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1 Theoretical Background

In the grand canonical ensemble, a system at constant temperature and volume is coupled to a reservoir
of a molecular species such that molecules are allowed to exchange between the two. In this work, we
will consider situations when the reservoir consists of ideal gas, and when the reservoir consists of bulk
water. The chemical potential of a system where only one species can vary, defined as

µ =
(
∂F (N,V, T )

∂N

)
T,V

, (S1)

controls the ratio of the number particles in the system and reservoir. For the purposes of this section,
N refers to the instantaneous number of molecules in the system, as opposed to the average number.
In the above equation, F is the Helmholtz free energy of the system coupled to the reservoir. For the
Unlike the Gibbs ensemble1, the reservoir in the grand canonical ensemble is not explicitly considered
as it is completely defined by the chemical potential. When the system and reservoir are two phases, for
example, liquid and gas respectively, chemical equilibrium is established when the chemical potential of
the system of interest and reservoir, denoted µsys and µres respectively, are equal.

Equation S1 implies that N is a continuous variable, suggesting that F is valid for non-integer values of
N . Generally, however, this is not the case; Equation S1 is only valid in the thermodynamic limit, that
is, when N →∞. One can understand this by considering that while a non-integer number of molecules
is “alchemical”, the more molecules there are, the more continuous the quantity appears to be. Treating
N as a continuous variable is, as Kirkwood noted, “a convenient mathematical device”2.

Free energy can be decomposed into an ideal part, denoted Fideal, and an excess part, denoted Fex, so
that F = Fideal + Fex. The excess free energy contains the contribution from potential energy, such as
from inter and intra molecular interactions. Similarly, one can define the excess chemical potential as

µ′(N,V, T ) = µ(N,V, T )− µideal(N,V, T ), (S2)

where µ′ is the excess chemical potential, and the dependence on N , volume V and temperature T has
been made explicit. Clearly, µ′ is zero for ideal systems. By utilising a finite difference approximation
to equation S1 in the thermodynamic limit (see, for instance, McQuarrie3), one can reason that for the
system of interest

µ′ ≈ ∆Fex

∆Nsys
(S3)

= Fex(Nsys + 1)− Fex(Nsys), (S4)
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where the Nsys is the number of molecules in the system of interest, and ∆Nsys is set equal to 1. Thus, the
excess chemical potential approximates the free energy required to couple one additional molecule to the
system from ideal gas when Nsys →∞. Thus, µ′ is an important quantity in free energy calculations. In a
pioneering paper, Widom derived an equation (not stated here) that can be utilised in the determination
of µ′ from molecular simulations involving particle insertions4.

Widom’s method formed the foundation of multiple grand canonical methodologies and free energy
calculations. For example, Hummer and co-workers have combined Widom’s insertion method and
Bennett’s method of overlapping histograms to calculate the binding free energies of water molecules to
non-polar cavities, such as carbon nanotubes and fullerenes5;6. The free energy to hydrate a large site
could be evaluated using Hummer’s method using multiple sequential calculations.

In a seminal paper, Adams laid the foundations for many of the current implementations of GCMC
by introducing an “insert” and “delete” move along with the standard translation and rotation move
types in Monte Carlo simulations7. In Adams’ formulation, the acceptance probabilities for inserting a
molecule from the reservoir and deleting a particle are, respectively, given by

p(Nsys → Nsys + 1) = min
[
1,

1
Nsys + 1

exp(B) exp(−β∆E)
]
, (S5)

p(Nsys → Nsys − 1) = min [1, Nsys exp(−B) exp(−β∆E)] , (S6)

where β = 1/kBT denotes the inverse temperature with kB as Boltzmann’s constant, ∆E is change in
energy from the trial move, Nsys is the number of water molecules in the system, and the parameter B is
known as the Adams parameter. Discussed in more detail below, we motivate B—in a manner slightly
differently, but equivalently, to Adams—as

B = µβ + ln
(
V

Λ3

)
, (S7)

where Λ is the thermal wavelength of water, and V denotes the volume over which GCMC moves take
place. The benefit of using B is that the constants µ, V and Λ are absorbed into a single term. Like
temperature, B must be set prior to running a GCMC simulation. The parameter B influences the
probability that a water is inserted or deleted; fewer waters are found on average at lower values of B
that at higher values of B. Note that simulating at a constant B guarantees that the simulation is run
at a constant µ: the basic requirement for simulating the grand canonical ensemble.

As discussed in Section 2.1, a significant drawback to implementing equations S5 and S6 is that, prior to
this work, it has not been clear what B (or µ) should be set by the user to produce the number of water
molecules that would be present if the simulated system were placed in physical contact with bulk water.
Notably, Guarnieri and Mezei circumvented this issue by, instead of running one simulation at a single
B, they ran many GCMC simulations at a range of B values8. The analogy between µ and temperature
means that varying B can be thought of as performing a type of simulated annealing on the chemical
potential. As B is changed from high to low, the number of water molecules in the system decreases,
and, as B is a type of energetic potential, the water molecules are present at lower values of B are more
strongly bound than those that disappear at higher B values. Thus, the simulated annealing method
can rank order molecules by binding affinity9, although the numeric values of the binding free energies
are unknown.

Extra clarity on B can be gained by considering GCMC between liquid and ideal gas phases and applying
the equilibrium condition µsys = µres to equation S7. We denote the equilibrium number of molecules of
the system of interest and reservoir as Nsys,equil and Nres,equil respectively. The chemical potentials for
the system and ideal gas reservoir are, respectively, given by

µsys = µ′sys + kBT ln
(
Nsys,equilΛ3

V

)
, (S8)
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and

µres = kBT ln
(
Nres,equilΛ3

V

)
. (S9)

These relations are well known10; µres is that of an ideal gas, and describes the kinetic energy contribution
to free energy, whereas µsys comprises of both potential (encoded in µ′) and kinetic energy contributions.
Combining equation S7 with equations S8 and S9 when the volumes of the system and ideal gas reservoir
are equal, we arrive at

B = βµ′sys + ln(Nsys,equil) (S10)

and B = ln(Nres,equil), (S11)

respectively. Equation S11 reveals that B establishes the size of the particle reservoir at equilibrium: the
larger the reservoir, the higher the probability of accepting an insertion move and rejecting a deletion
move. When simulating the grand canonical ensemble, Nsys,equil fluctuates about its mean value. Ac-
cordingly, Adams originally defined B to equal βµ′ + ln〈Nsys,equil〉7, where the angular brackets denote
an ensemble average. Note that this implies there is a one-to-one relationship between a chosen B and
the resulting 〈Nsys,equil〉.

Selecting which Adams value (or equivalently, chemical potential) to run with GCMC is straightforward
when studying phases of pure substances. The situation is more complicated when considering binding
processes in a mixed medium. If one knows in advance that there should be 〈N∗sys,equil〉 molecules in
a system, then one can find the correct B to use, denoted B∗, by performing many simulations with
different Bs and selecting the one that yields the 〈Nsys,equil〉 that is closest to 〈N∗sys,equil〉. This has been
implemented by Mezei and co-workers in a dCpG-proflavine complex11. Mezei and other groups have
implemented different iterative simulation procedures to determine B∗ from a known 〈N∗sys,equil〉12;13;14.

Returning to the example of GCMC between two phases, it is straightforward to determine coupling free
energies10. Combining equations S4, S11, and S10 one can find that

Fex(Nsys + 1)− Fex(Nsys) = kBT ln
(
Nres,equil

Nsys,equil

)
. (S12)

Despite appearing valid only for phase-equilibrium and not for water-protein binding, an equivalent rela-
tionship to this was used by Clark et al. to predict the binding affinities for fragments in T4 lysozyme15,
and later by Bodnarchuk et al. to predict the binding affinities of individual water molecules16. Interest-
ingly, both Clark and Bodnarchuk found that kBT ln

(
Nres,equil
Nsys,equil

)
yielded inconsistent values when B was

high, and consistent, as well as accurate, values when B was low. These particular findings are explained
in the Section 2.6.

In summary, prior to this work, there were two unresolved problems with GCMC. First, the determination
of what chemical potential to use to replicate physical contact with bulk water. Second, how GCMC
simulations conducted at multiple B parameters can be used to reliably calculate free energies.

2 Expanded theoretical results

2.1 Chemical potential and water binding

One of the primary aims of running GCMC on water in a buried cavity in protein is to efficiently produce
the density that would occur at equilibrium with bulk solvent. While this density can be achieved with
an appropriate choice of chemical potential, it is not known a priori which value one should choose.
Previous GCMC treatments required that the number of bound water molecules was already known,
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after which a series of sequential or iterative simulations would adjust the chemical potential to reproduce
this number13;12;14. When the occupancy of a cavity is not known, a choice for the chemical potential
is that of bulk water, which is inspired by phase equilibrium for pure substances, where the condition
for thermodynamic equilibrium is that the chemical potentials of each phase are equal. However, equal
chemical potentials for water in a protein cavity and bulk is not the equilibrium condition for water-
protein binding. To show why this is so, this section considers the thermodynamics of water binding to
a macromolecule. These considerations naturally lead to a derivation of equation 6 of the main text,
which is later re-derived in Section 2.5 within the formalism of grand canonical integration (GCI). In
contrast to the other sections of the Supplementary Material, the isothermal-isobaric ensemble is used
in order to exploit well known physical chemistry definitions.

Consider the reaction for water, W , binding to a macromolecule, M , to form a water-macromolecule
complex, WM , in bulk water:

νWsol +Msol ⇀↽WMsol, (S13)

where the subscript sol refers to the fact that the chemical species are in bulk water solvent, and the
stoichiometric coefficient, ν, refers to the number of water molecules that are extracted from the bulk
solvent to form a single complex with the macromolecule, which is equivalent to the water occupancy.
Thermodynamic equilibrium for this reaction occurs when3

νµW,sol + µM,sol = µWM,sol, (S14)

where µX,sol denotes the chemical potential for species X in water solvent. Not only does the above
condition not include the chemical potential for water in the macromolecule – which is what is required
to perform GCMC – but the stoichiometry of the reaction is, in general, unknown. We proceed by
establishing an equilibrium condition that can be used to deduce the appropriate chemical potential to
sample water in a macromolecule using GCMC.

The chemical potential for a species X in solvent can be expressed as

µX,sol = µoX,sol + kBT ln(aX,sol), (S15)

where µoX,sol is the chemical potential at the standard state and aX,sol is the activity of the species. The
standard Gibbs binding free energy for the water-macromolecule reaction is defined as

∆Gobind(ν) = µoWM,sol − νµoW,sol − µoM,sol (S16)

= −kBT ln

[
a(ν)WM,sol

aνW,sol aM,sol

]
, (S17)

where the dependency of the standard binding free energy and activity of the water-macromolecule
complex on ν has been made explicit. The definition of the standard binding free energy in terms of the
activities is used in the following analysis such that standard concentrations are implicit.

Even though the stoichiometry of the binding reaction, ν, is unknown, clarity can be gained by considering
what stoichiometry minimizes the standard binding free energy. The condition for the minimum binding
free energy can be found by investigating ∂∆Go

bind(ν)
∂ν = 0. As ν is a discrete variable, the partial differential

will treated with the finite difference approximation

∆∆Gobind(ν)
∆ν

= ∆Gobind(ν + 1)−∆Gobind(ν), (S18)
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where ∆ν = 1. Setting the above equal to zero, defining ∆Gobind(ν + 1) and ∆Gobind(ν) using equation
S17, and rearranging, one finds that

−kBT ln
[
a(ν + 1)WM,sol

a(ν)WM,sol

]
= −kBT ln[aW,sol]

−kBT ln
[

a(ν + 1)WM,sol

aW,ideal a(ν)WM,sol

]
= −kBT ln

[
aW,sol

aW,ideal

]
, (S19)

where in the last line the natural logarithm of the activity of water in the ideal gas has been added to
both sides of the equation. This last step is significant, as both sides of the equation can be interpreted
as standard binding free energies for two different reversible reactions. The left-hand side is the standard
free energy to add a water molecule from ideal gas to the water-macromolecule complex, and the right-
hand side is the standard Gibbs free energy to transfer a water molecule from ideal gas to bulk water,
which is explicitly considered in Section 2.4. As implied by equation S2 and the preceding paragraph,
the left- and right-hand side of S19 can be interpreted as the excess chemical potential of water in the
complex and the excess chemical potential of water in bulk solvent respectively. Thus, we conclude that
at the minimum standard binding free energy state

µ′W,WM (ν) = µ′W,sol (S20)

= µ′hyd,

where µ′W,WM (ν∗) is the excess chemical potential of water in the complex with optimal occupancy ν∗,
and µ′W,sol is the excess chemical potential of water in bulk water solvent, which is nothing more than
the hydration free energy of water, denoted µ′hyd. In Adams’s formulation of GCMC, one sets the Adams
value B and measures the average number of inserted water molecules at equilibrium. From equation
S10 (equation 1 of the main text), one can determine the excess chemical potential of the GCMC region
and thus the equilibrium state with bulk water.

It is important to note that equation S20 (equation 6 of the main text) implies that the chemical
potentials of the GCMC region and bulk water are, in general, not equal at equilibrium. Following
from the relation between the excess chemical potential and the chemical potential in equation S8, the
equality of the excess chemical potentials of a water-macromolecule complex and bulk water allows the
water densities in the complex to differ from that of bulk water.

2.2 Grand canonical integration

We seek an equation through which the Helmholtz free energy to couple multiple molecules from the ideal
gas reservoir to a system of interest can be calculated with GCMC. However, instead of the Helmholtz
free energy, denoted F (N,V, T ), the characteristic state function of the grand canonical ensemble is
the grand potential, denoted Ω(µ, V, T ). In the thermodynamic limit18, F (N,V, T ) and Ω(µ, V, T ) are
related to each other via the Legendre transformation

Ω(µ, V, T ) = F (N,V, T )–Nµ, (S21)

where N is the average number of inserted molecules for an applied µ at equilibrium; subscripts and
angular brackets signifying, respectively, equilibrium and ensemble averaged variables have been omitted
for notional simplicity. Throughout, we consider systems and ideal gas reservoirs at the same temper-
ature and volume so that, henceforth, the Helmholtz free energy and grand potential, are respectively,
abbreviated as F (N) and Ω(µ).

In GCMC, one can change the average number of bound water molecules from an initial number Ni to
a final Nf by altering the applied chemical potential from µi to µf respectively. Using equation S21, the
difference in Helmholtz free energy, F (Nf )− F (Ni) = ∆F (Ni → Nf ), between these states is related to
Ω(µf )− Ω(µi) = ∆Ω(µi → µf ) via
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∆F (Ni → Nf ) = ∆Ω(µi → µf ) +Nfµf −Niµi

= ∆Ω(Bi → Bf ) + kBT
(
NfBf −NiBi

)
− kBT

(
Nf −Ni

)
ln
(
V

Λ3

)
, (S22)

where, using equation S7, µ has been expressed in terms of B to make the above directly applicable to
Adams’ formulation of GCMC. The Helmholtz free energy required to insert molecules from the ideal
gas reservoir to the system of interest is given by

∆Ftrans(Ni → Nf ) = ∆Fsys(Ni → Nf )−∆Fres(Ni → Nf ), (S23)

where ∆Fsys and ∆Fres refer to the system of interest and the ideal gas reservoir respectively, and can
be computed using equation S22. The free energy ∆Ftrans is our quantity of interest, so that evaluating
∆Fsys and ∆Fres will complete the derivation.

To evaluate ∆Fsys, an expression for ∆Ωsys is required. A relation valid in both statistical mechanics
and thermodynamics that has proved fruitful in a previous GCMC study19 is

(
∂Ω
∂µ

)
V,T

= −N(µ), (S24)

where it has been made explicit that N is a function of µ. Importantly, as µ – or B – is user defined,
N(µ) is a measurable and controllable quantity in a GCMC simulation. Thus, the change in the grand
potential that occurs by altering the chemical potential from an initial µi to a final µf can be found with

∆Ωsys(µi → µf ) = −
∫ µf

µi

N(µ) dµ

= −kBT
∫ Bf

Bi

N(B) dB, (S25)

where, using equation S7, the variable of integration has been changed to the Adams parameter. The
limits of integration have also been changed to Adams values; the constants relating µ′ to B are not
required as Bi and Bf – similarly to µi and µf – are defined as the Adams values that correspond
an average of Ni and Nf waters, respectively. In congruence with equation S24, both V and T are
kept constant in GCMC, so that by simulating a system at various Bs, ∆Ωsys can be computed using
numerical integration of N(B). We therefore have

β∆Fsys(Ni → Nf ) = −
∫ Bf

Bi

N(B) dB +
(
NfBf −NiBi

)
−
(
Nf −Ni

)
ln
(
V

Λ3

)
. (S26)

Next, an expression for ∆Fres is required. Section 2.3.1 of this supplement shows that if ∆Fres is found
by evaluating ∆Ωres via integration (like in equation S25), one is left with an expression that is only
valid for large N . Instead, an approach that is valid for both small and large N is to consider the free
energy for an ideal gas of indistinguishable particles3,

βFres(N) = − ln

[
1
N !

(
V

Λ3

)N]
, (S27)

which implies that
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β∆Fres(Ni → Nf ) = ln
(
Nf !
Ni!

)
− (Nf −Ni) ln

(
V

Λ3

)
. (S28)

Combining this with equations S23 and S26, we arrive at our primary theoretical result

β∆Ftrans(Ni → Nf ) = NfBf −NiBi + ln
(
Ni!
Nf !

)
−
∫ Bf

Bi

N(B) dB, (S29)

which is equation 3 of the main text. The contribution due to translation, ln
(
V
Λ3

)
, has cancelled out

when taking the difference between ∆Fsys and ∆Fres as both the ideal gas reservoir and the system are
taken to be at equal volume. Likewise, contributions from ideal rotations (not considered in the above)
also cancel out in ∆Ftrans.

Equation S29 allows for the free energy to simultaneously couple multiple molecules to be efficiently
computed, providing that there are GCMC data over a range of B values. All that is required is that one
measures N(B), and numerical integration. As the application of equation S29, depends heavily on the
accuracy of the measured N(B), a fitted model to smooth over the GCMC titration data was introduced
in equation 4 of the main text.

An important issue whether equation S29 (3 of the main text) is valid for a small number of molecules,
given that a thermodynamic relationship (equation S21) was used as the starting point for its derivation.
A key feature of the derivation was the use of the statistical mechanical relationship for the free energy
of an ideal gas (equation S27), such that equation S29 ostensibly contains both micro- and macroscale
elements. While the Results section of the main text presents numerical evidence for the consistency
of equation S29 with replica exchange thermodynamic integration, the most stringent validation that
equation S29 is correct for a low number of molecules is presented in Section 2.7 of this supplement,
where it is analytically proven that the free energy to transfer a single water molecule from an ideal gas
reservoir to a system of interest calculated from equation S29 is equal to that of the logistic equation
(equation 2 of the main text), where the latter can be derived from statistical mechanics.

Explorations of how purely thermodynamic derivations result in a different version of equation 3 are
presented in sections 2.3 and 2.3.1.

2.3 GCI in the thermodynamic limit

Here, we re-derive equation equation S29 (3 of the main text) from a different starting point from the
previous section. The purpose is to explore to what extent the thermodynamic relations break down
when dealing with a low number of molecules, and the regime of accuracy of equation 6. The route
investigated here is similar to an approach by Fan et al.20, which involves integration of the excess
chemical potential.

To begin, equations S1 and S2 imply that a general definition of µ′ is

µ′(N) =
(
∂Fex(N,V, T )

∂N

)
T,V

, (S30)

which implies that the free energy to insert additional molecules from the ideal gas to a system of interest,
starting from an initial number, denoted Ni, to a final number, denoted Nf , is simply

∆Ftrans(Ni → Nf ) =
∫ Nf

Ni

µ′sys(N) dN (S31)

To proceed, we note that B can be considered a function of N , and N can be considered as a function
of B. The functions that map between these two variables are monotonically increasing because – as
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equations S5 and S6 show – the probability to insert a molecule increases with B. With this in mind,
we can re-write equation S10 as

βµ′sys(N) = B(N)− ln(N). (S32)

Combining this with equation S31 and integrating over N , we arrive at

β∆Ftrans

(
Ni → Nf

)
=
∫ Nf

Ni

(
B(N)− ln(N)

)
dN

=
∫ Nf

Ni

B(N) dN −Nf
(

ln(Nf )− 1
)

+Ni
(

ln(Ni)− 1
)

(S33)

This, like equation S29 can be used to calculate the free energy to change the number of molecules in
the system to and from any number within the interval between Ni and Nf . It is thermodynamically
exact, but, as shown below, differs from statistical mechanics for a low number of molecules. To express
equation S33 in the form of equation S29, the variable of integration must be changed from N to B,
which can be achieved with the following identity:

Bf∫
Bi

N(B) dB +

Nf∫
Ni

B(N) dN = BfNf −BiNi, (S34)

which follows from a known relation for inverse function integration21. Inserting this into equation S33,
we arrive at

β∆Ftrans

(
Ni → Nf

)
= NfBf −NiBi − Nf

(
ln(Nf )− 1

)︸ ︷︷ ︸
Stirling’s approx.

+ Ni
(

ln(Ni)− 1
)︸ ︷︷ ︸

Stirling’s approx.

−
∫ Bf

Bi

N(B) dB, (S35)

which is the same as equation S29, except for the sections encompassed by the curly brackets. In their
place, equation S29 has ln(Ni!

Nf ! ), and inspection of equation S35 shows that these terms are large N
approximations to this term. The approximation is known as Stirling’s approximation, in which

lim
x→∞

x(ln(x)− 1) = ln(x!) (S36)

This approximation was never explicitly invoked when deriving equation S35. Instead, it arose naturally
out of the language of thermodynamics, in which N is large and continuous. Therefore, the most
significant assumption in the derivation of equation S35 was the macroscale definition of µ′ in equation
S30. This implies the microscale correction, denoted R(Ni, Nf ), to equation S31, so that

∆Ftrans(Ni → Nf ) =
∫ Nf

Ni

µ′sys(N) dN + kBTR(Ni, Nf ), (S37)

where

R(Ni, Nf ) = Nf
(

ln(Nf )− 1
)
−Ni

(
ln(Ni)− 1

)
+ ln

(
Ni!
Nf !

)
(S38)
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for identical particles. This correction, found by taking the difference of equation S35 and S29, removes
the implicit application of Stirling’s approximation when calculating insertion free energies and ensures
equality between equation S37 and 3. When dealing with small number of particles, the correction is
small, but significant. For instance, when going from 0 to 1 particle, R(0, 1) = −1. For appreciable
number of particles, R(Ni, Nf ) is negligible. For example, R(10, 11) = −0.05. As finding the minimum
of a binding free energy curve can be considered as a series of relative free energy calculations, the
approximation given in equation 6 of the main text to find the optimal number of bound molecules can
be used with greater and greater confidence as the optimal number of particles increases.

2.3.1 Particle creation in an ideal gas

The free energy to create particles in an ideal gas reservoir was computed in Section 2.2 of this supplement
with equation S29 by considering the analytical solution to the free energy of an ideal gas in equation
S27. In this section, we re-derive the equation from the grand canonical isotherm in equation S24 to
show that the result is only valid in for a large number of molecules.

Using S25, the Adams value will be changed from B′i to B′f so the the number of molecules created in
the reservoir goes from Ni to Nf . Using the fact that B = lnNres for an ideal gas (see equation S11),
we find that

∆Ωres = −kBT
∫ B′

i

B′
f

exp(B) dB

= −kBT
(

exp(B′f )− exp(B′i)
)

= −kBT (Nf −Ni), (S39)

which, using equation S22, implies that

β∆Fres(Ni → Nf ) = −(Nf −Ni) + kBT (NfBf −NiBi) + (Nf −Ni) ln
V

Λ3

= Nf
[

ln(Nf )− 1
]︸ ︷︷ ︸

Stirling’s approx.

− Ni
[

ln(Ni)− 1
]︸ ︷︷ ︸

Stirling’s approx.

+(Nf −Ni) ln
V

Λ3
. (S40)

Here, as with equation S35, Stirling’s large N approximation to ln(N !) has emerged implicitly. In this
case, it is the use of Legendre transform in equation S21 that is responsible for this approximation. The
Legendre transformations in thermodynamic can be shown to be valid when N →∞18.

2.4 Hydration Helmholtz free energy of N waters

The central result of this study, equation S29 (equation 3 of the main text), relates a changes in the
grand potential, Ω(µ, V, T ), to a change in the Helmholtz free energy, F (N,V, T ). We are concerned
with establishing the equilibrium number of water molecules in a GCMC region when that region can
exchange particles with bulk water. We require a thermodynamic expression for hydrating N water
molecules in an infinitely sized water bath. This is most easily derived using the Gibbs free energy,
denoted G(N,P, T ), where P is the pressure. The Gibbs hydration free energy can then be related back
to the Helmholtz hydration free energy in the thermodynamic limit.

Let Gwater(Nb) denote the absolute Gibbs free energy of a water bath that contains Nb solvent molecules
at a constant pressure and temperature. Allowing Nb →∞ implies that Nbµwater = Gwater(Nb), due to
the extensivity of the free energy3. Similarly, (Nb + N)µwater = Gwater(Nb + N) Thus, the free energy
to increase the number of water molecules by N when Nb is large is
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∆Gwater(N,P, T ) = Gwater(Nb +N,P, T )−Gwater(Nb, P, T )
= (Nb +N)µwater −Nbµwater

= Nµwater (S41)

Similarly, the free energy to create an additional N particles in an infinitely sized ideal gas reservoir,
denoted ∆Gres(N), has the same form. Therefore, the hydration free energy of N molecules is given by

∆Ghyd(N,P, T ) = ∆Gwater(N,P, T )−∆Gres(N,P, T )
= Nµwater −Nµres

= N(µwater − µres)
= Nµ′hyd, (S42)

where µ′hyd is the excess chemical potential of a single water molecules in bulk water, and the last line
follows from the definition of the excess chemical potential.

Finally, as in the thermodynamic limit the Gibbs hydration free energy and the Helmholtz free energy
are equivalent due to the negligible contribution of volume changes when P is constant10. We therefore
have

∆Fhyd(N,V, T ) = Nµ′hyd (S43)

when inserting N water molecules from the ideal gas phase to bulk water.

2.5 Equilibrium with bulk water

The section will derive the equation 6 of the main text, which occurs when the simulated GCMC region
is in equilibrium with bulk water when it is allowed to exchange water molecules. Starting from equation
5 of the main text, the binding free energy of N water molecules is given by

∆Fbind(N) = ∆Ftrans(N)−∆Fhyd(N).
= ∆Ftrans(N)−Nµ′hyd, (S44)

where equation S43 has been used in the last line. Grand canonical integration (equation S29) can
be used to evaluate ∆Ftrans(N), and µ′hyd is a known quantity. The number of water molecules that
minimizes the binding free energy, denoted N∗, is the most likely occupancy of the GCMC region. This
can be expressed mathematically as

N∗ = arg min
N

[
∆Ftrans(N)−Nµ′hyd

]
, (S45)

as we seek the argument that minimizes ∆Fbind(N). If the GCMC region is assumed to be in the ther-
modynamic limit, we can approximate ∆Ftrans(N) with equation S31, which was derived and discussed
in Section 2.3. Strictly speaking, N is limited to the integer numbers. However, in the thermodynamic
limit one may treat N as a continuous variable, so that the binding free energy of N waters can be
approximated to be

∆Fbind(N) ≈
∫ N

0

µ′sys(N
†) dN† −Nµ′hyd, (S46)
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where N† is a dummy variable. Equation S45 can be evaluated by solving d∆Fbind(N)
dN = 0. Doing so

produces

µ′sys(N
∗) = µ′hyd, (S47)

as stated in equation 6 of the main text and equation S20. Finding where µ′(N) equals the hydration
free energy determines N∗. As equation S10 shows, µ′(N) depends on B and the average number of
inserted molecules at equilibrium, and does not require the binding free energy to be evaluated. Inserting
equation S47 into S10 produces

B∗ = βµ′hyd + ln(N∗) (S48)

where B∗ is the value that gives the equilibrium number of water molecules in a GCMC simulation.
As stated, both this and equation S47 are only approximately true when N is small, and exact in the
thermodynamics limit. Nevertheless, as the end of Section 2.3 of this supplement shows, the approach
to the large N limit is fast, so that equations S47 and S48 can be reliably applied to cavities that have
around 10 waters bound.

2.6 Kinetic analysis of GCMC

In this section, we derive equation 2 of the main text. While it is straightforward to do so rigorously,
kinetic arguments are used in order to explain the observation by Clark15 and Bodnarchuk et al.16 that
equation S12 becomes more valid as B decreases.

First, we model a GCMC simulation as the simple two state reaction Wsys ⇀↽ Wres, in which water
molecules are exchanged to and from the system of interest and ideal gas reservoir respectively. Water
molecules are inserted from the ideal gas reservoir into the system with the rate constant kins and deleted
from the system and moved to the reservoir with a rate constant kdel. The kinetic equations governing
the change in the average number of particles are given by

dNsys

dt
= −kdelNsys + kinsNres (S49)

dNres

dt
= kdelNsys − kinsNres (S50)

Equilibrium is defined when dNsys
dt = dNres

dt = 0, at which point the number of molecules in the system
and ideal gas reservoir are Nsys,equil and Nres,equil respectively. At equilibrium, one can show that

Nsys,equil

Nres,equil
=
kdel

kins
:= Kd, (S51)

where Kd is the dissociation constant. The free energy to transfer a molecule from the ideal gas reservoir
to the system is denoted ∆Ftrans, and is related to Kd via

β∆Ftrans = lnKd. (S52)

Identifying ∆Ftrans with Fex(Nsys+1)−Fex(Nsys) and using equations S51 and S52, we arrive at equation
S12, which was used by Clark et al.15 and Bodnarchuk et al.16 to predict binding free energies. Thus,
the equations S49 and S50 represents the dynamical system corresponding to equilibrium relation in
equation S12. However, this kinetic model allows molecules from the ideal gas reservoir to be added
to the system without limit, so long as the reservoir is large enough. As a cavity can only fit a finite
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number of molecules, we must incorporate the effect of saturation in the kinetics to more realistically
model equilibrium in GCMC. The following heuristic model is based on a simple population growth
model22:

dNsys

dt
= −kdelNsys + kinsNres

(
1− Nsys

Nmax

)
(S53)

dNres

dt
= kdelNsys − kinsNres

(
1− Nsys

Nmax

)
, (S54)

where Nmax is the maximum number of water molecules that can fit in a cavity. This model may not be
valid when a cavity can contain more than one water molecule, because one would have to account for
exchanges between neighbouring sites, as well as cooperative and destabilisation effects.

As the number of inserted waters reaches this maximum capacity in equations S53 and S54, the positive
contribution in equation S53 is zero, implying no further growth in Nsys. Pertinently, in the low particle
limit, where Nsys � Nmax, equations S53 and S54 reduce to equations S49 and S50 respectively. Thus,
for a system described by equations S53 and S54, we have the following:

lim
Nsys,equil→0

kBT ln
(
Nsys,equil

Nres,equil

)
= ∆Ftrans. (S55)

This behaviour can be observed in tables 1 and 2 of Clark15, and table 3 of Bodnarchuk16, and was
previously attributed to sampling inadequacy. In Section 3.3 of this supplement we also verify equation
S55 for out test systems. With the above kinetic models, it is apparent that equation S12 is only valid
in cases when the number of inserted molecules is low with respect to the capacity of the cavity.

Solving equations S53 and S54 at equilibrium for the case Nmax = 1, we find that

Nsys,equil =
Nres,equil

Kd +Nres,equil
, (S56)

which has the same form as the well known equation for a ligand binding to a macromolecule. For
instance, if the concentration of the ligand, macromolecule, and complex are denoted [L], [M ] and [ML]
respectively,

[ML]
[M0]

=
[L]

Kd + [L]
, (S57)

where [M0] is the initial concentration of the macromolecule3. As [L] is typically approximated by
the concentration of unbound (or free) ligand, it is directly comparable to the amount of molecules in
the reservoir, Nres,equil. Also, [ML]

[M0] varies between 0 and 1, just like Nsys,equil when Nmax = 1. The
correspondence equation S56 has with equation S57 serves to validate this result and the kinetic model
described equations S53 and S54.

Finally, inserting B = lnNres,equil (from equation S11) and β∆Ftrans = lnKd we arrive at

Nsys,equil(B) =
1

1 + exp (β∆Ftrans −B)
, (S58)

which is equation 2 of the main text. Therefore, with many GCMC simulations at B values, one can
estimate the free energy to couple a molecule to a system by fitting equation S58 to Nsys,equil from each
simulation, as the only free parameter is ∆Ftrans. This method is distinct from GCI. The benefit of fitting
equation S58 to estimate ∆Ftrans as opposed to equation S55 is that data from all GCMC simulations
at various B values are utilized, compared to using only the simulations that have a low Nsys,equil. This
will produce estimates of a lower variance.
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2.7 Equivalence of GCI and logistic equation

In this work, we have introduced two equations that can be used calculate free energies using GCMC.
The first, we have named grand canonical integration (GCI), involves the evaluation of equation S29
(equation 3 of the main text) with GCMC titration data and can, in theory, calculate the binding free
energy of an arbitrary number of molecules. The second method applies to sites that can only bind a
single water molecule, and free energies are obtained by fitting the logistic curve given by equation S58
(equation 2 of the main text) to GCMC titration data. In this section, we show analytically that free
energies described by both equations are equal.

To differentiate between them, this section will label gas-system transfer free energies calculated with
GCI as ∆Fgci, and free energies calculated by fitting the logistic equation S58 as ∆Flog.

To calculate the free energy to transfer a single water from the ideal gas reservoir to a system of interest,
equation S29 becomes

β∆Fgci(0→ 1) = Bf −
∫ Bf

Bi

N(B) dB, (S59)

as Ni = 0 and Nf = 1. Evaluating the integral with N(B) given by equation S58 we get

∫ Bf

Bi

N(B) dB =
∫ Bf

Bi

1
1 + exp (β∆Flog −B)

dB

=
∫ Bf

Bi

exp(B − β∆Flog)
1 + exp (B − β∆Flog)

dB

=
∫ Bf

Bi

log
[
1 + exp (B − β∆Flog)

]
dB

= log
[

1 + exp(Bf − β∆Flog)
1 + exp(Bi − β∆Flog)

]
. (S60)

The limits of integration must be chosen such that N(Bi) = 0 and N(Bf ) = 1. As N(B) is the logistic
function given by equation S58, we require that Bi − β∆Flog � 0, and Bf − β∆Flog � 0. When
Bi − β∆Flog → −∞ we get

1 + exp(Bi − β∆Flog) = 1.

When Bf − β∆Flog → +∞ we find that

1 + exp(Bf − β∆Flog) = exp(Bf − β∆Flog).

Putting these limits into equation S60 shows that,

∫ Bf

Bi

N(B) dB = Bf − β∆Flog. (S61)

Together with equation S59, this relation proves that

∆Fgci(0→ 1) = ∆Flog, (S62)

as stated in the main text. This means that free energies calculated with both methods are equal. The
correspondence between equations S29 and S58 serves as a strong validation of the theoretical results
presented here. This correspondence can also be derived using equation S37 as a starting point.
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3 Methods and Results

3.1 Bulk water density

Structure Adams values simulated
6.5×6.5×6.5 Å3 -22, -21, -20, -19, -18, -17, -16, -15, -14, -13, -12, -11, -10, -9, -8,

cavity in bulk water -7, -6, -5, -4, -3, -2, -1, 0, +1, +2, +3, +4, +5, +6, +7, +8, +9

Table S1: The Adams values used in the GCMC simulations of a sub-volume of bulk water.
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Figure S1: (a)Titration plot showing how the average occupancy of the a sub-volume within bulk water
increases as the Adams value is increased. The fitted artificial neural network model is shown in red, and
the 90% confidence region from 1000 bootstrap fits is shown in grey. The titration plot was fitted with
equation 4 of the main text using three logistic terms (m = 3). At B = −8.5, bulk water density (nine
waters for this cavity at approximately 1000 kg/m3) is reproduced within the 6.5×6.5×6.5 Å3 GCMC
volume. (b) The binding free energy of the sub-volume as a function of water occupancy. The minimum
free energy occurs at nine water molecules (to the nearest integer) which is as expected for bulk water.
The minimum binding free energy equals −13.8 ± 1.0 kcal/mol, and can be interpreted as the negative
of the free energy required to empty the sub-volume of water in bulk water.
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3.2 Free energy calculations with thermodynamic integration

Run GCMC at multiple
B parameters

Fit N(B) curve
with an ANN

Calculate free energies
via GCI

Obtain positions and 
RMSFs of waters

Obtain the rank order
of affinities

Are waters coupled 
independently?

Set-up multiple paths 
for TI calculations

Did bulk waters occupy
decoupled site?

Run MC at multiple 
lambda windows

Calculate free energies
via TI

Yes

Harmonically restrain
waters based on RMSFs

Set hard-wall 
constraint

Grand canonical 
integration

Thermodynamic 
integration

Apply correction for 
restraint or constraint

No

Apply symmetry
correction 

Did waters sample
 axis of symmetry?

No

Yes No

Figure S2: A schematic of how the transfer free energies of water molecules for the three water cavities in
Chk-1 and BPTI were calculated with grand canonical integration (GCI), and sequentially with replica
exchange thermodynamic integration (RETI). The locations where water molecules were decoupled from
with RETI were taken from the GCMC simulations, as were the root mean squared fluctuation (RMSF)
at each site. The order in which waters appeared with B in the GCMC simulations indicates the relative
affinity of each site8. This same order determined the sequence in which the waters were decoupled with
RETI. Using RETI requires the careful consideration of restraints, constraints, and corrections, which
become more difficult to set-up and apply when cavities can support more than one water molecule.
Such considerations do not apply to GCI methodology, which is highlighted in blue. A monotonically
increasing artificial neural network (ANN) was fitted to the average number of inserted water molecules
at each B to ensure the integration was carried out over a smooth function.
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3.2.1 Single water cavities

Structure Adams values simulated
BPTI -34, -33, -32, -31, -30, -29, -28, -27, -26, -25, -24, -23, -22.6, -22.2, -22,

-21.8, -21.4, -21, -20.6, -20.2, -20, -19.8, -19.4, -19, -18.6, -18.2, -18, -17.8,

-17.4, -17, -16, -15, -14, -13, -12, -11, -10, -9, -8, -7, -6, -5, -4, -3

BPTI, -32, -32, -31, -31, -30, -30, -29, -29, -28, -28, -27, -27, -26, -26, -25, -25,

equilibrated -24, -24, -23, -23, -22, -22, -21, -21, -20, -20, -19, -19, -18, -18, -17, -17

around water
SD L01 -22, -22, -21, -21, -20, -20, -19, -19, -18, -18, -17, -17, -16, -16, -15,

-15, -14, -14, -13, -13, -12, -12, -11, -11, -10, -10, -9, -9, -8, -8, -7, -7

SD L01, -23, -23, -22, -22, -21, -21, -20, -20, -19, -19, -18, -18, -17, -17, -16,

equilibrated -15,-16, -15, -14,-14, -13, -13, -12, -12, -11, -11, -10, -9, -10, -9, -8, -8

around water
SD L03 -16, -15, -14, -13, -12, -11, -10, -10, -9, -9, -8, -8, -7.5, -7, -7, -6.5,

-6, -6, -5.5, -5, -5, -4, -4, -3, -3, -2, -2, -1, -1, 0, 3, 4

SD L03, -23, -23, -22, -22, -21, -21, -20, -20, -19, -18, -17, -17, -16, -16, -15, -15,

equilibrated -14, -14, -13, -12, -13, -12, -11, -11, -10, -10, -9, -8, -9, -8

around water

Table S2: The Adams values used in the GCMC simulations of the single water cavities in the protein
scytalone dehydratase (SD) with ligands L01 and L03, and bovine pancreatic trypsin inhibitor (BPTI).
The starting structures for the GCMC simulations labelled equilibrated around water were taken from
the last frame of a 45M move simulation in which the water in present in the cavity.

System PDB code Oxygen coordinates GCMC box origin GCMC box dimensions
BPTI 5PTI (32.74, 4.03, 10.65) (30.60, 2.45, 8.57) (4.40, 3.52, 3.65)

SD 3STD (26.42, 13.87, 36.56) (24.30, 11.90, 34.50) (4.00, 4.00, 4.00)

Table S3: The starting water oxygen coordinates used in the RETI calculations, and the box coordinates
and dimensions for the GCMC simulations. Coordinates and dimensions are given in the form of (x, y,
z) and are in the same coordinate frame as their respective PDB structures. For SD, the same location
is studied for the ligands L1 and L3.

System Restraint/Constraint Size Symmetry correction?
BPTI Harmonic 45.54 kcal/mol/Å2 Yes
SD L1 Hard-wall 1.8 Å No
SD L3 Hard-wall 1.8 Å No

Table S4: The final set of restraints/constraints that were applied to the single-water cavities for the
RETI calculations. The size column refers either to the radius of the applied hard-wall, or spherically
symmetric force constant.

3.2.2 Three water cavities

Structure Adams values simulated
BPTI -35, -34, -33, -32, -31, -30, -29, -28.6, -28.5, -28.5, -28.3, -28, -27.7, -27.2, -27,

-26.3, -26, -25.7, -25.5, -25.2, -25.1, -25, -24.3, -24, -23.7, -23.2, -23, -22.3, -22,

-21.7, -21.2, -21.0, -21, -20.9, -20.3, -19.7, -19, -17.5, -16, -15, -14

Chk-1 -30, -29, -28, -27, -26, -25, -24, -23, -22, -21, -21, -20, -20, -19, -19, -18,

-18, -17, -17, -16, -16, -15, -15, -14, -13, -12, -11, -10, -9, -8, -7, -6,

Table S5: The Adams values used in the GCMC simulations of the three water cavities.
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The RETI simulations were more technically demanding than the GCMC simulations. Details of the final
set of simulations that were used to hydrate the cavities are shown in Tables S7 and S8. As described in
the schematic in Figure S2, the initial set of restraints on the water molecules were harmonic, and were
based on the root mean squared fluctuation (RMSF) of the water molecule in the GCMC simulations.
The RMSF is shown in the ‘Size’ column of Tables S7 and S8. The harmonic force constant that was
applied is as described in Hamelberg and McCammon23. If bulk water was found to have drifted into
the decoupled site, the simulations were re-run with a hard-wall constraint, the radius of which is also
shown in the ‘Size’ column. Each simulation was visually inspected to see whether the water molecule
in question rotated about its axis of symmetry. If it did not, a symmetry correction was applied to the
calculated free energy.

System Label Coordinates (x,y,z) GCMC box origin GCMC box dimensions
BPTI A (31.62, 6.99, 1.37) (28.03, 3.48, -2.173) (7.02, 5.46, 8.58)

(PDB code: 5PTI) B (32.01, 7.27, 4.13)
C (32.48, 5.81, 0.202)

Chk-1 X (12.59, -3.518, 14.41) (7.38, -6.56, 12.19) (7.79, 8.89, 6.16)
(Private structure) Y (9.99, -2.66, 15.50)

Z (11.69, -0.416, 15.65)

Table S6: The coordinates of the water oxygen atoms that were used in the alchemical decoupling
simulations, as well as the GCMC box coordinates and dimensions. The coordinates for BPTI refer to
cavity that can bind 3 water molecules, which is distinct from the cavity used to bind one water molecule.
These coordinates are the mean positions taken from the GCMC simulations in which the cavity was
filled, and are in the reference frame of the PDB file.

Transition Restraints/Constraints Size Symmetry correction?
Empty → X harmonic 9.67 kcal/mol/Å2 Yes
X → X & Y harmonic 13.41 kcal/mol/Å2 No
X & Y → X & Y & Z harmonic 6.41kcal/mol/Å2 No

Table S7: The calculation pathways and set of restraints used to couple water molecules into the three
water cavity in Chk-1. Waters are labelled as X, Y and Z, where their coordinates are shown in table
S6. Whilst waters Y and Z appeared concurrently in the GCMC simulations with increasing B, the
occupancy of Y was higher than that of Z, and so was coupled-in first in the RETI simulations.

Transition Restraint/Constraint Size Symmetry correction?
Empty → A hard-wall 1.8 Å Yes
Empty → B hard-wall and plug 1.8 Å No
A → A & B hard-wall 1.8 Å Yes
B → A & B harmonic 31.71 kcal/mol/Å2 No
A & B → A & B & C harmonic 19.96 kcal/mol/Å2 No

Table S8: The calculation pathways and final set of restraints/constraints used to couple water molecules
into the three water cavity in BPTI. The size column refers either to the radius of the applied hard-wall,
or spherically symmetric force constant. Waters are labelled as A, B and C, where their coordinates are
shown in Table S6. Two routes to coupling waters A and B was computed as they appeared together
with equal occupancy in the GCMC simulations.

3.3 Comparison between the method by Clark et al. and logistic model

The main text presents a method to calculate the coupling free energy of a molecule by fitting equation
2 (equation S58 of this supplement), a logistic equation, to GCMC titration data. This method is
more general than the previously reported technique by Clark et al.15, which is shown in equation S12.
Equation S12 is shown to be a limiting case of our logistic model in equation S55. Here, the free energies
computed with the logistic fit are compared to those computed with the method by Clark et al.
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The basis of the method by Clark et al. is based on equations S10 and S11, with which one can show

µ′sys = kBT ln
(
Nres,equil

Nsys,equil

)
(S63)

= kBTB − kBT lnNsys,equil, (S64)

so that µ′sys can be calculated from GCMC simulations as B is known, and Nsys,equil can calculated from
a simulation. Clark et al. and Bodnarchuk et al.16 then used µ′sys to approximate the free energy of
insertion from an ideal gas, denoted ∆Ftrans. However, as shown in Section 2.6, this only becomes valid
as Nsys,equil → 0, during which µ′sys → ∆Ftrans, a constant. As Figures S3 and S4 show, most of the
simulation data has to be discarded, and human judgement must be used to decide the point at which
µ′sys appears constant, introducing subjectivity into the estimate of ∆Ftrans. In contrast, least squares
fitting of the logistic model uses all of the simulation data, negating the need for human intervention
when estimating ∆Ftrans. Figures S3 and S4 show that GCMC data for single water molecules are well
described by the logistic model. Nevertheless, Table S9 show that both methods produce free energy
estimates that are in good agreement.

(a) (b)

Figure S3: GCMC simulation data for the single water cavity in BPTI. (a) Titration plot showing how
the average occupancy of the cavity decreases as the Adams parameter is lowered. The fitted logistic
model is shown in red; its close agreement with the data indicates that GCMC for single water sites
is well described by equation S58 (equation 2 of the main text). The coupling free energy is equal to
the point of inflection multiplied by kBT . (b) The estimated excess chemical potential as a function of
the Adams parameter, used to estimate the coupling free energy using Clark et al.’s method15. Human
judgement is used to determine where the excess chemical appears constant, at which point the average
value is taken. The range used to compute the value in Table S9 was B = −27 to B = −22.
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(a) (b)

Figure S4: GCMC simulation data for the single water cavity in SD L01. (a) GCMC titration plot with
fitted logistic model in red. (b) The estimated excess chemical potential as a function of the Adams
parameter. The noise in the excess chemical potential introduces subjectivity when determining the
range to estimate the coupling free energy, which is not the case when fitting equation S58 (equation 2
of the main text). For the value quoted in Table S9, the range B = −20 to B = −15 was chosen.

Water Logistic Fit Clark limit method
BPTI -12.32 ± 0.07 -12.10 ± 0.26 {9}
BPTI -11.63 ± 0.11 -11.41 ± 0.22 {8}
equilibrated
around water
SD L01 -8.68 ± 0.09 -8.76 ± 0.34 {11}
SD L01 -9.52 ± 0.06 -9.72 ± 0.31 {13}
equilibrated
around water
SD L03 -3.51 ± 0.06 -3.52 ± 0.30 {20}
SD L03 -3.49 ± 0.06 -3.34 ± 0.24 {10}
equilibrated
around water

Table S9: Comparison of the logistic fit method (equation 2 in main text and equation S58 of this
supplement) and the method proposed by Clark et al.15, which is represented by equation S55. The
error in the logistic fit has been calculated using 1000 bootstrap samples, whereas for the limit method
of Clark et al., the quoted error is the standard deviation of the values that were used when averaging,
with the number of data points used to the average are shown within curly brackets.

3.4 Artificial Neural Network

As described in the main text, a single layer artificial neural network (ANN) was used to smooth the
GCMC titration data such that integration in GCI could be reliably performed. While there are numerous
packages one can use to fit ANNs, two features of this project meant that it was most fruitful to code
our own tool: first, the relationship between Adams parameter and average number of inserted waters
should be monotonically increasing, and second, we sought to experiment with different loss, or cost,
functions to compensate for the noisy titration data in the three water cavity of BPTI.

A single layer monotonic ANN fitting tool was written in python using both the NumPy24 and SciPy25

packages. The ANN described in equation 4 of the main text can be made to be monotonic increasing if
all the free parameters (commonly referred to as weights) are greater than or equal to zero. To accomplish
this, the loss function (described below) was minimized using the L-BFGS-B algorithm, which allows for
input of variable constraints.
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Free energy (kcal/mol) to couple
Loss function 1 water 2 waters 3 waters
LSE(r) -16.3 -31.9 -44.0
LA(r) -16.0 -31.3 -43.4
LPH(r, c = 1) -15.4 -31.0 -43.3
LPH(r, c = 0.1) -15.4 -31.0 -43.5

Table S10: Comparison of coupling free energies calculated with GCI for BPTI using different loss
functions when fitting to the titration data. The squared error loss function, LSE(r), disagrees by up to
0.9 kcal/mol with the values calculated with the other loss functions, due to the poor fit it produces (see
Figure S5). The free energies corresponding to LA(r) are approximate due to the instability of this loss
function when optimizing using gradient descent.

3.4.1 Loss function

The loss function is a measure of the performance of a fitted function, and encompasses the intuitive
notion of error. Denoting the explanatory variable, X, the fitted function as f(X), and the target as Y ,
the residual of the ith pair (xi, yi) is given by ri = yi − f(xi). The total loss over n pairs is therefore∑n
i=1 L(ri). A common choice of loss function is the squared error

LSE(r) = r2, (S65)

which has the benefit of being differentiable everywhere, and is thus suitable to gradient based optimizers.
Squared loss yields a unique solution and allows for tractable analytical evaluation of gradients. However,
when applied to noisy data, LSE(r) may be dominated by outliers due to the quadratic dependence of
r. A popular alternative which is more robust to outliers is absolute loss

LA(r) = |r|. (S66)

However, this is not differentiable at r = 0, which makes optimization cumbersome and prone to error
without dedicated algorithms. The pseudo Huber loss function26, defined as

LPH(r, c) = c2
(√

1 +
r

c
− 1
)
, (S67)

where c is a free parameter, is a compromise between LSE(r) and LA(r). It is an approximation of
the Huber loss function27, which is quadratic when r ≤ c and linear otherwise. In contrast to the
Huber loss function, LPH(r, c) is differentiable everywhere, and therefore more suitable for ‘out of the
box’ optimizers, such as the ones encountered in SciPy. The parameter c determines the scale at which
outliers are treated; as c is lowered, the effect of outliers is reduced.

Figure S5 shows how the different loss functions changed the fitted ANN on the BPTI GCMC data, and
Table S10 shows how those fits affect the calculated free energies. Free energies corresponding to the
ANN that had been fitted using LA are only approximate, as the optimization was carried out using
gradient descent, which is not well suited to this loss function.

The parameter c for the pseudo Huber loss function was experimented with until the fits were qualitatively
improved over those produced by squared loss. At the end state of three coupled water molecules, the
pseudo Huber and absolute loss functions are in good agreement, but differ by almost 1 kcal/mol with
the free energy calculated with squared loss. The free energies reported in the main text are calculated
using the pseudo Huber loss function with c = 0.1.

Figure S5 shows that the GCMC data for BPTI is noisy. This is due to poor insertion and deletion rates,
where the latter is responsible for the significant outlier at B = −28.5. In the first set of simulations at
B = −28.5, there were an average of 1.6 waters in the cavity. A repeat of the same B value produced an
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average of 0.0 waters in the cavity, indicating that molecule trapping (slow deletion rates), rather than
slow insertion may have the most significant effect. While techniques such as the cavity bias method28

can increase insertion rates, deletion rates can also be small. As demonstrated with BPTI, GCMC
titrations with ANN fitting alleviates the effects of poor sampling, as all B values affect the line of best
fit, and the detrimental effect of outliers can be lessened with loss functions that are robust to outliers.

(a) (b)

(c) (d)

Figure S5: GCMC titration data (black dots) for three site water cavity in BPTI. Artificial neural
network fitted with squared error (a) mean absolute error (b) pseudo Huber, c = 1 (c) and pseudo Huber
c = 0.1 (d) loss functions, the latter of which was used to calculate the free energies shown in the main
text. The squared error loss function produces a qualitatively poor fit, with the line pulled by the outliers
around B ≈ −28, and the step between B = −20 and B = −15 fitted as a straight line. The other
loss functions capture two steps more cleanly and are not adversely affected by the noisy values around
B ≈ −28.
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