
Modelling Classes and Associations in Event-B

c� Michael Butler

University of Southampton

March 24, 2016

Class*diagram*abstraction

user buildinglocation

permission

ManyPtoPone*association

ManyPtoPmany*association

*

*

*

1

Buildings Access System

I Types: USER , BUILDING

I Variables: register , permission, location

I Invariants:
I register ✓ USER //register is a set of users
I permission 2 USER $ BUILDING

// relates users to the buildings they can access
I dom(permission) ✓ register

// only register users may have permissions
I location 2 USER 7! BUILDING

// user is located in at most one building
I location ✓ permission

// user located in a building must have permission
// for that building

Domain and Range

directory = { mary 7! 287573,

mary 7! 398620,

john 7! 829483,

jim 7! 398620 }

dom(directory) = {mary , john, jim}

ran(directory) = {287573, 398620, 829483}

Relations

A relation is a set of ordered pairs.

A relation is a common modelling structure so Event-B has a
special notation for it:

T $ S = P(T ⇥ S)

So we can write:

directory 2 Person$ PhoneNum

Do not confuse the arrow symbols:
$ combines two sets to form a set.
7! combines two elements to form an ordered pair.

Partial Functions

Special kind of relation: each domain element has at most one
range element associated with it.

To declare f as a partial function:

f 2 X 7! Y

This says that f is a many-to-one relation

Each domain element is mapped to one range element:

x 2 dom(f) =) card(f [{x}]) = 1

More usually formalised as a uniqueness constraint

x 7! y
1

2 f ^ x 7! y
2

2 f =) y
1

= y
2

Function Application

We can use function application for partial functions.

If x 2 dom(f), then we write f (x) for the unique range

element associated with x in f .

If x 62 dom(f) , then f (x) is undefined.

If card(f [{x}]) > 1 , then f (x) is undefined.

Total Functions

A total function is a special kind of partial function. To declare f
as a total function:

f 2 X ! Y

This means that f is well-defined for every element in X , i.e.,
f 2 X ! Y is shorthand for

f 2 X 7! Y ^ dom(f) = X

Classes and attributes

Consider our model of a birthday book:

variables birthday , person
invariants

person ✓ PERSON
birthday 2 person! DATE

Representing birthday as a simple class diagram:

PERSON DATE
birthday

Multiple attributes

Suppose we want to model a person’s address as well.
Multiple attributes of an entity (e.g., person) are modelled as
separate total functions on the same domain:

variables birthday , person, address
invariants

person ✓ PERSON
birthday 2 person! DATE
address 2 person! ADDRESS

The common domain for both functions means every element of
the set r person, has both a birthday and an address.

Class diagram for the birthday/address book

PERSON' DATE'
birthday'

ADDRESS'

address'

Making variable set explicit

person'
�'PERSON' DATE'

birthday'

ADDRESS'

address'

Secure database example

We consider a secure database. Each object in the database has a
data component.

Each object has a classification between 1 and 10.

Users of the system have a clearance level between 1 and 10.

Users can only read and write objects whose classification is no
greater than the user’s clearance level.

What are the entities, associations, events?

Class diagram for secure database

OBJECT' LEVEL'
class'

DATA' USER'

data' clear'

Making variable set explicit

object'
�'OBJECT' LEVEL'

class'

DATA' user''
�'USER'

data' clear'

Types and variables

sets OBJECT DATA USER
constants LEVEL
axioms LEVEL = 1..10

variables object, user , data, class, clear
invariants

object ✓ OBJECT
user ✓ USER
data 2 object ! DATA
class 2 object ! LEVEL
clear 2 user ! LEVEL

The invariant data 2 object ! DATA means that data(o) is
well-defined whenever o 2 object. Why is this important?

initialisation

object := {} user := {} data := {} class := {} clear := {}

Adding users

AddUser =̂
any u, c where

u 2 USER
u 62 user
c 2 LEVEL

then

user := user [{u}
clear(u) := c

end

The new user must not already exist.
We need to provide the initial clearance level for the new user.

Adding objects

AddObject =̂
any o, d , c where

o 2 OBJECT
o 62 object
d 2 DATA
c 2 LEVEL

then

object := object [{o}
data(o) := d
class(o) := c

end

The new object must not already exist.
We need to provide the initial classification level and data value for
the new object.

Reading objects

Read =̂
any u, o, result where

u 2 user The user must exist
o 2 object The object must exist
clear(u) � class(o) The clearance must be ok
result = data(o) The data associated with the object

end

Writing objects

Write =̂
any u, o, d where

u 2 user
o 2 object
clear(u) � class(o)

then

data(o) := d
end

The write operation overwrites the data value associate with the
object with a new value.

Changing classification and clearance levels

ChangeClass =̂
any o, c where

o 2 object
c 2 LEVEL

then

class(o) := c
end

ChangeClear =̂
any u, c where

u 2 user
c 2 LEVEL

then

clear(u) := c
end

Making classification changes more secure

Include constraints on the user who is changing the object
classification:

ChangeClass =̂
any o, c , u where

o 2 object
c 2 LEVEL
clear(u) � class(o)
clear(u) � c

then

class(o) := c
end

Making clearance changes more secure

Include constraints on the user who is changing the object
classification:

ChangeClear =̂
any u, a, c where

u 2 user
a 2 user
clear(a) � clear(u)
clear(a) � c
c 2 LEVEL

then

clear(u) := c
end

Removing users and objects

RemoveUser =̂
any u where

u 2 user
then

user := user \ {u}
clear := {u}C� clear

end

RemoveObject =̂
any o where

o 2 object
then

object := object \ {o}
class := {o}C� class
data := {o}C� data

end

