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Abstract21

While much is known about how the growth environment influences many aspects of 22

floral morphology and physiology, little is known about how the growth settings 23

influences floral lipid composition. We explored variations in paraffin wax composition 24

in Cannabis sp., a cash crop grown both indoors and outdoors across the United States 25

today. Given an increased focus on regulation of this crop, there are additional incentives 26

to certify the setting of Cannabis cultivation. To understand the impacts of the growth 27

environment, we studied distributions, concentrations, and carbon isotope ratios of n-28

alkanes isolated from Cannabis sp. inflorescences to assess if variations within these lipid 29

parameters were related to known growth settings of specimens seized by federal agents. 30

We found that Cannabis plants cultivated under open field settings had increased 31
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inflorescence paraffin wax abundances and greater production of lower molecular weight32

n-alkane relative to plants grown in enclosed environments. Further, the carbon isotope 33

ratios of n-C29 from Cannabis plants grown in enclosed environments had relatively 34

lower carbon isotope (13C) values compared to plants from open-field environments. 35

While this set of observations on seized plant specimens cannot address the particular 36

driver behind these observations, we posit that (a) variations in irradiance and/or 37

photoperiod may influence the distribution and concentration of inflorescence lipids, and 38

(b) the 13C value of source CO2 and lipid concentration regulates the 13Cvalues of 39

inflorescence n-C29 and bulk Cannabis plant materials. Nonetheless, by using a 40

cultivation model based on 13Cvalues of n-C29, the model correctly identified the 41

growth environment 90 % of time. We suggest that these lipid markers may be used to 42

trace cultivation methods of Cannabis sp. now and become a more powerful marker in 43

the future, once the mechanism(s) behind these patterns is uncovered. 44

45

Key Words: 46

marijuana, eradicated specimens, stable isotopes, compound-specific isotope analysis, 47

plant organs, n-alkanes, growth setting48
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49

1.0. Introduction50

51

The policies surrounding the use and distribution of marijuana (Cannabis sp.) are 52

controversial within the United States. While possession, cultivation, and sales of 53

marijuana remains illegal under the Federal Controlled Substance Act, the District of 54

Columbia and the States of Washington, Colorado, Oregon, and Alaska have recently 55

legalized marijuana for personal use and additional States have current ballot measures. 56

In response, the Department of Justice released a series of enforcement priorities seeking 57

to avert the public health consequences of marijuana usage; curb trafficking and violence 58

associated with illegal marijuana distribution and sales by criminal enterprises; and limit 59

transport of marijuana between jurisdictions with differing marijuana laws. These District 60

and State jurisdictions are now working to develop regulatory mechanisms for the 61

production and sales of marijuana and other marijuana-derived products; however, given 62

the nascent state of the legislation, there remain numerous ambiguities within these 63

regulations. In particular, within jurisdictions where Cannabis production and sale is 64

legal, the growth environments of Cannabis cultivation are highly regulated by the local 65

government. As an example, the State of Colorado requires the physical locations of 66

Cannabis cultivation—such as individual fields or specific glass/hothouses—as well as 67

the site of production facilities to be certified and all crops and products must be 68

inventoried. Thus, there is a need for product traceability during plant cultivation, harvest, 69

shipment, and following the manufacture of Cannabis products.70

71
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Stable isotope analysis of marijuana has demonstrated its potential to improve the 72

forensic and law enforcement communities’ understanding of marijuana production 73

methods, growth environments, and trafficking networks [1-3]. In this respect, carbon 74

(13C) and nitrogen (15N) isotope values have proven moderately useful. In a series of 75

papers, Shibuya and colleagues demonstrated the potential to differentiate three of the 76

five major production regions of marijuana cultivation in Brazil based on observed 77

differences in the bulk 13C and 15N isotope values of seized marijuana samples [4, 5]. 78

West and others followed with a study of eradicated and seized material from the U.S., 79

but could not to distinguish region-of-origin based on bulk 13C and 15Nvalues alone [6]. 80

While cultivation location could not be assigned in this dataset, the growth environment 81

could be identified using 13C values as plants grown outdoors had unique values 82

compared to plants grown in a greenhouse system [6]. 83

84

In plants, stable carbon isotope (13C) values reflect the additive influences of the 13C 85

value of atmospheric CO2 and isotopic fractionations associated with diffusion and 86

carbon fixation [7, 8]. These fractionation events depend on the ratio of the 87

concentrations of atmospheric CO2 inside (ci) and outside (ca) of the leaf. Given that the 88

13C value of atmospheric CO2 and plant fractionation factors are relatively fixed, ci/ca is 89

responsible for the majority of isotopic variability for a given species living in natural and 90

managed environments [7, 8]. Factors influencing a plant’s 13C value through variation 91

in ci/ca are broadly related to plant-water relations and irradiance [7]. The ci/ca is 92

responsive to changes in the stomatal conductance, with important influences on 93

conductance being ambient water vapor deficit, soil moisture, and leaf temperature [9-94
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17]. Both field and laboratory studies have provided extensive evidence for the impact of 95

plant-water relations and irradiance on 13C values in a variety of plant tissues [18-22]. 96

However, there may be cases where bulk plant tissues are not available, particularly with 97

drug compounds derived from plants, and there have been very few experiments carried 98

out under semi-controlled conditions to understand how these processes effect the 99

distributions of and 13C values of specific plant molecules [23-25]. 100

101

Analysis of non-refractory Cannabis sp. compounds, particularly the cannabinoids and 102

other terpenoids, has been an area of significant scientific research [26-28]. The 103

distribution of cannabinoids have been used to discriminate between Cannabis strains 104

and geographic origin of marijuana strains [29, 30]. Recently, compound-specific isotope 105

analysis (CSIA) of the carbon isotope values of cannabinol (CBN), cannabidiol (CBD) 106

and THC has been demonstrated as feasible [31]. However, it has been well documented 107

that the distribution of cannabinoids can vary markedly within a single plant, through a 108

plant’s life cycle, as plant material ages, and within a single seizure collection [32-35]. 109

These variations complicate the standardized usage of cannabinoid distributions and 110

isotope ratios of these compounds as regulatory tools and illustrate the need for the 111

development of a method using refractory, unchanging compounds to monitor and source 112

Cannabis compounds.113

114

High molecular weight straight chain alkanes (n-alkanes) are ubiquitous in higher plants 115

including Cannabis sp. [36]. Furthermore, n-alkanes are highly refractory and are not 116

altered by isotopic exchange at normal surface temperatures and pressures [37]. These 117
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characteristics make n-alkanes a possible tool for the regulation and certification of 118

Cannabis-derived products.119

120

Here, we present chain-length distributions, concentrations, and stable carbon isotope 121

compositions of n-alkanes extracted from Cannabis inflorescences seized by the U.S. 122

Drug Enforcement Agency (DEA) from clandestine growing operations employing either 123

enclosed, greenhouse systems or open field farming methods. This experimental design 124

allows us to investigate the impacts of cultivation method on plant waxes and we 125

hypothesized that cultivation method is recorded in Cannabis n-C29 carbon isotope ratios, 126

similar to the information recorded by bulk Cannabis materials [6, 38]. To test this 127

hypothesis, we analyzed 84 Cannabis inflorescences of U.S. origin from known 128

cultivation settings (i.e., enclosed system vs. open field environments) and explored the 129

association between growth settings and the distributions, concentrations, and 13C values 130

of n-C29. 131

132

2. Methods133

2.1. Sample localities and materials collected134

We analyzed inflorescences from 84 fully mature domestic marijuana samples of known 135

origin from 53 counties within 18 states (Table 1). Samples analyzed here are a subset of 136

materials used in studies by West et al. [6, 39] and Hurley et al. [38, 40]. In this study on 137

compound specific isotope analyses, samples were selected from 9 states where 138

possession and usage of marijuana is illegal (AR, FL, IN, KY, MO, TN, TX, WI, and 139

WV) and from 9 additional states with various state-level statutes ranging from legal 140
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medical usage (HI, IL, and MT), medical and possession decriminalization (CA, NY, and 141

VT), and legalization (AK, OR, WA). Cannabis inflorescence, leaf material, stems, and 142

in some cases roots and seeds were collected between 2003 and 2006 through the U.S. 143

Drug Enforcement Administration’s (DEA) eradication efforts. Notes were provided 144

reporting the growth setting (i.e., enclosed, open field) employed at the clandestine 145

growing operation for all specimens. In addition, information regarding number of plants 146

seized, approximate canopy-cover, and plant height was reported for some, but not all 147

samples. No information regarding the species or specific cultivar of Cannabis was 148

provided. Materials used in this study were collected from archived material that was 149

desiccated and stored in 4-ml glass vials at the University of Utah since initial sample 150

intake. Of the 84 samples, 62 of them were noted by the DEA as having been grown in 151

open field environments and 22 as having been cultivated within enclosed environments. 152

153

2.2 Lipid extraction, identification, and quantification154

Samples (50-400 mg) of inflorescences were isolated and pulverized with a mortar and 155

pestle, filtering and regrinding residual large particles by passing ground material through 156

a 250-m stainless steel sieve until all material was ground and homogenized. Lipids 157

were extracted from 100-300 mg of powdered inflorescences with 2:1 dichloromethane 158

(DCM)/methanol by ultra-sonication (30 min × 2). The resulting total lipid extracts were 159

concentrated under a stream of purified nitrogen using a FlexiVap Work Station (Glas-160

Col, Terre Haute, IN, USA), transferred to 4-ml glass vials, and further evaporated under 161

a gentle stream of N2 gas. Extracts were then separated into compound classes by column 162

chromatography using 1 g deactivated silica gel (70-230 mesh) in an ashed Pasteur 163
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pipette, and eluted with 2 ml hexane to obtain the saturated hydrocarbons following 164

Tipple and Pagani [41].165

166

Compounds were identified and their abundances were quantified using a Thermo Ultra 167

gas chromatograph (GC) fitted with a programmable-temperature vaporization (PTV) 168

injector and flame ionization detector. Hydrocarbons were introduced to the PTV injector 169

at 40°C, followed by a 50°C/sec ramp to 320°C. The GC oven temperature program 170

utilized was 60-320°C at 15°C/min with a final isothermal stage lasting 30 min. 171

Compounds were identified through comparison of elution times with n-alkane standards 172

(n-C18, n-C20, n-C22, n-C24, n-C28, and n-C32). Compound concentrations were quantified 173

using a 5-point calibration curve generated from reference materials (n-C24 and n-C28174

analyzed together at 25 ng, 50 ng, 100 ng, 500 ng, 1000 ng). 175

176

2.3. Chain-length Distributions and Concentrations of n-alkanes177

Peak areas of high molecular weight n-alkanes were measured in order to quantify 178

distributions of n-alkanes. Carbon preference indices (CPI) were calculated following 179

Marzi et al. [42]: 180

181

CPI =
A23 + A25 + A27 + A29 + A31 + A33( )+ A25 + A27 + A29 + A31 + A33 + A35( )

2 A
24

+ A
26

+ A
28

+ A
30

+ A
32

+ A
34( )

Equation 1,182

183

where “A” represents the area of the individual n-alkane peak from the chromatograph 184

trace. 185
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To calculate the average chain length of n-alkanes from inflorescences, the following was 186

used:187

188

ACL =
A23 23( )( )+ A25 25( )( )+ A31 27( )( )+ A29 29( )( )+ A31 31( )( )+ A33 33( )( )+ A35 35( )( )

A23 + A25 + A27 + A29 + A31 + A33 + A35( )
Equation 2.189

190

2.4 Compound-specific isotope analysis191

Compounds were separated using a Hewlett Packard 6890A GC employing a split-192

splitless injector held at a constant 310°C with an GC oven temperature at 80°C, followed 193

by a 6°C/min ramp to 320°C with an isothermal for 12 min. A fused silica, DB-1, phase 194

column (30 m × 0.25 mm I.D., 0.25 μm film thickness; J&W Scientific, Agilent 195

Technologies, Santa Clara, CA, USA) was used with helium as the carrier at a flow of 1.2 196

ml/min. Compounds were subsequently combusted over nickel oxide, copper oxide, and 197

platinum at 1000°C and analyzed for carbon isotope ratios using a Thermo Finnigan 198

DeltaplusXL isotope ratio mass spectrometer. Individual n-C29 isotope ratios were 199

normalized to the VPDB scale using a two-point linear calibration of n-alkane standard 200

reference materials, which had previously been standardized to the VPDB scale [n-C18 (–201

33.3 ‰) and n-C28 (–29.0 ‰)] and analyzed after every fifth unknown in an analytical 202

sequence.  Arndt Schimmelmann’s “Mix A4” [n-C16 (–30.7 ‰), n-C17 (–31.2 ‰), n-C18203

(–31.1 ‰), n-C19 (–33.2 ‰), n-C20 (–32.4 ‰), n-C21 (–29.1 ‰), n-C22 (–32.9 ‰), n-C23 (–204

31.8 ‰), n-C24 (–33.3 ‰), n-C25 (–28.5 ‰), n-C26 (–33.0 ‰), n-C27 (–29.6 ‰), n-C28 (–205

32.2 ‰), n-C29 (–30.1 ‰), and n-C30 (–29.9 ‰)] was analyzed twice in each analytical 206

sequence (n = 32) and had an measured accuracy of 0.1 ‰. Precision for n-alkanes 207
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carbon isotope determinations was ± 0.3 ‰ (1, n = 157), as determined from a co-208

injected QC reference material [5-androstane (–30.1 ‰)].209

210

All isotopic compositions are calculated following: 211

 = (Rsamp/Rstd)-1 Equation 3,212

where R represents the 13C/12C abundance ratio, and Rsamp and Rstd represent the sample 213

and standard, respectively. Delta values are reported in per mil (‰) notation and are 214

expressed relative to Vienna Pee Dee Belemnite (VPDB). 215

216

The apparent carbon isotope fractionation between n-C29 and bulk inflorescence (app) is 217

defined as:218

app = (13Cn-C29 + 1)/(13CBulk +1)-1, Equation 4.219

220

The carbon isotope value of bulk inflorescence (13CBulk) used to determine app were 221

previously analyzed and reported in West et al. [6]. Briefly, West and colleague analyzed 222

13CBulk using an elemental analyzer coupled to a Thermo Scientific Deltaplus isotope ratio 223

mass spectrometer and used an offset correction from an known reference material to 224

calibrate the unknown to the VPDB scale. They reported an overall precision of ± 0.09 ‰ 225

for 13CBulk.226

227

2.5. Statistical analysis228

229
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Statistical analysis was completed using JMP® 11 Pro (SAS; Cary, NC) and PRISM®230

5.0c (Graphpad Software, Inc; La Jolla, CA) for Mac OS X. Normality of distributions 231

was tested with the Shapiro-Wilkes test. If the distributions were normal, then the Welch 232

t-test was used to compare means at  = 0.05. If the distributions were not normally 233

distributed, then the Wilcoxon/Kruskal-Wallis (Rank Sums) test was used to assess 234

differences between growth settings at  = 0.05. 235

236

The measured 13C values of paired n-alkane and bulk inflorescences were compared 237

using total least squares regressions. Regression lines were fitted to data only when the 238

slope of the line was significantly different from 0 at the  = 0.01 level.239

240

3. Results and Discussion241

3.1 Compound distributions of n-alkanes on Cannabis inflorescence 242

243

Cannabis sp. produced n-C17 to n-C33 with n-C29 (929 ± 680 g g-1) being the most 244

abundant homologue, approximately four-times more abundant than the next most 245

abundant homologue, n-C27 (254 ± 242 g g-1) and five-times more abundant than n-C31246

(178 ± 134 g g-1) (Table 1). We noted large variation in concentrations of n-alkanes 247

between individual specimens (Table 1). These variations are most likely due to 248

differences in Cannabis species or cultivars. Nonetheless, significant differences between 249

the concentrations of n-C29 for the two growth settings—enclosed versus field 250

environments—were detected [Wilcoxon/Kruskal-Wallis, W(91.2) = 3.781, z = −2.925, p251

= 0.0034], where the plants grown in field environments had a significantly greater 252
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concentration of n-C29 (1041 ± 743 g g-1) compared to the plants grown in enclosed 253

environments (614 ± 290 g g-1). Significant differences between the concentrations of 254

total n-alkanes for the two growth settings were also detected [Wilcoxon/Kruskal-Wallis, 255

W(82.0) = 3.997, z = −3.098, p = 0.0019]. Here, we found plants grown in field 256

environments had a significantly greater absolute concentrations of n-alkanes (1695 ±257

1214 g g-1) compared to the plants grown in enclosed environments, under potentially 258

more controlled conditions (976 ± 432 g g-1) (Table 2).259

260

Most research on chain-length distributions and concentrations of n-alkanes has been 261

undertaken on hydrocarbons extracted from leaf material as leaf waxes are thought to be 262

a major contributor to the organic fraction in geologic sediments. A recent meta-analysis 263

of n-alkane concentrations of leaf material from 282 angiosperm species found on 264

average angiosperms had an absolute n-alkane abundance of 506 ± 497 g g-1 [43]. Here, 265

we found inflorescences of a single angiosperm, Cannabis sp., had nearly triple the 266

absolute amount of n-alkanes compared to angiosperm leaf material. Several studies have 267

noted that inflorescences have greater absolute abundances of n-alkanes compared to 268

leaves on the same plant [44-46]. The reasons behind these differences in concentration 269

of n-alkanes between floral structures and leaves are unresolved. Inflorescence vigor is 270

critical to reproductive success, and thus the increased lipid concentrations may be a 271

response to provide increased protection of these organs. Waxes on leaf cuticle are 272

considered a strategy to guard against water loss and pathogens [36, 47, 48]. Lipids on 273

the inflorescences may also prevent desiccation of floral components, in addition to 274
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acting as a safeguard against microbial or fungal attack or possibly to stabilize other 275

defensive compounds on the inflorescence. 276

277

In addition, we found Cannabis plants grown under field conditions had nearly double 278

the absolute concentration of n-alkanes on the inflorescences compared to plants grown 279

in enclosed environments (Table 2). Previous research has shown that the concentrations 280

of n-alkanes and other leaf lipids are affected by the plant’s environment (Riederer and 281

Schneider, 1990, Shepard and Griffith, 2006, Bondada et al. 1996). In particular, plants 282

grown in field environments have been shown to produce a greater absolute abundance of 283

n-alkanes than their greenhouse-grown counterparts (Shepard et al., 1995). Increased 284

irradiance and UV-B light has been shown to increase the abundance of n-alkanes in 285

some species (Gonzolez et al., 1996), decrease the amount of n-alkane in other species 286

(Barnes et al., 1996), or cause no change in n-alkane absolute amounts (Baker, 1974). 287

Some of the largest differences in the absolute amount of n-alkanes have been shown in 288

plants grown under water-stressed or polluted condition (Percy et al., 2002; Dixon et al., 289

1997; Bondada et al., 1996). While the process behind the difference in n-alkane absolute 290

abundance between plants grown in enclosed versus field environments cannot be 291

specifically known in this study, a possible mechanism behind these distribution and 292

concentration patterns may derive from changes in the activity or specificity of particular 293

enzymes involved in fatty acid synthesis, chain elongation, and decarboxylation 294

processes (Shepard and Griffith, 2006). Although the specific mechanism cannot be 295

isolated in our current study, our data from Cannabis inflorescences grown in different 296

setting are consistent with these models and suggest a common production mechanism 297
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between leaf and inflorescence waxes.298

299

We compiled peak areas of all n-alkanes present in the inflorescence of Cannabis sp. to 300

quantify variations in the chain-length distribution of n-alkanes using carbon preference 301

indices (CPI) (Table 1). Strong odd-over-even predominance of n-alkanes is a hallmark 302

of higher plant wax distributions [36, 49, 50] and the distribution of n-alkanes in 303

Cannabis sp. inflorescences is consistent with these previous observations of leaf waxes 304

(Table 1). We found Cannabis sp. had an average CPI of 13.6 ± 1.9. In addition, we 305

found significant differences between the growth settings [Welch t-test, t(59.9) = 3.662, p306

= 0.0005], where the plants grown in field environments had a larger CPI (14.0 ± 2.0) 307

compared to the plants grown in enclosed environments (12.6 ± 1.3) (Table 2). The 308

average chain length (ACL) of Cannabis sp. n-alkanes for all growth settings was 28.8 ±309

0.2. However, significant differences between the growth settings was observed 310

[Wilcoxon/Kruskal-Wallis, W(69.9) = −4.931, z = 4.062, p < 0.0001], where the plants 311

grown in open field environments had a smaller ACL (28.8 ± 0.2) compared to the plants 312

grown in enclosed environments (29.0 ± 0.1) (Table 2).313

314

Here, we observed Cannabis plants grown under field conditions had, on average, greater 315

concentrations of n-alkanes with shorter chain lengths and a more pronounced odd-over-316

even character as compared to plants grown within enclosed systems (Table 2). These 317

differences in n-alkane distributions and concentrations are possibly related to one or 318

several specific growing conditions not quantified in this study. When contrasting 319

Cannabis sp. cultivated in field versus enclosed environments, we would expect field 320
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grown plants to be exposed to a lower average growth temperature (i.e., subject to daily 321

temperature fluctuations) while also exposed to increased water stress and increased 322

irradiance. While limited research has been conducted on inflorescence waxes, previous 323

studies on leaf waxes may provide some explanations for these wax distributions and 324

abundances.325

326

The chain-length distribution of n-alkanes on leaves has been linked to various 327

environmental parameters, due to the functionality of waxes in controlling water loss 328

[51]. Recent studies of woody tree species have shown relationships between leaf wax 329

chain-length distributions and growth temperature, in which higher growth temperatures 330

were correlated with increased abundances of longer n-alkane chain lengths (e.g., ACL) 331

[41, 52, 53]. ACL values in forbs, grasses, shrubs, and trees have also been shown to vary 332

with aridity, suggesting that plant water relations may additionally influence chain-length 333

distributions [46, 54-59]. In addition to elevated growth temperature and lower water 334

stress, plants cultivated in enclosed environments likely were grown using managed light 335

systems with lower irradiance. It is well established that fatty acid synthesis is strongly 336

connected to illumination levels, as the pathway requires both ATP and NADPH from the 337

light reactions (Sauer and Heise, 1983, Sasaki et al., 1997). Further, Shepard et al. (1995, 338

1997) showed that irradiance levels affected lipid production, with plants grown under 339

high-light natural environments producing leaf waxes with shorter chain lengths. While 340

limited research has been carried out on inflorescence lipids, our data are consistent with 341

these factors, as it would be expected that Cannabis plants cultivated in field 342

environments would be exposed to a decreased average growth temperature, increased 343
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water stress, and increased irradiance. These hypothesized drivers of variations in 344

inflorescence lipid concentrations and distribution could be more fully evaluated through 345

multi-factor growth chamber experiments, which are beyond the scope of this study. 346

347

3.2 Carbon isotopes of n-alkanes from Cannabis inflorescences 348

As n-C29 was the most abundant n-alkane homologue extracted from Cannabis sp.349

inflorescences, we report 13C values of n-C29 (13Cn-C29) exclusively. We found the 350

13Cn-C29 values of Cannabis sp. inflorescences ranged between −56.9 ‰ and −28.9 ‰, 351

with an average 13Cn-C29 value of −37.3 ± 4.4 ‰ (n = 72, Table 1). A significant 352

difference in 13C values occurred between plants grown in enclosed environments versus 353

open field conditions [Welch t-test, t(14.2) = 2.387, p = 0.031]. Here the plants cultivated 354

in open field environments had more positive 13Cn-alkane values (−36.2 ± 1.5 ‰) 355

compared to the plants cultivated in enclosed environments (−41.3 ± 8.2 ‰) (Table 2). 356

357

The large variability in 13Cn-C29 values from plants grown in enclosed environments is 358

most likely due to variations in the 13C values of the source CO2 available to plants 359

during growth. CO2 within enclosed settings tends be more depleted in 13C compared to 360

well mixed, outdoor settings for two reasons. First, the lack of sufficient air circulation 361

results in the build up of plant-respired CO2, which is 13C depleted relative to the ambient 362

air. Second, to elevate plant growth, horticulturalists and agronomists tend to raise CO2363

levels within indoor growth environments through the addition of CO2. Commercial 364

supplemental CO2 is most often fossil fuel- or biogenic-derived. Bottled CO2 from either365

fossil fuels or biogenic processes typically has much lower 13C values compared to 366
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global atmospheric CO2, resulting in indoor grown plants with extremely low 13C values 367

(Farquhar et al., 1989). The lowest 13Cn-C29 values observed in this dataset were between 368

−60 ‰ and −50 ‰ (Figure 1) and would correspond to a source CO2 with a 13C value 369

of approximately −35 ‰ to −25 ‰ [60], equivalent to fossil fuel-derived CO2 with a 13C 370

value of −37 ‰ to −28 ‰ [61, 62]. However, Cannabis plants grown in enclosed 371

environments within a well-ventilated atmosphere that allows mixing of CO2 with the 372

external atmosphere can produce 13C values similar to plants grown in open settings. 373

This may explain why the majority of indoor-grown plants have 13Cn-C29 values similar 374

to the 13Cn-C29 values of plants grown under open field conditions (Figure 1). 375

376

We note that a single Cannabis sp. inflorescence sample from a plant assigned as having 377

been cultivated within an enclosed environment had a 13Cn-C29 value of −28.9 ‰, more 378

positive relative to the 13Cn-C29 values of plants grown in open field environments 379

(Figure 1). There are two potential explanations for this very positive 13Cn-C29 value. 380

First, this plant was possibly grown in a field setting but incorrectly assigned as indoor 381

grown in the DEA records during confiscation and eradication. A second possibility is 382

this plant was grown in bottled CO2 that had been derived from volcanic or geothermal 383

sources [63]. 384

385

3.3 Apparent fractionation between inflorescence n-alkanes and bulk Cannabis 386

inflorescences387
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The 13C value of bulk inflorescence (13CBulk) linearly correlated with the 13Cn-C29 value 388

collected from the same sample (Figure 2). A total least squares regression line fitted to 389

the paired data was described by the equation:390

391

13Cn-C29 = 0.95×13CBulk – 9.6 ‰ (r2 = 0.94, F1, 71 = 1149.2, p < 0.0001), Equation 5. 392

393

The slope was not different than 1 at  = 0.01. Total least squares regression lines fitted 394

to the paired data separated by enclosed versus open growth settings was described by the 395

equations:396

397

Enclosed: 13Cn-C29 = 1.0×13CBulk – 7.2 ‰ (r2 = 0.99, F1, 14 = 1304.4, p < 0.0001), 398

Equation 6, and399

400

Open: 13Cn-C29 = 0.90×13CBulk – 11.1 ‰ (r2 = 0.50, F1, 56 = 55.1, p < 0.0001),401

Equation 7, respectively.402

403

When compared, we found the slopes for 13Cn-C29 values versus 13CBulk for the two 404

growth settings were not different (p > 0.01) from one another (Figure 2). However, the 405

intercepts for these regressions were different and thus, cannot be described by a single 406

slope and intercept, possibly suggesting different behaviors between the two growth 407

settings.408

409
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We found the apparent fractionation (app) between n-C29 extracted from Cannabis sp. 410

inflorescence and bulk Cannabis sp. inflorescence materials ranged between −11.3 ‰ 411

and −4.8 ‰ in individual samples, with an average of −8.0 ± 1.1 ‰ (n = 72, Table 1). A 412

significant difference was found between the plants grown within an enclosed system 413

versus those grown in field environments [Welch t-test, t(27.0) = 3.869, p = 0.0006], 414

where the plants grown in enclosed environments had a more positive appvalue (−7.3 ±415

0.8 ‰, n = 15) compared to the plants grown in open field environments (−8.2 ± 1.0 ‰, n 416

= 57) (Table 2). 417

418

Considering the distinction in absolute abundance of n-alkanes between the plants grown 419

under the two growth settings, an apparent difference in fractionation may not be 420

unexpected. Bulk isotope analysis represents a cumulative measurement of all chemical 421

constituents and tissues, whereas compound-specific isotope analysis explicitly isolates 422

individual components from the bulk material. The compounds of interest to this study 423

are the n-alkyl lipids, but Cannabis sp. is well known for producing a wide variety of 424

other compounds, particularly terpenoids [27, 30, 32]. The carbon isotopic fractionation 425

during terpenoid biosynthesis has been characterized and the apparent fractionation 426

during biosynthesis, as measured relative to bulk leaf tissue, is significantly less negative 427

than that observed for n-alkyl lipids [24, 64]. Considering the bulk isotope measurement 428

represents the analysis of a complex mixture of these compounds, in addition to many 429

others with less understood carbon isotopic signatures and fractionations, it should be 430

expected that the bulk 13C value of Cannabis sp. might be significantly influenced by 431

variations in the combination of these chemical components. As we do not have direct 432
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measurements of source CO2, we cannot assess if the difference in app between n-alkanes 433

extracted from Cannabis sp. inflorescence and bulk Cannabis sp. inflorescence materials 434

for the two growth environments is affected by the environmental conditions or if the 435

difference is due to variation in chemical composition. Nonetheless, these data support 436

the notion that compound-specific isotope measurements provide a more direct measure 437

of plant biochemistry and ecology than bulk isotope measurements. 438

439

3.4 Potential applications of inflorescence n-alkanes in emerging marijuana markets440

441

Stable isotope analyses of marijuana have a demonstrated potential to improve the 442

forensic and law enforcement communities’ understanding of marijuana production 443

methods, growth setting, and trafficking networks [1-3]. In this respect, 13C—as well as 444

nitrogen (15N)—isotope values have proven moderately useful. In a series of papers, 445

Shibuya and colleagues demonstrated the potential to differentiate three of the five major 446

production regions of marijuana cultivation in Brazil based on observed differences in the 447

bulk 13C and 15N isotope values of seized marijuana samples [4, 5]. West and others 448

followed with a study of eradicated and seized material from the U.S., but could not to 449

distinguish region-of-origin based on bulk 13C and 15N values alone [6]. While growth 450

location could not be assigned in that work, the growth setting could be identified using 451

13C values of bulk materials (e.g., leaves, inflorescence) as plants grown in field 452

environments had unique values compared to plants grown within an enclosed 453

glass/hothouse system [6]. Following on these findings, Hurley et al. (2010a) developed a 454

cultivation model that defined theoretical cut-off limits for 13CBulk, where values more 455
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negative than −32.0 ‰ were indicative of Cannabis plants grown in enclosed 456

environments and values more positive than −29.0 ‰ were plants grown outdoors. 457

Values more positive than −32.0 ‰ and more negative than −29.0 ‰ could either be 458

assigned to plants grown outdoors in shaded conditions or indoors [38]. The authors 459

found in a blind test of their model that 88 % of indoor-grown plants were correctly 460

identified as to growth setting, while 98 % of outdoor-grown plants were correctly 461

assigned [38]. 462

463

We tested the application of this cultivation model to 13Cn-C29 values measured in the 464

current study by converting 13Cn-C29 values to 13CBulk values using app (Figure 3). 465

Assignments of plants cultivated in enclosed environments, shaded or enclosed 466

environments, or open field environments were made for all 72 specimens using the 467

average app values between n-C29 and Cannabis inflorescences from this study. Here, 468

when the average app value between Cannabis n-C29 and inflorescence is used (−8.0 ‰), 469

we found that 7 plants were assigned to enclosed environments, 20 were assigned to 470

either shaded open environments or enclosed environments, and 45 were assigned to 471

open field environments. In this exercise, 98 % of the Cannabis plants cultivated 472

outdoors were correctly identified and 60 % of the plants cultivated in enclosed 473

environments were assigned correctly. These finding indicate that by using the Cannabis 474

inflorescence-specific app value for calculating 13CBulk values and assigning growth 475

setting, the overall reliability of the model was 90%.476

477

The 13C values presented here for the n-C29 from inflorescence suggest that the 478
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cultivation environment (e.g., growth setting) could be established with either bulk plant 479

material or compound-specific inflorescence 13C values. However, increased reliability 480

may be achieved if inflorescence n-alkane concentrations and distributions were included 481

in the model allowing for a growth setting-specific app value to be used (Table 2). A 482

specific advantage of compound-specific isotope measurements is that bulk tissue is not 483

needed to make an isotopic measurement and these specific compounds may be isolated 484

from complex mixtures such as Cannabis extracts and infused products. While 485

stringently controlled growth experiments are needed to determine the specific 486

mechanism(s) behind the findings presented here, this study of plants grown in “real 487

world” settings demonstrates that the carbon isotope ratios and concentrations of n-488

alkanes has the potential to become an ideal regulatory tool to establish growth settings of 489

Cannabis materials post-harvest. 490

491

4. Conclusions492

493

Here we presented chain-length distributions and concentrations of n-alkanes, plus 494

carbon isotope ratios of n-C29 extracted from Cannabis sp. inflorescences. We found 495

chain-length distributions, concentrations, and carbon isotope variations of these lipids 496

relate to growth setting. While the biosynthetic mechanism is unknown, we found that 497

inflorescences of Cannabis sp. have nearly 3-times the concentrations of n-alkanes than 498

the average angiosperm leaf and that Cannabis plants grown under field conditions have 499

significantly more inflorescence n-alkanes relative to plants grown within enclosed 500

environments. Carbon isotope ratios of Cannabis sp. inflorescences largely reflect the 501
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isotope composition of source CO2, which can vary greatly in enclosed environments. In 502

addition, we found that n-alkanes from Cannabis plants grown within enclosed 503

environments had a large range of 13C values with both the most positive and most 504

negative 13C values in this dataset reported. 505

506

Together, these findings suggest that inflorescence lipid distributions, concentrations, and 507

carbon isotope values have the potential to be used to identify the growth setting of 508

Cannabis sp. plants. As legal and illegal commercial production of marijuana increases, 509

the need to establish the growth setting of Cannabis will also increase. Many 510

communities, municipalities, and jurisdictions in the U.S. where Cannabis production is 511

legal now regulate how the product is grown. With additional jurisdictions seeking to 512

legalize marijuana usage for both medical and recreational purposes, state and federal 513

regulators will need additional analytical tools to certify a Cannabis products cultivation 514

setting. In this study, we show that distributions, concentrations, and carbon isotopic 515

variations in specific inflorescence lipids are related to growth setting and suggest that 516

this tool may potentially be useful to support or refute a producer’s claim regarding the 517

growth setting of Cannabis. 518

519

520

521
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Highlights:701
702

Cultivation setting relates to the distribution and amount of n-alkanes.703
704

13C values of CO2 of the growth environment controlled the 13C values of n-C29.705
706

Cannabis cultivated in enclosed environments had significantly lower 13C values.707
708

The correct growth environment was assigned 90 % of time from 13C values of n-C29.709
710

Inflorescence n-alkanes may be used to trace the cultivation method of Cannabis.711
712
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Figures722

Figure 1723

724

Figure 1. A. Histograms of carbon isotope ratios of n-C29 extracted from domestic 725
Cannabis sp. inflorescences grown within enclosed environments (light grey) and field 726
conditions (dark grey). 727
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729
Figure 2730

731

732

733

734

735

736

Figure 2. Cross-plot of the carbon isotope values (13C) of n-C29 extracted from 737
inflorescences versus bulk inflorescence materials. The hashed and solid lines indicate 738
regressions for plants grown within enclosed and field environments, respectively. The 739
regressions for plants grown within enclosed and field environments are 13Cn-C29 = 740
1.0×13CBulk – 7.2‰ and 13Cn-C29 = 0.90×13CBulk – 11.1‰, respectively.741
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753
Figure 3754

755

756

757

758

759

Figure 3. Histogram of the apparent fractionation (app) between n-C29 extracted from 760
inflorescence versus bulk inflorescence measured for the same sample. Specimens grown 761
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within enclosed environments are shown in light grey, while plants grown in field 762
environments are shown in dark grey.763
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