
Refinement in Practise

c� Michael Butler

University of Southampton

March 29, 2016

Abstraction

I Abstraction can be viewed as a process of simplifying our
understanding of a system.

I The simplification should
I focus on the intended purpose of the system
I ignore details of how that purpose is achieved.

I The modeller needs to make judgements about what they
believe to be the key features of the system.

I If the purpose is to provide some service, then
I model what a system does from the perspective of the service

users
I ‘users’ might be computing agents as well as humans.

I If the purpose is to control, monitor or protect some
phenomenon, then

I the abstraction should focus on those phenomenon
I in what way should they be controlled or protected?

Abstraction

I Abstraction can be viewed as a process of simplifying our
understanding of a system.

I The simplification should
I focus on the intended purpose of the system
I ignore details of how that purpose is achieved.

I The modeller needs to make judgements about what they
believe to be the key features of the system.

I If the purpose is to provide some service, then
I model what a system does from the perspective of the service

users
I ‘users’ might be computing agents as well as humans.

I If the purpose is to control, monitor or protect some
phenomenon, then

I the abstraction should focus on those phenomenon
I in what way should they be controlled or protected?

Abstraction

I Abstraction can be viewed as a process of simplifying our
understanding of a system.

I The simplification should
I focus on the intended purpose of the system
I ignore details of how that purpose is achieved.

I The modeller needs to make judgements about what they
believe to be the key features of the system.

I If the purpose is to provide some service, then
I model what a system does from the perspective of the service

users
I ‘users’ might be computing agents as well as humans.

I If the purpose is to control, monitor or protect some
phenomenon, then

I the abstraction should focus on those phenomenon
I in what way should they be controlled or protected?

Access*control*system
• Users*are*authorised*to*engage*in*activities
• User*authorisation*may*be*added*or*revoked
• Activities*take*place*in*rooms
• Users*gain*access*to*a*room*using*a*oneWtime*
token*provided*they*have*authority*to*engage*in*
the*room*activities

• Tokens*are*issued*by*a*central*authority
• Tokens*are*time*stamped
• A*room*gateway*allows*access*with*a*token*
provided*the*token*is*valid**

Class*diagram

USER ACTIVITY

ROOM

TOKEN

AUTHORITY

GATEKEEPER

room

authorised

takeplace

holder

issuer
trust

location

read

manageauthorise
manage

guards

Class*diagram

USER ACTIVITY

ROOM

TOKEN

AUTHORITY

GATEKEEPER

room

authorised

takeplace

holder

issuer
trust

location

read

manageauthorise
manage

guards
This*model*is*unnecessarily*complex*to*
specify*the*main*access*control*policy

Extracting*the*essence

• Access*Control*Policy:*Users%may%be%in%a%room%
only%if%they%are%authorised% to%engage%in%all%
activities%that%may%take%place%in%that%room

• To*express*this*we*only*require*Users,*Rooms,*
Activities*and*relationships*between*them

• Abstraction:*focus*on*key*entities*in*the*
problem*domain*

Diagrammatic*representation*of*an*
abstract*model

USER ACTIVITY

ROOM

authorised

takeplace
location

Variables*and*invariants*of*EventWB*
model

Variables*of*EventWB*model
@inv1 authorised � User*↔*Activity //*relation
@inv2 takeplace � Room*↔ Activity //*relation
@inv3 location**� User*⇸ Room //*partial*function

Access*control*invariant:**
if user*u is*in*room*r,*
then'umust*be*authorised to*engaged*in*all*activities*that*can*take*
place*in*r

@inv4 �u,r .**u�dom(location)*� location(*u)*=*r �
takeplace[*r]**� authorised[*u]

Refinement
I

Refinement is a process of enriching or modifying a model in
order to

I augment the functionality being modelled, or
I explain how some purpose is achieved

I In a refinement step we refine one model M1 to another
model M2:

I M2 is a refinement of M1
I M1 is an abstraction of M2

I We can perform a series of refinement steps to produce a
series of models M1, M2, M3, ...

I Facilitates abstraction: we can postpone treatment of some
system features to later refinement steps

I Event-B provides a notion of consistency of a refinement:
I We use proof to verify the consistency of a refinement step
I Failing proof can help us identify inconsistencies in a

refinement step

I Abstraction and refinement together should allow us to
manage system complexity in the design process

Refinement
I

Refinement is a process of enriching or modifying a model in
order to

I augment the functionality being modelled, or
I explain how some purpose is achieved

I In a refinement step we refine one model M1 to another
model M2:

I M2 is a refinement of M1
I M1 is an abstraction of M2

I We can perform a series of refinement steps to produce a
series of models M1, M2, M3, ...

I Facilitates abstraction: we can postpone treatment of some
system features to later refinement steps

I Event-B provides a notion of consistency of a refinement:
I We use proof to verify the consistency of a refinement step
I Failing proof can help us identify inconsistencies in a

refinement step

I Abstraction and refinement together should allow us to
manage system complexity in the design process

Refinement
I

Refinement is a process of enriching or modifying a model in
order to

I augment the functionality being modelled, or
I explain how some purpose is achieved

I In a refinement step we refine one model M1 to another
model M2:

I M2 is a refinement of M1
I M1 is an abstraction of M2

I We can perform a series of refinement steps to produce a
series of models M1, M2, M3, ...

I Facilitates abstraction: we can postpone treatment of some
system features to later refinement steps

I Event-B provides a notion of consistency of a refinement:
I We use proof to verify the consistency of a refinement step
I Failing proof can help us identify inconsistencies in a

refinement step

I Abstraction and refinement together should allow us to
manage system complexity in the design process

Refinement
I

Refinement is a process of enriching or modifying a model in
order to

I augment the functionality being modelled, or
I explain how some purpose is achieved

I In a refinement step we refine one model M1 to another
model M2:

I M2 is a refinement of M1
I M1 is an abstraction of M2

I We can perform a series of refinement steps to produce a
series of models M1, M2, M3, ...

I Facilitates abstraction: we can postpone treatment of some
system features to later refinement steps

I Event-B provides a notion of consistency of a refinement:
I We use proof to verify the consistency of a refinement step
I Failing proof can help us identify inconsistencies in a

refinement step

I Abstraction and refinement together should allow us to
manage system complexity in the design process

Refinement
I

Refinement is a process of enriching or modifying a model in
order to

I augment the functionality being modelled, or
I explain how some purpose is achieved

I In a refinement step we refine one model M1 to another
model M2:

I M2 is a refinement of M1
I M1 is an abstraction of M2

I We can perform a series of refinement steps to produce a
series of models M1, M2, M3, ...

I Facilitates abstraction: we can postpone treatment of some
system features to later refinement steps

I Event-B provides a notion of consistency of a refinement:
I We use proof to verify the consistency of a refinement step
I Failing proof can help us identify inconsistencies in a

refinement step

I Abstraction and refinement together should allow us to
manage system complexity in the design process

Modelling Components and Refinement

context!!ctx$machine!!m$
$
variables!!v$
invariants !I$
events !e1,$e2,$…$

sets!!s$
constants!!c$
axioms !x$

sees#

Modelling Components and Refinement

context!!ctx$machine!!m$
$
variables!!v$
invariants !I$
events !e1,$e2,$…$

sets!!s$
constants!!c$
axioms !x$

sees#

sees#
machine!!m1! context!!c1!

sees#
machine!!m2! context!!c2!

refines# extends#

Extension Refinement in Event-B

A refined machine has the following form:

machine M2
refines M1
variables ...
invariants ...
events...

Extension refinement can be used to extend or add new features to
a model.

I Add variables and invariants

I Extend existing events to act on additional variables

I Add new events to act on additional variables

All events must maintain the new invariants.

Event Extension

Event E1 of M1 may be extended by E2 in M2:

E2 extends E1 =̂
any < additional parameters > where

< additional guards >
then

< additional actions >
end

Extending an event means

I adding parameters

I adding guards

I adding actions

Event Extension

Event E1 of M1 may be extended by E2 in M2:

E2 extends E1 =̂
any < additional parameters > where

< additional guards >
then

< additional actions >
end

Extending an event means

I adding parameters

I adding guards

I adding actions

I Extension example: add ownership to secure database

Class diagram for secure database

object'
�'OBJECT' LEVEL'

class'

DATA' user''
�'USER'

data' clear'

Types and variables for Secure DB

context c1
sets OBJECT DATA USER
constants LEVEL
axioms LEVEL = 1..10

machine SecureDB1
sees c1
variables object, user , data, class, clear
invariants

object ✓ OBJECT
user ✓ USER
data 2 object ! DATA
class 2 object ! LEVEL
clear 2 user ! LEVEL

Adding object ownership

Extend the database specification so that each object has an
owner.

The clearance associated with that owner must be at least as high
as the classification of the object.

Only the owner of an object is allowed to delete it.

What additional variables are required?

What events are a↵ected?

Class diagram with ownership

object'
�'OBJECT' LEVEL'

class'

DATA' user''
�'USER'

data' clear'
owner'

Refinement

machine SecureDB2
refines SecureDB1
variables object, user , data, class, clear , owner
invariants

owner 2 object ! user

Note we must list all the variables: those from M1 that we wish to
retain as well as new ones

Here owner is a new variable.

We do not repeat invariants of M1 in M2

Adding users

AddUser =̂
any u, c where

u 2 USER
u 62 user
c 2 LEVEL

then

user := user [{u}
clear(u) := c

end

Do we need to modify this?

Adding objects

AddObject =̂
any o, d , c where

o 2 OBJECT
o 62 object
d 2 DATA
c 2 LEVEL

then

object := object [{o}
data(o) := d
class(o) := c

end

Do we need to modify this?

Event Extension

AddObject extends AddObject =̂
any u where

u 2 user
clear(u) � class(o)

then

owner(o) := u
end

This is equivalent to

AddObject refines AddObject =̂
any o, d , c , u where

o 2 OBJECT
o 62 object
d 2 DATA
c 2 LEVEL
u 2 user
clear(u) � class(o)

then

object := object [{o}
data(o) := d
class(o) := c
owner(o) := u

end

Other events to consider

I Read

I Write

I ChangeClass

I ChangeClear

I RemoveUser, RemoveObject

Do we need new events?

Forms of Event-B Refinement

1. Extension:
I Add variables and invariants
I Extend existing events to act on additional variables
I Add new events to act on additional variables

2. Extension with Guard Modification:
I Similar to model extension, except that we modify guards of

existing events

3. Variable Replacement / Data Reification:
I Replace some variables with other variables, i.e., replace

abstract variables with concrete variables
I Modify existing events, add new events

4. Variable Removal:
I Remove variables that have become redundant through earlier

introduction of other variables.

I Verification of 2, 3 and 4 requires gluing invariants that link
abstract and concrete variables.

Forms of Event-B Refinement

1. Extension:
I Add variables and invariants
I Extend existing events to act on additional variables
I Add new events to act on additional variables

2. Extension with Guard Modification:
I Similar to model extension, except that we modify guards of

existing events

3. Variable Replacement / Data Reification:
I Replace some variables with other variables, i.e., replace

abstract variables with concrete variables
I Modify existing events, add new events

4. Variable Removal:
I Remove variables that have become redundant through earlier

introduction of other variables.

I Verification of 2, 3 and 4 requires gluing invariants that link
abstract and concrete variables.

Forms of Event-B Refinement

1. Extension:
I Add variables and invariants
I Extend existing events to act on additional variables
I Add new events to act on additional variables

2. Extension with Guard Modification:
I Similar to model extension, except that we modify guards of

existing events

3. Variable Replacement / Data Reification:
I Replace some variables with other variables, i.e., replace

abstract variables with concrete variables
I Modify existing events, add new events

4. Variable Removal:
I Remove variables that have become redundant through earlier

introduction of other variables.

I Verification of 2, 3 and 4 requires gluing invariants that link
abstract and concrete variables.

Forms of Event-B Refinement

1. Extension:
I Add variables and invariants
I Extend existing events to act on additional variables
I Add new events to act on additional variables

2. Extension with Guard Modification:
I Similar to model extension, except that we modify guards of

existing events

3. Variable Replacement / Data Reification:
I Replace some variables with other variables, i.e., replace

abstract variables with concrete variables
I Modify existing events, add new events

4. Variable Removal:
I Remove variables that have become redundant through earlier

introduction of other variables.

I Verification of 2, 3 and 4 requires gluing invariants that link
abstract and concrete variables.

Forms of Event-B Refinement

1. Extension:
I Add variables and invariants
I Extend existing events to act on additional variables
I Add new events to act on additional variables

2. Extension with Guard Modification:
I Similar to model extension, except that we modify guards of

existing events

3. Variable Replacement / Data Reification:
I Replace some variables with other variables, i.e., replace

abstract variables with concrete variables
I Modify existing events, add new events

4. Variable Removal:
I Remove variables that have become redundant through earlier

introduction of other variables.

I Verification of 2, 3 and 4 requires gluing invariants that link
abstract and concrete variables.

I Extension example: add ownership to secure database

I Extension with Guard Modification example: add tokens to
buildings access system

I Variable replace example: simple data sampling system

Abstract model of building access

register
� USER BUILDINGlocation

permission

Refine this by introducing a token mechanism

register
� USER BUILDINGlocation

permission

valid
� TOKEN

tusr tloc

Refinement of access control with tokens

EnterBuilding =̂ any u, b where

u 62 dom(location)
u 7! b 2 permission

then

location(u) := b
end

RefinedEnterBuilding =̂ any u, b, t where

u 62 dom(location)
t 2 valid
tusr(t) = u
tloc(t) = b

then

location(u) := b
end

GRD Proof Obligations

We need to prove that the guard of a refined event is not weaker
than the guard of the abstract event.
E.g., the refined enter event should not weaken the conditions
under which a user may enter a room.

GRD Proof obligation:
Assume: guard(RefinedEnter) + invariants
Prove: guard(AbstractEnter)

For the access control refinement, we need this invariant:

8t · t 2 valid =) tusr(t) 7! tloc(t) 2 permission

GRD Proof Obligations

We need to prove that the guard of a refined event is not weaker
than the guard of the abstract event.
E.g., the refined enter event should not weaken the conditions
under which a user may enter a room.

GRD Proof obligation:
Assume: guard(RefinedEnter) + invariants
Prove: guard(AbstractEnter)

For the access control refinement, we need this invariant:

8t · t 2 valid =) tusr(t) 7! tloc(t) 2 permission

GRD Proof Obligations

We need to prove that the guard of a refined event is not weaker
than the guard of the abstract event.
E.g., the refined enter event should not weaken the conditions
under which a user may enter a room.

GRD Proof obligation:
Assume: guard(RefinedEnter) + invariants
Prove: guard(AbstractEnter)

For the access control refinement, we need this invariant:

8t · t 2 valid =) tusr(t) 7! tloc(t) 2 permission

Simple data sampling system

machine MaxSet1
variables samples
invariants samples ✓ N
initialisation samples := {0}
events

Add =̂ any x where

x 2 N
then

samples := samples [{x}
end

GetMax =̂ any result where

result = max(samples)
end

Refine to a more optimal design

machine MaxSet2
refines MaxSet1
variables m we only need to store the maximum so far
invariants m 2 N
initialisation m := 0
events

Add =̂ any x where

x 2 N
then

m := max({m, x})
end

GetMax =̂ any result where

result = m
end

Gluing invariant

What is the relationship between m and samples?

machine MaxSet2
refines MaxSet1
variables m
invariants m = max(samples)
events...

This is called a gluing invariant: it specifies the relationship
between the abstract and refined variables.

Gluing invariant

What is the relationship between m and samples?

machine MaxSet2
refines MaxSet1
variables m
invariants m = max(samples)
events...

This is called a gluing invariant: it specifies the relationship
between the abstract and refined variables.

Proving that the gluing invariant is maintained

Abstract Add : samples := samples [{x}

Refined Add : m := max({m, x})

Assume: m = max(samples)

Prove: max({m, x}) = max(samples [{x})

This is valid since:

max(s [{x}) = max({max(s), x})

Proving that the gluing invariant is maintained

Abstract Add : samples := samples [{x}

Refined Add : m := max({m, x})

Assume: m = max(samples)

Prove: max({m, x}) = max(samples [{x})

This is valid since:

max(s [{x}) = max({max(s), x})

Proving that the gluing invariant is maintained

Abstract Add : samples := samples [{x}

Refined Add : m := max({m, x})

Assume: m = max(samples)

Prove: max({m, x}) = max(samples [{x})

This is valid since:

max(s [{x}) =

max({max(s), x})

Proving that the gluing invariant is maintained

Abstract Add : samples := samples [{x}

Refined Add : m := max({m, x})

Assume: m = max(samples)

Prove: max({m, x}) = max(samples [{x})

This is valid since:

max(s [{x}) = max({max(s), x})

Closing Messages

I Role of formal modelling:
I increase understanding
I decrease errors

I Role of refinement:
I manage complexity through multiple levels of abstraction

I Role of verification:
I improve quality of models (consistency, invariants)

I Role of tools:
I make verification as automatic as possible, pin-pointing errors

