

Relations and Functions

Michael Butler

SETSS 2016, Chongqing

Requirements for a Buildings Access System

- Specify a system that controls access to a collection of buildings.
- Registered users will have access permission to enter certain buildings.
- A user can only enter buildings that they have access permission for.
- The system should keep track of the location of users.
- The system should manage registration and access permission for users.

Users and Buildings

Carrier sets: USER BUILDING

Permission

Many-to-many relation

Location

Many-to-one relation

Location conforms to Permission

Location

Permission

Class diagram abstraction

Ordered Pairs and Cartesian Products

An ordered pair is an element consisting of two parts: a first part and a second part.

An ordered pair with first part x and second part y is written: $x \mapsto y$

The Cartesian product of two sets is the set of pairs whose first part is in S and second part is in T.

The Cartesian product of S with T is written:

 $S \times T$

Cartesian Products: Definition and Examples

Defining Cartesian product:

Predicate	Definition	
$x \mapsto y \in S \times T$	$x \in S \land y \in T$	

Examples:

$$\{a,b,c\} \times \{1,2\} = \{a \mapsto 1, a \mapsto 2, b \mapsto 1, b \mapsto 2, c \mapsto 1, c \mapsto 2\}$$

$$\{a,b,c\} \times \{\} = ?$$

$$\{a,b,c\} \times \{1,2\} = ?$$

Cartesian Products: Definition and Examples

Defining Cartesian product:

Predicate	Definition	
$x \mapsto y \in S \times T$	$x \in S \land y \in T$	

Examples:

 $\{a,b\} \mapsto 1, \{a,b\} \mapsto 2\}$

Cartesian Product is a Type Constructor

 $S \times T$ is a new type constructed from types S and T.

Cartesian product is the type constructor for ordered pairs.

Given
$$x \in S$$
, $y \in T$, we have

$$x \mapsto y \in S \times T$$

$$\begin{array}{rclcrcl} 4 \mapsto 7 & \in & ? \\ & \{5,6,3\} \mapsto 4 & \in & ? \\ & \{ \ 4 \mapsto 8, \ 3 \mapsto 0, \ 2 \mapsto 9 \ \} & \in & ? \end{array}$$

Cartesian Product is a Type Constructor

 $S \times T$ is a new type constructed from types S and T.

Cartesian product is the type constructor for ordered pairs.

Given
$$x \in S$$
, $y \in T$, we have

$$x \mapsto y \in S \times T$$

$$\begin{array}{rcl} 4\mapsto 7 & \in & \mathbb{Z}\times\mathbb{Z} \\ \\ \{5,6,3\}\mapsto 4 & \in & \mathbb{P}(\mathbb{Z})\times\mathbb{Z} \\ \{ \ 4\mapsto 8, \ 3\mapsto 0, \ 2\mapsto 9 \ \} & \in & \mathbb{P}(\mathbb{Z}\times\mathbb{Z}) \end{array}$$

Sets of Order Pairs

A database can be modelled as a set of ordered pairs:

```
\begin{array}{rcl} \textit{directory} &=& \{ \textit{ mary} \mapsto 287573, \\ & \textit{ mary} \mapsto 398620, \\ & \textit{ john} \mapsto 829483, \\ & \textit{ jim} \mapsto 398620 \ \} \end{array}
```

directory has type

```
directory \in \mathbb{P}(Person \times PhoneNum)
```

Relations

A relation is a set of ordered pairs.

A relation is a common modelling structure so Event-B has a special notation for it:

$$\boxed{T \leftrightarrow S} = \mathbb{P}(T \times S)$$

So we can write:

$$directory \in Person \leftrightarrow PhoneNum$$

Do not confuse the arrow symbols:

- \leftrightarrow combines two sets to form a set.
- → combines two elements to form an ordered pair.

Domain and Range

Domain and Range Definition

- ► The domain of a relation R is the set of first parts of all the pairs in R, written dom(R)
- ► The range of a relation R is the set of second parts of all the pairs in R, written ran(R)

Predicate	Definition
$x \in dom(R)$	$\exists y \cdot x \mapsto y \in R$
$y \in ran(R)$	$\exists x \cdot x \mapsto y \in R$

Telephone Directory Model

- Phone directory relates people to their phone numbers.
- Each person can have zero or more numbers.
- People can share numbers.

```
context PhoneContext
sets Person PhoneNum
end
```

```
machine PhoneBook
variables dir
invariants dir \in Person \leftrightarrow PhoneNum
```

```
initialisation dir := \{\}
```

Extending the Directory

Add an entry to the directory:

```
\begin{array}{ll} \textit{AddEntry} & \triangleq & \textbf{any} \ p, n \ \textbf{where} \\ & p \in \textit{Person} \\ & n \in \textit{PhoneNum} \\ & \textbf{then} \\ & \textit{dir} \ := \ \textit{dir} \cup \{p \mapsto n\} \\ & \textbf{end} \end{array}
```

Relational Image

```
\begin{array}{rcl} \textit{directory} &=& \{ \textit{ mary} \mapsto 287573, \\ & \textit{ mary} \mapsto 398620, \\ & \textit{ john} \mapsto 829483, \\ & \textit{ jim} \mapsto 398620 \ \} \end{array}
```

Relational image examples:

```
directory[ \{mary\} ] = \{ 287573, 398620 \}
directory[ \{ john, jim \} ] = \{ 829483, 398620 \}
```

Relational Image Definition

Assume $R \in S \leftrightarrow T$ and $A \subseteq S$

The relational image of set A under relation R is written

R[A]

Predicate	Definition	
$y \in R[A]$	$\exists x \cdot x \in A \land x \mapsto y \in R$	

Modelling Queries using Relational Image

Determine all the numbers associated with a person in the directory:

```
GetNumbers \hat{=} any p, result where p \in Person result = dir[\{p\}] end
```

Determine all the numbers associated with a set of people:

Partial Functions

Special kind of relation: each domain element has at most one range element associated with it.

To declare f as a partial function:

$$f \in X \rightarrow Y$$

This says that f is a many-to-one relation

Each domain element is mapped to one range element:

$$x \in dom(f) \implies card(f[\{x\}]) = 1$$

More usually formalised as a uniqueness constraint

$$x \mapsto y_1 \in f \land x \mapsto y_2 \in f \implies y_1 = y_2$$

Function Application

We can use function application for partial functions.

If $x \in dom(f)$, then we write f(x) for the unique range element associated with x in f.

If $x \notin dom(f)$, then f(x) is undefined.

If $card(f[\{x\}]) > 1$, then f(x) is undefined.

Examples

```
\begin{array}{lll} \textit{dir}1 & = & \{ \; \textit{mary} \mapsto 398620, & \textit{dir}2 \; = \; \{ \; \textit{mary} \mapsto 287573, \\ & \textit{jim} \mapsto 493028, & \textit{mary} \mapsto 398620, \\ & \textit{jane} \mapsto 493028 \; \} & \textit{jane} \mapsto 493028 \; \} \end{array}
```

 $dir1 \in Person \rightarrow Phone$ dir1(jim) = 493028 dir1(sarah) is undefined $dir2 \notin Person \rightarrow Phone$ dir2(mary) is undefined

Well-definedness and application definitions

Expression	Well-definedness condition
f(x)	$x \in dom(f) \land f \in X \leftrightarrow Y$

The following definition of function application assumes that f(x) is well-defined:

Predicate	Definition
y = f(x)	$x \mapsto y \in f$

Birthday Book Example

Birthday book relates people to their birthday.

Each person can have at most one birthday.

People can share birthdays.

sets PERSON DATE

variables birthday invariants birthday \in PERSON \leftrightarrow DATE

initialisation $birthday := \{\}$

Adding and checking birthdays

Add an entry to the directory:

```
 \begin{array}{ll} \textit{AddEntry} & \triangleq & \textbf{any} \ p, d \ \textbf{where} \\ & p \in \textit{Person} \\ & p \not \in \textit{dom}(\textit{birthday}) \\ & d \in \textit{Date} \\ & \textbf{then} \\ & \textit{birthday} \ := \ \textit{birthday} \cup \{p \mapsto d\} \\ & \textbf{end} \\ \end{array}
```

Check a person's birthday:

```
Check \hat{=} any p, result where p \in dom(birthday) result = birthday(p) end
```


Domain Restriction

Given
$$R \in S \leftrightarrow T$$
 and $A \subseteq S$,
the domain restriction of R by A is writen $A \triangleleft R$

Restrict relation R so that it only contains pairs whose first part is in the set A.

Example:

```
\begin{array}{ll} \textit{directory} &=& \{ \textit{ mary} \mapsto 287573, & \textit{mary} \mapsto 398620, \\ & \textit{ john} \mapsto 829483, & \textit{jim} \mapsto 398620 \ \} \\ \\ \{\textit{john}, \textit{jim}, \textit{jane} \} \lhd \textit{directory} &=& \{ \textit{john} \mapsto 829483, \\ & \textit{jim} \mapsto 398620 \ \} \end{array}
```

Domain Subtraction

Given $R \in S \leftrightarrow T$ and $A \subseteq S$, the domain subtraction of R by A is written $A \triangleleft R$

Remove those pairs from R whose first part is in A.

Example:

```
directory = \{ mary \mapsto 287573, mary \mapsto 398620, \\ john \mapsto 829483, jim \mapsto 398620 \}  \{ john, jim, jane \} \triangleleft directory = \{ mary \mapsto 287573, \\ mary \mapsto 398620 \}
```

Domain and Range, Restriction and Substraction

Assume $R \in S \leftrightarrow T$ and $A \subseteq S$ and $B \subseteq T$

Predicate	Definition	
$x \mapsto y \in A \triangleleft R$	$x \mapsto y \in R \land x \in A$	domain restriction
$x \mapsto y \in A \triangleleft R$	$x \mapsto y \in R \land x \notin A$	domain subtraction
$x \mapsto y \in R \triangleright B$	$x \mapsto y \in R \land y \in B$	range restriction
$x \mapsto y \in R \triangleright B$	$x \mapsto y \in R \land y \notin B$	range subtraction

Removing Entries from the Directory

Remove all the entries associated with a person in the directory:

Remove all the entries associated with a number in the directory:

```
RemoveNumber \hat{=} any n where n \in PhoneNum then dir := dir \triangleright \{n\} end
```

Function Overriding

Override f by g $f \Leftrightarrow g$

f and g must be partial functions of the same type

Override: replace existing mappings with new ones

$$dir1 = \{ mary \mapsto 398620, john \mapsto 829483, \\ jim \mapsto 493028, jane \mapsto 493028 \}$$

$$dir1 \Leftrightarrow \{ mary \mapsto 674321, jane \mapsto 829483 \}$$

$$= \{ mary \mapsto 674321, john \mapsto 829483, \\ jim \mapsto 493028, jane \mapsto 829483 \}$$

Function Overriding Definition

Definition in terms of function override and set union:

$$f \Leftrightarrow \{a \mapsto b\} = (\{a\} \lessdot f) \cup \{a \mapsto b\}$$

$$f \Leftrightarrow g = (\text{dom}(g) \lessdot f) \cup g$$

Modifying a birthday

Modify an entry in the directory:

```
\begin{array}{ll} \textit{ModifyEntry} & \triangleq & \textbf{any} \ p, d \ \textbf{where} \\ & p \in \textit{dom(birthday)} \\ & d \in \textit{Date} \\ & \textbf{then} \\ & \textit{birthday} := \textit{birthday} \mathrel{\blacktriangleleft} \{p \mapsto d\} \\ & \textbf{end} \end{array}
```

Syntactic shorthand:

```
ModifyEntry \triangleq \mathbf{any} \ p, d \ \mathbf{where} \ p \in Person \ d \in Date \ \mathbf{then} \ birthday(p) := d \ \mathbf{end}
```

Adding the domain as an explicit variable

```
variables birthday, person invariants  \begin{array}{c} \textit{birthday} \in \textit{PERSON} \rightarrow \textit{DATE} \\ \textit{person} \subseteq \textit{PERSON} \\ \textit{person} = \textit{dom(birthday)} \\ \\ \textbf{initialisation} \quad \textit{birthday} := \{\} \qquad \textit{person} := \{\} \\ \end{array}
```

Total Functions

A total function is a special kind of partial function. To declare *f* as a total function:

$$f \in X \to Y$$

This means that f is well-defined for every element in X, i.e., $f \in X \to Y$ is shorthand for

$$f \in X \rightarrow Y \land dom(f) = X$$

Modelling with Total functions

We can re-write the invariant for the birthday book to use total functions:

variables birthday, person invariants

```
person \subseteq PERSON
birthday \in person \rightarrow DATE
```

Using the total function arrow means that we don't need to explicitly specify that dom(birthday) = person.

We can use person as a guard instead of dom(birthday):

```
Check \hat{=} any p, result where p \in person result = birthday(p) end
```

AddEntry needs to be modified

Add an entry to the directory:

```
 \begin{array}{ll} \textit{AddEntry} & \triangleq & \textbf{any} \ \textit{p}, \textit{d} \ \textbf{where} \\ & \textit{p} \in \textit{PERSON} \\ & \textit{p} \not \in \textit{person} \\ & \textit{d} \in \textit{DATE} \\ & \textbf{then} \\ & \textit{birthday} \ := \ \textit{birthday} \cup \{\textit{p} \mapsto \textit{d}\} \\ & \textit{person} := \textit{person} \cup \{\textit{p}\} \\ & \textbf{end} \\ \end{array}
```

Requirements for a Buildings Access System

- Specify a system that controls access to a collection of buildings.
- Registered users will have access permission to enter certain buildings.
- A user can only enter buildings that they have access permission for.
- ▶ The system should keep track of the location of users.
- The system should manage registration and access permission for users.

Types? Variables? Invariants? Events?

Buildings Access System

- ► Types: USER, BUILDING
- Variables: register, permission, location
- Invariants:
 - ▶ register ⊆ USER //register is a set of users
 - ▶ permission ∈ USER ↔ BUILDING
 - // relates users to the buildings they can access
 - ▶ dom(permission) ⊆ register
 - // only register users may have permissions
 - ▶ location ∈ USFR → BUILDING
 - // user is located in at most one building
 - ▶ location ⊆ permission
 - // user located in a building must have permission
 - // for that building

Buildings Access System

Events:

- RegisterUser, DeRegisterUser
- AddPermission, RevokePermission
- EnterBuilding, LeaveBuilding