
Relations*and*Functions

Michael*Butler

SETSS*2016,*Chongqing

Requirements*for*a*Buildings*
Access*System

• Specify*a*system*that*controls*access*to*a*collection*
of*buildings.

• Registered*users*will*have*access*permission to*enter*
certain*buildings.

• A*user*can*only*enter*buildings*that*they*have*access*
permission*for.

• The*system*should*keep*track*of*the*location of*
users.*

• The*system*should*manage*registration and*access*
permission for*users.

Users*and*Buildings

Carrier*sets:***USER BUILDING

user building

Permission

ManyPtoPmany*relation

Location

ManyPtoPone*relation

Location*conforms*to*Permission

Location**� Permission

Class*diagram*abstraction

user buildinglocation

permission

ManyPtoPone*association

ManyPtoPmany*association

*

*

*

1

Ordered Pairs and Cartesian Products

An ordered pair is an element consisting of two parts:
a first part and a second part.

An ordered pair with first part x and second part y is
written: x 7! y

The Cartesian product of two sets is the set of pairs whose first
part is in S and second part is in T .

The Cartesian product of S with T is written: S ⇥ T

Cartesian Products: Definition and Examples

Defining Cartesian product:

Predicate Definition

x 7! y 2 S ⇥ T x 2 S ^ y 2 T

Examples:

{a, b, c}⇥ {1, 2} = { a 7! 1, a 7! 2, b 7! 1,

b 7! 2, c 7! 1, c 7! 2 }

{a, b, c}⇥ {} = ?

{ {a}, {a, b} } ⇥ {1, 2} = ?

Cartesian Products: Definition and Examples

Defining Cartesian product:

Predicate Definition

x 7! y 2 S ⇥ T x 2 S ^ y 2 T

Examples:

{a, b, c}⇥ {1, 2} = { a 7! 1, a 7! 2, b 7! 1,

b 7! 2, c 7! 1, c 7! 2 }

{a, b, c}⇥ {} = {}

{ {a}, {a, b} } ⇥ {1, 2} = { {a} 7! 1, {a} 7! 2,

{a, b} 7! 1, {a, b} 7! 2 }

Cartesian Product is a Type Constructor

S ⇥ T is a new type constructed from types S and T .

Cartesian product is the type constructor for ordered pairs.

Given x 2 S , y 2 T , we have

x 7! y 2 S ⇥ T

4 7! 7 2 ?

{5, 6, 3} 7! 4 2 ?

{ 4 7! 8, 3 7! 0, 2 7! 9 } 2 ?

Cartesian Product is a Type Constructor

S ⇥ T is a new type constructed from types S and T .

Cartesian product is the type constructor for ordered pairs.

Given x 2 S , y 2 T , we have

x 7! y 2 S ⇥ T

4 7! 7 2 Z⇥ Z

{5, 6, 3} 7! 4 2 P(Z)⇥ Z

{ 4 7! 8, 3 7! 0, 2 7! 9 } 2 P(Z⇥ Z)

Sets of Order Pairs

A database can be modelled as a set of ordered pairs:

directory = { mary 7! 287573,

mary 7! 398620,

john 7! 829483,

jim 7! 398620 }

directory has type

directory 2 P(Person ⇥ PhoneNum)

Relations

A relation is a set of ordered pairs.

A relation is a common modelling structure so Event-B has a
special notation for it:

T $ S = P(T ⇥ S)

So we can write:

directory 2 Person$ PhoneNum

Do not confuse the arrow symbols:
$ combines two sets to form a set.
7! combines two elements to form an ordered pair.

Domain and Range

directory = { mary 7! 287573,

mary 7! 398620,

john 7! 829483,

jim 7! 398620 }

dom(directory) = {mary , john, jim}

ran(directory) = {287573, 398620, 829483}

Domain and Range Definition

I The domain of a relation R is the set of first parts of all the

pairs in R , written dom(R)

I The range of a relation R is the set of second parts of all the

pairs in R , written ran(R)

Predicate Definition

x 2 dom(R) 9y · x 7! y 2 R

y 2 ran(R) 9x · x 7! y 2 R

Telephone Directory Model

I Phone directory relates people to their phone numbers.

I Each person can have zero or more numbers.

I People can share numbers.

context PhoneContext
sets Person PhoneNum
end

machine PhoneBook
variables dir
invariants dir 2 Person$ PhoneNum

initialisation dir := {}

Extending the Directory

Add an entry to the directory:

AddEntry =̂ any p, n where

p 2 Person
n 2 PhoneNum

then

dir := dir [{p 7! n}
end

Relational Image

directory = { mary 7! 287573,

mary 7! 398620,

john 7! 829483,

jim 7! 398620 }

Relational image examples:

directory [{mary}] = { 287573, 398620 }

directory [{ john, jim }] = { 829483, 398620 }

Relational Image Definition

Assume R 2 S $ T and A ✓ S

The relational image of set A under relation R is written R[A]

Predicate Definition

y 2 R[A] 9x · x 2 A ^ x 7! y 2 R

Modelling Queries using Relational Image

Determine all the numbers associated with a person in the
directory:

GetNumbers =̂ any p, result where

p 2 Person
result = dir [{p}]

end

Determine all the numbers associated with a set of people:

GetMultiNumbers =̂ any ps, result where

ps ✓ Person
result = dir [ps]

end

Partial Functions

Special kind of relation: each domain element has at most one
range element associated with it.

To declare f as a partial function:

f 2 X 7! Y

This says that f is a many-to-one relation

Each domain element is mapped to one range element:

x 2 dom(f) =) card(f [{x}]) = 1

More usually formalised as a uniqueness constraint

x 7! y
1

2 f ^ x 7! y
2

2 f =) y
1

= y
2

Function Application

We can use function application for partial functions.

If x 2 dom(f), then we write f (x) for the unique range

element associated with x in f .

If x 62 dom(f) , then f (x) is undefined.

If card(f [{x}]) > 1 , then f (x) is undefined.

Examples

dir1 = { mary 7! 398620,
jim 7! 493028,
jane 7! 493028 }

dir2 = { mary 7! 287573,
mary 7! 398620,
jane 7! 493028 }

dir1 2 Person 7! Phone

dir1(jim) = 493028

dir1(sarah) is undefined

dir2 62 Person 7! Phone

dir2(mary) is undefined

Well-definedness and application definitions

Expression Well-definedness condition

f (x) x 2 dom(f) ^ f 2 X 7! Y

The following definition of function application assumes that f (x)
is well-defined:

Predicate Definition

y = f (x) x 7! y 2 f

Birthday Book Example

Birthday book relates people to their birthday.

Each person can have at most one birthday.

People can share birthdays.

sets PERSON DATE

variables birthday
invariants birthday 2 PERSON 7! DATE

initialisation birthday := {}

Adding and checking birthdays

Add an entry to the directory:

AddEntry =̂ any p, d where

p 2 Person
p 62 dom(birthday)
d 2 Date

then

birthday := birthday [{p 7! d}
end

Check a person’s birthday:

Check =̂ any p, result where

p 2 dom(birthday)
result = birthday(p)

end

Domain Restriction

Given R 2 S $ T and A ✓ S ,
the domain restriction of R by A is writen AC R

Restrict relation R so that it only contains pairs whose first part is
in the set A.

Example:

directory = { mary 7! 287573, mary 7! 398620,

john 7! 829483, jim 7! 398620 }

{john, jim, jane}C directory = { john 7! 829483,

jim 7! 398620 }

Domain Subtraction

Given R 2 S $ T and A ✓ S ,
the domain subtraction of R by A is written AC� R

Remove those pairs from R whose first part is in A.

Example:

directory = { mary 7! 287573, mary 7! 398620,

john 7! 829483, jim 7! 398620 }

{john, jim, jane}C� directory = { mary 7! 287573,

mary 7! 398620 }

Domain and Range, Restriction and Substraction

Assume R 2 S $ T and A ✓ S and B ✓ T

Predicate Definition

x 7! y 2 AC R x 7! y 2 R ^ x 2 A domain
restriction

x 7! y 2 AC� R x 7! y 2 R ^ x 62 A domain
subtraction

x 7! y 2 R B B x 7! y 2 R ^ y 2 B range
restriction

x 7! y 2 R B� B x 7! y 2 R ^ y 62 B range
subtraction

Removing Entries from the Directory

Remove all the entries associated with a person in the directory:

RemovePerson =̂ any p where

p 2 Person
then

dir := {p}C� dir
end

Remove all the entries associated with a number in the directory:

RemoveNumber =̂ any n where

n 2 PhoneNum
then

dir := dir B� {n}
end

Function Overriding

Override f by g f C� g

f and g must be partial functions of the same type

Override: replace existing mappings with new ones

dir1 = { mary 7! 398620, john 7! 829483,

jim 7! 493028, jane 7! 493028 }

dir1C� { mary 7! 674321, jane 7! 829483}
= { mary 7! 674321, john 7! 829483,

jim 7! 493028, jane 7! 829483 }

Function Overriding Definition

Definition in terms of function override and set union:

f C� {a 7! b} = ({a}C� f) [{a 7! b}

f C� g = (dom(g)C� f) [g

Modifying a birthday

Modify an entry in the directory:

ModifyEntry =̂ any p, d where

p 2 dom(birthday)
d 2 Date

then

birthday := birthday C� {p 7! d}
end

Syntactic shorthand:

ModifyEntry =̂ any p, d where

p 2 Person
d 2 Date

then

birthday(p) := d
end

Adding the domain as an explicit variable

variables birthday , person
invariants

birthday 2 PERSON 7! DATE
person ✓ PERSON
person = dom(birthday)

initialisation birthday := {} person := {}

Total Functions

A total function is a special kind of partial function. To declare f
as a total function:

f 2 X ! Y

This means that f is well-defined for every element in X , i.e.,
f 2 X ! Y is shorthand for

f 2 X 7! Y ^ dom(f) = X

Modelling with Total functions

We can re-write the invariant for the birthday book to use total
functions:

variables birthday , person
invariants

person ✓ PERSON
birthday 2 person! DATE

Using the total function arrow means that we don’t need to
explicitly specify that dom(birthday) = person.

We can use person as a guard instead of dom(birthday):

Check =̂ any p, result where

p 2 person
result = birthday(p)

end

AddEntry needs to be modified

Add an entry to the directory:

AddEntry =̂ any p, d where

p 2 PERSON
p 62 person
d 2 DATE

then

birthday := birthday [{p 7! d}
person := person [{p}

end

Requirements for a Buildings Access System

I Specify a system that controls access to a collection of
buildings.

I Registered users will have access permission to enter certain
buildings.

I A user can only enter buildings that they have access
permission for.

I The system should keep track of the location of users.

I The system should manage registration and access permission
for users.

Types? Variables? Invariants? Events?

Buildings Access System

I Types: USER , BUILDING

I Variables: register , permission, location

I Invariants:
I register ✓ USER //register is a set of users
I permission 2 USER $ BUILDING

// relates users to the buildings they can access
I dom(permission) ✓ register

// only register users may have permissions
I location 2 USER 7! BUILDING

// user is located in at most one building
I location ✓ permission

// user located in a building must have permission
// for that building

Buildings Access System

Events:

I RegisterUser, DeRegisterUser

I AddPermission, RevokePermission

I EnterBuilding, LeaveBuilding

