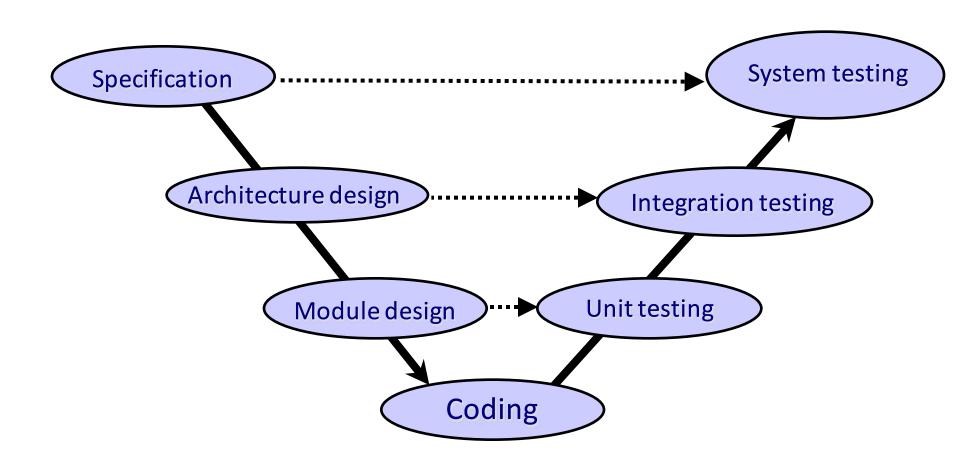


Modelling and verification with Event-B

Michael Butler

SETSS 2016, Chongqing

V model of software development



B Method (Abrial, from 1990s)

- Model using set theory and logic (following Z notation)
- Analyse models using proof, model checking, animation
- Refinement-based development
 - verify conformance between higher-level and lower-level models
 - chain of refinements
- Commercial tools, :
 - Atelier-B (ClearSy, FR) used mainly in railway industry
 - B-Toolkit (B-Core, UK)

B evolves to Event-B (from 2004)

- B Method was designed for software development
- Realisation that it is important to reason about system behaviour, not just software
- Event-B is intended for modelling and refining system behaviour
- Refinement notion is more flexible than B
 - Same set theory and logic
- Rodin tool for Event-B (<u>www.event-b.org</u>)
 - Open source, Eclipse based, open architecture
 - Range of plug-in tools (provers, ProB model checker, UML-B,...)

Industrial uses of Event-B

- Event-B in Railway Interlocking
 - Alstom, Systerel
- Event-B in Smart Grids
 - Selex, Critical Software
- External Adopters:
 - AWE: Experience of Applying Rodin in an Industrial Environment
 - Thales: Formal Modelling of Railway Interlocking Using Event-B and the Rodin Tool-chain

SETSS lectures on Event-B

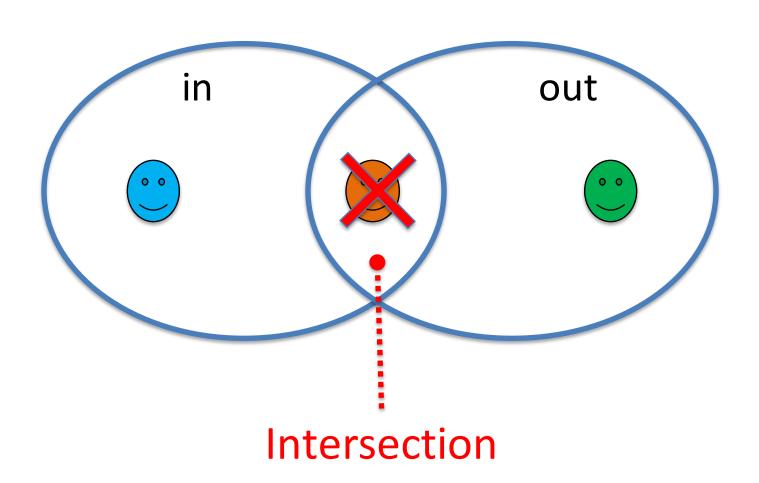
- Modelling with sets and invariants
- Model verification with Rodin prover
- Modelling with relations, class diagrams

- Refinement
 - model extension
 - data refinement

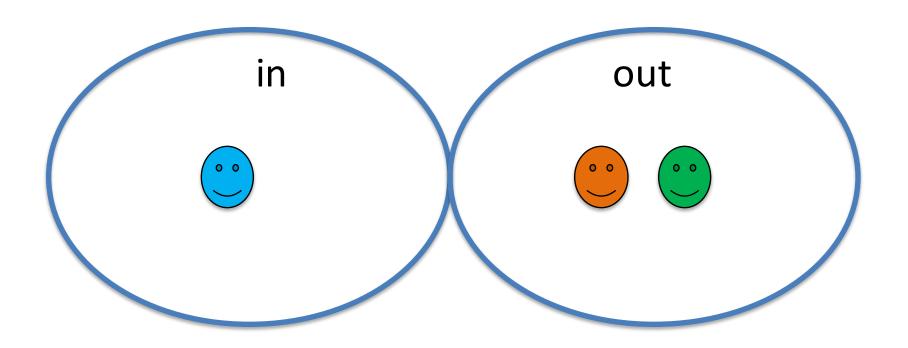
Example Requirements for a Building Control System

- Specify a system that monitors users entering and leaving a building.
- ► A person can only enter the building if they are a registered user.
- ► The system should be aware of whether a registered user is currently inside or outside the building.

Venn Diagram

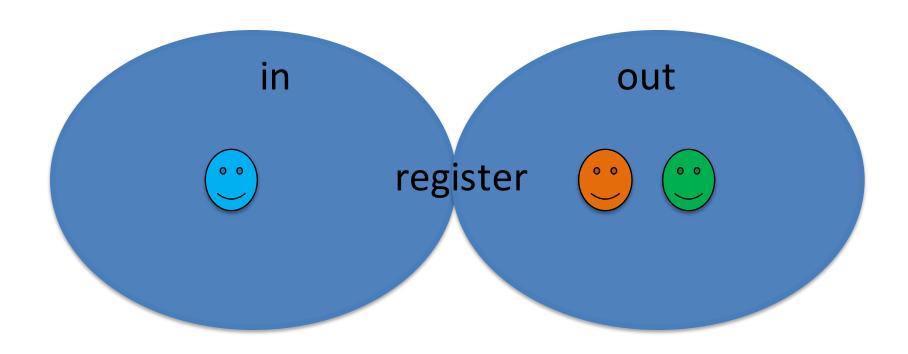


Disjoint sets



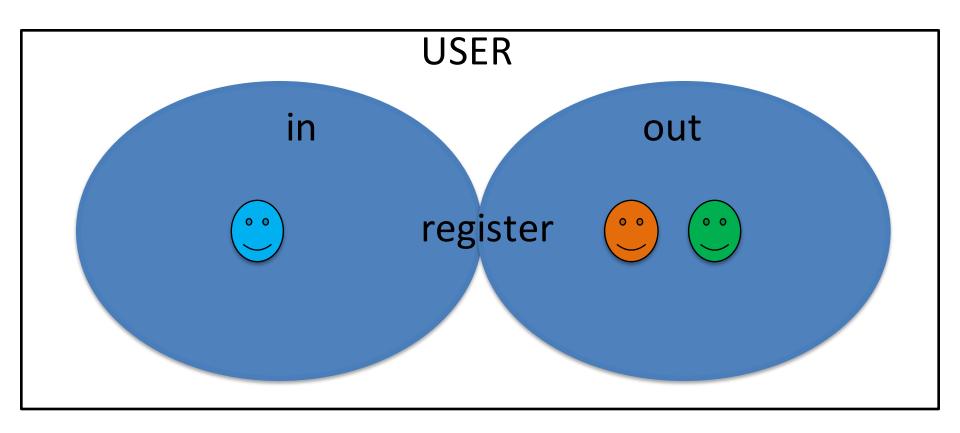
Invariant: $in \cap out = \{\}$

Registered users are either in or out



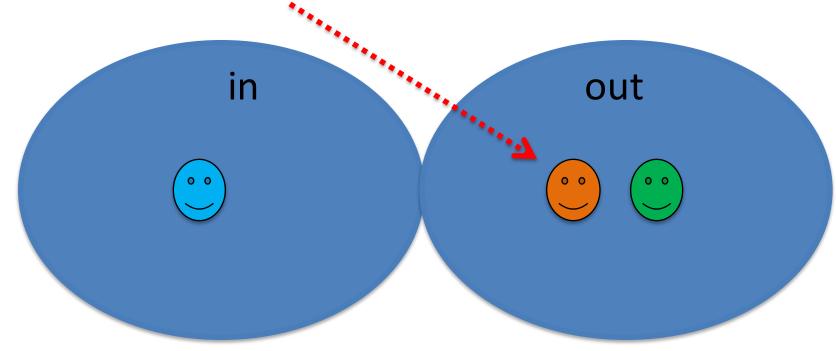
 $register = in \cup out$

Carrier Set: type for users



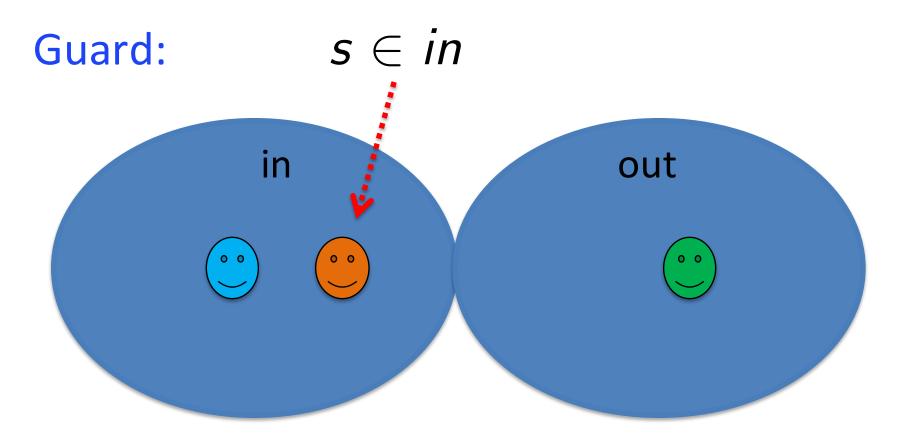
$$register \subseteq USER$$

Event: user *enters* building



Action: $in := in \cup \{s\}$ $out := out \setminus \{s\}$

Event: user *leaves* building



Action:

$$in := in \setminus \{s\}$$
 $out := out \cup \{s\}$

Basic Set Theory

- A set is a collection of elements.
- Elements of a set are not ordered.
- Elements of a set may be numbers, names, identifiers, etc.
- Sets may be finite or infinite.
- Relationship between an element and a set: is the element a member of the set.

For element x and set S, we express the membership relation as follows:

$$x \in S$$

Subset and Equality Relations for Sets

▶ A set S is said to be subset of set T when every element of S is also an element of T. This is written as follows:

$$S \subseteq T$$

► For example: $\{5,8\} \subseteq \{4,5,6,7,8\}$

▶ A set S is said to be equal to set T when $S \subseteq T$ and $T \subseteq S$.

$$S = T$$

► For example: $\{5,8,3\} = \{3,5,5,8\}$

Operations on sets

▶ Union of S and T: set of elements in either S or T:

$$S \cup T$$

▶ Intersection of S and T: set of elements in both S and T:

$$S \cap T$$

▶ Difference of S and T: set of elements in S but not in T:

$$S \setminus T$$

Example Set Expressions

$$\{a, b, c\} \cup \{b, d\} = \{a, b, c, d\}$$

 $\{a, b, c\} \cap \{b, d\} = \{b\}$
 $\{a, b, c\} \setminus \{b, d\} = \{a, c\}$
 $\{a, b, c\} \cap \{d, e, f\} = \{\}$
 $\{a, b, c\} \setminus \{d, e, f\} = \{a, b, c\}$

```
context BuildingContext
sets USER
end
```

machine Building variables register in out invariants

Entering and Leaving the Building

```
initialisation in, out, register := \{\}, \{\}, \{\}
events
                                               Leave \hat{=}
  Enter \hat{=}
       any s where
                                                    any s where
                                                        s \in in
           s \in out
       then
                                                    then
           in := in \cup \{s\}
                                                        in := in \setminus \{s\}
           out := out \setminus \{s\}
                                                        out := out \cup \{s\}
       end
                                                    end
```

Event-B context

- ► Carrier Sets: abstract types used in specification
- ► Constants: logical variables whose value remain constant
- ▶ **Axioms**: constraints on the constants. An axiom is a logical predicate.

Event-B *machine*

- ▶ **Sees:** one or more contexts
- Variables: state variables whose values can change
- ▶ Invariants: constraints on the variables that should always hold true. An invariant is a logical predicate.
- ▶ **Initialisation**: initial values for the abstract variables
- ► **Events**: guarded actions specifying ways in which the variables can change. Events may have parameters.

Adding New Users

New users cannot be registered already.

```
NewUser \hat{=}
any s where
s \in (USER \setminus register)
then
register := register \cup \{s\}
end
```

What is the error in this specification?

Adding New Users - Correct Version

```
NewUser \hat{=}
any s where
s \in (USER \setminus register)
then
register := register \cup \{s\}
out := out \cup \{s\}
end
```

Newly registered users must be added either to *in* or *out* to preserve to *inv*2.

Rodin demo

Animation with ProB

Checking for invariant violations with ProB

Types in Event-B

Predefined Types:

```
\mathbb{Z} Integers \mathbb{B} Booleans \{ TRUE, FALSE \}
```

Basic Types (or Carrier Sets): sets WORD NAME

Basic types are introduced to represent the entities of the problem being modelled.

Note: \mathbb{N} is a subet of \mathbb{Z} representing all non-negative integers (including 0).

Type for sets?

- \triangleright $w \in WORD$ means that the type of w is WORD.
- ▶ $known \subseteq WORD$ what is the type of known?

Powersets

The powerset of a set S is the set whose elements are all subsets of S:

$$\mathbb{P}(S)$$

Example

$$\mathbb{P}(\{a,b,c\}) = \{\{\}, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\}\}\}$$

Note $S \in \mathbb{P}(T)$ is the same as $S \subseteq T$

Sets are themselves elements – so we can have sets of sets. $\mathbb{P}(\{a,b,c\})$ is an example of a set of sets.

Types of Sets

All the elements of a set must have the same type.

For example, $\{3,4,5\}$ is a set of integers. More Precisely: $\{3,4,5\} \in \mathbb{P}(\mathbb{Z})$. So the type of $\{3,4,5\}$ is $\mathbb{P}(\mathbb{Z})$

To declare x to be a set of elements of type T we write either

$$x \in \mathbb{P}(T)$$
 or $x \subseteq T$

▶ $known \subseteq WORD$ - so type of known is $\mathbb{P}(WORD)$

Predicate Logic

Basic predicates:

$$x \in S$$

$$S \subseteq T$$

$$x \le y$$

Predicate operators:

- Negation:

P does not hold

Conjunction:

$$P \wedge Q$$

both P and Q hold

Disjunction:

$$P \lor Q$$

either P or Q holds

Implication:

$$P \implies Q$$

 $P \implies Q \mid \text{if } P \text{ holds, then } Q \text{ holds}$

Universal Quantification:

P holds for all x.

Existential Quantification:

P holds for some x.

Defining Set Operators with Logic

Predicate	Definition
x ∉ S	$\neg (x \in S)$
$x \in S \cup T$	$x \in S \lor x \in T$
$x \in S \cap T$	$x \in S \land x \in T$
$x \in S \setminus T$	$x \in S \land x \notin T$
$S \subseteq T$	$\forall x \cdot x \in S \implies x \in T$