Influence of an extended non-equilibrium region
on the far-field of grid turbulence

R.J. Hearst and P. Lavoie

Abstract The turbulence produced by two regular square mesh grids is compared to
that produced by a square-fractal-element grid composed of an array of small square
fractals. All three grids have approximately the same blockage. One of the regular
grids is designed to have the same mesh length, M, as the fractal element grid, while
the other matches the maximum bar thickness of the fractal. The transition of the
turbulence from a non-equilibrium to a near equilibrium regime is assessed through
the scale-by-scale kinetic energy budget and the velocity derivative skewness. It is
found that the turbulence produced by all three grids agrees with many of the pre-
dictions for equilibrium phenomenology after approximately 20M, with the regular
grids reaching quasi-equilibrium earlier than the fractal. In the far-field, the fractal
grid produces comparable or lower Re; than the regular grids in both dimensional
and non-dimensional measurements of the streamwise position. This is attributed to
an extended rapidly decaying non-equilibrium region in the wake of the fractal grid
relative to the regular grids.

1 Introduction

Recent grid turbulence experiments have focussed on the ‘non-equilibrium’ region
that is produced immediately downstream of the grid. Interest in this area was gar-
nered by the studies of Vassilicos and co-workers in the wake of space-filling square
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fractal grids, e.g., [5, 10, 15, 18]. A space-filling square fractal is a single square
fractal pattern that occupies the entire wind tunnel cross-section. Recently, obser-
vations of non-equilibrium turbulence have also been reported in the wake of an
array of different grids, including: multi-scale cross grids [13], fractal element grids
[7, 8, 20], and regular grids [11, 19]. It has also been demonstrated that for all these
grid geometries the non-equilibrium turbulence evolves into one that better approx-
imates equilibrium turbulence! sufficiently far downstream [7, 8, 11, 12, 13, 22].

Observations of quasi-equilibrium turbulence in the wake of grids has been
characterized by a homogeneous field with an energy decay rate in the range
—12n 2 —1.4, for a power-law decay of the form (u*) ~ (x —x9)", and constant
normalized dissipation scaling, Ce ~ €L/u’3, where € is the dissipation rate of tur-
bulent kinetic energy and L is the integral length scale. Non-equilibrium turbulence
contrasts on all three of these points. The transverse flow fields experience non-zero
transverse transport of turbulent kinetic energy and production, the energy decays at
an accelerated rate, n < —2, and C, grows rapidly [7, 8, 16, 18, 20].

The transition between these regions has been characterized in several ways.
Isaza et al. [11] recalled from Batchelor [1] that for equilibrium turbulence, the
velocity derivative skewness,
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should be constant, and hence areas where S(du/dx) varied were associated with
non-equilibrium turbulence. Hearst and Lavoie [7] discriminated between the re-
gions by identifying where the flow became homogeneous in transverse planes and
noting this coincided with a change in the decay rate, n. Later, these same authors
used the scale-by-scale kinetic energy budget to determine the difference between
the flow regions [8]. The scale-by-scale kinetic energy budget for grid turbulence is
given by [4],

d
dr

where 8¢ = a(x+r) — a(x). {(8q)2) = ((81)2) + ((8v)2) +{(8w)2). (8u)(89)%) =
((8u)®) + ((8u)(8v)?) + ((Su)(Sw)?), and s is a dummy integration variable. Equa-
tion (2) may be represented simply as G+ D + 1 = C. G represents energy transfer
through advection. D represents the energy transfer through molecular diffusion. 7
accounts for the influence of longitudinal inhomogeneity resulting from the decay
of turbulence behind the grid. Finally, C represents dissipation. Equation (2) is sat-
isfied for equilibrium turbulence but not for non-equilibrium turbulence due to the
presence of production and transverse transport [8]. Hence, assessing the validity
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! One of the most oft cited distinctions between true Richardson-Kolmogorov equilibrium phe-
nomenology and the ‘quasi-equilibrium’ turbulence measured in the far-field of regular grids has
been a lack of a k=3/3 velocity spectrum.
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of (2) at each location in the flow can distinguish regions that approximate the two
phenomenologies.

It would appear that one of the primary benefits of the fractal geometry is that
it creates a physically large region of non-equilibrium turbulence relative to other
grid geometries [7]. As such, the characteristically high Re; = <u2>1/ ) /v region
close to the grid extends over a significant downstream range. However, there has not
been a detailed investigation of the far-field repercussions of extending the near-grid
non-equilibrium region. Here, we first investigate the scale-by-scale energy budget
and S(du/dx) to discriminate the non-equilibrium and quasi-equilibrium regions.
We then compare two regular grids with a fractal element grid at the same Rey =
UpM /v, where Uy is the velocity immediately upstream of the grid, to identify how
extending the non-equilibrium region influences the relative magnitude of Re) in
the far-field.

2 Experimental details

Three different passive grids were investigated for the present study. The first was
the square-fractal-element grid used in [7, 8], which is referred to here as F's39.
This grid consists of a 12 x 8 array of 3 fractal iteration square fractal elements
mounted to a background mesh with M = 100 mm, and thickness 7o = 6.7 mm.
Fs39 has o = 0.39 blockage, and is described in more detail in [7, 8]. A regular
square mesh grid, S¢39, with M = 100 mm, 7y = 22.0 mm, and ¢ = 0.39, was
deliberately designed to match M and o to F's39. A second regular grid, Rd38, with
M =32 mm, 7p = 6.8 mm, and o = 0.38 was designed to approximately match 7,
and o of Fs39. As such, all three grids represent comparable initial conditions in
one or more parameters. The grids are shown in Fig. 1.

Measurements were conducted downstream of the grids ina 1.2 m x 0.8 m X
5.0 m wind tunnel using constant temperature hot-wire anemometry. To compare the
three grids, measurements were conducted with a nano-scale thermal anemometry
probe (NSTAP) [21] at Reys = 28,500 with a 1.23:1 secondary contraction installed
0.57 m downstream of the grids. A secondary contraction has been used to decrease
anisotropy in the flow [3, 14], and was used here to collapse the anisotropy levels for
all grids in the far-field to «’/v' = 1.10 £ 0.05. Measurements were also conducted
in the wake of F's39 at Rey; = 65,000 with a X-wire and without the secondary
contraction in order to investigate the region closer to the grid. Measurements were
limited to the area downstream of the secondary contraction when it was installed.
The measurements at Rey; = 65,000 were conducted at a higher velocity and ac-
quired for a longer sampling time to converge the peak of ((Su)(8¢)?) to within
+5% using the 95% confidence interval. The sample time was decreased for the
Reyr = 28,500 measurements for efficiency. Downstream distance was measured
relative to the advection time of the flow [3], r = [ U(s) "' ds, where U(x) is the
local mean velocity at a position x. Hence, non-dimensional downstream position is
expressed as Upt /M.
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Fig. 1 Photographs of a nominally 260 mm x 340 mm area of each of the 1200 mm x 800 mm
grids; (a) Fs39, (b) $¢39, (c) Rd38.

3 Transition to approximate equilibrium

The scale-by-scale kinetic energy budget for grid turbulence, (2), was assessed in
normalized form given by G/C+D/C+1/C = G* + D* +I* = B*, where B* is
the ‘balance’ of the energy budget and all variables are a function of the spatial
interval r. When B* =1 for all r, (2) is satisfied. The various terms of the scale-by-
scale energy budget are plotted in Fig. 2 in both the near- and far-field of F's39 at
Repr = 65,000. It is immediately evident that in the far-field (2) is satisfied, while in
the near-field there are significant departures from B* = 1. Contours of B* shown in
Fig. 3 clearly identify that by Uyt /M = 20, B* ~ 1. Therefore, based on this analysis,
the quasi-equilibrium turbulence region is Upt /M > 20, and anything ahead of this
may be considered non-equilibrium turbulence.

This analysis is covered in more detail for this same grid by Hearst and Lavoie [8§],
where they also show that there is measurable transverse transport and production
in the non-equilibrium region that becomes negligible in the far-field. To confirm
that the scale-by-scale energy budget results hold away from the primary axis of
measurement, Hearst and Lavoie [8] also showed that the similarity form of (2) held
in transverse planes in the far-field, but not in the non-equilibrium near-field.

The NSTAP measurements with a secondary contraction were designed to com-
pare the wakes of the three grids, and were not sampled for a sufficient time to ade-
quately resolve the terms of (2). The NSTAP measurements are more representative
of the statistical analysis available for typical grid turbulence measurements. Inas-
much as this is the case, we seek a second means of assessing the transition between
non-equilibrium and quasi-equilibrium turbulence that corroborates the scale-by-
scale kinetic energy budget results.

To address this issue, the velocity derivative skewness, S(du/dx), for all four test
cases is plotted in Fig. 4. Recall that for equilibrium turbulence, S(du/dx) is con-
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Fig. 2 The normalized scale-by-scale kinetic energy budget for grid turbulence given by (2). The
left frame and filled symbols represent data acquired in the non-equilibrium region. The right frame
and empty symbols represent data acquired in the quasi-equilibrium region. (A) Upt/M = 10.4,
(M) Upt /M =157, (») Upt /M = 18.8, (<) Upt /M = 28.6, (O) Upt /M = 36.3, (&) Upt /M = 46.1.
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Fig. 3 Contours of the balance, B*, of the normalized scale-by-scale kinetic energy budget for grid
turbulence.

stant. From the figure, it is clear that the F's39 results have an evolving S(du/dx) that
becomes constant by Upt /M == 20, in agreement with the scale-by-scale kinetic en-
ergy budget results. Interestingly, within the measurement range, both regular grids
produce approximately constant S(du/dx), suggesting that all regular grid measure-
ments are within the quasi-equilibrium range.

The magnitude of S(du/dx) shows a dependence on the initial conditions, as the
constant far-field value is different for each test case. Sreenivasan and Antonia [17]
showed that S(du/dx) has a Re; dependence, likely related to the initial conditions,
which may account for some of the differences in the far-field values. The large step
change between F's39 with and without the secondary contraction is likely related
to the significant change in Reys between the experiments, and the improvement in
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Fig. 4 Evolution of the velocity derivative skewness in the wake of (A) Fs39, ((J) S¢39, and
(O) Rd38; empty symbols represent measurements with a secondary contraction, and filled sym-
bols represent data acquired without the secondary contraction.

spatial resolution of the NSTAP for the secondary contraction case; accurate gradi-
ent estimation is highly dependent on spatial resolution [2, 6]. When corrections [2]
for resolution are applied to the measurements without the secondary contraction,
then the far-field value becomes ~ —0.43, which is in better agreement with con-
temporary estimates of S(du/dx) in grid turbulence [9, 11].

4 Reynolds number in the far-field

The evolution of Re is shown in Fig. 5 for F's39, S¢39, and Rd38 at Reyr = 28,500
with a secondary contraction. Immediately apparent is that Sg39 produces the high-
est Re), turbulence for all Upt/M. It also appears that Rd38 produces higher Re;
than Fs39 for the Uyt /M where they overlap. This is perhaps surprising, given that
it is typically believed that fractals produce higher Re; than regular grids [10, 19].
The evolution of Re) is also plotted against dimensional units in Fig. 5, and Re) is
comparable between Rd38 and F's39 beyond 3.5 m. Hence, regardless of the choice
of normalization, in dimensional units, the Re) produced by Rd38 and F's39 is com-
parable sufficiently far downstream.

It is likely that the far-field flow of F's39 has comparable Re, to Rd38 because of
the extended region of rapid decay experienced by the wake of F's39. This is due to
the longer non-equilibrium region in its wake relative to the other grids. Evidence
for this hypothesis is provided in Table 1 where power-law decay exponents are
estimated based on the methodology proposed in [7]. In the near-field of F's39,
there is a rapidly decaying region that is absent from the wake of the other two
grids within the investigation range. In this extended rapidly decaying region, most
of the turbulent kinetic energy injected at the turbulence generation by the grid is
dissipated, leaving less energy in the far-field. This results in lower far-field Re),
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Fig. 5 Evolution of the local Reynolds number in the wake of (A) Fs39, ((J) S¢39, and (O) Rd38.
All data shown were acquired with the secondary contraction.

Table 1 Power-law decay parameters for all grids. The y criterion is a measure of the rms differ-
ence between the measured data and the power-law fit; see [7] for details.

Grid Rey Fit range [Upt /M| Uotmin /M Upto/M n x [%]
Rd38 28,500 [21.5,113.2] 27.8 +3.5 —1.23 0.88
Sq39 28,500 [14.2, 40.5] 15.6 +3.0 —1.32 0.29
Fs39 28,500 [6.9, 17.7] 7.9 —10.5 —3.27 0.81
Fs39 28,500 [17.0, 39.8] 19.2 +7.5 —1.28 1.26

than the regular grids, whose rapidly decaying non-equilibrium region is within the
unobserved region closer to the grid.

5 Conclusions

Measurements were performed in the wakes of three turbulence generating grids
with approximately the same blockage but different geometries. One grid was
a square-fractal-element grid, F's39, which featured an array of fractal elements
mounted to a background mesh. The other two grids, S¢39 and Rd38, were regular
grids with M and 7y, respectively, matched to F's39. The non-equilibrium and quasi-
equilibrium regions of the flow were identified by analysis of the scale-by-scale
kinetic energy budget for grid turbulence and the evolution of the velocity deriva-
tive skewness. Both methodologies suggested that the flow begins to approximate
equilibrium turbulence near Uyt /M = 20 for F's39. In the far-field, it was found that
F's39 produced the lowest Re, for constant Reys. This result was verified in both
non-dimensional and dimensional units, and was thus not a consequence of a cho-
sen form of normalization. It was determined that the low far-field Re) for Fs39
was a result of an extended rapid decay region in the wake of the fractal which is
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associated with the non-equilibrium region. It thus appears that while fractals may
offer the benefit of high Re; in the near-field compared to regular grids, by the time
the flow has evolved into quasi-equilibrium turbulence, it has already depleted the
majority of the turbulent kinetic energy injected by the turbulence generating mech-
anisms at the grid, resulting in a less energetic far-field.
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