Relations and Functions Michael Butler SETSS 2016, Chongqing # Requirements for a Buildings Access System - Specify a system that controls access to a collection of buildings. - Registered users will have access permission to enter certain buildings. - A user can only enter buildings that they have access permission for. - The system should keep track of the location of users. - The system should manage registration and access permission for users. # **Users and Buildings** Carrier sets: USER BUILDING # Permission Many-to-many relation ## Location Many-to-one relation ## Location conforms to Permission Location Permission # Class diagram abstraction #### Ordered Pairs and Cartesian Products An ordered pair is an element consisting of two parts: a first part and a second part. An ordered pair with first part x and second part y is written: $x \mapsto y$ The Cartesian product of two sets is the set of pairs whose first part is in S and second part is in T. The Cartesian product of S with T is written: $S \times T$ #### Cartesian Products: Definition and Examples #### Defining Cartesian product: | Predicate | Definition | | |------------------------------|-------------------------|--| | $x \mapsto y \in S \times T$ | $x \in S \land y \in T$ | | #### Examples: $$\{a,b,c\} \times \{1,2\} = \{a \mapsto 1, a \mapsto 2, b \mapsto 1, b \mapsto 2, c \mapsto 1, c \mapsto 2\}$$ $$\{a,b,c\} \times \{\} = ?$$ $$\{a,b,c\} \times \{1,2\} = ?$$ #### Cartesian Products: Definition and Examples #### Defining Cartesian product: | Predicate | Definition | | |------------------------------|-------------------------|--| | $x \mapsto y \in S \times T$ | $x \in S \land y \in T$ | | #### Examples: $\{a,b\} \mapsto 1, \{a,b\} \mapsto 2\}$ #### Cartesian Product is a Type Constructor $S \times T$ is a new type constructed from types S and T. Cartesian product is the type constructor for ordered pairs. Given $$x \in S$$, $y \in T$, we have $$x \mapsto y \in S \times T$$ $$\begin{array}{rclcrcl} 4 \mapsto 7 & \in & ? \\ & \{5,6,3\} \mapsto 4 & \in & ? \\ & \{ \ 4 \mapsto 8, \ 3 \mapsto 0, \ 2 \mapsto 9 \ \} & \in & ? \end{array}$$ #### Cartesian Product is a Type Constructor $S \times T$ is a new type constructed from types S and T. Cartesian product is the type constructor for ordered pairs. Given $$x \in S$$, $y \in T$, we have $$x \mapsto y \in S \times T$$ $$\begin{array}{rcl} 4\mapsto 7 & \in & \mathbb{Z}\times\mathbb{Z} \\ \\ \{5,6,3\}\mapsto 4 & \in & \mathbb{P}(\mathbb{Z})\times\mathbb{Z} \\ \{ \ 4\mapsto 8, \ 3\mapsto 0, \ 2\mapsto 9 \ \} & \in & \mathbb{P}(\mathbb{Z}\times\mathbb{Z}) \end{array}$$ #### Sets of Order Pairs A database can be modelled as a set of ordered pairs: ``` \begin{array}{rcl} \textit{directory} &=& \{ \textit{ mary} \mapsto 287573, \\ & \textit{ mary} \mapsto 398620, \\ & \textit{ john} \mapsto 829483, \\ & \textit{ jim} \mapsto 398620 \ \} \end{array} ``` directory has type ``` directory \in \mathbb{P}(Person \times PhoneNum) ``` #### Relations A relation is a set of ordered pairs. A relation is a common modelling structure so Event-B has a special notation for it: $$\boxed{T \leftrightarrow S} = \mathbb{P}(T \times S)$$ So we can write: $$directory \in Person \leftrightarrow PhoneNum$$ Do not confuse the arrow symbols: - \leftrightarrow combines two sets to form a set. - → combines two elements to form an ordered pair. #### Domain and Range #### Domain and Range Definition - ► The domain of a relation R is the set of first parts of all the pairs in R, written dom(R) - ► The range of a relation R is the set of second parts of all the pairs in R, written ran(R) | Predicate | Definition | |----------------|-------------------------------------| | $x \in dom(R)$ | $\exists y \cdot x \mapsto y \in R$ | | $y \in ran(R)$ | $\exists x \cdot x \mapsto y \in R$ | #### Telephone Directory Model - Phone directory relates people to their phone numbers. - Each person can have zero or more numbers. - People can share numbers. ``` context PhoneContext sets Person PhoneNum end ``` ``` machine PhoneBook variables dir invariants dir \in Person \leftrightarrow PhoneNum ``` ``` initialisation dir := \{\} ``` #### Extending the Directory Add an entry to the directory: ``` \begin{array}{ll} \textit{AddEntry} & \triangleq & \textbf{any} \ p, n \ \textbf{where} \\ & p \in \textit{Person} \\ & n \in \textit{PhoneNum} \\ & \textbf{then} \\ & \textit{dir} \ := \ \textit{dir} \cup \{p \mapsto n\} \\ & \textbf{end} \end{array} ``` #### Relational Image ``` \begin{array}{rcl} \textit{directory} &=& \{ \textit{ mary} \mapsto 287573, \\ & \textit{ mary} \mapsto 398620, \\ & \textit{ john} \mapsto 829483, \\ & \textit{ jim} \mapsto 398620 \ \} \end{array} ``` #### Relational image examples: ``` directory[\{mary\}] = \{ 287573, 398620 \} directory[\{ john, jim \}] = \{ 829483, 398620 \} ``` #### Relational Image Definition Assume $R \in S \leftrightarrow T$ and $A \subseteq S$ The relational image of set A under relation R is written R[A] | Predicate | Definition | | |--------------|---|--| | $y \in R[A]$ | $\exists x \cdot x \in A \land x \mapsto y \in R$ | | #### Modelling Queries using Relational Image Determine all the numbers associated with a person in the directory: ``` GetNumbers \hat{=} any p, result where p \in Person result = dir[\{p\}] end ``` Determine all the numbers associated with a set of people: #### Partial Functions Special kind of relation: each domain element has at most one range element associated with it. To declare f as a partial function: $$f \in X \rightarrow Y$$ This says that f is a many-to-one relation Each domain element is mapped to one range element: $$x \in dom(f) \implies card(f[\{x\}]) = 1$$ More usually formalised as a uniqueness constraint $$x \mapsto y_1 \in f \land x \mapsto y_2 \in f \implies y_1 = y_2$$ #### **Function Application** We can use function application for partial functions. If $x \in dom(f)$, then we write f(x) for the unique range element associated with x in f. If $x \notin dom(f)$, then f(x) is undefined. If $card(f[\{x\}]) > 1$, then f(x) is undefined. #### Examples ``` \begin{array}{lll} \textit{dir}1 & = & \{ \; \textit{mary} \mapsto 398620, & \textit{dir}2 \; = \; \{ \; \textit{mary} \mapsto 287573, \\ & \textit{jim} \mapsto 493028, & \textit{mary} \mapsto 398620, \\ & \textit{jane} \mapsto 493028 \; \} & \textit{jane} \mapsto 493028 \; \} \end{array} ``` $dir1 \in Person \rightarrow Phone$ dir1(jim) = 493028 dir1(sarah) is undefined $dir2 \notin Person \rightarrow Phone$ dir2(mary) is undefined #### Well-definedness and application definitions | Expression | Well-definedness condition | |------------|--| | f(x) | $x \in dom(f) \land f \in X \leftrightarrow Y$ | The following definition of function application assumes that f(x) is well-defined: | Predicate | Definition | |-----------|---------------------| | y = f(x) | $x \mapsto y \in f$ | #### Birthday Book Example Birthday book relates people to their birthday. Each person can have at most one birthday. People can share birthdays. sets PERSON DATE variables birthday invariants birthday \in PERSON \leftrightarrow DATE initialisation $birthday := \{\}$ #### Adding and checking birthdays Add an entry to the directory: ``` \begin{array}{ll} \textit{AddEntry} & \triangleq & \textbf{any} \ p, d \ \textbf{where} \\ & p \in \textit{Person} \\ & p \not \in \textit{dom}(\textit{birthday}) \\ & d \in \textit{Date} \\ & \textbf{then} \\ & \textit{birthday} \ := \ \textit{birthday} \cup \{p \mapsto d\} \\ & \textbf{end} \\ \end{array} ``` Check a person's birthday: ``` Check \hat{=} any p, result where p \in dom(birthday) result = birthday(p) end ``` #### Domain Restriction Given $$R \in S \leftrightarrow T$$ and $A \subseteq S$, the domain restriction of R by A is writen $A \triangleleft R$ Restrict relation R so that it only contains pairs whose first part is in the set A. #### Example: ``` \begin{array}{ll} \textit{directory} &=& \{ \textit{ mary} \mapsto 287573, & \textit{mary} \mapsto 398620, \\ & \textit{ john} \mapsto 829483, & \textit{jim} \mapsto 398620 \ \} \\ \\ \{\textit{john}, \textit{jim}, \textit{jane} \} \lhd \textit{directory} &=& \{ \textit{john} \mapsto 829483, \\ & \textit{jim} \mapsto 398620 \ \} \end{array} ``` #### Domain Subtraction Given $R \in S \leftrightarrow T$ and $A \subseteq S$, the domain subtraction of R by A is written $A \triangleleft R$ Remove those pairs from R whose first part is in A. #### Example: ``` directory = \{ mary \mapsto 287573, mary \mapsto 398620, \\ john \mapsto 829483, jim \mapsto 398620 \} \{ john, jim, jane \} \triangleleft directory = \{ mary \mapsto 287573, \\ mary \mapsto 398620 \} ``` #### Domain and Range, Restriction and Substraction Assume $R \in S \leftrightarrow T$ and $A \subseteq S$ and $B \subseteq T$ | Predicate | Definition | | |--------------------------------------|--------------------------------------|-----------------------| | $x \mapsto y \in A \triangleleft R$ | $x \mapsto y \in R \land x \in A$ | domain
restriction | | $x \mapsto y \in A \triangleleft R$ | $x \mapsto y \in R \land x \notin A$ | domain
subtraction | | $x \mapsto y \in R \triangleright B$ | $x \mapsto y \in R \land y \in B$ | range
restriction | | $x \mapsto y \in R \triangleright B$ | $x \mapsto y \in R \land y \notin B$ | range
subtraction | #### Removing Entries from the Directory Remove all the entries associated with a person in the directory: Remove all the entries associated with a number in the directory: ``` RemoveNumber \hat{=} any n where n \in PhoneNum then dir := dir \triangleright \{n\} end ``` #### **Function Overriding** Override f by g $f \Leftrightarrow g$ f and g must be partial functions of the same type Override: replace existing mappings with new ones $$dir1 = \{ mary \mapsto 398620, john \mapsto 829483, \\ jim \mapsto 493028, jane \mapsto 493028 \}$$ $$dir1 \Leftrightarrow \{ mary \mapsto 674321, jane \mapsto 829483 \}$$ $$= \{ mary \mapsto 674321, john \mapsto 829483, \\ jim \mapsto 493028, jane \mapsto 829483 \}$$ #### Function Overriding Definition Definition in terms of function override and set union: $$f \Leftrightarrow \{a \mapsto b\} = (\{a\} \lessdot f) \cup \{a \mapsto b\}$$ $$f \Leftrightarrow g = (\text{dom}(g) \lessdot f) \cup g$$ #### Modifying a birthday Modify an entry in the directory: ``` \begin{array}{ll} \textit{ModifyEntry} & \triangleq & \textbf{any} \ p, d \ \textbf{where} \\ & p \in \textit{dom(birthday)} \\ & d \in \textit{Date} \\ & \textbf{then} \\ & \textit{birthday} := \textit{birthday} \mathrel{\blacktriangleleft} \{p \mapsto d\} \\ & \textbf{end} \end{array} ``` #### Syntactic shorthand: ``` ModifyEntry \triangleq \mathbf{any} \ p, d \ \mathbf{where} \ p \in Person \ d \in Date \ \mathbf{then} \ birthday(p) := d \ \mathbf{end} ``` #### Adding the domain as an explicit variable ``` variables birthday, person invariants \begin{array}{c} \textit{birthday} \in \textit{PERSON} \rightarrow \textit{DATE} \\ \textit{person} \subseteq \textit{PERSON} \\ \textit{person} = \textit{dom(birthday)} \\ \\ \textbf{initialisation} \quad \textit{birthday} := \{\} \qquad \textit{person} := \{\} \\ \end{array} ``` #### **Total Functions** A total function is a special kind of partial function. To declare *f* as a total function: $$f \in X \to Y$$ This means that f is well-defined for every element in X, i.e., $f \in X \to Y$ is shorthand for $$f \in X \rightarrow Y \land dom(f) = X$$ #### Modelling with Total functions We can re-write the invariant for the birthday book to use total functions: variables birthday, person invariants ``` person \subseteq PERSON birthday \in person \rightarrow DATE ``` Using the total function arrow means that we don't need to explicitly specify that dom(birthday) = person. We can use person as a guard instead of dom(birthday): ``` Check \hat{=} any p, result where p \in person result = birthday(p) end ``` #### AddEntry needs to be modified Add an entry to the directory: ``` \begin{array}{ll} \textit{AddEntry} & \triangleq & \textbf{any} \ \textit{p}, \textit{d} \ \textbf{where} \\ & \textit{p} \in \textit{PERSON} \\ & \textit{p} \not \in \textit{person} \\ & \textit{d} \in \textit{DATE} \\ & \textbf{then} \\ & \textit{birthday} \ := \ \textit{birthday} \cup \{\textit{p} \mapsto \textit{d}\} \\ & \textit{person} := \textit{person} \cup \{\textit{p}\} \\ & \textbf{end} \\ \end{array} ``` #### Requirements for a Buildings Access System - Specify a system that controls access to a collection of buildings. - Registered users will have access permission to enter certain buildings. - A user can only enter buildings that they have access permission for. - ▶ The system should keep track of the location of users. - The system should manage registration and access permission for users. Types? Variables? Invariants? Events? #### **Buildings Access System** - ► Types: USER, BUILDING - Variables: register, permission, location - Invariants: - ▶ register ⊆ USER //register is a set of users - ▶ permission ∈ USER ↔ BUILDING - // relates users to the buildings they can access - ▶ dom(permission) ⊆ register - // only register users may have permissions - ▶ location ∈ USFR → BUILDING - // user is located in at most one building - ▶ location ⊆ permission - // user located in a building must have permission - // for that building #### **Buildings Access System** #### Events: - RegisterUser, DeRegisterUser - AddPermission, RevokePermission - EnterBuilding, LeaveBuilding