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Abstract

Simultaneous confidence bands have been shown in the statistical literature as pow-

erful inferential tools in univariate linear regression. While the methodology of simulta-

neous confidence bands for univariate linear regression has been extensively researched

and well developed, no published work seems available for multivariate linear regression.

This paper fills this gap by studying one particular simultaneous confidence band for

multivariate linear regression. Due to the shape of the band, the word ‘tube’ is more

pertinent and so will be used to replace the word ‘band’. It is shown that the construc-

tion of the tube is related to the distribution of a largest eigenvalue. A simulation-based

method is proposed to compute the 1−α quantile of this eigenvalue. With the compu-

tation power of modern computers the simultaneous confidence tube can be computed

fast and accurately. A real data example is used to illustrate the method and many

potential research problems have been pointed out.

Keywords: Multivariate linear regression; Multivariate normal distribution; Simultaneous

confidence band/tube; Statistical inference; Statistical simulation; Wishart distribution.

1 Introduction

Consider the multivariate linear regression model in which x1, · · · ,xN are a set of N in-

dependent p-dimensional observations, with xi having the normal distribution N (Bzi,Σ).

Here the m-dimensional vectors zi = (1, z1i, · · · , z(m−1)i)
′

are known covariate values, the

unknown p × p matrix Σ is the covariance matrix of xi, and the unknown p × m matrix
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B = (β1, · · · ,βp)
′

specifies that the response vector xi depends on the covariate vector zi

via E(xi) = Bzi. This multivariate linear regression model can also be represented as

x = Bz + ε (1)

where x = (x1, · · · , xp)′, z = (1, z1, · · · , z(m−1))
′

and ε are independent N (0,Σ) errors.

Without loss of generality, assume that Σ = (σij) is non-singular and Z = (z1, · · · , zN) is of

full row-rank. Based on the N observations (x1, z1), · · · , (xN , zN) the maximum likelihood

estimators ofB and Σ are given by B̂ = (β̂1, · · · , β̂p)′ = CA−1 and Σ̂ =
∑N

i=1(xi−B̂zi)(xi−

B̂zi)
′/N , where A =

∑N
i=1 ziz

′
i and C =

∑N
i=1 xiz

′
i. Furthermore, assuming N ≥ p + m

throughout this paper, then we have the following distributional results:

(β̂
′
1, · · · , β̂

′
p)
′ ∼ N ((β1

′, · · · ,βp′)′,Σ⊗A−1)

NΣ̂ ∼W (Σ, n) with n = N −m, (2)

(β̂
′
1, · · · , β̂

′
p)
′ and NΣ̂ are independent

where W (Σ, r) denotes the Wishart distribution with parameters Σ and r. All these results

can be found in the excellent book by Anderson (2003, Section 8.2).

It is clear that the systematic component Bz of model (1) is of interest and can be estimated

by B̂z. One can further provide the following exact 1−α confidence set for Bz for a given z{
(B̂z−Bz)′(NΣ̂)−1(B̂z−Bz)

z′A−1z
≤ p

n− p+ 1
fαp,n−p+1

}
(3)

by noting that (B̂z−Bz)/
√

z′A−1z ∼N (0,Σ) and so (n− p+ 1)(B̂z−Bz)′(NΣ̂)−1(B̂z−Bz)/

(pz′A−1z) ∼ Fp,n−p+1 (see e.g. Anderson, 2003, Theorem 5.2.2), where fαp,n−p+1 and Fp,n−p+1

denote respectively the upper α-point of, and a random variable having, an F distribution

with p and n− p+ 1 degrees of freedom.
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This paper constructs an exact 1 − α simultaneous confidence band (SCB) for Bz for all

z̃ = (z1, · · · , zm−1)′ ∈ Rm−1. For the special case of simple linear regression (i.e. p = 1 and

m = 2) a solution is given by Working and Hotelling (1929). This result is generalized to

multiple linear regression (i.e. p = 1 and m ≥ 2) by Scheffé (1953). The topic of SCBs for

Bz in univariate linear regression (i.e. p = 1) has generated great interests over the last

sixty years since the pioneering work of Working and Hotelling (1929) and Scheffé (1953).

Contributions to this topic have been made by numerous authors; see Liu (2010) for a review

and the references therein.

To the best of our knowledge, all the published work is confined to univariate regression

however. This paper fills this gap by constructing a SCB for Bz for all z̃ ∈ Rm−1 for a

general p ≥ 1. From the confidence set for Bz for a given z̃ ∈ Rm−1 in (3), a natural SCB

has the form {
(B̂z−Bz)′(NΣ̂)−1(B̂z−Bz)

z′A−1z
≤ c ∀ z̃ ∈ Rm−1

}
(4)

where c is a critical constant suitably chosen so that the confidence level is exactly 1 − α.

This SCB is the focus of this paper.

SCB (4) can be plotted in a three dimensional space in the following way for the special case

of p = 2 (i.e. the response x has two components x = (x1, x2)
′) and m = 2 (i.e. there is only

one covariate z̃ = z1) and so each xi depends on the covariate z1 via a simple linear regression

model. SCB (4) consists of one ellipsoidal disc for Bz in the (x1, x2)-plane at each z1 ∈ R1;

see Figure 1 in Section 3. The centres of all the discs form the straightline ((B̂z)′, z1) in

the (x1, x2, z1)-space. SCB (4) stipulates, with confidence level 1− α, that ((Bz)′, z1) for all

z1 ∈ R1, which form a straightline, is contained completely inside all the discs. SCB (4) for

general p ≥ 2 and m ≥ 2 is a generalization of Figure 1 which one can only imagine in a four
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or higher dimensional space as with many other multivariate statistical techniques. From

Figure 1 of Section 3, simultaneous confidence tube (SCT) seems more pertinent than SCB

for multivariate regression and will be used in the rest of the paper.

This paper is organized as follows. Section 2 considers the determination of the critical

constant c in (4). Section 3 provides an illustrative example. Finally Section 4 contains some

concluding remarks.

2 Determination of the critical constant c

The key in the construction of SCT (4) is the determination of the critical constant c, which

satisfies

P

{
max

z̃∈Rm−1
g(z) ≤ c

}
= 1− α (5)

where

g(z) =

(
(B̂ −B)z

)′
(NΣ̂)−1

(
(B̂ −B)z

)
z′A−1z

=

(
A−1/2z

)′ (
Σ−1/2(B̂ −B)A1/2

)′ (
Σ−1/2NΣ̂Σ−1/2

)−1 (
Σ−1/2(B̂ −B)A1/2

) (
A−1/2z

)
(A−1/2z)

′
(A−1/2z)

,

where M 1/2 denotes the square-root matrix of a positive-definite matrix M , and M−1/2

denotes the inverse matrix of M 1/2.

First we determine the distribution of them×p random matrixU :=
(

Σ−1/2(B̂ −B)A1/2
)′

=

A1/2
(
β̂1 − β1, · · · , β̂p − βp

)
Σ−1/2. It is clear that E(U) = 0 and its m × p random ele-

ments are jointly normally distributed since they are all linear combinations of the jointly

normally distributed random elements of B̂−B. To find the covariance matrix of the m× p
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random elements of U , denote Σ−1/2 = (ηij)p×p and γ̂i := A1/2(β̂i−βi), i = 1, · · · , p. Hence

U = (γ̂1, · · · , γ̂p)(ηij) = (u1, · · · ,up) where uj =
∑p

i=1 ηijγ̂i, j = 1, · · · , p. Now the distri-

butions of the β̂i’s in (2) give directly Cov(γ̂i, γ̂j) = σijIm for 1 ≤ i, j ≤ p. This and a few

lines of simple manipulation show that Cov(ul,uk) = δlkIm for 1 ≤ l, k ≤ p, where δlk is equal

to one if l = k and zero otherwise. We have therefore shown that u1 · · · ,up ∼i.i.d. N (0, Im),

i.e. all the m× p elements of U are independent N(0, 1) random variables.

Next it is straightforward to check thatD := Σ−1/2NΣ̂Σ−1/2 =
∑n

i=1 viv
′
i where v1, · · · ,vn ∼i.i.d.

N (0, Ip) since NΣ̂ ∼W (Σ, n) from (2). Hence we have shown that

g(z) =

(
A−1/2z

)′
UD−1U ′

(
A−1/2z

)
(A−1/2z)

′
(A−1/2z)

(6)

where u1, · · · ,up ∼i.i.d. N (0, Im), v1, · · · ,vn ∼i.i.d. N (0, Ip), and (u1, · · · ,up) and (v1, · · · ,vn)

are independent since B̂ and NΣ̂ are independent from (2). It is clear from (6) that the dis-

tribution of g(z) does not depend on the unknown parameters B and Σ of model (1).

Now it follows directly from Anderson (2003, Theorem A.2.4) that

max
z̃∈Rm−1

g(z) = max
z̃∈Rm−1

(
A−1/2z

)′
UD−1U ′

(
A−1/2z

)
(A−1/2z)

′
(A−1/2z)

= l1,

the largest eigenvalue of UD−1U ′. Note that a non-zero eigenvalue l of UD−1U ′ satisfies

|UD−1U ′ − lIm| = 0, which is the same as 0 = |D||UD−1U ′ − lIm| = lm−p|lD − U ′U |

since |D| 6= 0 with probability one, where the second equality follows directly from Anderson

(2003, Theorem A.3.2). Hence l1 is also the largest solution l of |Q − lD| = 0 where

Q = U ′U ∼W (Ip,m), D ∼W (Ip, n), and Q and D are independent.

The distributions of the solutions l of |Q − lD| = 0 have been studied by Fisher (1939),

Girshick (1939), Hsu (1939), Roy (1939) and Mood (1951) among others, and relevant results
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are summarized in Anderson (2003, Section 13.2). In particular, for m ≥ p (and n ≥ p since

we have assumed N ≥ p+m), the joint probability density function (pdf) of all the solutions

0 ≤ lp ≤ · · · ≤ l1 is given in Theorem 13.2.2, and for m < p, the joint pdf of the nonzero

solutions 0 < lm < · · · < l1 is given by Theorem 13.2.3. In theory, for a given c, one can find

P{maxz̃∈Rm−1 g(z) ≤ c} = P{l1 ≤ c} by integrating the joint pdf of the li’s over the region

{l1 ≤ c}. A standard numerical searching algorithm, such as the bisection method, will then

find the required critical constant c. However, high dimensional numerical integration may

not be straightforward.

There is also an extensive literature on the distribution of l1 (or, equivalently, f1 = l1/(l1+1)).

For, example, for m ≥ p, Roy (1945, 1957) provides some expressions for P{f1 ≤ f} for

p = 2, 3 and 4; see Anderson (2003, pp.334) and the references therein. Table B.4 of Anderson

(2003) provides the quantiles of f1 base on the approximation by Pillai (1967).

We recommend a simulation method to compute the critical constant c. Note that the

required c is just the 100(1 − α)th percentile of the random variable l1, and so can be

approximated by the sample percentile using simulation in the following way. We simulate

a large number R of independent replicates of l1 : l11, · · · , l1R, and use the 〈(1 − α)R〉th

largest l1i value as c, where 〈a〉 denotes the integer part of a. It is well known that this

approximation approaches c almost surely asR approaches infinity; some methods of assessing

the accuracy of this approximation can be found in Edwards and Berry (1987) and Liu et al.

(2005). In each simulation of l1, we first generate v1, · · · ,vm+n ∼i.i.d. N (0, Ip), then compute

Q =
∑m

i=1 viv
′
i and D =

∑m+n
i=m+1 viv

′
i, and finally solve l1 from |Q − lD| = 0. From our

experience with various configurations of p ≤ 5, m ≤ 5 and n ≤ 200, the computation of

c using R = 1, 000, 000 simulations takes only a few seconds on an ordinary PC and the
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results agree to at least three decimal points with those computed using Roy’s (1945, 1957)

expression for m ≥ p = 2 and one dimensional numerical quadrature. More information on

computation time and accuracy is provided in Section 3.

Before finishing this section, we show that the theoretical result derived above implies the

results of Working and Hotelling (1929) and Scheffé (1953) for the special case of p = 1.

For p = 1, Q and D are independent chi-square random variables χ2
m and χ2

n, respectively.

Hence the only solution l = l1 of |Q − lD| = 0 is l1 = χ2
m/χ

2
n and so the critical constant c

is given by c = (m/n)fαm,n as in Scheffé (1953).

3 Example

The Matlab software (version R2012a) includes the dataset Flu as an example for fitting

multivariate linear regression model. It is used in this section to illustrate the construction

of SCT (4) considered in this paper. The dataset has nine response variables xi which are

predicted regional flu estimates based on Google queries in nine US regions including NE,

MidAtl and ENCentral etc, and only one covariate z1 = WtdILI which is the flu prediction

of the National Centres for Disease Control and Prevention. It has N = 52 observations on

the responses and covariate.

Suppose we are only interested in how the first two responses x1 = NE and x2 = MidAtl

depend on the covariate z1 in terms of the multivariate linear model (1). Based on the 52
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observations, we have computed the estimates

B̂ =

 β̂
′
1

β̂
′
2

 =

 0.186 0.662

0.243 0.633

 , NΣ̂ =

 1.675 1.182

1.182 1.199


with p = 2, m = 2, N = 52 and n = N − m = 50. Note that β̂i is the same as the

estimate one would get by fitting an individual linear regression model of xi on z1, i = 1, 2.

The two diagonal elements of NΣ̂ are the residual sums of squares of the two individual

linear regression models, respectively. However, the multivariate linear regression model of

x = (x1, x2)
′ on z1 takes into consideration the possible correlation between x1 and x2 and

so is more informative than the two individual linear regression models of x1 and x2 on z1.

With α = 0.05 and the given values of p, m and n, our Matlab program computed the critical

constant c in (4), giving c = 0.1899 with R = 1, 000, 000 simulations. This took twelve

seconds on an ordinary PC (Intel(R) Core(TM)i5-2400 CPU@3.10GHz 4.00GB). Using the

expression for P{f1 ≤ f} given in Roy (1945, 1957) for p = 2 and numerical quadrature, we

computed P{l1 ≤ 0.1899} = 0.9502. Also using this expression and numerical quadrature, we

computed c = 0.1897. These indicate that the critical constant c computed using simulation

is very accurate, more than adequate for most applications.

For each given z1, all the Bz that satisfy (B̂z−Bz)′(NΣ̂)−1(B̂z−Bz) ≤ cz′A−1z is given

by an ellipsoidal disc in the (x1, x2)-plane with (x1, x2)
′ = Bz. Its centre is (x1, x2)

′ = B̂z,

its shape is determined by (NΣ̂)−1, and its size depends on cz′A−1z. All the centres for

z1 ∈ R1 form a straightline in the (x1, x2, z1)-space with (x1, x2)
′ = B̂z. This straightline is

our estimate of the unknown multivariate regression line {((Bz)′, z1) : z1 ∈ R1}. SCT (4) is

the union of all these discs, one at each z1 ∈ R1. A collection of such discs and so SCT (4) are

plotted in Figure 1 (in red colour), with the centres of the discs being given by the straightline.
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Figure 1: The 95% SCT for p = 2 and m = 2. The observed data points: stars; the fitted

regression model: straightline; the SCT: union of all the discs.

SCT (4) tells us that the unknown multivariate regression line {((Bz)′, z1) : z1 ∈ R1} lies

completely inside the tube, with 1 − α confidence. In Matlab, one can view the tube (by

using the Figure 1 in Matlab format as the online supplemental document at the journal’s

website) from different angles to get a better feeling of the tube.

One can project the three dimensional tube into the (x1, z1)-plane and the (x2, z1)-plane. The

projection in the (x1, z1)-plane contains the first individual regression line, and the projection

in the (x2, z1)-plane contains the second individual regression lines, with a simultaneous
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confidence level of at least 1− α. However, the original tube cannot be recovered from, and

so contains more information than, the two projections.

Now suppose that we are interested in the multivariate linear regression model of the first

three responses x1 = NE, x2 = MidAtl and x3 = ENCentral on the covariate z1. We can

compute the estimates

B̂ =


β̂
′
1

β̂
′
2

β̂
′
3

 =


0.186 0.662

0.243 0.633

0.245 0.657

 , NΣ̂ =


1.675 1.182 1.603

1.182 1.199 1.451

1.603 1.451 2.173


with p = 3, m = 2, N = 52 and n = N −m = 50. For α = 0.05 and R = 1, 000, 000, the

critical constant c in (4) was computed as 0.2453 from our Matlab program, which works for

general p, m and n. This took fifteen seconds. For both p = 2 and 3, we have tried different

random seeds in simulations and the critical constant c changes only in the fourth decimal

places.

For each given z1, all the Bz that satisfy (B̂z −Bz)′(NΣ̂)−1(B̂z −Bz) ≤ cz′A−1z is now

given by an ellipsoidal ball in the (x1, x2, x3)-space with (x1, x2, x3)
′ = Bz. Its centre is

(x1, x2, x3)
′ = B̂z, and all the centres for z1 ∈ R1 form a straightline in the (x1, x2, x3, z1)-

space. SCT (4) is the union of all these balls, one at each z1 ∈ R1. Of course this four

dimensional SCT still tells us the whereabout of the unknown multivariate regression line,

even though the SCT can only be imagined in one’s mind. Again, projections of the four

dimensional SCT into three or two dimensional space can help us to view the original SCT

from some particular angles; but the projections contain less information than the original

SCT.
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4 Conclusions

SCBs have been shown in the statistical literature to be powerful inferential tools in univariate

regression, supplementing the standard approaches of estimation and hypotheses testing of

the unknown parameters. While the methodology of SCBs for univariate linear regression

has been extensively researched and well developed (cf. Liu, 2010), no published work seems

available for multivariate linear regression. This paper is a first effort to fill this gap by

studying the SCT in (4).

It has been shown that the construction of SCT(4) hinges on the distribution of the largest

eigenvalue l1. While the distribution of l1 has been studied by many researchers, we have

proposed a simulation-based method to compute the 1−α quantile c of l1. With the compu-

tation power of modern computers, this method computes c very fast and accurately. Also,

the method works for general values of p, m and n and is easy to understand. A Matlab

program is written which allows the SCT to be computed easily.

It is also interesting to observe the following relationship between SCT (4) and Roy’s (1953)

test when applied for testing H0 : B = B∗, where B∗ is given. Roy’s test rejects H0 if and

only if l1 > c, which is the same as maxz̃∈Rm−1 g(z) > c, but with B replaced with B∗ in g(z),

as shown in this paper. The latter means the regression function B∗z for z̃ ∈ Rm−1 is not

contained completely inside SCT (4). Hence Roy’s test is just the intuitive test implied by

SCT (4): a plausible candidate of the true model Bz for z̃ ∈ Rm−1 is contained completely

inside SCT (4) with probability 1− α.

This work generalizes the results of Working and Hotelling (1929) and Scheffé (1953). Note,
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however, the bulk of the published work on SCBs for univariate linear regression is on SCBs

over a restricted covariate region and of various shapes (cf. Liu, 2010). Construction of SCTs

for multivariate linear regression in these two directions, in addition to many other problems,

warrants further research.

Acknowledgments: We thank the AE and referees for constructive comments.

Reference

1. Anderson, T.W. (2003). An Introduction to Multivariate Statistical Analysis, 3rd Edi-

tion, Wiley, New York.

2. Edwards, D. and Berry, J.J. (1987). The efficiency of simulation-based multiple com-

parisons. Biometrics, 43, 913-928.

3. Fisher, R.A. (1939). The sampling distribution of some statistics obtained from non-

linear equations. Annals of Eugenics, 9, 238-249.

4. Girshick, M.A. (1939). On the sampling theory of roots of determinantal equations.

Annals of Mathematical Statistics, 10, 203-224.

5. Hsu, P.L. (1939). On the distribution of the roots of certain determinantal equations.

Annals of Eugenics, 9, 250-258.

6. Liu, W. (2010). Simultaneous inference in regression. Chapman and Hall, New York.

13



7. Liu, W., Jamshidian, M., Zhang, Y. and J. Donnelly (2005). Simulation-based simulta-

neous confidence bands in multiple linear regression with predictor variables constrained

in intervals. Journal of Computational and Graphical Statistics, 14(2), 459-484.

8. Mood, A.M. (1951). On the distribution of characteristic roots of normal second-

moment matrices. Annals of Mathematical Statistics, 22, 266-273.

9. Pillai, K.C.S. (1967). Upper percentage points of the largest root of a matrix in mul-

tivariate analysis. Biometrika, 54, 189-194.

10. Roy, S.N. (1939). p-statistics or some generalizations in analysis of variance approxi-

mate to multivariate problems. Sankhya, 4, 381-396.

11. Roy, S.N. (1945). The individual sampling distribution of the maximum, the minimum

and any intermediate of the p-statistics on the null-hypothesis. Sankhya, 7, 133-158.

12. Roy, S.N. (1953). On the heuristic method of test construction and its use in multi-

variate analysis. Annals of Mathematical Statistics, 24, 220-238.

13. Roy, S.N. (1957). Some Aspects of Multivariate Analysis, Wiley, New York.
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