

Proof-based verification in Event-B

Michael Butler

SETSS 2016, Chongqing

Validation and verification

Requirements validation:

 The extent to which (informal) requirements satisfy the needs of the stakeholders

Model validation:

 The extent to which (formal) model accurately captures the (informal) requirements

Model verification:

 The extent to which a model correctly maintains invariants or refines another (more abstract) model

Code verification:

The extent to which a program correctly implements a specification/model

Verification through Proof Obligations

 Proof obligations (PO) are mathematical theorems derived from a formal model (or program)

 The validity of a PO is proved using deductive rules of logic and set theory, e.g.,

```
S \subseteq T \Leftrightarrow (\forall x \cdot x \in S \Rightarrow x \in T)
x \in (S \cup T) \Leftrightarrow (x \in S \lor x \in T)
```

Invariant Preservation PO

- Assume: variables v and invariant Inv (v is free in Inv)
- Event:

```
Ev = any \times where Grd then v := Exp end
```

 PO to prove Ev preserves Inv: prove that the following sequent is valid:

```
INV PO: Inv, Grd - Inv[v:=Exp]
```

That is, prove that the updated invariant, Inv[v:=Exp], follows from the invariant, Inv, and the guard, Grd

Sequent

 A sequent consists of Hypotheses (H) and a Goal (G), written

 $H \vdash G$

A sequent is valid if G follows from H

Event-B proof obligations (PO) are sequents
 Assumptions - Goal

Substitution

 Replace all free occurrence of variable x by expression E in predicate P:

Example:

(
$$0 < n \land n \le 10$$
) [n:=7] \Leftrightarrow $0 < 7 \land 7 \le 10$

Bound variables are quantified variables:

```
( \forall n • n>0 \Rightarrow 1≤n ) [n:=7] \Leftrightarrow ( \forall n • n>0 \Rightarrow 1≤n )
```

Here n is bound in the predicate so is not substituted

 Free variables are variables that appear in P that are not bound within P.

Multiple Substitution

$$Q[x_1,x_2,...,x_n := E_1,E_2,...,E_n]$$

• Examples:

```
 (l<n \land n\leq m) [l,m,n:=0,10,7] \\ \Leftrightarrow 0<7 \land 7\leq 10  (in ∩ out = {}) [in, out := in\{u}, out \cup {u}]  \Leftrightarrow ?
```

Multiple Substitution

$$Q[x_1,x_2,...,x_n := E_1,E_2,...,E_n]$$

• Examples:

```
 (l<n \land n\leq m) [l,m,n:=0,10,7] \\ \Leftrightarrow 0<7 \land 7\leq 10   (in \cap out = {}) [in, out := in \setminus {u}, out \cup {u}] \\ \Leftrightarrow (in \setminus {u}) \cap (out \cup {u}) = {}
```

Example Invariant Preservation PO

INV PO rule: Inv, Grd \vdash Inv[v:=Exp]

Example:

- Invariant: x + y = C
- Event: x, y := x + 1, y 1

PO for example:

$$x + y = C$$
 \vdash $(x+1) + (y-1) = C$

Rodin demo

Proof obligations

Restrict capacity of building

Model Checking versus Deductive Proof

- Model checking: force the model to be finite state and explore state space looking for invariant violations
 - completely automatic
 - powerful debugging tool (counter-example)
- (Semi-)automated proof: based on logical deduction rules
 - no restrictions on state space
 - leads to discovery of invariants that deepen understanding
 - not completely automatic