UNIVERSITY OF

Southampton

Relations and Functions

Michael Butler

SETSS 2016, Chongqing

Requirements for a Buildings
Access System

Specify a system that controls access to a collection
of buildings.

Registered users will have access permission to enter
certain buildings.

A user can only enter buildings that they have access
permission for.

The system should keep track of the location of
users.

The system should manage registration and access
permission for users.

Users and Buildings

building

Carrier sets: USER BUILDING

Permission

Many-to-many relation

Location

Many-to-one relation

Location conforms to Permission

Location & Permission

Class diagram abstraction

Many-to-many association

v
* permission

user | location , | building

.
.
.
.

Many-to-one association

Ordered Pairs and Cartesian Products

An ordered pair is an element consisting of two parts:
a first part and a second part.

An ordered pair with first part x and second part y is

written:

The Cartesian product of two sets is the set of pairs whose first
part is in S and second part isin T.

The Cartesian product of S with T is written: SxT

Cartesian Products: Definition and Examples

Defining Cartesian product:

Predicate

Definition

x—=y € SxT

xeS N yeT

Examples:

{a,b,c} x {1,2}

{a,b,c} x {}

{{a}, {a, b} } x {1,2}

= {a—1l a2 b1,
b—2 c—1 c—2}

Cartesian Products: Definition and Examples

Defining Cartesian product:

Predicate Definition

x—y € SxT xeS N yeT

Examples:

{a,b,c} x{1,2} = {am—1 a—2 b1,
b—2 c—1 c—2}

{a,bc} x{} = {}

{{a}, {a b} } x {1,2} {{a} =1, {a} =2

{a,b} —» 1, {a,b} — 2}

Cartesian Product is a Type Constructor

S x T is a new type constructed from types S and T.
Cartesian product is the type constructor for ordered pairs.

Given x € S, y € T, we have

‘x'—>y € SxT

4—7 € 7
(5,63} >4 € ?
{4—8,3—0,2—9} € 7

Cartesian Product is a Type Constructor

S x T is a new type constructed from types S and T.
Cartesian product is the type constructor for ordered pairs.

Given x € S, y € T, we have

‘x'—>y € SXT‘

4—7 € LX1L
{5,6,3} =4 € P(Z)xZ
{4—8,3—0,2—9} € P(ZxZ)

Sets of Order Pairs

A database can be modelled as a set of ordered pairs:

directory = { mary — 287573,
mary — 398620,
Jjohn — 829483,
Jim +— 398620 }

directory has type

directory € P(Person x PhoneNum)

Relations

A relation is a set of ordered pairs.

A relation is a common modelling structure so Event-B has a
special notation for it:

T<S| = P(TxS)
So we can write:
directory € Person <> PhoneNum

Do not confuse the arrow symbols:
<> combines two sets to form a set.
— combines two elements to form an ordered pair.

Domain and Range

directory = { mary — 287573,
mary — 398620,
Jjohn +— 829483,
Jim — 398620 }

dom(directory) = {mary,john,jim}
ran(directory) = {287573,398620, 829483}

Domain and Range Definition

» The domain of a relation R is the set of first parts of all the

pairs in R, written | dom(R)

» The range of a relation R is the set of second parts of all the

pairs in R, written m

Predicate Definition

x € dom(R) dy- x—y € R

y € ran(R) Ix- x—y € R

Telephone Directory Model

» Phone directory relates people to their phone numbers.
» Each person can have zero or more numbers.

» People can share numbers.

context PhoneContext
sets Person PhoneNum
end

machine PhoneBook
variables dir

invariants dir € Person < PhoneNum

initialisation dir := {}

Extending the Directory

Add an entry to the directory:

AddEntry = any p,n where
p € Person
n € PhoneNum
then
dir = dirJ{p+— n}
end

Relational Image

directory = { mary — 287573,
mary — 398620,
Jjohn > 829483,
jim v 398620 }

Relational image examples:

directory[{mary} | = { 287573, 398620 }

directory[{ john,jim } | = { 829483, 398620 }

Relational Image Definition

Assume R € S«& T and ACS

The relational image of set A under relation R is written | R[A]

Predicate Definition

y € R[A] Ix- x€eA AN x—y € R

Modelling Queries using Relational Image

Determine all the numbers associated with a person in the
directory:

GetNumbers = any p, result where

p € Person
result = dir[{p}]
end

Determine all the numbers associated with a set of people:

GetMultiNumbers = any ps, result where
ps C Person
result = dir[ps]

end

Partial Functions

Special kind of relation: each domain element has at most one
range element associated with it.

To declare f as a partial function:

fe X+Y

This says that f is a many-to-one relation
Each domain element is mapped to one range element:

x € dom(f) = card(f[{x}]) =1
More usually formalised as a uniqueness constraint

x»—>y1€f/\x'—>y2€f — Y1 =y

Function Application

We can use function application for partial functions.

If x € dom(f), then we write | f(x)| for the unique range
element associated with x in f.

If x & dom(f) , then f(x) is undefined.

If card(f[{x}]) > 1, then f(x) is undefined.

Examples

dirl = { mary — 398620, dir2 = { mary — 287573,
Jjim — 493028, mary +— 398620,
Jane — 493028 } Jane — 493028 }

dirl € Person—+ Phone
dirl(jim) = 493028
dirl(sarah) is undefined
dir2 ¢ Person + Phone
dir2(mary) is undefined

Well-definedness and application definitions

Expression Well-definedness condition

f(x) x€dom(f) N feX+Y

The following definition of function application assumes that f(x)
is well-defined:

Predicate Definition

y = f(x) x—=yef

Birthday Book Example

Birthday book relates people to their birthday.
Each person can have at most one birthday.
People can share birthdays.

sets PERSON DATE

variables birthday
invariants birthday € PERSON -» DATE

initialisation birthday = {}

Adding and checking birthdays

Add an entry to the directory:

AddEntry = any p,d where
p € Person
p & dom(birthday)
d € Date
then
birthday := birthday U {p +— d}
end

Check a person’s birthday:

Check = any p, result where
p € dom(birthday)
result = birthday(p)
end

Domain Restriction

Given R € §< T and ACS,

the domain restriction of R by A is writen

Restrict relation R so that it only contains pairs whose first part is

in the set A.
Example:
directory = { mary — 287573, mary — 398620,
Jjohn — 829483, jim — 398620 }
{john, jim, jane} < directory = { john— 829483,

jim — 398620 }

Domain Subtraction

Given R € ST and ACS,

the domain subtraction of R by A is written

Remove those pairs from R whose first part is in A.

Example:

directory = { mary — 287573, mary — 398620,
Jjohn — 829483, jim — 398620 }

{john, jim, jane} < directory = { mary — 287573,
mary — 398620 }

Domain and Range, Restriction and Substraction

Assume R € S« T

and ACS and BCT

Predicate Definition
x—y € AR x—=y € R AN xeA domain
restriction
x—y € A49R x—y € R N x¢&A domain

subtraction

x—y € R>B x—y € R N yeB range
restriction
x+—y € Rp B x—y € R AN y¢€B range

subtraction

Removing Entries from the Directory

Remove all the entries associated with a person in the directory:

RemovePerson = any p where

p € Person
then

dir := {p} < dir
end

Remove all the entries associated with a number in the directory:

RemoveNumber = any n where
n € PhoneNum
then
dir = dire {n}
end

Function Overriding

Override f by g

f and g must be partial functions of the same type
Override: replace existing mappings with new ones

dirl = { mary — 398620, john — 829483,
Jim — 493028, jane — 493028 }

dirl < { mary — 674321, jane — 829483}
— { mary — 674321, john — 829483,
jim v 493028, jane — 829483 }

Function Overriding Definition

Definition in terms of function override and set union:

ft{a—b} = ({a}af)u{a— b}

f<+g = (dom(g)<f)Ug

Modifying a birthday
Modify an entry in the directory:

ModifyEntry = any p,d where
p € dom(birthday)
d € Date
then
birthday := birthday < {p — d}
end

Syntactic shorthand:

ModifyEntry = any p,d where
p € Person
d € Date
then
birthday(p) = d
end

Adding the domain as an explicit variable

variables birthday, person

invariants
birthday € PERSON -+ DATE
person C PERSON
person = dom(birthday)

initialisation birthday = {} person := {}

Total Functions

A total function is a special kind of partial function. To declare f
as a total function:

fe X=Y

This means that f is well-defined for every element in X, i.e.,
f € X — Y is shorthand for

fe XY A dom(f)=X

Modelling with Total functions

We can re-write the invariant for the birthday book to use total
functions:

variables birthday, person

invariants
person C PERSON
birthday € person — DATE

Using the total function arrow means that we don't need to
explicitly specify that dom(birthday) = person.

We can use person as a guard instead of dom(birthday):

Check = any p, result where
p € person
result = birthday(p)
end

AddEntry needs to be modified

Add an entry to the directory:

AddEntry = any p,d where

p € PERSON
p & person
d € DATE

then
birthday := birthday U {p+— d}
person := person U {p}

end

Requirements for a Buildings Access System

» Specify a system that controls access to a collection of
buildings.

> Registered users will have access permission to enter certain
buildings.

> A user can only enter buildings that they have access
permission for.

> The system should keep track of the location of users.

> The system should manage registration and access permission
for users.

Types? Variables? Invariants? Events?

Buildings Access System

» Types: USER, BUILDING

» Variables: register, permission, location

» Invariants:

» register C USER //register is a set of users
» permission € USER < BUILDING
// relates users to the buildings they can access
» dom(permission) C register
// only register users may have permissions
» location € USER -+ BUILDING
// user is located in at most one building
> location C permission
// user located in a building must have permission
// for that building

Buildings Access System

Events:
> RegisterUser, DeRegisterUser
» AddPermission, RevokePermission

> EnterBuilding, LeaveBuilding

