̃fn(rn)− θ

)
d−→ N (0, θ) , as kn → ∞. (41)

Proof of Corollary 4. We will concentrate on the consistency of the estimator. The proof of asymptotic

normality, once the consistency result is derived follows immediately from dividing and multiplying
√
kn

by
√

Z∗
un

in (41), from the consistency result (31) and from applying Theorem 2.

Let un be a sequence satisfying D(un) and defining the quantity Z∗
un

, and let v̂n = F−1
(
1− Z∗

un

n

)
.

We first need to show that D(v̂n) holds given that D(un) does. By Lemma 3.6.2 (iv) in [22], D(v̂n)

will hold if v̂n ≥ un. Therefore, we need to prove this inequality. A sufficient condition is to see

that F (un) ≤ F (v̂n) for any given n sufficiently high. Note that F (un) = 1 − Zun

n
+ oP (1) with

Zun
=

n∑
i=1

I(Xi > un). Then, F (un) ≤ F (v̂n) if and only if Zun
≥ Z⋆

un
. Now, by the character of these

two quantities, Z⋆
un

a thinning of Zun
, this inequality holds naturally.

For the second part of the consistency proof, we note that by (6) and (10), the mixing condition D(v̂n)

implies that
kn(1− F1,...,rn(v̂n))

n(1− F (v̂n))
−→ θ, as kn, n → ∞. (42)

Using this asymptotic relationship, and after some algebra, the estimator v̂n satisfies

v̂n = F−1
1,...,rn

(
1− θn(1− F (v̂n))

kn
+ oP

(
1

kn

))
. (43)

Now, replacing (43) into (22) and observing that n(1− F (v̂n)) = Z∗
un

, we obtain

Z∗
v̂n

= θZ∗
un

+ oP (1).
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Finally, by definition of the feasible estimator θ̃fn(rn), it follows that

θ̃fn(rn) = θ+ oP (1).

In practice, when the distribution F is unknown, the estimator of vn is replaced by the empirical

version of F−1
(
1− Z∗

un

n

)
, that is by the extreme order statistic XZ∗

un
+1:n from the sequence

X1:n ≥ X2:n ≥ . . . ≥ Xn:n. Furthermore, in the studies in finite samples with n fixed, we will

use as a candidate for un an extreme order statistic of the sequence of block maxima. In particular, this

will be ûn = Mt+1:kn with t > 0 fixed, implying that Z∗
ûn

= t and v̂n = Xt+1:n. These results enable us to

apply Theorem 2 to make statistical inference about the extremal index. An interesting case is testing for

the existence of the clustering of extremes in stationary sequences. It is well known that under limiting

serial independence in the extremes, θ takes the value one. Therefore a valid test is H0 : θ = 1 against

the one-sided alternative HA : θ < 1. This possibility is explored in the application to macroeconomic

time series.

4. Simulations: Some Examples

This section studies some of the most popular examples of time series exhibiting clustering of

extremes. We discuss in detail the following four processes: the autoregressive model of [23],

the doubly-stochastic process studied in [4], the moving-maximum process with Fréchet marginals

and the maximum of a lagged autoregressive process introduced by [24]. The simulation exercise is

divided into two components. First, we compare estimation methods across different partitions, and

second, we study the asymptotic coverage of the limiting normal distribution introduced in Theorem 2

for different sample sizes.

The first example is due to [23]. Let {Xi} be a strictly-stationary first order autoregressive sequence

driven by Xi = 1
r
Xi−1 + εi, with r ≥ 2 an integer, εi discrete uniform random variables on

{0, 1/r, . . . , (r− 1)/r} and independent of Xi−1. The random variable Xi has a uniform distribution on

[0, 1], and the extremal index is θ = r−1
r

. Figures 1 and 2 report the sequence of estimates of θ for r = 5

and r = 2, respectively. The different panels in these figures report the estimates of θ obtained from the

logs method, blocks method, runs method and the estimator θ̃fn, for different levels determined by order

statistics ûn = Mt+1:kn and v̂n = Xt+1:n with t = 1, 3, 5, 7, and n = 200.

A close inspection of the charts shows that the blocks and the runs method underestimate θ as rn

increases. This is so because these estimators, by construction, have a decreasing numerator as the block

size increases. On the other hand, estimates derived from the logs method are very accurate for the higher

threshold sequences employed, but unfortunately, as un decreases, the estimator exhibits problems due

to the fact that every single block contains an exceedance (Z∗
ûn

= kn). In these cases, this estimator is

not well defined. In contrast, θ̃fn shows reliable and stable estimates of θ across all threshold levels and

partitions employed.
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Figure 1. Chernick model with r = 5. θ = 0.8. Sample mean for different estimators of θ.

m = 100 Monte Carlo simulations. ûn = Mt+1:kn , and v̂n = Xt+1:n with t = 1, 3, 5, 7; n =

200. rn ∈ [1, 20]. θ plotted with, θ̃fn with −o, θ̂
(1)
n with −⋄, θ̂

(2)
n with −+, and θn with the

−∗ line.
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Figure 2. Chernick model with r = 2. θ = 0.5.

The second process under investigation is the doubly-stochastic model studied in [4]. Let {ξi, i ≥ 1}
be i.i.d. with distribution function F; suppose that Y1 = ξ1 and for i > 1,

Yi =

{
Yi−1 with probability ψ,

ξi with probability 1− ψ,

the choice being made independently for each i. The doubly-stochastic sequence {Xi, i ≥ 1} is

defined by

Xi =

{
Yi with probability η,

0 with probability 1− η,
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independently of anything else. In this example, the extremal index is θ = 1−ψ
1−ψ+ψη

. Smith and

Weissman [4] compare different estimators of θ for ψ = 0.9 and η = 0.7 (θ = 0.137) and show

that the runs method is superior to the rest of the competing estimators. Figure 3 is consistent with their

results. θ̃fn seems to be, however, a very good competitor of θn for every single level and outperforms

the logs and blocks estimators across all levels. To compare the performance of the runs method against

θ̃fn, we also estimate the extremal index of this process for ψ = 0.5 and η = 0.5 (θ = 0.667). Both of

the runs and blocks method exhibit the same declining pattern observed before for increasing block sizes

(see Figure 4). In this case, however, θ̃fn shows a superior performance to the rest of the estimators. The

logs methods is the only competitor exhibiting a similar performance to our family of estimators.
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Figure 3. Doubly-stochastic model with ψ = 0.9 and η = 0.7. θ = 0.137. Sample

mean for different estimators of θ. m = 100 Monte Carlo simulations. ûn = Mt+1:kn , and

v̂n = Xt+1:n, with t = 1, 3, 5, 7; n = 200. rn ∈ [1, 20]. θ plotted with, θ̃fn with −o, θ̂
(1)
n with

−⋄, θ̂
(2)
n with −+, and θn with the −∗ line.
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Figure 4. Doubly-stochastic model with ψ = 0.5 and η = 0.5. θ = 0.667.
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The following example is the moving-maximum process: yi = max {µXi, (1 − µ)Xi+1},

where {Xi, i ≥ 1} is an i.i.d. sequence with the common distribution function standard Fréchet (ξ = 1).

The extremal index is θ = 1 − µ for µ < 0.5 and θ = µ, otherwise. We consider µ = 0.5. Figure 5

shows results in the spirit of those found for the Chernick process with r = 2.

This part of the simulation section concludes with the example introduced by L. de Haan:

yi = max
k≥0

ρkxi−k, where 0 < ρ < 1 and {Xi, i ≥ 1} is an i.i.d. sequence with the common

distribution function standard Fréchet (ξ = 1). The extremal index is θ = 1 − ρ. The results reported

in Figure 6 for ρ = 0.25 are consistent with models exhibiting low, but significant clustering; see, for

example, the results of the simulation exercise for the Chernick model and r = 5, where θ = 0.8, and the

doubly-stochastic process with ψ = 0.5 and η = 0.5, where θ = 0.667.
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Figure 5. Moving-maximum process with µ = 0.5. θ = 0.5. Sample mean for different

estimators of θ. m = 100 Monte Carlo simulations. ûn = Mt+1:kn , and v̂n = Xt+1:n, with

t = 1, 3, 5, 7; n = 200. rn ∈ [1, 20]. θ plotted with, θ̃fn with −o, θ̂
(1)
n with −⋄, θ̂

(2)
n with −+,

and θn with the −∗ line.
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Figure 6. Maximum of the lagged autoregressive process with ρ = 0.25. θ = 0.75.
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In order to compare the results of the blocks and logs methods with our new feasible estimator more

in depth, we report in Figures 7 and 8 the estimated mean square error for the doubly-stochastic model.

The penalty function is

MSE(θ̃fn(rn)) =
1

m

m∑

i=1

(θ̃fni(rn)− θ)2, with rn = 1, . . . , 50, (44)

with m = 100 simulated Monte Carlo sequences. The results confirm the findings above. Whereas

the blocks method performs rather well for the first simulation experiment, it completely fails to report

accurate estimates for the second experiment with a higher extremal index.
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Figure 7. Simulated mean square error (MSE) of the estimators of θ for the

doubly-stochastic model with ψ = 0.9 and η = 0.7. m = 100 Monte Carlo simulations. θ̃fn

with −o, θ̂
(1)
n with −⋄ and θ̂

(2)
n with −+. rn ∈ [1, 50]. n = 200 in (a), and n = 1000 in (b).

ûn = Mt+1:kn and v̂n = Xt+1:n with t = 7.
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Figure 8. Simulated mean square error (MSE) of the estimators of θ for the

doubly-stochastic model with ψ = 0.5 and η = 0.5. m = 100 Monte Carlo simulations. θ̃fn

with −o, θ̂
(1)
n with −⋄ and θ̂

(2)
n with −+. rn ∈ [1, 50]. n = 200 in (a), and n = 1000 in (b).

ûn = Mt+1:kn and v̂n = Xt+1:n with t = 7.
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This section concludes with the study of the empirical coverage of the normal distribution followed

asymptotically by our family of estimators. Figures 9 and 10 report the asymptotic coverage

of the two-sided normal confidence intervals for the examples above covering the Chernick and

doubly-stochastic models. The simulations are computed for the order statistics above with rn = [1, 50]

and n = 200, 500, 1000. The plots illustrate the accuracy of the normal asymptotic distribution in all

cases. It is worth noting that the partition of the sample and the extent of clustering play an important

role for obtaining the correct nominal coverage for the asymptotic normal approximation. Thus, for

large sample sizes, the models exhibiting a low clustering of extremes, Chernick with r = 5 and

the doubly-stochastic model with ψ = η = 0.5, only provide accurate approximations as the block

size increases.
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Figure 9. Chernick model with r = 5 in (a) and r = 2 in (b). m = 500 Monte Carlo

simulations. +− for n = 200, o− for n = 500 and −− for n = 1000. ûn = Mt+1:kn

and v̂n = Xt+1:n with t = ⌈0.005kn⌉, where ⌈·⌉ rounds to the next integer. rn = [1, 50],

kn = n/rn. α = 0.05.
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Asymptotic Gaussian coverage. Doubly Stochastic model. ψ=0.9. η=0.7
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Figure 10. Doubly-stochastic model with ψ = 0.9 and η = 0.7 and ψψ = 0.5 in (a) and

η = 0.5 in (b). m = 500 Monte Carlo simulations. +− for n = 200, o− for n = 500 and

−− for n = 1000. ûn = Mt+1:kn and v̂n = Xt+1:n with t = ⌈0.005kn⌉, where ⌈·⌉ rounds to

the next integer. rn = [1, 50], kn = n/rn. α = 0.05.
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5. Application to Macroeconomic Time Series

Macroeconomic series usually exhibit clustering of extreme values that indicate periods of crisis,

financial distress, booms and bursts. This phenomenon is more acute as the data are studied at shorter

frequencies; thus, monthly time series usually exhibit stronger clustering of extremes than quarterly

series, and so on. This stylized fact in macroeconomic time series is usually modeled with econometric

processes that accommodate volatility clustering; see the ARCH family of volatility processes proposed

by [25] or the stochastic volatility processes developed in [26]. These processes are, however, silent

about the probability of runs of extremes in one or the other tail, and only after tedious calculations,

which depend most of the times on a number of parameters, can one compute the chances of these

events. Alternatively, inference about the extremal index is an unexplored option in this field that can

lead to very interesting insights about the existence of clustering in the extremes of these sequences and

on its persistence.

In this application, we pursue this alternative with monthly data in unemployment growth and

inflation rates from the United States spanning the period February 1947 until July 2007 for the

first series and February 1947 until June 2008 for the second series. Data are obtained from

https://www.economy.com/freelunch. The dynamics of these series are reported in Figures 11 and 12.

Dickey-Fuller unit root tests reject the null hypothesis, providing statistical support to the stationarity

of both series. As pointed out by a referee, the visual inspection of both processes could also suggest

the presence of several structural breaks around periods characterized by drastic changes in monetary

policy. In this likely scenario, it would also be reasonable to assume that the unemployment growth

process and inflation rates are both stationary around a shifting mean, implying that the analysis of the

serial dependence of the extremes of both sequences should be carried out separately for each regime.

Nevertheless, for simplicity in the description of the problem, we assume hereafter a constant mean in

both cases and, in turn, the stationarity of both processes.

Panel (a) of Figures 13 and 14 report the estimates of θ using the four methods discussed in the

paper. We can observe from the plots a similar decaying pattern for the four families of estimates. Note,

however, that, whereas the sequences of the logs, blocks and runs estimates decay as the block size rn

increases, the estimator θ̃fn proposed in this paper stabilizes after the first partitions around a value of

0.3 for unemployment growth and 0.55 for the inflation rate, respectively. The statistical significance of

these results is carried out by computing confidence intervals for θ at 5% using the results of Theorem 2

above. These intervals are displayed on the right panels of Figures 13 and 14.

The results on the extremal index point towards a strong clustering in the positive extremes of both

sequences. A more detailed analysis obtained by inspecting the confidence levels of each sequence

of estimates indicates a stronger clustering for the unemployment series than for inflation.1 This

implies that periods of high unemployment are more persistent than highly inflationary periods. A

simple version of the Philips curve (see [27]) shows that inflation and economic growth are positively

correlated or, similarly, that inflation and unemployment are negatively correlated. These empirical

1 A more formal alternative is to compute confidence intervals for the difference between the extremal indexes of each

macroeconomic series.
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observations would imply that high inflation is followed by economic growth and, hence, falls in

unemployment. Our empirical analysis of the extremes of both series adds further insights into this

relationship. More specifically, we observe that highly inflationary periods are less persistent than

periods with large unemployment growth, suggesting that economic policies focused on producing

inflation to boost economic growth can only be successful in the very short term, as inflation quickly

returns to normal levels. In contrast, large unemployment growth has lingering effects that are not easily

reduced by policies aimed at rising inflation.
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Figure 11. Monthly time series of unemployment growth for United States spanning the

period February 1947 to June 2007.
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Figure 12. Monthly time series of inflation rates for the United States spanning the period

February 1947 to July 2008.
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Figure 13. Panel (a) reports different estimates of θ. rn ∈ [1, 20]. θ̃fn with −o, θ̂
(1)
n with −⋄,

θ̂
(2)
n with −+, and θn with the −∗ line. Panel (b) reports two-sided confidence intervals for

θ at 5% computed from θ̃fn, with ûn := Mt+1:kn and v̂n := Xt+1:n, t = 7.
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Figure 14. Panel (a) reports different estimates of θ. rn ∈ [1, 20]. θ̃fn with −o, θ̂
(1)
n with −⋄,

θ̂
(2)
n with −+, and θn with the −∗ line. Panel (b) reports two-sided confidence intervals for

θ at 5% computed from θ̃fn, with ûn := Mt+1:kn and v̂n := Xt+1:n, t = 7.

6. Conclusions

The existence of serial dependence in the extremes of stationary sequences is summarized in one

single parameter: the extremal index. We have introduced in this paper a novel characterization of the

extremal index based on the limiting expected value of two point processes defined by the sequence of

block maxima determined by appropriate partitions and exceeding different threshold levels. Unlike most

estimators for θ in the literature, this characterization yields a family of estimators that is consistent and

asymptotically normal. Therefore, in contrast to most estimators of the extremal index that are downward
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biased, as the block size, our family of estimators yields very stable estimates across partitions, adding

reliability to the results obtained.

In our application, we observe a significant clustering of extremes in unemployment and inflation

rates. A more detailed analysis to the estimates of the extremal index shows that runs of large

unemployment growth are more prolonged than runs of high inflation. This indicates a higher persistence

of large unemployment rates than of inflationary periods.
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