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Analysis of air quality time series of Hong
Kong with graphical modeling

F. Hua, Z. Lub, H. Wongc∗and T. P. Yuenc

Summary: Identifying the interaction of air pollutants in each monitoring station and the inter-relationship

between pollutants at different stations is an important issue in the management and control of air quality

and pollutants. In this paper, a graphical model is utilized to analyze the air pollution in Hong Kong using

the daily air pollution data from the three monitoring stations located at Tsuen Wan, Tap Mun and Tung

Chung in Hong Kong. The model follows broadly the spectral analytic method proposed by Dahlhaus (2000),

for determining the edges of a graph. The method extends a graphical model for analyzing multivariate data

to multivariate time series, and in our case it is applied to time series over different spatial locations. We

adopt the graphical model for time series to investigate the inter-relationship of air pollutants at the three

stations in Hong Kong and the interaction between pollutants among the stations. The results obtained have

good interpretations in terms of both geographical locations and chemistry.

Keywords: Air pollutants in Hong Kong; Air quality monitoring stations; Graphical model;

Partial coherence; VAR model

1. INTRODUCTION

Graphical modeling in data science (Hastie, Tibshirani and Friedman, 2013, Ch. 17) has

gained popularity since its introduction in statistics (Lauritzen, 1996; Edwards, 2000).

Brillinger (1996), Dahlhaus, Eichler and Sandkühler (1997), Dahlhaus (2000), and Eichler
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(2012) attempt to extend the graphical methodology to time series data. More recently,

Jung et al. (2015), Khare et al. (2015), Qiu et al. (2015), and Wolstenholme and Walden

(2015) proposed other methods in determining a graphical model. Tunnicliffe Wilson et al.

(2015) consider graphical modeling by structural vector autoregressive processes. Due to

the ubiquity of time series data, the extension is worthwhile and necessary. An important

issue in these works is the problem of estimation and testing. Dahlhaus (2000) proposes a

spectral analytic method for testing the existence of an edge between two vertices of the

graph. Each vertex actually corresponds to a time series. In this paper, our objective is to

utilize a graphical time series model to analyze the air pollution in Hong Kong using the

daily air pollution data from the three monitoring stations located at Tsuen Wan, Tap Mun

and Tung Chung in Hong Kong.

Since 1995, the Environmental Protection Department (EPD) of Hong Kong has collected

data on the pollutants sulphur dioxide (SO2), nitrogen dioxide (NO2), ozone (O3) and

respirable suspended particulates (RSP). In 2005, the EPD and the Guangdong Provincial

Environmental Monitoring Centre (GDEMC) agreed to make an effort to monitor the air

pollution status in Hong Kong and the Pearl River Delta region (PRDR), and data on

the 4 pollutants were also collected in the PRDR. It covers the most populous region of

Guangdong Province and has a population of more than 100,000,000 people. Sixteen stations

were established throughout the region, and the 3 stations in Hong Kong are Tap Mun(TM),

Tsuen Wan(TW) and Tung Chung(TC). The GDEMC, however, only put the data on the

web on a monthly basis. That means the publicly available data from the EPD and the

GDEMC are different, with much less information from Guangdong available. The data sets

should be very useful for the public to analyze the status of pollution in Hong Kong and

PRDR. To our knowledge, very few researches have been done on them.

In this paper, we use daily time series data from Hong Kong to analyze the air pollution

of Hong Kong. With sufficient data, we are able to apply the test of Dahlhaus (2000). As a
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comparison, the vector autoregressive model (VAR) is also applied to analyze the data. Our

goal is to study the inter-relationship between the three stations and between the pollutants.

This will help identify the hot spot of pollutants for management and control of air quality.

The results obtained have good interpretations in terms of both geographical locations and

chemistry. In a companion paper, we are working on the analysis of air pollution using the

available monthly data from more stations in the region, based on the Generalized Dynamic

Factor Model of Forni et al. (2000), which is good for the analysis of short panel time series

data.

The rest of this paper is organized as follows: Section 2 gives a description of the data,

including geographical and chemical background. Section 3 explains the graphical models

and testing method used, while Section 4 gives the analysis, results and interpretations.

Section 5 concludes. Additional details including figures and tables are available in an online

supporting information file. In our subsequent analysis the main software used is MATLAB.

The program codes and the dataset can be obtained from the online supplements.

2. THE DATA SET FOR GRAPHICAL MODEL

The time series data can be found on the website of the EPD of Hong Kong†. These are also

included as a csv file in the online supplements of this paper. The time series data plots of

the daily average for the four pollutants, SO2, NO2, O3 and RSP, from September 2010 to

September 2014 over the 3 monitoring stations at Tsuen Wan, Tap Mun and Tung Chung are

shown in Figure 1. In each figure, lines constructed from the LOESS smoother (Cleveland,

1979) are also shown. These plots show that the data have clear seasonal pattern. Each

series has a length of 1491. It is observed from the boxplot, Figure 2, that the concentration

of SO2 and NO2 in Tsuen Wan are higher than that in Tap Mun and the concentration

†
http://epic.epd.gov.hk/EPICDI/air/station/?lang=en
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of O3 in Tap Mun is higher than Tung Chung and Tsuen Wan. O3 is produced through

photochemical reactions between nitrogen oxides (NOx, all mono-nitrogen oxides including

NO2) and volatile organic compounds (VOCs) under sunlight where NOx and VOCs are

emitted from vehicles. O3 also reacts with NOx, producing NO2 and oxygen. Tap Mun is a

rural area with light traffic and Tsuen Wan is an urban area with heavy traffic. Tung Chung

is interestingly a semi-rural area. That explains the fact that SO2 and NO2 concentration is

higher in Tsuen Wan than that in Tap Mun. Given the abundance of its precursors (VOCs

and NOx) in Tsuen Wan which react with and remove ozone in the air, the O3 level measured

at Tsuen Wan station is lower than the Tap Mun station.

[Figure 1 about here.]

[Figure 2 about here.]

In our subsequent analysis we need the time series to be weakly stationary. The series

plots, Figure 1, show that all the series have a clear annual cycle of about 365 days. Besides

seasonality, the marginal variances of the time series also seem to change over time. We first

adopt the Box-Cox transformation (Box and Cox, 1964) on each time series. The Box-Cox

transformation has the form

T (yt) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

(yλt − 1)/λ, λ ≠ 0

log(yt), λ = 0.

The selected parameters are shown in Table S1 of the Supporting Information.

The transformed series are then deseasonalized using the method described in McLeod and

Gweon (2012) with the R package “deseasonalize”. The purpose is to remove the annual effect

in the series. After deseasonalization, the SO2 series at Tap Mun still shows some evidence

of non-stationarity by observing the time series plot and ACF of the deseasonalized series.

We further apply first-order differencing on the series. We check the correlograms of the 12

4



Analysis of air quality Environmetrics

time series after these processing, which show that the time series are weakly stationary. The

interested readers may look at these correlograms in Figures S3 – S6.

3. SPECTRAL ANALYSIS AND GRAPHICAL MODELS FOR

MULTIVARIATE TIME SERIES

3.1. Frequency domain, and linear filters

Following Priestley (1981), let X(t) be a zero-mean weakly stationary time series. Let the

auto-covariance function of X(t) be γX(⋅) such that
∞
∑

u=−∞
∣γX(u)∣ <∞.

The spectral density of X(t) is the function fX(⋅) defined by

fX(λ) =
1

2π

∞
∑
u=−∞

e−iλuγX(u), −π ≤ λ ≤ π.

Further, X(t) admits the representation

X(t) = ∫
π

−π
eiλtdZX(λ), (1)

where ZX(λ),−π < λ ≤ π is a complex-valued process with uncorrelated increments.

Equation (1) is called the spectral representation of the process X(t).

Let Y (t) be another zero-mean weakly stationary time series. Similarly we define fY (λ).

Suppose now Y (t) and X(t) can be regarded as input and output processes such that

X(t) =
∞
∑
u=−∞

g(u)Y (t − u), (2)

where g(u) is a deterministic sequence. There should be a noise term in (2) for our later

work. But to focus on the exposition of the main concept, we drop the noise term here. Then
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Γ(λ) =
∞
∑

u=−∞
g(u)e−iλu is called the transfer function, and we have the relationship

fX(λ) = fY (λ)∣Γ(λ)∣2.

Suppose we now have p inputs Y1(t),⋯, Yp(t). We generalize (2) by

X(t) =
∞
∑
u=−∞

g1(u)Y1(t − u) +⋯ +
∞
∑
u=−∞

gj(u)Yj(t − u) +⋯ +
∞
∑
u=−∞

gp(u)Yp(t − u), j = 1,⋯, p.

(3)

Now consider the spectral representations,

X(t) = ∫
π

−π
eiλtdZX(λ), and Yj(t) = ∫

π

−π
eiλtdZY

j (λ), j = 1,⋯, p.

The jth term on the right hand side of (3) can be written as

∫

π

−π
eiλtΓj(λ)dZ

Y
j (λ),

where

Γj(λ) =
∞
∑
u=−∞

gj(u)e
−iλu

represents the transfer function between the jth input and the output. Thus, (3) gives for

each frequency λ

dZX(λ) = Γ1(λ)dZ
Y
1 (λ) +⋯ + Γp(λ)dZ

Y
p (λ). (4)

Equation (4) has an important interpretation. At each frequency λ, it can be regarded as

a simple multiple regression of output on inputs. Equation (3) is a relationship that involves

past, present and future observations. By transforming it into the frequency domain, in a
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way we have replaced the numerous ’lagged’ relations into a sequence of simple regressions.

This is a basic concept for our approach in the next section.

3.2. Graphic model for multivariate time series

Let G = (V,E) denote a graph, where V = {1,2, ..., n} is the set of vertices and E = {(a, b) ∈

V × V } is the set of edges. Suppose X(t) = (X1(t),X2(t), ...,Xn(t))′, t ∈ Z, is a multivariate

weakly stationary time series and Yab(⋅) = (Xj(⋅), j ≠ a, b). We then have V = 1,2,⋯, n and

each vertex corresponds to one of the time series in X(t).

Without loss of generality, let a = 1 and b = n. Following Dahlhaus (2000) and the notations

of Section 3.1, we in theory remove the effect of Y1n(t) on X1(t) by determining the optimal

filters gj(u) such that it minimizes E(X1(t) −
n−1
∑
j=2

∞
∑

u=−∞
gj(u)Xj(t − u))2. Let the optimal

estimates be ĝj(u). Denote the remainder by ε1(t), i.e.

ε1(t) =X1(t) −
n−1
∑
j=2

∞
∑
u=−∞

ĝj(u)Xj(t − u).

Similarly define

εn(t) =Xn(t) −
n−1
∑
j=2

∞
∑
u=−∞

ĝj(u)Xj(t − u).

Now for general values of a and b, suppose Xa = (Xa(t); t ∈ Z) and Yab = (Yab(t); t ∈ Z) and

define

Xa áXb∣Yab ⇐⇒ cov(εa(t), εb(t + u)) = 0 ,∀u ∈ Z. (5)

Let (a, b) ∉ E ⇐⇒ Xa áXb∣Yab, V = 1,2, ..., n. Then G = (V,E) is a partial correlation

graph for the time series under study. Thus, (5) is a defining statement of a partial correlation
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graph. The edges of the graph can be determined from the partial spectral coherence. Let

Cab(u) = cov(Xa(t + u),Xb(t)) for all u ∈ Z (6)

be the cross-covariance function of Xa(t) and Xb(t). The cross-spectral density is defined by

fXaXb
(λ) =

1

2π

∞
∑
u=−∞

Cab(u)e
−iλu . (7)

This expression can be inverted to yield

Cab(u) = ∫
π

−π
fXaXb

(λ)eiλudλ . (8)

The cross-spectral density and cross-covariance function in (7) and (8) can be easily extended

to partial cross-spectrum and partial covariance function. Thus, the cross-spectral density

fXaXb
measures the degree of linear association between all of the variables in frequency

domain, and partial cross-spectral density fXaXb∣Yab is the cross-spectral density of the

residual processes εa(t) and εb(t), measuring the degree of linear association of Xa(t) and

Xb(t), after removing the influence of the remaining components. This is because

(a, b) ∉ E ⇐⇒ Xa áXb∣Yab

⇐⇒ cov(εa(t), εb(t + u)) = 0 ∀u ∈ Z

⇐⇒ fXaXb∣Yab(⋅) = 0 .

(9)

Given the spectral coherence, RXaXb
(⋅), and partial spectral coherence, RXaXb∣Yab(⋅), are

defined by

RXaXb
(λ) =

fXaXb
(λ)

[fXaXa(λ)fXbXb
(λ)]

1/2 and RXaXb∣Yab(λ) =
fXaXb∣Yab(λ)

[fXaXa∣Yab(λ)fXbXb∣Yab(λ)]
1/2
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respectively, then

(a, b) ∉ E ⇐⇒ RXaXb∣Yab(⋅) = 0. (10)

Thus, the edges in the graph can be characterized using partial spectral coherence. See

Brillinger (1981), Brillinger (1996), or Dahlhaus (2000) for more details. For brevity,

sometimes we just refer to spectral coherence and partial spectral coherence as coherence

and partial coherence respectively. Next, the estimation of spectral density is introduced.

3.3. Spectral density estimation

Consider the spectral density matrix

f(λ) =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

f1,1(λ) ⋯ f1,n(λ)

⋮ ⋱ ⋮

fn,1(λ) ⋯ fn,n(λ)

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.

The spectral density matrix f(λ) with elements fXaXb
(λ) = fa,b(λ), a, b = 1,2, ..., n is

estimated entry-wise by

f̂XaXb
(λ) =

1

2π

M

∑
k=−M

wM(k)Ĉ(k)e−iλk, (11)

where wM(k) is the lag window, and the integer M is the lag number. We choose the Hanning

window as the lag window and it is given by

wM(k) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

1
2(1 + cos(πkM )), ∣k∣ ≤M,

0, ∣k∣ >M.

For M , after trying with the 3 values M =
3
√
T ,0.5

√
T ,and

√
T , we choose 0.5

√
T as it gives

a reasonable balance between resolution and variance.
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The cross-covariance estimator is

Ĉ(k) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

1

∑
t
h2( t

T
)∑
t
h( t+kT )(Xa(t + k) − cTa )h(

t
T )(Xb(t) − cTb ), k ≥ 0,

Ĉ(−k), k < 0.

(12)

Here

cTa =

T

∑
t=1
h( tT )Xa(t)

T

∑
t=1
h( tT )

and cTb =

T

∑
t=1
h( tT )Xb(t)

T

∑
t=1
h( tT )

,

(Brillinger, 1981). The function h(x) in (12) is called the data window or taper with

the properties stated in Section 3.3 of Brillinger, 1981. The cosine taper was used in our

estimations. That is,

h(
t

T
) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

1
2(1 − cos(2πt

T )), 1 ≤ t ≤ T,

0, elsewhere.

3.4. Spectral coherence and partial spectral coherence

Given the estimated spectral densities, the estimates of spectral coherences are obtained by

R̂XaXb
(λ) =

f̂XaXb
(λ)

[f̂XaXa(λ)f̂XbXb
(λ)]

1/2 . (13)

To estimate partial coherence, we have to first find the partial cross-spectrum of Xa(⋅) and

Xb(⋅) given Yab(⋅), which is given by

fXaXb∣Yab(λ) = fXaXb
(λ) − fXaY (λ)fY Y (λ)

−1fXbY (λ)
∗, (14)

where A∗ is the conjugate transpose of matrix A (Brillinger, 1981). To illustrate the

calculation of partial cross-spectrum, suppose we are interested in the chemistry of air
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pollutants at Tsuen Wan. Let

X(t) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

X1(t)

X2(t)

X3(t)

X4(t)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

SO2(t)

NO2(t)

O3(t)

RSP(t)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

be a multivariate weakly stationary process with 4 components. Then, the spectral density

matrix is

f(λ) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

f1,1(λ) f1,2(λ) f1,3(λ) f1,4(λ)

f2,1(λ) f2,2(λ) f2,3(λ) f2,4(λ)

f3,1(λ) f3,2(λ) f3,3(λ) f3,4(λ)

f4,1(λ) f4,2(λ) f4,3(λ) f4,4(λ)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The partial cross-spectrum of SO2 with NO2 after removing the linear effect of O3 and RSP

or Y12(⋅) is

fX1X2∣Y12(λ) = f1,2(λ) − fX1Y (λ)fY Y (λ)
−1fX2Y (λ)

∗,

where

fX1Y (λ) = (f1,3(λ) f1,4(λ))

fY Y (λ) =
⎛
⎜
⎝

f3,3(λ) f3,4(λ)

f4,3(λ) f4,4(λ)

⎞
⎟
⎠

fX2Y (λ) = (f2,3(λ) f2,4(λ)) .

Normalizing the partial cross-spectrum estimates leads to the estimate of partial coherences

of SO2 and NO2 given O3 and RSP, which measures the dependence between SO2 and NO2
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after removing the linear effect of O3 and RSP. It is given by

R̂X1X2∣Y12(λ) =
f̂X1X2∣Y12(λ)

[f̂X1X1∣Y12(λ)f̂X2X2∣Y12(λ)]
1/2 . (15)

3.5. Tests for coherence and partial coherence

The edges of the partial correlation graph are characterized using partial spectral coherence.

An edge is missing if the two components are uncorrelated given the others. Under the

hypothesis of RXaXb∣Yab(⋅) = 0, the edge in a graph can be determined using the test statistic

S, which is equal to

(n − q)R̂2
XaXb∣Yab(λ)

1 − R̂2
XaXb∣Yab(λ)

. (16)

Here 2n is the equivalent degrees of freedom of the spectral density estimator and q is the

number of components other than Xa and Xb. S follows the F -distribution with 2 and

2(n − q) degrees of freedom. Similarly, a test statistic for a test of zero coherence is given by

(n − 1)R̂2
XaXb

(λ)

1 − R̂2
XaXb

(λ)
, (17)

following the F -distribution with 2 and 2(n − 1) degrees of freedom (see Section 8.4 of

Koopmans (1995) for more details). When data window h(⋅) in (12) is implemented, the

equivalent degrees of freedom are corrected for the effect of tapering by dividing the original

equivalent degrees of freedom by a factor

∫
1

0 h
4(v)dv

(∫
1

0 h
2(v)dv)2

.

See Section 9.2 of Koopmans (1995). Based on the test statistics, the graphical model can

be determined. The two tests are multiple tests on coherence and partial coherence at each

frequency λ.
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The following example illustrates the concept of a graph between a few time series.

Let

X1(t) = a1X1(t − 1) + ε1(t),

X2(t) = b1X1(t − 1) + b2X2(t − 1) + ε2(t),

X3(t) = c3X3(t − 1) + c2X2(t − 1) + ε3(t), and

X4(t) = d4X4(t − 1) + d2X2(t − 1) + ε4(t).

(18)

Here εi(t), i = 1,2,3 and 4 are mutually independent and identically distributed.

Furthermore, Xj(t), j = 1,2,3,4 are weakly stationary time series. Then it is clear that

they are all correlated, but (X1(t),X3(t)), (X1(t),X4(t)) and (X3(t),X4(t)) are partially

uncorrelated. The graphical model of the 4 time series in (18) is illustrated in Figure 3.

[Figure 3 about here.]

3.6. Alternative method in determining the graphical model

From Section 3.2, the partial correlation graph is to find the association between two

variables, after removing the linear effect of all other variables. In particular, it is based on a

two-sided filter. As a comparison of the relationship between the input and output processes

in (3), we consider a bivariate vector autoregressive (VAR) model. With the fitted models, we

calculate the cross-correlation of the residuals and hence obtain the partial cross-correlations.

For example, suppose we are interested in analyzing the chemistry of the air pollutants at

Tsuen Wan. Let S(t), N(t), O(t) and R(t) be the SO2, NO2, O3 and RSP series at Tsuen

Wan respectively. The VAR model to determine the partial cross-correlation of SO2 with
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NO2 at Tsuen Wan is

⎡
⎢
⎢
⎢
⎢
⎢
⎣

S(t)

N(t)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

µ1

µ2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+F0

⎡
⎢
⎢
⎢
⎢
⎢
⎣

O(t)

R(t)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+Φ1

⎡
⎢
⎢
⎢
⎢
⎢
⎣

S(t − 1)

N(t − 1)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+F1

⎡
⎢
⎢
⎢
⎢
⎢
⎣

O(t − 1)

R(t − 1)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+⋯ +Φj

⎡
⎢
⎢
⎢
⎢
⎢
⎣

S(t − j)

N(t − j)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+Fj

⎡
⎢
⎢
⎢
⎢
⎢
⎣

O(t − j)

R(t − j)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+⋯ +Φp

⎡
⎢
⎢
⎢
⎢
⎢
⎣

S(t − p)

N(t − p)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+Fp

⎡
⎢
⎢
⎢
⎢
⎢
⎣

O(t − p)

R(t − p)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎣
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, j = 1,⋯, p.

Note that there is no Φ0 term.

Then, the partial cross-correlation of SO2 with NO2 given the O3 and RSP processes is the

cross-correlation of eS⋅O,R(t) and eN ⋅O,R(t). Other partial cross-correlations are computed

in the same manner. The lag order p is determined by the Bayesian information criterion

(BIC).

4. ANALYSIS AND RESULTS

Hong Kong is a densely populated city having around 7 million people, but with only a small

area of about 1000 km2. With such a small area, it is expected in general the pollution in

the three stations will be highly cross-correlated and partially cross-correlated.

For both NO2 and SO2, it can be seen from the boxplot (Figure 2) that the level of

concentration, in increasing order, is TM, TC and TW. This suitably reflects the background

that TW is a city area with some industries, TM is a rural area, and TC is a semi-rural

area. For RSP, TW is slightly higher than TC and TM, while the latter two practically
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have no difference. For O3, the order in increasing level is TW, TC and TM. This correctly

echoes the statement that “As nitric oxide emissions from motor vehicles can react with

and remove O3 in the air, regions with heavy traffic normally have lower O3 levels than

areas with light traffic. Hence, Tap Mun has steadily recorded more than twice the O3 levels

measured in urban areas . . . ”(Air Science Group, Environmental Protection Department,

the Government of the Hong Kong Special Administrative Region, 2012, p. 18). For the 3

regions, TW and TM have the heaviest and lightest traffic, respectively.

We next look at the test for partial coherency. The test statistics for partial coherency

are plotted separately for Tsuen Wan, and Tsuen Wan and Tap Mum in Figure 4a and

Figure 5a. Other related plots are available in Figures 4 and 5. For partial coherence,

the error bound is given by the 95% quantile of the F (2,88) distribution, with a

value of 3.1. Thus we see from Figure 4a that in Tsuen Wan all tests are significant,

whereas Figure 5a shows that 7 out of 16 cases are insignificant. The insignificant cases

are SO2(TW)/NO2(TM), NO2(TW)/SO2(TM), O3(TW)/SO2(TM), O3(TW)/NO2(TM),

O3(TW)/RSP(TM), RSP(TW)/SO2(TM) and RSP(TW)/O3(TM).

Figure S1 shows the graphs of coherency and partial coherency of the full model, which

contains all 12 variables, while Figure S2 shows the cross-correlations and partial cross-

correlations. The technical details of the two graphs are described in the Supporting

Information. Here we focus on the interpretation from them. It is intriguing to see if the

partial coherence and partial cross-correlations give the same results.

[Figure 4 about here.]

[Figure 5 about here.]

Table S2 of the Supporting Information shows the testing results of using partial coherence

and partial cross-correlations. A summary of the results and interpretations from Table S2

is as follows:
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(1). Following Dahlhaus (2000), if the partial coherence is marginally significant at a

few frequencies, the test is regarded as insignificant. For partial coherence, the error

bound is given by the 95% quantile of the F (2,88) distribution, a value of 3.10. For

partial correlations, we again use the approximate error bound of ±2/
√
n, namely,

±2/
√

1491 = 0.0518.

(2). A “Yes” in the column “Partial Coherence” or “VAR” means the corresponding test

is significant, whereas a “No” means not significant. The last column shows whether

the two methods agree or not. Table S2 shows the two methods agree on 57 cases out

of a total of 66 or the percentage of matching is 86.3%, which is quite good. Further,

even when the two methods do not match in their results of testing, they are in line.

That means when one test is not significant, the other test value, though significant,

is usually quite small. In summary, the two methods have close agreement in terms of

p-values.

The time domain method is inefficient to implement as compared with the frequency

domain approach. One has to calculate many partial cross-correlations between 2 variables,

and in each case to first decide the lag order of the VAR model by BIC. The frequency domain

approach does not have this problem. We tested the two programs, using a computer with a

Core i7-4790 3.60 GHz CPU and 16 GB main memory under the Windows 7 64-bit operating

system and Matlab 2015a. We find the running time of the frequency domain approach and

the VAR method are 93.52 seconds (about 1.56 minutes) and 1332.33 seconds (about 22.21

minutes) respectively. On the other hand the time domain method gives more information.

It tells us whether the partial cross-correlation is positive or negative, and also the time

lag, which cannot be read from the graphs of partial coherence directly. From the partial

cross-correlations, an immediate observation is that the lag-zero one is usually large. In fact,

47 out of the 51 significant values are due to the zero lag. This is not surprising due to the

close proximity of the three stations. The flight distance between Tung Chung and Tsuen
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Wan, Tsuen Wan and Tap Mun, and Tung Chung and Tap Mun are 25 km, 33 km and 58

km respectively.

For the graphical model, each vertex represents a pollutant from a station. There should

be a total of 66 edges if all vertices are connected. From the frequency domain results, there

are 50 edges. Figure 6 is the graphical model for our full data. It is not a simple graph due

to the large number of vertices. In the figure, only the significant edges are shown. Black line

represents the edge between two different pollutants at two different stations, black bold line

represents the edge between two pollutants at the same station and dotted line represents

the edge between two stations for the same pollutant.

[Figure 6 about here.]

To find the explanation for the interaction of pollutants (chemical substances) in air

pollution is in general difficult. It depends on the concentration of the pollutants, chemical

reaction between the pollutants, and very often the presence of other substances. Several

observations are in order:

(a). For the same pollutant, there is always an edge between two stations. That means

the partial coherence and partial cross-correlations between the 3 locations are all

significant. For instance, the maximum of the test statistic S for testing partial coherence

between SO2 of TW and TM has a value larger than 10, much greater than 3.08.

(b). For the same location, the partial coherences between different pollutants are all

significant except the value between SO2 of TC, TC(SO2), and O3 of TC, TC(O3). That

means only 1 out of 18 partial coherences is not significant. For partial cross-correlations,

3 out of 18 are insignificant.

We next look at the cases of different pollutants more carefully, including results from

different stations. Direct counting based on partial coherence gives Table 1.

[Table 1 about here.]
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A contingency table analysis shows that the two dimensions concerned are dependent.

The chi-square statistic with Yates’ continuity correction is 5.87. The 5% critical value

for a chi-square distribution with one degree of freedom is 3.84. Thus, the test is

significant. Being in the same station or not has a bearing on partial coherence. It

is clear from the table that different pollutants have a higher probability of having no

edge connected if they are from different stations.

(c). From the graphs of partial coherency (Figure 4 and Figure 5), there are 15 cases of non-

significance for different pollutants from the three different stations. Since each case

involves two stations, there should be 30 station counts altogether. The distribution of

the counts for TW, TM and TC is 10, 12 and 8 respectively.

It is clear that the data do not reject a uniform distribution. Given that there is no edge

for the two pollutants coming from different stations, there is no evidence that any of

the 3 stations will have a higher chance of getting no edge. A similar analysis for the

36 combinations of different pollutants from different stations is provided by Table 2.

[Table 2 about here.]

But given the frequencies in the table are small, we have to interpret the results with

care. The first 3 combinations with more significant test results are NO2/RSP, NO2/O3

and SO2/RSP. It seems that for pollutants from different stations, NO2 and RSP are

more influential than the other two. From the graphs of partial cross-correlations, we see

the partial cross-correlations for different pollutants from the same station are usually

much larger than that from different stations. Combining with the results in (b), we

believe that being in the same station is a more important factor than the combination

of pollutants.
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5. CONCLUSIONS

We studied the air pollution of Hong Kong by looking at the data from 4 pollutants and 3

monitoring stations of Hong Kong. Since Hong Kong is small in area, one may think all the

pollutants from different stations are highly correlated. This is the case if we just look at

correlations and coherences.

By looking at the raw data, we can see the three stations have some local characteristics. We

applied the partial coherence method to construct a graphical model for the 12 time series.

As a comparison, we also looked at a comparable time domain approach, the VAR approach.

The two have good agreement. The same pollutants in different stations are always connected

by edges. For different pollutants in the same station, they have very high probability of being

partially correlated. For different pollutants between different stations, about 58 percent of

them have significant results in the test of partial coherence. But the strength of association

is clearly less than that from the same station. There is some evidence that NO2 and RSP

are more influential than O3 and SO2. In brief, the intuition that all pollutants are highly

associated is not correct. Graphical modeling seems a plausible tool for the investigation of

relationships between multivariate spatial time series.

Additional details including figures and tables are available in an online supporting

information file. The Matlab program codes and the dataset used can also be obtained

from the online supplements.
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Figure 1. Daily averages of SO2, NO2, O3 and RSP with LOESS smoother
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Figure 2. Boxplot of the 4 pollutants at the 3 stations
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Figure 3. The graphical model of the 4 time series in Equation (18) in Section 3.5. This demonstrates that X2 is partially correlated

to X1,X3 and X4, but X1,X3 and X4 themselves are not partially correlated.
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Figure 4. Test for partial coherency of pollutants at the same station under the full model. (The dotted line represents a 95% quantile

of the F (2,88) distribution, with a value of 3.10)
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Figure 5. Test for partial coherency of pollutants from different stations under the full model (The dotted line represents a 95% quantile

of the F (2,88) distribution, with a value of 3.10)
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Table 1. Significance of interaction of different pollutants among stations determined by
partial coherency

Test significant Test not significant
Same station 17 1

Different station 21 15
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Table 2. Significance of the interaction between two pollutants

Combination of pollutants Test significant Test not significant
NO2/SO2 1 5
SO2/O3 3 3

SO2/RSP 4 2
NO2/O3 5 1

NO2/RSP 6 0
O3/RSP 3 3
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