
Modelling	
 and	
 verification
with	
 Event-­‐B

Michael	
 Butler

SETSS	
 2016,	
 	
 Chongqing

V	
 model	
 of	
 software	
 development

Architecture	
 designArchitecture	
 design

SpecificationSpecification

Module	
 designModule	
 design

CodingCoding

Unit	
 testingUnit	
 testing

System	
 testingSystem	
 testing

Integration	
 testingIntegration	
 testing

B	
 Method	
 (Abrial,	
 from	
 1990s)
• Model using	
 set	
 theory	
 and	
 logic	
 (following	
 Z	
 notation)

• Analyse models	
 using	
 proof,	
 model	
 checking,	
 animation

• Refinement-­‐based	
 development
– verify	
 conformance	
 between	
 higher-­‐level	
 	
 and	
 	
 lower-­‐level	
 	

models
– chain	
 of	
 refinements

• Commercial	
 tools,	
 :	

– Atelier-­‐B (ClearSy,	
 FR)	
 	
 -­‐ used	
 mainly	
 in	
 railway	
 industry
– B-­‐Toolkit (B-­‐Core,	
 UK)

3

B	
 	
 evolves	
 to	
 	
 Event-­‐B	
 (from	
 2004)
• B	
 Method	
 was	
 designed	
 for	
 software development

• Realisation that	
 it	
 is	
 important	
 to	
 reason	
 about	
 system
behaviour,	
 not	
 just	
 software

• Event-­‐B	
 is	
 intended	
 for	
 modelling and	
 refining	
 system	

behaviour

• Refinement	
 notion	
 is	
 more	
 flexible	
 than	
 B
• Same	
 set	
 theory	
 and	
 logic

• Rodin	
 tool	
 for	
 Event-­‐B	
 	
 (www.event-­‐b.org)	

• Open	
 source,	
 Eclipse	
 based,	
 open	
 architecture
– Range	
 of	
 plug-­‐in	
 tools	
 (provers,	
 ProBmodel	
 checker,	
 UML-­‐B,…)

4

Industrial	
 uses	
 of	
 Event-­‐B

• Event-­‐B	
 in	
 Railway	
 Interlocking
– Alstom,	
 Systerel

• Event-­‐B	
 in	
 Smart	
 Grids
– Selex,	
 Critical	
 Software

• External	
 Adopters:
– AWE:	
 Experience	
 of	
 Applying	
 Rodin	
 in	
 an	
 Industrial	

Environment	

– Thales:	
 Formal	
 Modelling	
 of	
 Railway	
 Interlocking	

Using	
 Event-­‐B	
 and	
 the	
 Rodin	
 Tool-­‐chain

www.advance-­‐ict.eu/industry_days

SETSS	
 lectures	
 on	
 Event-­‐B

• Modelling	
 with	
 sets and	
 invariants

• Model	
 verification	
 with	
 Rodin	
 prover

• Modelling	
 with	
 relations,	
 class	
 diagrams

• Refinement
• model	
 extension
• data	
 refinement

6

7

Example Requirements for a Building Control System

I
Specify a system that monitors users entering and leaving a

building.

I
A person can only enter the building if they are a registered

user.

I
The system should be aware of whether a registered user is

currently inside or outside the building.

Venn	
 Diagram

in out

Intersection

Disjoint	
 sets

9

in out

context BuildingContext
sets USER
end

machine Building
variables register in out
invariants

inv1: register ✓ USER // set of registered users

inv2: register = in [out // all registered users must be

// either inside or outside

inv3: in \ out = {} // no user can be inside and outside
Invariant:

Registered	
 users	
 are	
 either	
 in or	
 out

10

in out

context BuildingContext
sets USER
end

machine Building
variables register in out
invariants

inv1: register ✓ USER // set of registered users

inv2: register = in [out // all registered users must be

// either inside or outside

inv3: in \ out = {} // no user can be inside and outside

register

Carrier	
 Set:	
 	
 type	
 for	
 users

11

in out

USER

context BuildingContext
sets USER
end

machine Building
variables register in out
invariants

inv1: register ✓ USER // set of registered users

inv2: register = in [out // all registered users must be

// either inside or outside

inv3: in \ out = {} // no user can be inside and outside

register

Event:	
 user	
 enters building

in out

Entering and Leaving the Building

initialisation in, out, register := {}, {}, {}

events

Enter =̂

any s where

s 2 out
then

in := in [{s}
out := out \ {s}

end

Leave =̂

any s where

s 2 in
then

in := in \ {s}
out := out [{s}

end

Action:

Entering and Leaving the Building

initialisation in, out, register := {}, {}, {}

events

Enter =̂

any s where

s 2 out
then

in := in [{s}
out := out \ {s}

end

Leave =̂

any s where

s 2 in
then

in := in \ {s}
out := out [{s}

end

Guard:

Event:	
 user	
 leaves building

13

in out

Entering and Leaving the Building

initialisation in, out, register := {}, {}, {}

events

Enter =̂

any s where

s 2 out
then

in := in [{s}
out := out \ {s}

end

Leave =̂

any s where

s 2 in
then

in := in \ {s}
out := out [{s}

end

Action:

Entering and Leaving the Building

initialisation in, out, register := {}, {}, {}

events

Enter =̂

any s where

s 2 out
then

in := in [{s}
out := out \ {s}

end

Leave =̂

any s where

s 2 in
then

in := in \ {s}
out := out [{s}

end

Guard:

14

Basic Set Theory

I
A set is a collection of elements.

I
Elements of a set are not ordered.

I
Elements of a set may be numbers, names, identifiers, etc.

I
Sets may be finite or infinite.

I
Relationship between an element and a set: is the element a

member of the set.

For element x and set S , we express the membership relation as

follows:

x 2 S

15

Subset and Equality Relations for Sets

I
A set S is said to be subset of set T when every element of S
is also an element of T . This is written as follows:

S ✓ T

I
For example: { 5, 8 } ✓ { 4, 5, 6, 7, 8 }

I
A set S is said to be equal to set T when S ✓ T and T ✓ S .

S = T

I
For example: { 5, 8, 3 } = { 3, 5, 5, 8 }

16

Operations on sets

I
Union of S and T : set of elements in either S or T :

S [T

I
Intersection of S and T : set of elements in both S and T :

S \ T

I
Di↵erence of S and T : set of elements in S but not in T :

S \ T

17

Example Set Expressions

{a, b, c} [{b, d} = {a, b, c , d}
{a, b, c} \ {b, d} = {b}
{a, b, c} \ {b, d} = {a, c}

{a, b, c} \ {d , e, f } = {}
{a, b, c} \ {d , e, f } = {a, b, c}

18

context BuildingContext
sets USER
end

machine Building
variables register in out
invariants

inv1: register ✓ USER // set of registered users

inv2: register = in [out // all registered users must be

// either inside or outside

inv3: in \ out = {} // no user can be inside and outside

19

Entering and Leaving the Building

initialisation in, out, register := {}, {}, {}

events

Enter =̂

any s where

s 2 out
then

in := in [{s}
out := out \ {s}

end

Leave =̂

any s where

s 2 in
then

in := in \ {s}
out := out [{s}

end

20

Event-B context

I
Carrier Sets: abstract types used in specification

I
Constants: logical variables whose value remain constant

I
Axioms: constraints on the constants. An axiom is a logical

predicate.

21

Event-B machine

I
Sees: one or more contexts

I
Variables: state variables whose values can change

I
Invariants: constraints on the variables that should always

hold true. An invariant is a logical predicate.

I
Initialisation: initial values for the abstract variables

I
Events: guarded actions specifying ways in which the

variables can change. Events may have parameters.

22

Adding New Users

New users cannot be registered already.

NewUser =̂

any s where

s 2 (USER \ register)
then

register := register [{s}
end

Can anyone spot an error in this specification?

What	
 is	
 the	
 error	
 in	
 this	
 specification?

23

Adding New Users – Correct Version

NewUser =̂

any s where

s 2 (USER \ register)
then

register := register [{s}
out := out [{s}

end

Newly registered users must be added either to in or out to

preserve to inv2.

Rodin	
 demo

• Animation	
 with	
 ProB

• Checking	
 for	
 invariant	
 	
 violations	
 with	
 ProB

25

Types in Event-B

I
Predefined Types:

Z Integers

B Booleans { TRUE, FALSE }

I
Basic Types (or Carrier Sets):

sets WORD NAME

Basic types are introduced to represent the entities of the problem

being modelled.

Note: N is a subet of Z representing all non-negative integers

(including 0).

26

Type for sets?

I w 2 WORD means that the type of w is WORD.

I known ✓ WORD - what is the type of known?

27

Powersets

The powerset of a set S is the set whose elements are all subsets

of S :

P(S)

Example

P({a, b, c}) = { {}, {a}, {b}, {c},
{a, b}, {a, c}, {b, c}, {a, b, c} }

Note S 2 P(T) is the same as S ✓ T

Sets are themselves elements – so we can have sets of sets.

P({a, b, c}) is an example of a set of sets.

28

Types of Sets

All the elements of a set must have the same type.

For example, {3, 4, 5} is a set of integers.

More Precisely: {3, 4, 5} 2 P(Z).
So the type of {3, 4, 5} is P(Z)

To declare x to be a set of elements of type T we write either

x 2 P(T) or x ✓ T

I known ✓ WORD - so type of known is P(WORD)

29

Predicate Logic

Basic predicates: x 2 S S ✓ T x  y

Predicate operators:

I
Negation: ¬P P does not hold

I
Conjunction: P ^ Q both P and Q hold

I
Disjunction: P _ Q either P or Q holds

I
Implication: P =) Q if P holds, then Q holds

I
Universal Quantification: 8x · P P holds for all x .

I
Existential Quantification: 9x · P P holds for some x .

30

Defining Set Operators with Logic

Predicate Definition

x 62 S ¬ (x 2 S)

x 2 S [T x 2 S _ x 2 T

x 2 S \ T x 2 S ^ x 2 T

x 2 S \ T x 2 S ^ x 62 T

S ✓ T 8x · x 2 S =) x 2 T

