Fiesta-loT Deliverable 2.4 — FIESTA-loT Meta-Cloud Architecture

FIESTA-loT

www.fiesta-iot.eu

* o
alaie™

ol HORIZON 2020

European The EU Framework Programme for Research and Innovation

Commission

HORIZONS 2020 PROGRAMME
Research and Innovation Action — FIRE Initiative

Call Identifier: H2020-ICT-2014-1
Project Number: 643943
Project Acronym: FIESTA-loT

Federated Interoperable Semantic loT/cloud

Project Title: Testbeds and Applications

FIESTA-IoT Meta-Cloud Architecture

Document Id: FIESTA-l0T-D24-20151230-Draft
File Name: FIESTA-10T-D24-20151230-Draft.pdf
Document reference: Deliverable 2.4

Version: Draft

Editor: Francois Carrez

Organisation: UNIS

Date: 2015/12/30

Document type: Deliverable

Dissemination level: PU

Copyright © 2015 FIESTA-IoT Consortium: National University of Ireland Galway — NUIG-Insight /
Coordinator (Ireland), University of Southampton IT Innovation — ITINNOV (United Kingdom), Institut
National de Recherche en Informatique & Automatique — INRIA (France), University of Surrey — UNIS
(United Kingdom), Unparallel Innovation, Lda — UNPARALLEL (Portugal), Easy Global Market — EGM
(France), NEC Europe Ltd. — NEC (United Kingdom), University of Cantabria — UNICAN (Spain),
Association Plateforme Telecom — Comdinnov (France), Athens Information Technology — AIT
(Greece), Sociedad para el desarrollo de Cantabria — SODERCAN (Spain), Ayuntamiento de
Santander — SDR (Spain), Fraunhofer Institute for Open Communications Systems — FOKUS
(Germany), Korea Electronics Technology Institute KETI (Korea). The European Commission within
HORIZON 2020 Program funds the FIESTA-loT project.

PROPRIETARY RIGHTS STATEMENT

This document contains information, which is proprietary to the FIESTA-loT Consortium.
Neither this document nor the information contained herein shall be used, duplicated or communicated by any means to any
third party, in whole or in parts, except with prior written consent of the consortium.

Fiesta-loT Deliverable 2.4 — FIESTA-loT Meta-Cloud Architecture

DOCUMENT HISTORY

Rev. Author(s) Organisation(s) Date Comments
V01 Francois Carrez UNIS 2015/09/08 initial Draft
Francois Carrez UNIS 2015/08/09 Section 4.2
voz Francois Carrez UNIS 2015/08/11 Update of Section 4.1 + Section 4.2
V03 | Francois Carrez UNIS 2015/08/12 Draft Section 5
V04 Francois Carrez UNIS 2015/08/15 Rewrite Secéigr;tiSo: Iemplates in
V05 Luis Sanchez & UNICAN 2015/08/20 Use-cases update in Section 5
David Gomez
V06 Paul Grace ITINNOV 2015/08/25 Security Use-cases in Section 5
Vo7 Amelie Gyrard INSIGHT/NUIG 2015/11/30 Preliminary Technical Review
V08 Francois Carrez UNIS 2015/12/02 Virtual Entities-related
V09 David Gomez UNICAN Updates Section 5
V10 | Francois Carrez UNIS 2015/12/05 Intro / ExSum / Conclusion
V11 David Gomez & UNICAN 2015/12/07 Use-cases (Section 5)
Luis Sanchez
V12 Amelie Gyrard INSIGHT/NUIG 2015/12/13 Additional review
V13 Nikos Kefalakis AIT 2015/12/15/ | Technical review. Provided comments
inline.
V14 | Francois Carrez & | UNIS / UNICAN 2015/12/15 | Updated version according to Internal
David Gomez review + delivery to Quality reviewer
V15 Flavio Cirillo NEC 2015/12/18 Quality Review
V16 F. Carrez UniS 2015/12/22 Ready for Approval
V17 Martin Serrano NUIG-Insight 2015/12/25 Circulated for Approval
Draft Martin Serrano NUIG-Insight 2015/12/30 EC Submitted

Copyright © 2015 FIESTA-lIoT Consortium

Fiesta-loT Deliverable 2.4 — FIESTA-loT Meta-Cloud Architecture

TABLE OF CONTENTS

I 0 15 I I8 10] 1 9
I S 3 1A [9
LA AT A o2 O N = T 11
G T YU T = N o = 14
1.4 TERMINOLOGY AND DEFINITIONS ...uuiiuniietieetee it eeie e e e e e e e e e e e e eaaeeeaneeeaneeeas 14
1.5 EXECUTIVE SUMMARY ...uuiitiiiiit et ee e et e e e e e st s eaaeeeaaeseaaessansesaneeeaneesansennneens 16

2 INTRODUCTION ... ccciiieiiieiirirrnerensrsssrrsssrrassrenssrrnssresssransrsnssranssensssensssenssransnes 17

3 INTRODUCTION TO THE META-CLOUD ARCHITECTUREcoeiirieeereee. 19
3.1 INTRODUCTION TO THE ARM AND ASSOCIATED METHODOLOGYcceueevvvuneeernnnnnnns 19
3.2 THE |IOT REFERENCE MODEL ...cuuiiiuiiiieiiie et ee et e e e e e et e e s et e eeaneananas 20

3.2.1 DOMAIN MOELcoeeieeeeee e e e e e e e ees 20
3.2.2 INformation MOAENeiieeii e e 22
3.2.3 FUNCHONAI MOAEL......... e e e e 24
3.3 10T REFERENCE ARCHITECTURE ...cuuittiiiieeitteeeaeeeaeeeaeeeeeeeaeeeaneseanessaneeeansasnnnes 25
3.3.1 FUNCHONAI VIBW... ... e e e e e e e ees 25
3.3.2 INfOrmMation VIBWoveiiieeii e e e e e e e 26
3.3.3 Physical Entity VIEW......coooiiii e 27
T I A (o I 0] 01 (=) A VA= 27
3.3.5 10T Deployment VIEWoooiiiiiee e 27

4 FIESTA-IOT FUNCTIONAL VIEW ... ireiiseccrsnssenssssssa s ssa s snn s s s ennsnnnnes 28
4.1 ROLES IN FIEST A-IOT e e e e 28
4.2 TEST-BED TAXONOMY ...uuituniieueitneeeeeeeteeeaeeesaeesaaesean s eansesaeesaseenseanseaneeransenans 29
4.3 FUNCTIONAL GROUP AND COMPONENT DESCRIPTIONScccvuueeeiiieeeeiieeeeeiieeeeenenn 29

4.3.1 Management FG 30
4.3.1.1 User Management FC..........ooii e 30
4.3.1.2 Web Browsing & Configuration FCccccoiiiiiiii, 30

4.3.2 Service Organisation FG..........cooiiiiiiiiiiiieeeee e 30
4.3.2.1 10T Service COMPOSEToeuueieuiiiaaa e e e e e e ee et e eeieteaa e e e e e e e e eaeeeeeeeeeenes 30
4.3.2.2 1oT Composite Service Execution Engine...........ccccuvveiiiiiieiiinnnnn. 31

4.3.3 10T Process Management FG...........ooooiiiiiiiiiiiiiieeee e 31
4.3.3.1 Experiment modelling FC.........ooo e 31
4.3.3.2 Experiment Execution Engine FC ..., 31

4.3.4 Virtual Entity FG ... 31
4.3.4.1 Virtual Entity Registry FC ... 31
4.3.4.2 Virtual Entity Manager Sub-FC ..., 32
4.3.4.3 Virtual Entity Web front-end (f/e) Sub-FCccciiiiiiiis 33
4.3.4.4 Virtual Entity Broker SUb-FC ... 34
4.3.4.5 Virtual Entity endpoint Sub-FC.............ooi, 34

4.3.5 10T SEIVICE FG...oeeeiee e 34
4.3.5.1 10T Service/Resource RegiStryooooiiiiiiiiiiiiiiiiiieeeeeeeeee e 34
4.3.5.2 Resource Broker SUD-FC..........oooiii e 35
4.3.5.3 Resource Manager SUDb-FC ... 35

Copyright © 2015 FIESTA-loT Consortium 3

Fiesta-loT Deliverable 2.4 — FIESTA-loT Meta-Cloud Architecture

4.3.5.4 10T Service/Resource Web Front-end Sub-FCcccccoo. 36
4.3.5.5 Meta-Cloud Data Endpoint FC ... 36
4.3.6 Communication FG ... 37
4.3.6.1 Message BUS FC.........uiiiiiiiiie e 37
4.3.7 SeCUNtY FG .. 37
4.3.7.1 Authentication (AUthN) FC ... 38
4.3.7.2 Authorization (AUthZ) FC ... 38
4.3.7.3 Access Policy Administration FC ..., 39
4.3.7.4 Key Exchange and Management FC ..., 39
4.3.7.5 Trusted Third Party Authority (TTP) FC ..., 39

4.4 [IMPACT ON EXISTING TEST-BEDS (IMPACT OF FEDERATION) ...ccvtiieieaaaaaainnaaaiiiinnns 40
5 FIESTA INFORMATION VIEW ... ssss s ssss s 44
5.1 SYSTEM USE-CASES AND SEQUENCE DIAGRAMSccoiiiiiiiiiiiiiiiiiteeeeeeeeee 44
5.1.1 Security-based USE-CaSES...........ccuuuuiiiiiiiiiiiiie e 45
5.1.1.1 Experimenter registration/ Identity Managementcccccee 45
5.1.1.2 Resource Management............oooiiiiiiiiiiiii e 46
5.1.1.3 Protected RESOUICE ACCESS........ccccuuuiiiiiiiiiiiieieeee e 48
5.1.1.4 Test-bed becomes part of the FIESTA-loT federation.......................... 50
5.1.2 Resource/lOT Services oriented USE-CaSESccoevvviiiiiiiiiviiiiiiieeeeeeee, 50
5.1.2.1 Test-bed registers an loT service/resource...........cccccoevvveiciiiiieeneeeenn. 50
5.1.2.2 Experiment makes reservation of resource(s) and request
asynchronous publishing of data ..., 52
5.1.2.3 Experiment subscribes to asynchronously pushed data streams......... 54
5.1.2.4 Experiment looks up resources/loT Services (Discovery) 55
5.1.2.5 Experiment invoKes 10T ServiCes.........uuiiiiiiiiieieiiieeeeeeeeeee e 56
5.1.3 Data oriented USE-CaSESccccuuuiiiiiiiiiiiiieeeee e 58
5.1.3.1 Test-bed publishes semantically enhanced Data to the FIESTA-loT
MESSAGE BUS ... 58
5.1.3.2 Experiment queries/retrieves Data (Class-| test-beds) 59
5.1.3.3 Experiment queries/retrieves Data (Class-Il & -lll test-beds)............... 61
5.1.4 VE-Oriented USE-CasSeS.......cceiiiiiiiiieiiiiieee et 61
5.1.4.1 Virtualizer registers @ VE..........ooo e 61
5.1.4.2 Experiment looks up/browses VES.........cccooiiiiiiiiiiie 64
5.1.4.3 Virtualizer creates an VE/loT Service associationccccuveeee. 65
5.1.4.4 Experiment invoke VE-service (access to VE properties).................... 67

6 CONCLUSION ..ot sn e s an e e ammn e 68
A =11 = I 10T 2N = o 69

Copyright © 2015 FIESTA-lIoT Consortium 4

Fiesta-loT Deliverable 2.4 — FIESTA-loT Meta-Cloud Architecture

LIST OF FIGURES

FIGURE 1: WP2 OVERVIEW.uuiiiiieiie ettt e e e e ettt e e e e e e e e e e e e e e eaaan e e e e eenraaanas 11
FIGURE 2: RELATIONSHIP BETWEEN WP2 TASKS AND WITH OTHER WPSociiiiiiinnne. 12
FIGURE 3: [OT DOMAIN MODELcoiiiiiiieeeeee ettt e e 22
FIGURE 4: [OT INFORMATION IMODELuiiiiiiiiieeeeeeeie e e et e e e e e e e e e e e enna s 23
FIGURE 5: [OT FUNCTIONAL MODEL.....uuiiiiiiiiiiee ettt e e e e e e e e e e 25
FIGURE 6: [OT "NATIVE" FUNCTIONAL VIEW ...euuiiiiiieiiie ettt e e 26
FIGURE 7: MANAGEMENT FG AND FCS ... 30
FIGURE 8: VE REGISTRY AND SUB-FCScooiiiiieeee e 32
FIGURE 9: IOT SERVICE/RESOURCE REGISTRY AND SUB-FCS.....cccoviiiiiiiiiiiiee e 35
FIGURE 10: META-CLOUD DATA ENDPOINT AND SUB-FCSuiiiiiiiiiiieieeeeeee e 37
FIGURE 11: SECURITY FGWITH FCS...uiiie e e 38
FIGURE 12: TEST-BED UPGRADES FOR FIESTA-IOT COMPLIANCEcoeeveeeiiieeeeeeeeinnn. 40
FIGURE 13: FIESTA-IOT SYSTEM ARCHITECTURE ...covuuiiieiiiiiiieeeeeeeenieeeeeeeeean e e e e e eenaaans 43
FIGURE 14: EXPERIMENTER REGISTRATION USE=CASEccevtuieeeeieiriieeeeeeeennieeeeeeennnenns 46
FIGURE 15: TEST-BED ADMINISTRATOR REGISTERS NEW ACCESS CONTROL POLICIES......... 47
FIGURE 16: SECURE ACCESS TO PROTECTED RESOURCE.......ccccevtiiiiieeeeeeeeiiee e e 49
FIGURE 17: RESOURCE/SERVICE REGISTRATION SEQUENCE DIAGRAMcccvvvuieeeeeennnnnnn. 51
FIGURE 18: RESOURCE RESERVATION SEQUENCE DIAGRAMuuuuiiaeaaeeeaeaeeeeeeeeeennnnnnnnnnns 53
FIGURE 19: EXPERIMENTER SUBSCRIPTION TO DATA SEQUENCE DIAGRAM............cccevvvnnn.. 54
FIGURE 20: RESOURCES/IOT SERVICES DISCOVERY SEQUENCE DIAGRAMcceeeeevvnnnnnn. 55
FIGURE 21: I0T SERVICE INVOCATION USE CASE SEQUENCE DIAGRAMcccvvuueeeeeeennnnnn. 57
FIGURE 22: DATA PUBLICATION THROUGH THE MESSAGE BUS SEQUENCE DIAGRAM........... 58
FIGURE 23: DATA COLLECTION SEQUENCE DIAGRAM (CLASS-| TEST-BED)...cccceeeeeeeeeannnnnns 60
FIGURE 24: DATA COLLECTION SEQUENCE DIAGRAM (CLASS-Il & -Ill TEST-BEDS).............. 61
FIGURE 25: VE REGISTRATION SEQUENCE DIAGRAMuiiiiiiiiiiieeeeeeetiieeeeeeeenneeeeeennananns 63
FIGURE 26: VE SEARCH SEQUENCE DIAGRAM........cccttuuiieeeeiitiieeeeeeeanneeeeeeeeaaaeeeeeeennnnens 65
FIGURE 27: VE 10T SERVICE ASSOCIATION SEQUENCE DIAGRAM........ccceeviiiiiiieeeeeeeinnnnn. 66
FIGURE 28: SERVICE INVOCATION USE CASE SEQUENCE DIAGRAMceieeviiiiieeeeeeennnannnn. 67

Copyright © 2015 FIESTA-loT Consortium 5

Fiesta-loT Deliverable 2.4 — FIESTA-loT Meta-Cloud Architecture

LIST OF TABLES

TABLE 1: WP2 DELIVERABLESceuveeeeeeaaaaannn

TABLE 2: TERMINOLOGY AND DEFINITIONS TABLE

Copyright © 2015 FIESTA-lIoT Consortium

Fiesta-loT Deliverable 2.4 — FIESTA-loT Meta-Cloud Architecture

TERMS AND ACRONYMS
ACP Access Control Policies
API Application Program Interface
ARM Architecture Reference Model
CRUD Create/Read/Update/Delete
DM Domain Model
EaaS Experiment-as-a-Service
FC Functional Component
Fed4FIRE | Federation For Future Internet Research and Experimentation
FG Functional Group
FIESTA Federated Interoperable Semantic loT/cloud Testbeds and
Applications
FIRE Future Internet Research and Experimentation
FM Functional Model
FTP File Transfer Protocol
FV Functional View
GW Gateway
GUI Graphical User Interface
HTTP HyperText Transfer Protocol
HTTPS HyperText Transfer Protocol Secure
IEEE Institute of Electrical and Electronics Engineers
IERC loT European Research Cluster
IM Information Model
loT Internet of Things
v Information View
JSON JavaScript Object Notation
KEM Key Exchange and Management
KPI Key Performance Indicator
OWL Ontology Web Language
PDP Policy Decision Point
PE Physical Entity
PEP Policy Enforcement Point
RA Reference Architecture
REST REpresentational State Transfer

Copyright © 2015 FIESTA-lIoT Consortium

Fiesta-loT Deliverable 2.4 — FIESTA-loT Meta-Cloud Architecture

RDF Resource Description Framework
RFC Request For Comments
r-loT Service | Resource-centric loT Service
RM Reference Model
SDR Semantic Data Repository
SSRD Semantic Service & Resource Descriptions
TTP Trusted Third Party
VE Virtual Entity
ve-loT Virtual Entity-centric loT Service
Service
WP Work Package
XML eXtensible Markup Language

Copyright © 2015 FIESTA-lIoT Consortium

Fiesta-loT Deliverable 2.4 — FIESTA-loT Meta-Cloud Architecture

1 POSITIONING
1.1 FIESTA-loT

Recent advances in the Internet of Things (loT) area have progressively moved in
different directions (i.e. designing technology, deploying the systems into the cloud,
increasing the number of inter-connected entities, improving the collection of
information in real-time and not less important the security aspects in loT). loT
Advances have drawn a common big challenge that focuses on the integration of the
loT generated data. The key challenge is to provide a common sharing model or a
set of models organizing the information coming from the connected IoT services, loT
technology and systems and more important able to offer them as experimental
services in order to optimise the design of new loT systems and facilitate the
generation of solutions more rapidly.

In FIESTA-IoT we focus on the problem of formulating and managing Internet of
Things data from heterogeneous systems and environments and their entity
resources (such as smart devices, sensors, actuators, etc.), this vision of integrating
loT platforms, test-beds and their associated silo applications within cloud
infrastructures is related with several scientific challenges, such as the need to
aggregate and ensure the interoperability of data streams stemming from different
loT platforms or test-beds, as well as the need to provide tools and techniques for
building applications that horizontally integrate diverse loT Solutions. The
convergence of loT with cloud computing is a key enabler for this integration and
interoperability, since it allows the aggregation of multiple loT data streams towards
the development and deployment of scalable, elastic and reliable applications that
are delivered on-demand according to a pay-as-you-go model.

The activity in FIESTA-IoT is distributed in 7 Work Packages (WPs): WP1 is
dedicated to the project activities coordination, considering consortium
administration, financial management, activity co-ordination, reporting and quality
control. In FIESTA-lIoT one of the main objectives is to include experimenters and
new test-beds to test and feedback the platform and tools generated, thus open calls
for those tenders will be issued that are also part of the WP1 activity and is called
selection of third-parties.

WP2 focuses on stakeholder’s requirements and the analysis on loT Platforms and
Test-beds in order to define strategies for the definition and inclusion of Experiments,
Tools and Key Performance Indicators (KPIs). The activities in this WP2 are focused
on studying the loT Platforms and Test-beds and the specification of the
Experiments, the detail of the needed tools for experimentation and the KPIs for
validate the proposed solutions. This WP will conduct the design and development of
the Meta-Cloud Architecture (including the relevant directory of loT resources) and
will define the technical specification of the project. WP2 also focuses on analysing
the Global Market Confidence and establishes the Certification Programme
Specifications that will drive the global market confidante and certification actions
around loT experimentation model.

WP3 package focuses on providing technologies, interfaces, methods and solutions
to represent the device and network nodes of the test-beds as virtualized resources.
The virtualized resources will be represented as services and will be accessible via

Copyright © 2015 FIESTA-loT Consortium 9

Fiesta-loT Deliverable 2.4 — FIESTA-loT Meta-Cloud Architecture

common service interfaces and Application Program Interfaces - APIs (i.e. the
FIESTA-IoT Test-bed interfaces/APIs). The virtualized resources and their
capabilities and interfaces will be also described using semantic metadata to enable
(semi-) automated discovery, selection and access to the test-bed devices and
resources.

WP4 will implement an infrastructure for accessing data and services from multiple
distributed diverse test-beds in a secure and test-bed agnostic way. To this end, it
will rely on the semantic interoperability of the various test-beds (realized in WP3)
and implement a single entry point for accessing the FIESTA-lIoT data and resources
in a seamless way and according to an on-demand Experiment as a Service (EaaS)
model. The infrastructure to be implemented will be deployed in a cloud environment
and will be accessible through a unified portal infrastructure.

WPS5 focuses on designing deploy and deliver a set of experiments, so as to assess
the feasibility and applicability of the integration and federation techniques,
procedures and functions developed during the project lifetime. It would define a
complete set of experiments to test the developments coming from other WPs
(mainly WP3 and 4), covering all the specifications and requirements of WP2.
Developments will be tested over available loT environments and/or smart cities
platforms. WP5 would also provide evaluation of the key performance indicators
defined for every experiment/pilot. The final deployed experiments will include a
subset of those coming from WP2, 3 and 4, as well as those provided by FIESTA-IoT
Open Calls.

WP6 focuses on the establishment and validation of the project's global market
confidence on loT interoperability, which will provide a vehicle for the sustainability
and wider use of the project’s results. The main activity in this WP focuses on
specifying and designing an loT interoperability programme, including a set of well-
defined processes that will facilitate the participation of researchers and enterprises.
WP6 works on providing a range of certification and compliance tools, aiming at
auditing and ensuring the openness and interoperability of loT platforms and
technologies. WP6 also focuses on Interoperability testing and validation and to
provide training, consulting and support services to the FIESTA-IoT participants in
order to facilitate platforms and tool usability but also to maximize the value offered to
them by using FIESTA-loT suite and tools.

WP7 work package focuses on ensuring that FIESTA-IoT suite, models and tools
engages well with the community outside of the project; from promotion and
engagement of new customers, to the front line support of current users, and the
long-term exploitation of results and sustainability of the facility itself. This will be
carried out in a coordinated manner such that a consistent message and professional
service is maintained. Dissemination activities and the KPI to measure the impacts
will be studied and used in this WP. An ecosystem plan including the specification of
processes, responsibilities and targets will be generated and the evaluation and
effectiveness of the operating model will be evaluated within this WP. In this WP the
successes of stakeholder engagement and report on their satisfaction with the
services offered in FIESTA-IoT will be put in place at the end of the project.

Copyright © 2015 FIESTA-IoT Consortium 10

Fiesta-loT Deliverable 2.4 — FIESTA-loT Meta-Cloud Architecture

1.2 WP2 Overview

This Work Package covers the FIESTA-IoT requirements engineering activities and
will produce the requirements associated with test-bed-agnostic experimentation, as
well as with the Experiment-as-a-Service model to designing and conducting
experiments. WP2 is composed of five different tasks (depicted in Figure 1), which
tackle distinct aspects of the FIESTA-IoT EaaS Experimental Infrastructure:

T2.1 - Stakeholder
Requirements

\I »"‘&ln ¢ Europearrs
s L) Researchers N
o '
Expel ~— FIESTA
V Services

FIESTA Eaa$ Middleware & Linked Data Sets Linked Data Set | | Brokerage &.Be5iva
)

T2.3 - Specification
of Experiments,
Tools and KPls

e ~— Secure Avv.

gData '
FIESTA Meta-Cloud / | Discovery of loT Data & ‘

= Resoir-—__
— -
Testbed Provider APL—"" -~ yesied Frovigerar: =4 Drd\jder API

i | AN
l M eware Adapter for /‘/ Middleware Adapter for Middleware Adapter To.
Semantic Interoperabilif | Semantic Interoperabil Semantic Interoperability

~
T2.4 - FIESTA-IoT Meta-

Cloud Architecture and
Technical Specifications

—= e Vi F
&’ DataSet P . DataSet , — \
*loud Ta\J_J ’l&T;:m:a ~ jorkioud g J T2.5 - Global Market
\ W Testbed #1) i Testoed ”2' ETen D Confid d
Ca o A onftidence an

Certification Specifications)
T2.2 - Analysis of loT
platforms and test-beds

The WP2 Tasks cross all aspects of the FIESTA-IoT Infrastructure. They are:

e

=
o
§lo3e
NGB
= o= |00
g2
e

..

I
ssssssss

ohoile

Smart City

Figure 1: WP2 Overview

Task 2.1. Stakeholder Requirements: This task is responsible for gathering and
processing all Stakeholder requirements (using the Volere Requirements
specifications (Volere)). The involved stakeholders include: the loT test-
beds to be integrated, the experiment providers, and also researchers and
experimenters. Also external projects (such as Open-loT and Fed4Fire) will
provide requirements so, to prepare FIESTA-IoT for the Open-calls. This task
will produce a set of requirements that will be used by all other WP2 tasks.

Task 2.2. Analysis of IoT platforms and Test-beds: This task is focused on the
Test-beds and loT Platforms, analysing and describing what they do and how
they do it. It will also use the set of test-bed requirements produced in T2.1 to
better understand if each test-bed can fulfil the stakeholders’ requirements.
This task will then, model the Test-beds and IoT Platforms in functional blocks
using the loT Architecture Reference Model (ARM) model from loT-A project
(IoT-A, 2013). It will gather what type of information they provide, and how
they provide this information so that Task 2.4 can take this into account when

Copyright © 2015 FIESTA-loT Consortium 11

Fiesta-loT Deliverable 2.4 — FIESTA-loT Meta-Cloud Architecture

developing the FIESTA-IoT Architecture. The outcome of this task will provide
a basis for WP3.

Task 2.3. Specification of Experiments, Tools and KPIs: This task will specify all
planned experiments and extrapolate from it the needed tools to execute
those experiments. It will use the experiment related requirements produced in
T2.1 and analyse them in terms of the tools that need to be provided from
FIESTA-IoT to the experimenters. It will also specify the KPIs of each
experiment so that later validation can occur. The result of this Task will be
used as input to WP5.

Task 2.4. FIESTA-lIoT Meta-Cloud Architecture and Technical Specifications: This
Task will define the FIESTA-loT Meta-Cloud Architecture, leveraging on the
loT-A ARM, and the technical specifications that will drive all the development
work of the project. It will use information from previous tasks to identify the
main building blocks, design & technology choices, and specify the functional
blocks of the FIESTA-loT architecture needed for achieving FIESTA-IoT’s
technical objectives. This architecture will serve as a base for all of the
development phase of the project and more specifically for WP4.

Task 2.5. Global Market Confidence and Certification Specifications: This task is
intended to study and define the global market confidence and certification
specification. This means that this task is responsible to define the certification
process, and the set of requirements that are required for a test-bed to
comply, in order to be integrated into FIESTA-loT. The outcome of this task
will be used in WP6.

As described in the previous tasks description, the outcomes of each task will be
used by other tasks of this WP2, or be used as inputs for the work in other WPs.

These relations between WP2 tasks and other WPs are depicted in Figure 2.

) . WP 3

2.2 AnalySIS of loT - { Technologies for Test-beds Virtualization,

platforms and test-beds Federation and Interoperability
—
Q
% Z T2.3 - Specification of wes
(= i |
o Experlments, Tools and Experiments Design, Delivery and Evaluation
Q E KPls
"
o U
i
V) = T2.4 - FIESTA Meta-Cloud WP 4
| g Architecture and Technical - | Federated Virtualized Testbeds Infrastructure

I Specifications and Tools
N
—

T2.5 - Global Market WP 6

Confidence and r { Global Market Confidence Programme for
Certification Specifications Interoperability

Figure 2: Relationship between WP2 tasks and with other WPs

Copyright © 2015 FIESTA-loT Consortium 12

Fiesta-loT Deliverable 2.4 — FIESTA-loT Meta-Cloud Architecture

In reference to the FIESTA-IOT project general objective(s), WP2 has a set of sub-
objectives defined activities that are described as follow:

1) Determination of Stake Holder requirements.

2) Description of loT Platforms and test-beds in order to facilitate their
integration into FIESTA-IoT infrastructure.

3) Specification of planned experimentation and its executing tools, and the
KPlIs that will be used for validation.

4) Definition of the FIESTA-loT Meta-Cloud architecture and the technical
specifications required for the development WPs

5) Definition of the Global market confidence and Certification specifications

The Work Package 2 will also result in five deliverables, which will be directly linked
with the objectives and tasks of the WP. Each Deliverable will be an outcome of each
Task, meaning that Deliverable D2.1 will be provided at the end of T2.1 with the
results of that specific task. The following table details the set of deliverables to be
expected from WP2, with reference to the related tasks, the responsible partner for
each deliverable and all other contributors.

Table 1: WP2 Deliverables

Responsible

Deliverable Contributors

Partner

NUIG-DERI, NEC,

D2.1 Stakeholders Requirements UNPARALLEL UNICAN,
SODERCAN, SDR

KETI, UNICAN,
D2.2 |oT Platforms and Testbeds Analysis Com4Innov ﬁﬂ@g@%ﬁlﬁé‘&
NEC
< and UNICAN, INRIA,
Experiments, Tools and KPls NEC, NUIG-DERI
D2.3 e NPARALLEL ‘ ’
Specification U AIT, ITINNOV,
SODERCAN
. AIT, NUIG-DERI,
D2.4 FIESTA Meta-C!qud Archltecture and UNIS UNIGAN, [TINNOV.
Technical Specifications KETI

D2.5 Global Market Confidence and EGM AIT. SODERCAN

Certification Programme Specifications

Copyright © 2015 FIESTA-IoT Consortium 13

Fiesta-loT Deliverable 2.4 — FIESTA-loT Meta-Cloud Architecture

1.3 Audience

This deliverable addresses the following audiences:

Researchers and engineers within the FIESTA-IoT consortium, which will
take into account the various requirements in order to research, design and
implement the architecture of the FIESTA-IoT Meta-Cloud Architecture.

Researchers on Future Internet Research and Experimentation (FIRE)
focused on loT and cloud computing systems experimenters at large, given
that the present deliverable could be a useful reading for researchers studying
alternative loT technologies and applications, along with indications and
requirements towards building/establishing experimental architectures.

Members of other Internet-of-Things (loT) communities and projects (such
as projects of the IERC cluster), which can find in this document a readily
available requirements analysis for experimentation-like 0T services and tools.
For these projects the document could provide insights into requirements and
technological building blocks enabling the convergence between utility/cloud
computing and the Internet-of-Things for enabling experimentation as a service.

1.4 Terminology and Definitions

This sub-section is intended to clarify the terminology used during this project. This
initial step is intended to clarify all the important terms used, in order to minimise
misunderstandings when referring to specific parts involved in the generation of data
and the FIESTA-IoT concepts. The following definitions were set regarding the
domain area of FIESTA-loT, and so are aligned with terminologies used in FIRE
community and in reference loT-related projects (such as loT-A).

Characteristic

Table 2: Terminology and Definitions table

An inherent, possibly accidental, trait, quality, or property of resources (for
example, arrival rates, formats, value ranges, or relationships between
field values).

Technical physical component (hardware) with communication capabilities
to other Information technology (IT) systems. A device can be attached to,
or embedded inside a physical entity, or monitor a physical entity in its
vicinity (IoT-A, 2013). The device could be:

* Sensor: A sensor is a special device that perceives certain
characteristics of the real world and transfers them into a digital
representation (IoT-A, 2011).

Device

Actuator: An actuator is a mechanical device for moving or controlling
a mechanism or system. It takes energy, usually transported by air,
electric current, or liquid, and converts that into some kind of motion
(IoT-A, 2011).

Copyright © 2015 FIESTA-loT Consortium 14

Fiesta-loT Deliverable 2.4 — FIESTA-loT Meta-Cloud Architecture

Discovery

Domain

Information

Measurement

Metadata

Physical Entity
(PE)

Requirement

Resource

Stakeholder

Test-bed

Federated test-
beds

Interoperability

Experimentation
facility

Discovery is a service to find unknown resources/entities/services based
on a rough specification of the desired result. It may be utilized by a
human or another service. Credentials for authorization are considered
when executing the discovery (IoT-A, 2013).

Refers to an application area where the meaning of data corresponds to
the same semantic context. For instance, pressure in Water Management
Domain may refer to water pressure on pipes while in Air Quality Domain
it refers to atmospheric pressure

Content of communication; data and metadata describing data. The
material basis is raw data, which is processed into relevant information,
including source information (e.g., analogue and state information) and
derived information (e.g., statistical and historical information) (IEEE,
2007).

The important data for the experimenter. It represents the minimum piece
of information sent by a specific resource, which the experimenter needs
in order to fulfil the objective of the experiment

The metadata is the additional information associated with the

measurement, facilitating its understanding.

Any physical object that is relevant from a user or application perspective.
(IoT-A, 2011). Physical Entities are the objects from the real world that
can be sensed and measured and they are virtualized in cyber-space
using Virtual Entities.

A quantitative statement of business-need that must be met by a particular
architecture or work package. (Haren, 2009)

Computational element that gives access to information about or actuation
capabilities on a Physical Entity (IoT-A, 2011).

An individual, group, or organization, who may affect, be affected by, or
perceive itself to be affected by a decision, activity, or outcome of a project
(Project Management Institute, 2013)

A test-bed is an environment that allows experimentation and testing for
research and development products. A test-bed provides a rigorous,
transparent and replicable environment for experimentation and testing
(Gavras, 2010)

A test-bed federation or federated test-beds is the interconnection of two
or more independent test-beds for the creation of a richer environment for
experimentation and testing, and for the increased multilateral benefit of
the users of the individual independent test-beds (Gavras, 2010)

The ability of two or more systems or components to exchange
information and use the information that has been exchanged (IEEE,
1990)

An experimentation facility can be understood as an environment with an
associated collection of tools and infrastructure that sits on top of one or
several test-beds and can be used to conduct experiments to assess and
evaluate new paradigms, architectural concepts and applications
(MyFIRE, 2011)

Copyright © 2015 FIESTA-lIoT Consortium

15

Fiesta-loT Deliverable 2.4 — FIESTA-loT Meta-Cloud Architecture

Experiment is a test under controlled conditions that is made to
demonstrate a known truth, examine the validity of a hypothesis, or

Experiment determine the efficacy of something previously untried (Soukhanov,
Ellis, & Severynse, 1992)
Semantic interoperability is the ability of computer systems to exchange
Semantic data with unambiguous, shared meaning. Semantic interoperability is a

requirement to enable machine computable logic, inference, knowledge

Interoperability discovery, and data federation between information systems

Services (Technology) are services designed to facilitate the use of
technology by end users. This services provide specialized technology-
oriented solutions by combining the processes/functions of software,
hardware, networks, telecommunications and electronics

Service

Virtual Entity Computational or data element representing a Physical Entity. Virtual
(VE) Entities can be either Active or Passive Digital Entities (IoT-a, 2013).

1.5 Executive Summary

This deliverable describes the System Architecture for the FIESTA-loT platform
aiming at federating a large number of test-bed across the planet in order to offer
experimenters with a unique experience of dealing and experimenting with a large
number of semantically interoperable data sources.

The architecting process leading to this document followed the Architectural
reference Model methodology promoted by the loT-A project (FP7 “light house”
project on Architecture for the Internet of Things). It therefore consists of a set of
Views that are in tern dealing with “logical” functional decomposition (Functional View
- FV), data structuring and annotation, data flows and inter-functional Component
interactions (Information View - 1V) and ultimately the deployment of those logical
components onto concrete software components (Deployment View). Design
Choices pertaining to Non-Functional requirements will be covered in the up-coming
WP deliverables providing detailed interfaces description that will guide he
implemented work on each WP.

The architecture describe din this document is inclusive in the sense it can
accommodate under its federation a large number of test-beds with various
capabilities (some being semantic-enabled already, some not). It offers full semantic
interoperability: all assets of the test-bed (resources, loT Services, Virtual Entities)
are semantically annotated and described; they are searchable using either powerful
data query languages or simpler APIs. FIESTA-IoT is therefore able to offer the
greatest test-bed agnostic experience to both expert users (semantically skilled) and
more basic experimenters as well.

Copyright © 2015 FIESTA-IoT Consortium 16

Fiesta-loT Deliverable 2.4 — FIESTA-loT Meta-Cloud Architecture

2 INTRODUCTION

The purpose of this deliverable is to provide a first version of the Architecture of the
FIESTA-IoT platform. As already covered in Section 1, the whole architectural
process has been spread among different tasks of WP2. In order to start the
architecture as such, i.e. describing the architectural views and perspectives, we
leverage important results already brought by tasks T2.1, T2.2 and T2.3:

» Stakeholder requirements and Experiment requirements: collection and
Analysis of Functional and Non-Functional Requirements are among the very
first phase in the whole architecture process as defined in the ARM-associated
Guidance.

* Description of available test-beds: Helped formalizing the existing gaps of
the available test-beds, especially in regards to the objectives of the project
(full semantic support to name just one) — some elements of answer about
those existing gaps can be found for instance in Section 4.4

Those two inputs gave us both a top-down (requirements) and bottom-up (analysis of
the existing test-beds) approaches to sketch the architecture and in particular the
Functional Components (FCs) it is ultimately made of.

Sketching this first version of the FIESTA-IoT Architecture we have been focussing
on the very core of it first that are the loT Service, Virtual Entity, Communication,
Management and Security Functional Groups - FGs (see the explanations given in
the beginning of Section 3). We have touched as well the Service Organisation and
loT Process Management Functional Group, but those two will be much refined along
with the progress of WP5.

Drafting this architecture we have paid particular attention to some aspects and also
considered some assumptions/constraints, directly derived from the project
objectives, which we describe non-exhaustively below:

* Compliance to the Architectural Reference Model (ARM) from I[oT-A:
“Compliance” is probably too strong in this context but we did try to follow as
much and strictly as possible the whole architecting methodology released by
the FP7 “light house” project about Architecture for the loT. The purpose of
Section 3 is to go in the detail of the process we followed;

* Full support of semantic: The FIESTA-loT platform is fully semantic-
enabled, so we need to put in place all mechanisms needed to support
semantic (languages, ontologies and tools). A related consideration is that we
naturally do not want to exclude test-beds, which are not semantic-ready from
being part of the FIESTA-IoT federation; we had hence to come up with an
architecture that needs also to “enhance” those test-beds —capability-wise— in
order to pull them to the level of FIESTA-IoT standard;

* Compliance to FIESTA-loT set of ontologies: Test-beds which are not
semantics-ready will have to comply to the ontologies defined in FIESTA-loT
so to ensure full semantic interoperability;

Copyright © 2015 FIESTA-lIoT Consortium 17

Fiesta-loT Deliverable 2.4 — FIESTA-loT Meta-Cloud Architecture

* Logical Functional Decomposition: The decomposition into components is
a logical one; meaning that when the platform physical components will be
implemented and deployed, there might not be a direct mapping;

* Technology Agnostic: We tried to get as much as possible agnostic to any
implementation/design choices. For instance we do not mention Resource
Description Framework (RDF) / Ontology Web Language (OWL), RDF/JSON-
LD, REpresentational State Transfer (REST) and SPARQL in the text but
being possible options among others;

* Various roles: We defined different FIESTA-loT end-user roles and defined
the way they will interact with the FIESTA-loT platform (see Section 4.1);

* Accommodate different levels of skills: While most of interfacing between
end-users and the test-beds can be handled by a battery of loT Services
(some served by FIESTA-lIoT and some by the test-beds themselves) we
considered that providing “direct” access to data using complex but powerful
data-centric query languages could be a convenient choice fitting certain
kinds of actors with high semantic skills.

* Message Bus: A Message Bus is used for test-bed to FIESTA-loT FCs
communication (as part of the Communication FG).

The FIESTA-IoT architecture has the following aspects to highlight:

* The Information View provides an extensive (still not exhaustive) list of system
use-cases. It does not provide any information about how the data is
structured and annotated, discussions about options concerning that matter
are part of the WP3 as is documented in their respective deliverables;

* The Functional View focuses only on the core-aspects of the platform like
communication (between the FIESTA-loT platform and federated test-beds
and federation;

* High Level interfaces description and interfaces are described in relevant WPs
components. It is worth noting that some interfaces will be directly delivered
from the 10T-A D1.5 (Annex C) document (IoT-A, 2013);

* The Function Views in this document leverage the work of WP4 on experiment
environment (modelling language, execution) in order to enrich the Process
Management Functional Group.

The FIESTA-IoT architecture Initially aims mainly serving as the boot strapping of the
technical Work Packages, while setting up the basic foundations for the FIESTA-loT
platform, it became more and more obvious that the architectural document should
play a more important role towards the experimenters, either being FIESTA-IoT
insiders or third-parties involved in the open calls. Indeed complementing the
architecture with concrete interfaces, information about ontologies, deployment
views, etc. offers a one-stop-shop document for whoever wants to delve quickly into
the FIESTA-IoT topic; as a consequence it prevents people looking up several more
specialised documents in order to fetch essential information. The Architecture is the
corner stone of the whole FIESTA-loT documentation offering both a synthetic
unique view about the FIESTA-IoT Architecture and pointers to other documents, to
whoever wants to get more into the detail of a particular topic.

Copyright © 2015 FIESTA-IoT Consortium 18

Fiesta-loT Deliverable 2.4 — FIESTA-loT Meta-Cloud Architecture

3 INTRODUCTION TO THE META-CLOUD ARCHITECTURE

3.1 Introduction to the ARM and associated methodology

A primary decision of the FIESTA-IoT project is to follow (as much as possible) the
loT Architectural Reference Model (ARM) as defined in the loT-A project (the
lighthouse FP7 European Project on IoT Architecture) (IoT-A, 2013). Following
the loT ARM means in particular adopting and following as closely as possible the
overall methodology that defines the steps leading to the actual architecture and to
stick to the Reference Model as defined in the ARM (especially the Domain Model -
DM and the Information Model (IM) which are considered as fixed). The architecting
process will then consist of (in order):

* Requirement collection and analysis/processing (called requirement mapping):
this part of the process is described in the previous Section;

* Elaboration of the Physical Entity and Context Views;
e Elaboration of the Functional View;
e Elaboration of the Information View;

The ARM and associated methodology were already introduced quite thoroughly in
Deliverable D2.2 (FIESTA-IoT D2.2), so we do not reproduce the same
description here with the same level of detail (please refer to that deliverable for a
more complete description then) but do remind the key concepts that are referred to
in this deliverable.

The main parts of the ARM consist of the Reference Model, Reference Architecture
(RA) and a side part consisting of the associated methodology:

1. The loT Reference Model (RM): consists of a set of models (namely the
Domain, Information, Functional, Communication and Security/Trust/Privacy
Models) that are rather static in the sense they are not expected to be brought
any modification. The FIESTA-IoT architecture must comply to those models,
especially to the loT Domain Model (because it identifies the key concepts of
the loT Domain and the relations between those concepts), the Information
Model (because it defines a meta-model of how to structure information in the
loT System) and the Functional Model - FM (as it predefines a functional
layered architecture for the 10T);

2. The loT RA consists of a set of Views and Perspectives - as defined by
Rozansky and Woods (Rozanski&Woods, 2011)- that actually define the
FIESTA-IoT Architecture; therefore the main objective of this Architecture
document is ultimately to describe those Views and Perspectives in detail
(perspectives will exhibit design and technology choices typically that are used
to meet the non-functional requirements along different dimensions like
security, interoperability, performance, resilience etc.). The Functional View
(see Sections 3.3.1 and 4) will focus on the decomposition into Functional
Components while the Information View (see Sections 3.3.2 and 5) describes

Copyright © 2015 FIESTA-IoT Consortium 19

Fiesta-loT Deliverable 2.4 — FIESTA-loT Meta-Cloud Architecture

information flows, interaction between components and structure of
information, in compliance with the Information Model (see Section 3.2.2 and
Figure 4). The Deployment View (see Section 3.3.5) comes later on and
shows how the “logical® components part of the Functional View are deployed
within the developed concrete software modules (one module can indeed
implement more than one functional component);

3. Guidance: that defines the overall process used to derive a concrete
architecture out of the ARM. The requirement mapping exercise following the
requirement collection phase (FIESTA-IoT D2.3) in particular helped to
derive a preliminary Functional View.

3.2 The loT Reference Model

In this section we present a quick reminder of the main concepts introduced by the
different models of the loT RM. For more detail please refer either to D2.3 or to
(IoT-A, 2013).

3.2.1 Domain Model

The purpose of the loT Domain Model (Haller et al., 2013) (IoT-A,
2013) as proposed by loT-A is to introduce the concepts pertaining to the loT
Domain (see Figure 3) and the different relationships between those concepts.
Among the different concepts introduced by the DM, it is important to present a
reminder of the following main ones:

Physical Entities (PEs): Physical Entities are the objects from the real world that
can be sensed and measured and they are virtualized in cyber-space using Virtual
Entities. Examples of PEs from the SmartSantander test-bed are buses and traffic
lights; from the Surrey test-bed, floors and offices in the ICS building.

Virtual Entities (VEs): VEs are at the heart of an loT system. They represent the
PEs in the virtual world. Aspects of the PE are captured by VE properties, and using
sensors and actuators allows one to bridge the physical and logical worlds and then
to act on (or read about) properties. At the level of the VE, we will consider a special
kind of service, called a VE Service, which is used to manipulate or access those
properties. It is important to mention here that it is not compulsory that test-beds
provide modelling of PEs into VEs and manage the associated VE Services.
However it is highly important that FIESTA-IoT provides the means for doing so.
Actually the activity of defining VEs and their associated properties and then binding
these properties to sensor readings for instance can be endorsed by other classes of
FIESTA-IoT actors (see Section 4.1), the goal for whom, would be to bring added
value services to experimenters.

Copyright © 2015 FIESTA-IoT Consortium 20

Fiesta-loT Deliverable 2.4 — FIESTA-loT Meta-Cloud Architecture

loT Devices: In FIESTA-IoT, loT Devices are the hardware supporting the sensing
and actuation functions. Micro-controllers, batteries, ROM memory etc. are also
Devices (but without the loT prefix).

loT Resources: |oT Resources are the software embedded in loT Devices that
provides the raw readings (for sensors) and actuations. The loT Domain Model
advises not accessing directly resources, but on the contrary to access
corresponding Resource-centric IoT Services (see below).

loT Services: We can consider different kinds of loT services depending on their
level of abstraction:

* Resource-centric loT services (r-loT Service) are exposing the IloT
Resources using standardized interfaces and possibly adding metadata to
the raw reading available at the resource level. They all connect to a sole
resource (sensor or actuator). For instance getting the reading of a
temperature sensor (e.g. via a REST interface) is accomplished through an
r-loT Service;

* VE-centric 0T Services (ve-loT Service) are associated to the VEs and are
used for accessing VEs attributes/status or to access VE-level services not
directly connected to VEs attribute or situation. In the Functional View the
VE Service FC deals with such accesses. Getting the value of the
‘hasTemperature” property of a room_VE is an example of a ve-loT
Service;

* Integrated IoT Service are combinations of the two above when combining
different readings from different sensors (e.g. “secured” room can depend
on lock/unlock status, presence indicators and light status).

Note: In the rest of this document loT Services and VE Services are to be
understood as respectively r-loT Service and ve-loT Service.

All kind of loT Services described above ought to associate with service descriptions
that can be used to discover particular sensing/actuation capabilities.

Services: Services (without IoT prefix) are associated to VEs but do not relate to
specific properties as illustrated in the example above. Services are not part of the
loT Domain Model but could be added to the global picture for the sake of clarity. For
instance autonomous objects (with cognitive capabilities) may expose services that
do not relate de facto to any of their VE properties.

User: Different kinds of users are expected to interact with the FIESTA-loT platform.
Section 4.1 identifies different roles and explains what kind of interactions there are
implementing with the platform. It is worth noting as well that test-beds may endorse
more than one role.

Copyright © 2015 FIESTA-loT Consortium 21

Fiesta-loT Deliverable 2.4 — FIESTA-loT Meta-Cloud Architecture

User
0.* 0.*
invokes / Zr |
subscribes
Human
User
Digital
Artefact
interacts
with
Active Passive contains
Digital Digital 0.*
Artefact Artefact A -
ugmented |
1.* E\ /4 Entity .
\ !
i \ D
\L 0.7 s \IXorR] ./
Service [<——associated N ~7/ 1 1.*
x with N / contains
h contains®, 0.1
0N/ 1 1 0. o
0.1 . 1t 1 n -
; Virtual represents Physical
exposes Entity |1.* Entity [o
0.* is 0.* ﬁ 0.
0.* attached 0.0 =
to
0.*
contains
Resource is 0.*
0.* 0.+ associated 0.1 Device monitors
h with
hosts
no: 1
0. jﬁ
Network On-Device [[| 0.
Resource Resource
Actuator Tag reads Sensor
0.* 0.*
| 0. lo.r identifies
has Information acts
about / acts on on
Colour Scheme
[] Animate objects (humans, animals etc.)
Hardware
[] software

] Not clearly classifiable (e.g., combination)

Figure 3: loT Domain Model
3.2.2 Information Model

The Information Model (IM) (see Figure 4) focuses on the description of the structure
of Virtual Entities as a representation in the cyber space of physical entities. The
representation of the information (either it is encoded in eXtensible Markup Language
- XML, RDF, binary or any other format) is kept away from the Information Model and
left to the architect’s choice, as part of the semantic interoperability perspective (as a
design choice).

Copyright © 2015 FIESTA-loT Consortium 22

Fiesta-loT Deliverable 2.4 — FIESTA-loT Meta-Cloud Architecture

The central part of the IM consists of the structure of the VE which is modelled using
a set of attributes and which are associated (via the association relationship) to the
Service Description. These associations are essential in the loT IM as they make the
binding between a VE property — which as the name suggests is at the VE level —
and a corresponding Resource-centric loT Service (meaning a service exposing a
resource), which, as the name also suggests, is at the Resource level. This
association must be managed in a dynamic way so that the binding between a VE
property (attribute) and a Resource (via an loT Service) can vary along the time axis.

The Attribute is the aggregation of one-to-many Value Containers. Each of those
containers contains one single value and one-to-many metadata (e.g. time stamp,
location, accuracy, etc.).

VEs are described using a Service Descriptions where each Service would be
characterised (e.g. by its interface) or any useful information that a look-up service
can exploit (e.g. the FIESTA-loT loT Service/Resource Registry, see Section
4.3.5.1).

As an loT Service is exposing Resources which are themselves hosted by Devices,
the IM authorises Service Description to contain 0-to-many Resource Description(s)
and Resource Description to contain 0-to-many Device Description(s). The structure
of Descriptions is not constrained by the IM and therefore left to the architect's own
choice.

Value
1
VirtualEntity Attribute ValueContainer
enfityType k> attributeName ~ K>———
identifier 0. attribute Type 1.
A
|
Association
--------- serviceType
0.*
Dgse::'\r’ilcgon MetaDats metadataMetadata
P metadataName [———
metadataType
metadataValue 0
Resource Device
Description o Description
0.1

Figure 4: loT Information Model

Copyright © 2015 FIESTA-loT Consortium 23

Fiesta-loT Deliverable 2.4 — FIESTA-loT Meta-Cloud Architecture

3.2.3 Functional Model

The Functional Model (FM) (see Figure 5 below) proposed by loT-A corresponds to a
service-oriented approach of loT. It identifies 7 main Functional Groups (FGs) and 2
additional ones that are kept outside the scope of the [oT ARM. The FM has been
already described in Deliverable D2.2 (FIESTA-IoT D2.2) but it is worth
reminding here the purpose of the different FGs as they are central to the functional
decomposition achieved later on in Section 4.

The Functional Groups are defined as follows (IoT-A, 2013):

loT Process Management FG: The purpose of this FG is to allow the
integration of process management systems with the loT platform. For
example, the formal definition of a pan-test-bed experiment (as a process)
would fall into this category;

Service Organisation FG: This FG is responsible for composing and
orchestrating services, acting as a communication hub between other FGs.
The execution of an experiment described within the loT Process
Management FG would take place in this FG, like any other kind of
choreography/orchestration engine. Added-value services like aggregators or
reasoners would be also part of this FG as they heavily rely on loT
Services/VE Services;

Virtual Entity FG: This FG relates to VEs as defined in the loT Domain
model, and contains functionalities such as discovering VEs and their
associations with Resource-centric loT-services. This FG also allows access
to the VE-centric loT Service offered (formally “associated with”) by a Virtual
Entity. In FIESTA-loT those VE Services can be accessed via a VE endpoint;
loT Service FG: The loT Service FG contains functions relating to Resource-
centric Services. Those services expose the resources like sensors and
actuators and provide the means for reading sensor values or actuating. It
also contains storage capability functionality. More specifically the IoT ARM
states that: “A particular type of loT Service can be the Resource history
storage that provides storage capabilities for the measurements generated by
resources”;

Communication FG: The Communication FG is used to abstract the
communication mechanisms used by the Devices. Communication
technologies used between applications and other FGs is out of scope for this
FG as these are considered to be typical Internet technologies. A central
message bus offering publish/subscribe functionalities would also be part of
this FG as we will see when describing the FIESTA-IoT Functional View;
Security FG: The Security transversal FG is responsible for ensuring the
security and privacy of loT- compliant systems. The management of security
itself is also part of this FG;

Management FG: The Management transversal FG contains components
dealing with configuration, faults, reporting, membership and state. It should
be mentioned here that this FG works in tight cooperation with the Security
FG.

Copyright © 2015 FIESTA-loT Consortium 24

Fiesta-loT Deliverable 2.4 — FIESTA-loT Meta-Cloud Architecture

Application
Service P 17 Virtual loT
Organisation rocess Entity Service
Management

Management
Security

Communication

Device

Figure 5: loT Functional Model

3.3 loT Reference Architecture

The loT ARM consists of different views as introduced earlier, i.e. Functional View,
Information View and Deployment View. There are two additional Views which are
not stricto sensu part of the loT ARM: Physical Entity View and Context View;
however they are part of the guidance chapter of the IoT-A Deliverable D1.5 (IoT-A
2013) and those views are clearly essential when elaborating the loT system
architecture. Different viewpoints may be used for describing the different views (see
Section 4.4.1 of (FIESTA-IoT D2.2) for the definition of a viewpoint according to
Rozanski and Woods (Rozanski&Woods, 2011))

3.3.1 Functional View

In this section we provide a reminder (See Figure 6 below) of the “native” loT-A
Functional View as it shows an illustrative example of functional decomposition
resulting from a thoroughly conducted requirement analysis (in that particular case it
was the analysis of the loT-A Unified Requirements). We recommend referring to the
loT ARM final architecture deliverable D1.5 (IoT-A, 2013) in order to get more
detail about the purpose of each of the Functional Components shown in that
Functional View.

Copyright © 2015 FIESTA-loT Consortium 25

Fiesta-loT Deliverable 2.4 — FIESTA-loT Meta-Cloud Architecture

Application
Management Service loT Virtual Entity loT Service Security
Organisation Process Management
Process
Modeling
. . Service Process S
Configuration i . Authorisation
Composition Execution
Fault Service Key Exchange &
Orchestration VE& loT Management
Service Monitoring
. Service .
Reporting Choreography Trust & Reputation
VE Resolution VE Service
Member Identity Management
loT Serv.me loT Service L
State Resolution Authentication
Communication
End To End Network Hop to Hop
Communication Communication Communication

Device

Figure 6: loT "Native" Functional View

When elaborating the reverse-mapping from various existing FIESTA-lOT test-beds
towards the loT Functional View it is important to try to keep as much as possible to
the list of components already identified, however it is perfectly possible and allowed
to introduce new ones.

Along with a description of the FCs within FGs it is equally important to get a concise
—and still precise— description of the different FCs implemented in the various test-
beds and to understand also very clearly how they interact with and position w.r.t. the
other components. At this point in time we concentrate on a clear textual description,
but in the architecture document System Use-Cases (see Section 5.1) we will
formally elucidate those inter-component interactions.

3.3.2 Information View

We use various viewpoints for describing the information view:
* Information flow: shows how information flows between components;

* System use-cases: elucidate usage patterns and explicitly shows interactions
between components;

e Structure of information: in the case of FIESTA-IoT we will describe the used
ontologies;

* Sequence diagrams.
Note: In this version of the Architecture, only the two first viewpoints are used.

Copyright © 2015 FIESTA-IoT Consortium 26

Fiesta-loT Deliverable 2.4 — FIESTA-loT Meta-Cloud Architecture

3.3.3 Physical Entity View

This view gives information about the Physical Entities of interest for the IoT System
and how those PE are represented within this 0T system:

* List of PEs and their associated properties that can be observed, in addition to
the associated actuations that can be applied to them;

* List of devices that are instrumented in order to bridge the physical properties
to the cyber world;

* How the sensors/actuators are associated to the PEs and their location; if a
PE is in the scope of a camera or if a PE is attached to a temperature sensor
for instance.

3.3.4 loT Context View

The loT Context View consists of the Context View and the instantiated Domain
Model.

According to Rozansky and Woods (Rozanski&Woods, 2011) the Context View
describes “the relationships, dependencies, and interactions between the system and
its environment (the people, systems, and external entities with which it interacts)”.
This view focuses on formalizing the boundary between the system and its
environment (outside world) and shows how the system interacts with other IT
systems, organizations and end-users/administrators etc. using the loT system.

3.3.5 loT Deployment View

The Deployment View main purpose is to describe how the different functional
components and hardware (including gateways, sensors, actuators etc.) are
deployed in the “real life”. This view will in particular take care of:

* The physical association between object and hardware;

* The mapping of logical Functional Components (as they can be found in the
Functional View) onto concrete Software Components as they were eventually
implemented.

Copyright © 2015 FIESTA-lIoT Consortium 27

Fiesta-loT Deliverable 2.4 — FIESTA-loT Meta-Cloud Architecture

4 FIESTA-IOT FUNCTIONAL VIEW

Before describing the different components that are part of the Functional View, it is
important to define on the one hand the roles and the associated duties that actors
involved with the FIESTA-IoT platform may endorse and on the other hand the
different kind of platform configurations and capabilities that can co-exist within the
umbrella of the FIESTA-IoT federation:

4.1 Roles in FIESTA-loT

This short section introduces a taxonomy of actors dealing with FIESTA-loT
Federation Platform.

Raw-data producers: are responsible for producing the raw-data with a low
level of metadata. This process does not involve combining several data-
sources. In addition they are responsible for describing and publishing loT
Service and Resource semantic description either locally or at the FIESTA-loT
level depending on the Class they belong to (see Section 4.2);

Virtualizers: provide a Virtual Entity layer (Virtual Entity and VE Services) on
top of IoT Services. More precisely the roles of virtualizers are to:

o Create VEs, model them in terms of Properties/Attributes, semantically
describe them accordingly following the FIESTA-loT ontology, and
register them to the VE Registry FC;

o Manage Association relationships between VEs (precisely VE
properties) and Resources;

o Define the policy as for updating the values associated with VE
properties and delegates the updating activity to the VE Manager;

(Added-value) Service providers: are providing added-value services (e.g.
reasoners or generic enablers) that in turn can be combined and used in order
to create knowledge (by knowledge producers). Service providers may also
consume data but not necessarily. Added-value services can be bound to VE
properties creating then de-facto new VE Services;

Knowledge producers: they are involved in leveraging the basic loT
services/Resources provided by the raw-data producers and services provided
by the service providers in order to create and store higher-order knowledge
(within the FIESTA-loT Meta-Cloud Data Endpoint FC). This process gives
birth to virtual resources that can be in-turn described and stored at the loT-
Service/Resource Registry FC level. Having done so they may want to reflect
the knowledge as new part of the VE properties; they may then create new
property and bind it (via an association) to the newly created loT Service that
when run, results in the production of a piece of knowledge that characterises
the new VE property;

Experimenters: are using the services and consuming data provided by the
FIESTA-IoT Meta-Cloud Data Endpoint FC for the sake of their own business.
They do not store any data within the Meta-Cloud.

Copyright © 2015 FIESTA-IoT Consortium 28

Fiesta-loT Deliverable 2.4 — FIESTA-loT Meta-Cloud Architecture

Test-beds are typically involved at least in Raw-data production and may be as well
Knowledge producers if they are willing to provide added-value I0T/VE Services on
top of their basic activities. They may be also become Virtualizers when associating
Virtual Entities and properties to their raw data sources.

The experiment-as-a-service concept is captured by the service provider role.

Experimenters are FIESTA-loT platform users, while other roles are FIESTA-IoT
platform contributors.

4.2 Test-bed taxonomy

We have identified three different classes of test-beds that can be potentially part of
the FIESTA-loT federation. Those three classes are described in the overall
architecture schema together with the different components that they have to
integrate in order to be FIESTA-IoT compliant:

* Class-l test-bed: Those test-beds are fully compliant to FIESTA-loT (still at
the condition they do comply with the FIESTA-IoT ontologies (FIESTA-IOT
D3.1)) and do not necessitate any integration of any additional components.
They store locally semantically annotated data. They also manage locally VE
descriptions, loT Service/Resource description and endpoint. They provide a
data endpoint for direct data queries. All descriptions are semantically
described and compliant to the FIESTA-IoT schemas;

* Class-ll test-bed: Those test-beds were initially not semantic-ready; still they
used to store their data locally with some annotations in a non-semantic
format (e.g. JSON). In order to comply with the FIESTA-IoT rules, they will
have to integrate/implement few functional components (see some examples
of such additional components in Section 4.4). Class-II test-beds will replicate
their data, after it has being semantically annotated according to the FIESTA-
loT schema, to the FIESTA-IoT data repository. As a consequence they do not
offer a data endpoint locally; queries to data originating from that test-bed will
be answered by the central FESTA-IoT data repository directly;

* Class-lll test-bed: those test-beds were initially neither semantic-ready nor
storing any data locally; In order to be part of the FIESTA-loT federation they
will have to integrate few additional FCs;

The following section describes all Functional Components that are considered for
this first release of the architecture. This list might be updated when updating to the
final version of the FIESTA-IoT Architecture.

4.3 Functional Group and Component Descriptions

Remember that the Functional View at this stage is a logical view. An existing or to-
be-developed component may actually endorse more than one logical role spanning
even more than one FG, for instance if a decision is taken to implement only one
Registry dealing with both VEs and loT Service/Resources.

Copyright © 2015 FIESTA-IoT Consortium 29

Fiesta-loT Deliverable 2.4 — FIESTA-loT Meta-Cloud Architecture

4.3.1 Management FG

This FG is made of 2 FCs as shown in the Figure 7 below.

MANAGEMENT FG

User
Management

FIESTA-loT WEB
Browsing & Config. FC

Figure 7: Management FG and FCs

4.3.1.1 User Management FC

This component is responsible for registering new FIESTA-IoT users within the
FIESTA-IoT management database. FIESTA-IoT users can sign up to use the
FIESTA-IoT services via a Graphical User Interface (GUI); they can also use the GUI
to update their personal user information. The registration process includes the
issuing of security credentials (however the management of keys and
authentication/access enforcement points are at the Security FG side).

4.3.1.2 Web Browsing & Configuration FC

This FC is a web application that builds and provides the FIESTA-IoT actors with a
graphical interface for interactively discovering, manipulating and configuring (Create,
Read, Update and Delete - CRUD operations) Virtual Entities, Resources and
Services. It heavily relies on the two, respectively VE-centric and IloT
Service/Resource-centric, Web Front-end Sub-FCs.

4.3.2 Service Organisation FG

This FG and the loT Process Management FG (see next section) are dedicated to
components that are used as tools for modelling, creating and supporting the
execution of -on the one hand- experiments that are used by experimenters to
access and make use respectively of data available at the FIESTA-loT platform (and
federated test-beds) and the myriad of IoT services also available. On the other hand
they can be used by added-value service providers in order to create added-value
services that in turn can be used for the creation of smarter experiments.

The FCs of the Service Organization FG will be confirmed/enriched in a second
version of the deliverable as the technical work of the corresponding Work Package
makes progress.

4.3.2.1 loT Service Composer

The loT Service Composer FC is a Functional Component that is used to compose
loT Services or added-value services (like reasoners, aggregators etc.) into higher-
level (still 10T) composite services. Such services can be used for instance for

Copyright © 2015 FIESTA-loT Consortium 30

Fiesta-loT Deliverable 2.4 — FIESTA-loT Meta-Cloud Architecture

building abstract sensors (like combining different kind of sensors e.g. particle sensor
/ CO, / CO sensor in order to infer an “air quality” sensor). Such composite services
need to be discovered as well, so this component needs to be able to register new
loT services to the loT Service Registry FC, even though the IoT Services, it relies
on, are managed at the test-bed level.

A composite IoT Service can be managed either by the test-bed in case it is willing to
go beyond the production of raw data only, in order to provide added value loT
Services (Added-value Service Provider role) as well, or to publish higher-order
knowledge (Knowledge Producer role). Such services can also be produced by a
class of actors that position themselves above the test-bed with the same aim of
creating added-value knowledge and making it available to experimenters.

4.3.2.2 loT Composite Service Execution Engine

This component is responsible for executing the Composite loT Services, which are
described at the loT Service/Resource Registry FC side but actually stored locally in
this component. It offers a REST interface that triggers the retrieval and execution of
the Composite Service so that the REST request can be answered.

4.3.3 loT Process Management FG
4.3.3.1 Experiment modelling FC

This component allows for modelling either through graphical interface or scripting an
experiment. It relies in particular on interfaces provided by the other functional
components for querying data, searching (look-up) virtual entities, querying VE
properties, searching and invoking loT Services (exposing resources), etc.

This component should also have access to storage capabilities, so that the results
of the experiment can be persisted.

4.3.3.2 Experiment Execution Engine FC

This component is responsible for executing the experiment (see above). VE
Services and loT Services referred to within the experiment are therefore invoked
from this component.

4.3.4 Virtual Entity FG

In this Functional Group we present the VE Registry Functional Component and also
the sub-FC it is made of.

4.3.4.1 Virtual Entity Registry FC

This main Virtual Entity Registry' FC allows the creation/management of VEs and
management of associations between VEs and loT Resources (via loT Services).
Through an association, a VE Property is bound to one or more loT Services that
expose underlying resources (as the Resource / loT Service associations are one-to-
many).

' This FC corresponds to the VE Resolution FC in Figure 6

Copyright © 2015 FIESTA-loT Consortium 31

Fiesta-loT Deliverable 2.4 — FIESTA-loT Meta-Cloud Architecture

It also supports the storage and look-up of any Virtual Entity semantic description
managed within FIESTA-lIoT by the Virtualizers actors (whether the role is endorsed
by a test-bed or by a 3 party). It also stores information about VEs and the look-up
and retrieval of that information (information about physical objects and properties).

This component provides in addition a VE endpoint that exposes VE Services to
FIESTA-IoT users. VE Services are used to work at VE level directly, meaning that
they allow to act (get/set) on VE properties without any explicit reference to the
underlying loT Services/Resources.

Accessing VE should be also possible in an interactive mode as it may be necessary
to browse VE before designing experiments. See Management FG (Section 4.3.1) for
browsing capabilities (at VE and Resource level). VE Registry is relevant to
experiments that consider the nature of manipulated physical objects. A THING-
agnostic experiment focussed on data only (statistics, machine learning etc.) is most
probably using the loT Service Resource Registry FC and Data Repository FC only.

The VE Registry FC is made of the following sub-FC (see also Figure 8 below):

* VE Manager Sub-FC: offers interfaces for creation/registration, association
management and VE look-up;

* VE Web Front-end (f/e) Sub-FC: supports the VE/lIoT Service/Resource web-
client, situated at the Management FG side;

* VE Broker Sub-FC: is used in order to forward look up requests to local
Class-I VE endpoints after they have registered themselves to this component;

* VE Endpoint Sub-FC: this component provides an entry point to accessing
VE Services associated with VEs managed within FIESTA-loT (REST based
for instance);

* VE Repository: is a database that contains VE descriptions, associations and
VE related data (properties and their values)

Virtual EntityRegistry
VE web fle VE endpoint

VE Manager o
VE Broker

Figure 8: VE Registry and sub-FCs

4.3.4.2 Virtual Entity Manager Sub-FC

This Functional Component is responsible for many aspects (see below) relating to
the Virtual Entities and offers many corresponding supporting interfaces:

* Updating VE properties automatically according to Virtualizers instructions.
* Creation of VEs and VE description set-up;
* Creation and management of Associations;

Copyright © 2015 FIESTA-loT Consortium 32

Fiesta-loT Deliverable 2.4 — FIESTA-loT Meta-Cloud Architecture

* Accessing VE properties/values on VE-endpoint behalf;
* Running VE Services on VE-endpoint behalf.

4.3.4.3 Virtual Entity Web front-end (f/e) Sub-FC

This FC supports the FIESTA-IoT user for discovering/browsing via a GUI the VEs
federated by the FIESTA-loT platform and possibly managed by the underlying
FIESTA-IoT test-beds. It can also be used as a front-end to the VE creation and
association registration processes. Those three aspects are described in more detail
in the three following sub-sections. This component serves also the general purpose
Web client for graphical/interactive access to VEs, Resources and IoT Services
located at the Management FG side.

4.3.4.3.1 Browsing Virtual Entities
Browsing a VE means discovering VEs using an interactive and graphical web client
in order to gain access to VE’s characteristics:

* VE unique identifiers;

* VE semantic descriptions;

* VE properties and types;

* VE Services that can be used in order to get a property value (e.g. underlying
sensor value) or set a property value (e.g. underlying actuator value);

* Bindings between VE properties and the underlying loT Service and resources
they are exposing (it should be then possible to go deeper in the detail of the
resource/loT Service descriptions themselves (see the Association set-up
below)).

VE maybe nested in different levels, the containment relation between VE shall be
reflected as well (in the spirit of nested folders in the case of file system browsing).

For example, in Santander, one may create a VE for a bus line with some attribute
about its itinerary that consists of many Bus VEs and Bus Stop VEs with associated
properties.

4.3.4.3.2 Creating Virtual Entities

Creating a VE is a process carried out by virtualizers using the VE web front-end FC.
They may also create a VE using the VE Creation API offered by the VE Manager
Functional sub-FC of the VE registry FC (see Section 4.3.4.1 below). The purpose of
the registration is to describe the Virtual Entity semantically and to register it within
the VE Registry FC (and associated database). The VE semantic descriptions must
include in particular:

* A unique VE identifier;

* Information about any “containment” relationship to any already existing VEs
(in case of nested virtual entities);

* |Information about the VE properties;

Copyright © 2015 FIESTA-loT Consortium 33

Fiesta-loT Deliverable 2.4 — FIESTA-loT Meta-Cloud Architecture

* Information about the Physical Entity that the VE is representing in the Cyber
world (unique ID —if any-, object class, etc.).

4.3.4.3.3 Creating Associations

Creation/Management of Association is the third aspect tackled by the VE Web
Front-end. It supports the manual association of VE properties to loT Services /
Resources. Association creation is also possible via a dedicated API provided by the
VE Manager Sub-FC of the VE Registry FC (see Section 4.3.4.2)

4.3.4.4 Virtual Entity Broker Sub-FC

The broker sub component is used to forward any VE-related request to all Class-|
test-beds under the FIESTA-loT federation. It is also responsible for compiling
answers from them with local answers.

4.3.4.5 Virtual Entity endpoint Sub-FC

The Virtual Entity endpoint offers an endpoint (for instant REST-based) to accessing
VE properties and VE Services under the FIESTA-loT federation. It relies on API
provided by the other sub-FCs, in particular the VE Manager Sub-FC.

4.3.5 loT Service FG

In this Functional Group we are addressing two main Functional Components which
are respectively the loT Service/Resource Registry and the Meta-Cloud Data
Endpoint. As we did for FG, we describe now in turn the FCs and associated sub-
Functional Components (Sub-FC).

4.3.5.1 IloT Service/Resource Registry

The loT Service/Resource Registry? FC provides an API for registering a Resource
and the associated loT Services within a registry with associated metadata. This
particular API can be used either for registering composite loT services defined by
the loT Service Composer FC (Added-value Services in particular) or by test-beds
which do not handle locally the definition of the loT Services that expose their
resources (See Class-Il & -Ill Test-beds scenarios).

This registry allows also to look-up loT Services exposing resources based on
various criteria (based on metadata).

Note: At the time this version of the deliverable is written, there is no decision yet
how the registry will eventually be implemented. However if all loT Services and
resource descriptions are stored as RDF triples and stored inside a triple store, a
query may be in the form of a SPARQL query (for actors able to handle the
complexity of SPARQL queries) via a dedicated SPARQL endpoint. Another
possibility (which can perfectly co-exist with the previous one) is to provide an loT
Service for querying loT Services using a When/What/Where interface®. Such an

% This FC correspond to the 10T Service Resolution FC in Figure 6

3 E.g. Give me all observation relating to a phenomenon x (What) occurring in location y (Where) at
time-interval t (When)

Copyright © 2015 FIESTA-loT Consortium 34

Fiesta-loT Deliverable 2.4 — FIESTA-loT Meta-Cloud Architecture

interface is much less powerful than a SPARQL interface, however it has the
advantage of being easy to use, especially by non-semantic experts. Its other
advantage is that it can be used by test-beds which are not natively using RDF, but
rely on other standards e.g. JSON. A look-up request would be analysed by the test-
bed, and the Semantic annotator would be then used to translate the test-bed answer
into RDF for instance.

This registry is a federating one, meaning that it will forward requests to the test-bed
registries and compile/aggregate answers coming back from them, with additional
constraints like for instance restricting the volume of answers.

This component is made of a few sub Functional Components as follows (see also
Figure 9 below):

* Resource Broker: receives loT Service/Resource look-up queries from
FIESTA-IoT end-users (in the broad sense), dispatches to Class-| test-bed
(when applicable) and compile answers. It also provides a query interface
(e.g. SPARQL endpoint) in order to deal with those kinds of requests;

* Resource Manager: manages the reservation of |loT Service/Resources,
reports on availability, stores/retrieve semantic description of loT Services and
Resources;

* loT Service/lResource Web front-end Sub-FC: supports the VE/loT
Service/Resource web-client situated at the Management FG side.

Resource/loT Service Registry

Resource / loT
Service web fle @
Resource Manager '

Resource Broker

Figure 9: loT Service/Resource Registry and sub-FCs

4.3.5.2 Resource Broker Sub-FC

As introduced above the Resource Broker component is the front-end offered by the
loT Service/Resource Registry to the FIESTA-IoT end-user for accessing data stored
at that side and look-ups; typical end-users being experiments or Web loT-
Service/Resource Web front-end for instance. As for accessing the data from the
database, the Broker will rely on the Resource Manager component.

4.3.5.3 Resource Manager Sub-FC

The Resource Manager is the only point of entry to the database that stores loT
Service and Resource descriptions. It is envisioned that it will use a Jena interface to
the data store (wherever it is Triple store or SQL-like database) for storing, managing
and retrieving data. This component serves ultimately both the Web Front-end and
Resource Broker Sub-FCs.

Copyright © 2015 FIESTA-lIoT Consortium 35

Fiesta-loT Deliverable 2.4 — FIESTA-loT Meta-Cloud Architecture

4.3.5.4 IloT Service/Resource Web Front-end Sub-FC

This FC supports the FIESTA-loT user for discovering/browsing via a GUI the loT
Services and Resources federated by the FIESTA-lIoT platform and possibly
managed by the underlying FIESTA-IoT test-beds. It can also be used as a front-end
to the registration processes associated with loT Services and Resources. This
component serves also the general purpose Web client for graphical/interactive
access to VEs, Resources and loT Services located at the Management FG side.

4.3.5.5 Meta-Cloud Data Endpoint FC

This component® offers FIESTA-IoT users interfaces to query data managed within
FIESTA-IoT (either it is locally stored and managed at the FIESTA-loT side or
remotely stored and managed by Class-| test-beds). It is about exclusive interaction
between FIESTA-lIoT user and stored data, meaning here annotated data coming
from raw-data producers but also knowledge coming from knowledge producers.

The Meta-Cloud Data Endpoint FC aims at managing and storing data published by
the Class-Il & -lll test-beds and is the central point where data queries are resolved.
When a data request comes, it will resolve it locally (purpose of the Data Manager
sub-FC, see Section 4.3.5.5.1) and also propagate the request to the Class-I test-bed
data endpoint (Class-I test-bed data-endpoint are registered to the FIESTA-IoT
platform beforehand).

Two types of interface are provided at this level:

* A pure data-query specialised one (e.g. SPARQL) which directly addresses
the database;

* A less powerful but more user-friendly set of APIls e.g. What/Where/WWhen-
type APl (WP3 API) that exploits specific metadata.

This component is made of several sub-components (see Figure 10).
4.3.5.5.1 Data Manager Sub-FC

Data Manager Sub-FC is responsible for storing the data within the Semantic Data
Repository sub-component, upon Class-Il & -lll test-beds’ request and to answer
incoming data-query requests along the two interfaces afore-described.

4.3.5.5.2 Semantic Data Repository Sub-FC

Semantic Data Repository Sub-FC is storing data managed at FIESTA-IoT level
(coming from Class-II & -lII test-beds).

4.3.5.5.3 Data Broker Sub-FC

Data Broker Sub-FC forwards the data queries to the FIESTA-loT Class-I test-beds
(e.g. towards their SPARQL endpoints or local WP3 APIs) and aggregates answers.

* Strictly speaking this FC would be considered as an loT Service in Figure 6

Copyright © 2015 FIESTA-loT Consortium 36

Fiesta-loT Deliverable 2.4 — FIESTA-loT Meta-Cloud Architecture

It also manages the volume of received data according to experiment constraints. It
may have also to prioritize according to the origin of data as well.

Meta-Cloud Data Endpoint
Data

Manager

Data Broker ~

Figure 10: Meta-Cloud Data Endpoint and sub-FCs

4.3.6 Communication FG
4.3.6.1 Message Bus FC

A message bus provides the FIESTA-IoT eco-system with a communication channel
following the Pub/Sub paradigm. This communication channel is used for various
purposes:

* Publishing data to the FIESTA-IoT Meta-Cloud Data Endpoints (Class-Il & -l
test-beds);

* Back channel used by loT Services for eventually answering data upon loT
Service invocation, depending on their ultimate purpose (Actuation IoT Service
would probably not use this back channel for instance).

The message bus in addition to delivering the data also provides an interface for
subscription management and publishing.

FIESTA-IoT data consumers (i.e. knowledge producers, experiment), can then
subscribe to data according to some filtering/routing criteria (e.g. topics or
conditionals) and access data in an event based manner.

The data produced by all-Class test-bed must comply with the FIESTA-IoT ontologies
(FIESTA-IOT D3.1.1).

The Message Bus FC includes a Subscription Management sub-FC that is
responsible —as the name suggests— for managing all aspects of subscription.

4.3.7 Security FG

The Security FG follows quite strictly the recommendation for IoT-A native FCs as
shown in Figure 6. The Figure 11 below introduces the Functional Components used
for dealing with Security in FIESTA-lIoT. This FG is made of several components
already identified in the loT-A Native Functional view:

* AuthN: Authentication of FIESTA-IoT Users;

* AuthZ: Access-Control policies, decision and enforcement;

* KEM: Key Exchange and management;

* TTP: Trusted Third Party (for generation of Security Certificates).

Copyright © 2015 FIESTA-lIoT Consortium 37

Fiesta-loT Deliverable 2.4 — FIESTA-loT Meta-Cloud Architecture

Those different FCs are described here after in more detail.

SECURITY FG
s ™
AuthN
_ Y,
s ™
AuthZ
Access
Policy
Admin
_ J
s ™
KEM
_ Y,
s ™
TTP
_ Y,

Figure 11: Security FG with FCs

4.3.7.1 Authentication (AuthN) FC

This AuthN® component is responsible for enforcing the authentication of registered
FIESTA-lOT users. Based upon a user credential passed to the AuthN FC we can
make an assertion about the identity of the user i.e. that they are a known FIESTA-
loT experimenter (i.e. AuthN (user_credential) - assertion).

The AuthN component interacts with the User Management FC when the user
registers in order to produce the user credentials (such credentials can take multiple
forms e.g. both username/password and an X509 certificate).

When access to a resource or service is requested by a user, the request is captured
by a decision point as whether to grant or deny the request based upon whether the
requester is authorized to do so. At this point, the AuthN FC can be contacted by the
decision point to assert the authenticity of the requester.

4.3.7.2 Authorization (AuthZ) FC

The AuthZ® component makes decisions about access control requests (intercepted
at access decision points) based upon Access Control Policies (ACPs).
Access control can be applied at the level of look up—for instance:

» for a request to search for a list of VEs/resources in a specific domain or part
of a domain (test-bed) meeting some criteria; or

e for direct access to resources via their interfaces.

® AuthN correspond to the one proposed in Figure 6 as part of the Security FG

® Authz correspond to the one proposed in Figure 6 as part of the Security FG

Copyright © 2015 FIESTA-loT Consortium 38

Fiesta-loT Deliverable 2.4 — FIESTA-loT Meta-Cloud Architecture

Access is denied if the assertions made about the request and requester do not
comply with the Access Control Policy. Usually the three parameters of an access
request include an assertion (data guaranteeing for the occurrence of an
authentication of a user client at a particular time using a particular method of
authentication), the targeted resource and requested operation (read or write for
instance).

4.3.7.3 Access Policy Administration FC

This sub-component of AuthZ FC provides a Policy Administration Point to the AuthZ
FC where access policies are defined and managed. A GUI is provided to the owner
of resources who wish to protect access; using the GUI the owner can create new
access policies, attach them to resources, update access policies and delete access
policies.

The Access Policy Administration FC will typically be used by test-beds signing up to
FIESTA-IoT and registering their resources. When they register a resource, they can
assign an access policy (applying a default rule e.g. all FIESTA-lIoT experimenters
can perform a read operation on the API, or define their own policy using the GUI).

Access Policies defined in this FC will be followed by the AuthZ component when
making access control decisions.

4.3.7.4 Key Exchange and Management FC

The Key Exchange and Management (KEM) component manages the exchange of
security information between two parties. In particular, it ensures that the keys
required to construct a secure and trusted communication channel is carried out in a
secure manner.

When a test-bed registers with FIESTA-IoT, the keys required to establish the secure
channel between FIESTA-IoT and the test-bed are created and exchanged between
the two parties.

In FIESTA-loT, the HyperText Transfer Protocol Secure (HTTPS) communication
protocol will be used to secure communication between test-beds and FIESTA-loT
services and components.

4.3.7.5 Trusted Third Party Authority (TTP) FC

The TTP FC is used to generate RSA key pairs used in certificate based
authentication and the subsequent x509 certificate. Such credentials may be needed
by both experimenters signed up to use FIESTA-IoT services (hence, experimenters
can be given a certificate during the sign-up process) and test-bed interfaces, and
also for the trusted communication channels between test-beds and FIESTA-IoT (as
described in the KEM FC).

Copyright © 2015 FIESTA-loT Consortium 39

Fiesta-loT Deliverable 2.4 — FIESTA-loT Meta-Cloud Architecture

4.4 Impact on existing test-beds (impact of federation)

Adopting the functional decomposition and federation principles described in the
former sub-sections has an impact on the existing test-bed inner architectures and
initial technology choices (formerly made outside the federation).

In order to align with both FIESTA-IoT requirements and proposed architecture those
test-beds have to bring modifications either to their existing components or to their
architecture by adding new components.

The following of this section provides more detail about those modifications and in
particular provides a list of FCs that might be needed at the test-bed level to ensure it
becomes part of the FIESTA-loT ecosystem. The Figure 12 below shows how those
components need to deploy in case of Class-| & -1l test-beds

VE Data loT Service
Endpoint Endpoint Endpoint

Resource Manager
w/ Semantic Data (FIESTA aligned)

RDF format /
SSN light

Repository

a) Class-l Test-bed

loT Service
Endpoint

S. Annotator

eg json-> rdf

Resource Manager
w/o Semantic Data or
w/ Sem. Data but NOT FIESTA
aligned

E.g{ JSON/JSON-LD

VEw

Repositor

&

b) Class-ll Test-bed
Figure 12: Test-bed upgrades for FIESTA-loT compliance
It is worth noting in addition that semantic-enabled test-beds, and non-semantic

enabled test-bed using a semantic annotator MUST comply to the FIESTA-IoT
ontologies in order to maximize semantic interoperability.

Copyright © 2015 FIESTA-IoT Consortium 40

Fiesta-loT Deliverable 2.4 — FIESTA-loT Meta-Cloud Architecture

* VE endpoint: The VE endpoint provides a unique access point to VE Services
that provides access to VE properties (e.g. via a REST interface) or any other
services a VE may provide. This VE endpoint is an alternative to the
implementation of VEs as autonomous software entities that would provide the
same kind of REST interface; instead of implementing multiple VEs, the test-
bed may provide a VE front-end that takes care of implementing for instance
the binding between VE properties and underlying associated test-bed
resources. Alternatively it may implement the same functionality than the VE
manager at the FIESTA-IoT level i.e. polling regularly resource readings and
updating VE properties accordingly (all being stored locally as well, like
FIESTA-IoT does with the VE Repository);

* loT Service / Resource endpoint: this component does the same duty as the
VE endpoint at the loT Service / Resource level. The test-bed then offers a
unique access to querying resources (sensors) / updating resources
(actuators) via a standardized interface, e.g. REST; the loT Service may use
the Message Bus as a back channel for sending the result of the request back
to the requesting party;

* Semantic Annotator (S. Annotator): the Semantic Annotator is used to
statically translate data and metadata expressed in a non-semantic supported
format (e.g. Json format) into a semantic format such as e.g. RDF/OWL.
Semantic data is then injected to the Semantic Data (S. Data) Repository as a
set of triples, at least at the interface of his component. The database itself
can be either full triple store or SQL database offering a SPARQL endpoint. As
already stated earlier, the Semantic Annotator MUST comply to the FIESTA-
loT agreed ontologies in order to maximize semantic interoperability
(FIESTA-IOT D3.1.1);

* Resource Manager (with Semantic Data): this component is responsible for
enforcing the publishing policy of data from the test-bed point of view:

o Storage: data collected from sensors is enriched with metadata and
stored in a triple format through or instance a JENA Interface to a Jena-
enabled database (either full triple store or relational database). In
addition, the resource manager may need to be able dealing with
complex (enough) publishing strategies dictated by the experiment(er)
(e.g. read and store value from resource xyz from 8am — 6pm all
working days every 2 minutes) whether the final data destination is the
local test-bed storage or the FIESTA-IoT level message bus;

o Manage sampling/publishing rate: This component has also to deal with
special request from experiments to sample and publish data at certain
rate, with start/end time. Potentially several request need to be
accommodated so that each experiment can retrieve data that fit its
own specifications;

Copyright © 2015 FIESTA-loT Consortium 41

Fiesta-loT Deliverable 2.4 — FIESTA-loT Meta-Cloud Architecture

O

Publishing: If requested to do so the Resource Manager will also
publish the annotated data to the Message Bus. Like for Storage, the
Resource Manager might have to follow a publishing strategy dictated
by the experiment(er);

Event-based data publishing: publishing data to the message bus along
the topic specified by the subscriber;

Support other components: finally the Resource Manager supports the
VE endpoint and loT Service/Resource endpoint in retrieving needed
data.

Resource Manager (without Semantic Data): its role is quite similar to the
previous one but without semantic data support:

O

Storage: Storage of data is made in a non-semantic, yet structured data
format;

Manage sampling/publishing rate: This component has also to deal with
special request from experiments to sample and publish data at certain
rate, with start/end time. Potentially several request need to be
accommodated so that each experiment can retrieve data that fit its
own specifications;

Publishing: The resource manager needs to replicate all locally stored
data in the cloud, relying then on the S. Annotator for making the data
FIESTA-IoT compliant with semantic;

Event-based data publishing: publishing data to the message bus using
the S. Annotator and along the topic specified by the subscriber during
Resource reservation process;

Support: another option for the Resource Manager is to support data
queries and responding with semantic data going through the Semantic
Annotator.

Data endpoint (e.g. SPARQL): they are provided by test-beds that store
semantic data within dedicated semantic storage. Such endpoint is part of a

full semantic-enabled storage package, which can in addition provide a JENA’

(Jena) interface for creating easily Semantic Data which is then serialized
and stored as either RDF triples or table entries (in the case of relational
database back-end).

VE Wrapper (VEw): For test-beds which are not willing to deal locally with

Virtual Entities, the VEw allows for publishing VEs to the FIESTA-IoT VE
repository (VE and properties) and to bind VE properties to loT Services.
Being present at FIESTA-IoT level such VEs can be discovered and reference
to proper loT service be found.

! https://jena.apache.org/

Copyright © 2015 FIESTA-loT Consortium 42

Fiesta-loT Deliverable 2.4 — FIESTA-loT Meta-Cloud Architecture

Figure 13 below provides a complete picture of the first version of the FIESTA-loT
system architecture.

FIESTA-loT Create
Users / Experimenters Create usin
-t
APPLICATION FG VE/ VE Service v
Resource / loT
Service Browsing Standalone Experiments
MANAGEMENT FG [SERVICE ORGANISATION FG 10T PROCESS MNGT FG VIRTUAL ENTITY FG 10T SERVICE FG SECURITY FG

FIESTA
experiment
modelling

User
loT C.Service .
Execution Engine
FIESTA-loT WEB Composite Services ---t
L Browsing & Config. FC

LA

In-FIESTA created

Experiments [19T]S. / Resource querying

Experiment
Execution Engine

) |

—

loT Service %
Composer
~— @@ [

VIRTUALENTITY FG Virtual EntityRegistry

VE web fle VE endpoint

VE discovery | | vE Manager

VE Broker |
— 2 Al
Lezia| l#ivalivg (W=l o 10T SERVIf™ Meta-Cloud Data Endpoint 10T Service/Resource Registry
S.) /gnswers VE queries FG :
o s
DtaRetrieval . | | Manager |_Resource wefie |
Resource Manager w

Resource Broker |

"
COMMUNICATION F ~ S e
Subscripii Message Bus
U — ((rc—c—oc—> -, == o "':ASC"P on (annotated Data) or 4t - — - — - — . — . — =
lanager “Topic” related Publish. S. Service
) & Resource Descr|
Forwarded SPARQL req/ | 7 z
Responses A * 2 |
DEVICE FG S. ResouI e lookup I I |
._up[gur A | .Query Instant Data
| | | | / Responses
} S. Data Responses | : I
FIESTA|SIDE | .
e e e e e e e) e e e e | — — o —
TEST Bf) SIDE I | Publish.S. Data Publish S. Data 1 == . —
| |
Y y L | N A
- t =
VE Data IoT Service I 0T Service VEw loT Service |
Endpoint Endpoint Endpoint |__Endpoint L Endpoint
S. Annotator S. Annotator
Resource Manager e _R_eq_jﬁ';rdfi
w/ Semantic Data (FIESTA aligned) IR Resource Manager
w/o Semantic Data or wlo Semantic Data & I—
w/ Sem. Data but NOT FIESTA NO local data storage
RODF format / aligned Register VE /
SSN light Binding VE attr. / loT Service
) E.g.|JSON/JSON-LD
S. Rec & loT servicg
Repository

Class-I Test-bed Class-Il Test-bed Class-lll Test-bed

Figure 13: FIESTA-loT System Architecture

Copyright © 2015 FIESTA-loT Consortium 43

Fiesta-loT Deliverable 2.4 — FIESTA-loT Meta-Cloud Architecture

5 FIESTA INFORMATION VIEW

Based on the Information Model (part of the loT Reference Model, see Section 3.2.2)
the Information View aims at providing details about how the information is actually
coded, serialised and handled within the target loT system. Indeed the IM does not
give any indication on how objects, resources, devices and associated attributes and
description must be encoded. It stays at an upper level, giving only indications
concerning what needs to be modelled and which inter-concepts associations need
to be implemented within the loT system. Implementation matters stay at the
architect side, who in turn enjoys some freedom as far as him/her choices remain
compliant to the IM constraints. This section now adopts several Viewpoints
according to the Rozanski & Woods (Rozanski&Woods, 2011) terminology and
elucidates several aspects pertaining to information and information flows within the
FIESTA-IoT architecture.

5.1 System Use-cases and Sequence Diagrams

This section aims at identifying typical interaction pattern between the FC described
in the Functional (logical) View (Figure 13).

Before starting with the explanation of the system use cases, it is worth highlighting a
couple of assumptions that we have made so as to keep the figures as simple as
possible.

1. Experimenters might have different connection points to the FIESTA-loT
infrastructure (i.e. Web Browsing & Configuration FC, Experiment Interpreter
FC, VE registry FC, Meta-Cloud Data Endpoint FC or loT Service Registry
FC). Since the three last ones will be the actual cornerstone of the meta-
architecture (the former ones will, after all, have to go through these FCs to
access the underlying test-beds), for the sake of simplicity and intelligibility, we
will focus on the system use cases from these three FCs, disregarding the
previous connections. In other words, the figures in this section will only
represent the sequence of messages between experimenters and these three
core FCs, assuming that the intermediate elements would just forward the
messages without adding any value to the use cases;

2. We have also separated the user authentication and access control (i.e. tasks
pertaining to the security realm) from the user information plane (i.e. VE,
resources/loT services and data). These steps will be utterly necessary for
guaranteeing the minimum levels of security every time an experimenter
wants to access the FIESTA-IoT federation (and a test-bed injects new pieces
of information into the meta-cloud). Basically, any of the use cases described
below will need a previous step for authentication and authorization of the
requests described.

Copyright © 2015 FIESTA-loT Consortium 44

Fiesta-loT Deliverable 2.4 — FIESTA-loT Meta-Cloud Architecture

5.1.1 Security-based use-cases

5.1.1.1 Experimenter registration/ Identity Management

In order for an experimenter to use the FIESTA-loT services and the FIESTA-loT
test-beds, they must be known to (and accountable by) FIESTA-IoT, i.e. FIESTA-loT
can authenticate the experimenter. In this use-case, we consider that FIESTA-IOT is
the sole identity provider in the test-bed federation i.e. experimenters register with
FIESTA-IoT and provide FIESTA-IoT with the credentials (username, password) that
will be used for authentication.

The following is the expected behaviour for a new user registering with FIESTA-loT
(this use-case behaviour is illustrated in Figure 14):

1.

The experimenter selects a sign-up link on the FIESTA-loT portal web page
(In the logical FIESTA-lIoT architecture; the AuthN component exposes the
identity management functionality via the web portal);

The experimenter fills in his/her information including e-mail address and
password (security credentials);

Based upon the information, FIESTA-IoT decides whether to allow the
experimenter to register. The experimenter will be sent an email at his/her
registered email address for verification of his/her identity. When the user
verifies via the link, registration is complete and the use case continues.

a. If the experimenter does not verify the link sent to the e-mail address
within a given time period then all information about the experimenter
entered so far is removed from the FIESTA-loT databases;

The experimenter information is stored in the Member Database (part of the
User Management FG).

The experimenter is now free to authenticate (log-in) with FIESTA-IoT and use
FIESTA-IOT services and test-beds. The other sub use-cases of the experimenter
identity management are:

The experimenter can update his/her account info at any time using the
FIESTA-loOT portal;

The experimenter can delete his/her account from the system at any time
using the FIESTA-loT portal,

The FIESTA-loT administrator can delete an experimenter’s account from the
system at any time using the FIESTA-loT administration portal.

Copyright © 2015 FIESTA-loT Consortium 45

Fiesta-loT Deliverable 2.4 — FIESTA-loT Meta-Cloud Architecture

Experimenter

1,2

EXPERIMENTER SIDE

FIESTA SIDE

Member
(User Management)

User Registry

Figure 14: Experimenter Registration use-case

An extension of this use-case that will be considered in the final iteration of the
architecture, is that of federated identity management. Experimenters who have a
user account at a test-bed or 3™ party in the FIESTA-IoT federation can authenticate
with FIESTA-IoT using their test-bed credentials. When the experimenter signs in to
FIESTA-IoT, they are redirected to authenticate with their own identity provider
(trusted by FIESTA-loT)—once authenticated they are free to leverage the FIESTA-
loT services.

5.1.1.2 Resource Management

Each test-bed controls access to their resources using access control policies. Each
incoming request to use test-bed resources is checked against these policies to
determine if the request will be granted or denied. An example policy may be “An
experimenter from organisation X can access the resource”, or “An experimenter with
write privileges may upload new resources to the test-bed”.

In the first version of the architecture we consider two use-cases for controlling
resources:

* Test-bed owners manage their existing resources at the test-bed level. Each
test-bed is a set of static resources to be protected. Test-bed owners can add
to these over time by registering new resources in the test-bed. Such
resources will typically be data resources and |oT services to perform actions
on loT systems. The test-bed owners, when registering resources, will add
control policies for these resources—this is illustrated in Figure 15. When a
test-bed adds a resource as per described in the use-case “Test-bed registers
an loT service/resource” (described in Section 5.1.2.1) the service registry
notifies the AuthZ component which then applies the test-bed’s default access
control policy to the newly registered resource (step 3). The test-bed

Copyright © 2015 FIESTA-IoT Consortium 46

Fiesta-loT Deliverable 2.4 — FIESTA-loT Meta-Cloud Architecture

administrator can directly alter both specific resource policies and default
policies by interacting with the AuthZ component via the Access Policy
Administration Tool (steps 4-7).

* Resource owners (e.g. users using crowdsourcing mobile applications)
register their resource with a test-bed directly (i.e. dynamic resource
registration), specify access control policies, revoke access at any time etc.
Such resources are dynamic (as these living subjects come and go). Hence, in
this case the owner specifies policies rather than the test-bed. For example, a
resource owner may state that his/her private data uploaded to a test-bed may
only be read by a subset of experimenters. In the simple case, the resource
owner may grant control to the test-bed and this case reverts to the case
above. Hence, the behavior is identical to that in 5.1.2.1 except that the
stakeholder changes from the test-bed administrator to the experimenter who
owns the resources. As before, the test-bed registers the resource to FIESTA-
loT when the experimenter dynamically adds it to the test-bed (steps 1-2), and
the test-bed policy is applied (step 3). However, now the resource owner can

update the access policy (steps 4-7).
loT Service Registry

Resource A
Manager @
Resource u
Broker 5 I I
A | v
FIESTA SIDE 1 2

Access Policy
Admin
TESTBED SIDE l
loT Service *

AuthZ

6

Endpoint I
S. Annotator I
7
Resource Manager I
WOW Semantic Data 4
Testbed (any) I I
|

Testbed
Administrator

Figure 15: Test-bed administrator registers new access control policies

Copyright © 2015 FIESTA-lIoT Consortium 47

Fiesta-loT Deliverable 2.4 — FIESTA-loT Meta-Cloud Architecture

5.1.1.3 Protected Resource Access

Resources in the FIESTA-loT federation are protected and require authorization in
order to be accessed by only FIESTA-lIoT experimenters. Such resources are:

* The FIESTA-IoT services e.g. loT Service and Resource Browser, FIESTA-loT
experiment modeling;

* The test-bed resources e.g. access to FIESTA-loT wrapped test-bed
endpoints (VE, data, loT Service).

Each request to use one of the above protected resources is checked in order to
ensure that the request is from an authenticated experimenter, and that they are
authorized to perform the request. Resource access in FIESTA-loT follows a
traditional Policy Enforcement Point (PEP) Pattern — requests are intercepted by the
PEP (at FIESTA-lIoT endpoints) and these are sent to a Policy Decision Point (PDP)
component, which forms part of the logical AuthZ component). The PDP implements
the grant/deny decision when evaluating the request against the access policy.

Resource Access is managed in two ways in FIESTA-IoT: fully managed by FIESTA-
loT or the test-bed manages access on their endpoints.

5.1.1.3.1 Fully managed by FIESTA-IoT

The test-bed trusts FIESTA-IoT to forward only authorized requests to the test-bed. A
secure trusted channel from FIESTA-IoT to the test-bed API is managed by the KEM
and TTP components. FIESTA checks that only authorized requests are forwarded to
the test-bed APIs i.e. FIESTA-lIoT’s AuthN and AuthZ functions check the requested
behaviour before the request is forwarded. The test-bed does not need to make any
security decision concerning request from this connection.

This case is suited to lightweight test-beds with limited computational resources that
do not need strong protection. This behaviour is illustrated in Figure 15 (where the
security protection is applied to the “Experiment queries/retrieves Data (Class-| test-
bed case) use-case” (described in Section 5.1.3.2) :

1. The experimenter signs on via the FIESTA-loT AuthN service;

2. The experimenter receives an authenticated session to utilise FIESTA-loT
services and resources;

3. The experimenter accesses a meta-cloud data endpoint to retrieve data. This
is a point in the architecture to make a policy decision. Hence, the request is
intercepted before it is forwarded;

4. The request is forwarded to the AuthZ to compare the request and user
information against the resource’s policy;

5. If granted the use case proceeds otherwise an unauthorized access message
is sent to the experimenter;

Copyright © 2015 FIESTA-IoT Consortium 48

Fiesta-loT Deliverable 2.4 — FIESTA-loT Meta-Cloud Architecture

6. The request is then sent across the secure channel (HTTPS encrypted)
established between the test-bed and FIESTA-IoT via the exchange of digital
certificates;

7. The data value is retrieved,
8. The result of the request is sent to the experimenter.

Experimenter

1
<
3
EXPERIMENTER SIDE
FIESTA SIDE | g 5
Meta-Cloud Data Endpoint
Data
Manager SDR
- Authz AuthN
Data Broker
t 5
ol 1
FIESTA SIDE
TESTBED SIDE 7
loT Service
Endpoint
S. Annotator
Resource Manager
WOW Semantic Data
Testbed (any) (Semantic) Data

Repository

Figure 16: Secure Access to Protected Resource

5.1.1.3.2 The test-bed manages access on their endpoints.

Hence, the behaviour pattern is the same as described in Figure 16 but instead of the
AuthZ component operating at the FIESTA-IOT side it operates at the test-bed (i.e. it
does not need to trust FIESTA-loT to execute access control). Hence, the PDP
executes on site.

* The request is received at the PEP endpoint. Where the session is not
already authorized: the authentication is checked with the FIESTA-IoT
AuthN component, redirecting the request for the experimenter to input
their credentials if needed,;

* The authentication information is passed onto the PDP function and
request is evaluated to be granted or denied.

Copyright © 2015 FIESTA-loT Consortium 49

Fiesta-loT Deliverable 2.4 — FIESTA-loT Meta-Cloud Architecture

This case is suited to test-beds who may want greater control over FIESTA-loT
access—for example, where the resources are shared beyond FIESTA-IoT and there
is a need to ensure FIESTA-IoT does not starve other users of resources.

5.1.1.4 Test-bed becomes part of the FIESTA-IoT federation

A test-bed must perform a series of actions to ensure that it technically applies (i.e.
can be used) within the FIESTA-loT federation. Central to this, it must ensure that the
test-bed follows the agreed security mechanisms of the federation. Hence, the
following is the sequence of events that take places:

* The test-bed administrator registers with the federation and receives
authentication credentials with test-bed admin rights that will allow him/her to
access the FIESTA-loT administration services including the security
component of FIESTA-IoT e.g. the AuthN, AuthZ and KEM components. This
action is performed by an initial online web form request followed by an e-mail
exchange between the FIESTA-loT admin and the test-bed admin to establish
the authenticity of the approach;

* The test-bed admin signs in to the FIESTA-loT administration services using
the credentials and then requests key exchange, i.e. it receives FIESTA-I0T’s
public key, and uploads its own public key as a registered test-bed;

* The test-bed registers its resource and service interfaces (exposed with
HTTPS endpoints). FIESTA-lIoT connects to these endpoints and tests that a
secure and trusted communication channel is established between the two
parties;

* When registering the resources in the prior step, the test-bed admin also signs
in to the AuthZ component and selects access policies to be applied; where
necessary creating new access policies.

5.1.2 Resource/lOT Services oriented use-cases

In this section we present a number of essential system use-cases related to the use
of loT Services and resources. We start with the registration process by the test-beds
part of FIESTA-IoT federation, then follow with look-up/discovery and reservation
process (by FIESTA-loT users) and end-up finally with the actual use of those loT
Service/Resources by FIESTA-IoT users.

5.1.2.1 Test-bed registers an loT service/resource

It is worth highlighting that every Resource/loT service must be associated with a
semantic description aligned with FIESTA-loT’s ontologies.

On the first hand, resources/loT Services pertaining to Class-I| test-beds are stored
locally at the test-bed but the corresponding loT Service/Resource endpoint needs to
be registered with the FIESTA-IoT loT Service Registry Resource Broker FC,

Copyright © 2015 FIESTA-lIoT Consortium 50

Fiesta-loT Deliverable 2.4 — FIESTA-loT Meta-Cloud Architecture

indicating that subsequent resource searches will be brokered by the loT Semantic
Service & Resource Descriptions (SSRD) towards the Class-| test-bed Resource
Manager.

Moreover, semantic descriptions of Resources/loT Services pertaining to Class-Il & -
lll test-beds need to be stored directly at the FIESTA-IoT side within the loT SSRD
Repository, thus replicating the info and fulfilling the semantic annotations that will
define the FIESTA-IoT ontologies proposed in WP3.

Resource/loT Service Regi stry\ Resource/loT Service Registry

Resource / loT Resource / loT

Service web f/e @ Service web fle @
Resource Manager ~ Resource Manager ~
Resource Broker) Resource Broker

2
FIESTA SIDE 1 1 2
TESTBED SIDE
v .
VE Data loT Service Iog ier_nct?e
Endpoint Endpoint Endpoint GO
S. Annotator

Resource Manager

w/ Semantic Data (FIESTA aligned) Resource Manager

WOW Semantic Data
VE S. Data . -\ @
- ~
Repository
a) Class-I: Resource registration (only b) Classes-Il & -lll: Resource
registers test-beds’ Resource Manager registration (full description of
endpoint) resources/loT services)

Figure 17: Resource/Service registration sequence diagram

To illustrate this, Figure 17 describes these 2 alternatives, whose sequence of
messages is described as follows:

1. This first message is actually a Resource/loT Service Registration request,
and will be addressed to the Resource Manager allocated in the Resource/loT
Service Registry FC. Two possibilities arise here: as for Class-| test-beds
(Figure 17a), they will store their information locally (at test-bed level), hence
they will become an extension of the FIESTA-lIoT meta-cloud (working as a
distributed system). Thus, they will only register the loT Service Endpoints into
the FIESTA-IoT SSRD. On the other hand, Class-Il & -lll test-beds (Figure
17b), by default, do not comply with the FIESTA-loT’s ontologies, will have to
semantically annotate their resources/loT services descriptions and replicate
them into the FIESTA-IOT level. This way, it is deemed necessary to include a

Copyright © 2015 FIESTA-lIoT Consortium 51

Fiesta-loT Deliverable 2.4 — FIESTA-loT Meta-Cloud Architecture

Semantic Annotator entity at the test-bed level. Then, the message will be
headed towards the FIESTA-loT Resource Manager, which will be in charge of
their storage into the FIESTA-IoT SSRD;

2. Once the registration is performed, the loT Service Registry FC sends back an
acknowledgment to the test-beds, confirming that everything has gone ok or
informing about any potential fault.

5.1.2.2 Experiment makes reservation of resource(s) and request asynchronous
publishing of data

The reservation process takes place after a prior test-bed-agnostic resource
discovery and selection at the level of the FIESTA-IoT loT Service/Resource registry
(Resource manager sub-component).

Through this reservation process the experiments specifies an expected publishing
policy from the test-bed responsible for the selected resources as follows:

» Start time: When the publishing of readings should be started by the Testbed
ultimately responsible for the resource;

* Sampling rate: at which rate the data should be accessed by the resource
and published towards the experiment;

* Routing information: which is the filtering/routing criteria to be used;
* Stop time: When the publishing of Data should be ending.

Test-beds’ Resource Managers are responsible of implementing the publishing
policies and check if they would conflict with other already requested policies. If for
some reason the policy cannot be implemented, a negative answer would be
returned back to the experimenter.

Where the reservation is successful an access control policy is additionally put in
place (created and registered with the AuthZ component for the duration of the
reservation). This access policy can then ensure authorized access to the reserved
resources is achieved i.e. it is access by the experimenter requesting the reservation.
For example, Access Control policies could ensure sole access for an experimenter
or group of experimenters in the reservation period.

They are also responsible for accessing the resources according to the before-
mentioned publishing policy and for publishing readings (semantically annotated) to
the Message Bus using the Routing criteria specified at the time of the resource
reservation (see Section 5.1.2.3).

This use case does not explicitly use loT Services as the experiment delegates to
FIESTA-IoT (and ultimately to the test-bed) the publishing of data it is interested in an
asynchronous way.

Copyright © 2015 FIESTA-lIoT Consortium 52

Fiesta-loT Deliverable 2.4 — FIESTA-loT Meta-Cloud Architecture

To illustrate how FIESTA-lIoT will deal with this reservation process, Figure 18
represents the sequence of messages exchanged between the various elements.
Namely, the content and meaning of each one is briefly depicted below.

1.

The experimenter identifies his/her requirements (described above) and send
a reservation requested addressed to the test-bed’s Resource Manager,
where the decision about granting/not granting will be made. In the eyes of the
test-bed, it will be FIESTA-lIoT who is actually requesting the access to the
resources, not an end-user;

Assuming that the test-bed is able to support such capacity reservation, an
ACK message will be sent back. Otherwise, a negative acknowledgement
would be addressed to the experimenter, thus voiding the following steps;

If the step above is successful, as commented above, a new access control
policy is registered onto the AuthZ FC, binding the experimenter ID and the
set of resources/VE reserved;

Finally, a confirmation reaches the experimenter, who can start subscribing to
the already acknowledged resources/loT Services.

Experimenter

1a 4

Resource/loT Service Regi stry\

Resource / loT 3a AuthZ
Service web fle @ Access
Resource Manager ~ <€ Pl

3b L Admin

Resource Broker |

1b

N

Resource Manager

Testbed

Figure 18: Resource reservation sequence diagram

Copyright © 2015 FIESTA-lIoT Consortium 53

Fiesta-loT Deliverable 2.4 — FIESTA-loT Meta-Cloud Architecture

5.1.2.3 Experiment subscribes to asynchronously pushed data streams

This system use-case contemplates the use of an asynchronous publish-subscribe
(a.k.a. Pub/Sub) service, where experimenters subscribe to those resources/loT
services in which they are interested in. Once this subscription is acknowledged,
each time the corresponding resources® (asynchronously) generate an
observation/measurement, the FIESTA-loT architecture is in charge of delivering the
information to the experimenters (and all of them who are subscribed to the
determined service). Moreover, this use-case is tightly linked to the reservation of
resources (Section 5.1.2.2) , since experimenters will need to reserve/notify their
subscriptions prior to start receiving data, having to specify as well the time interval
during which they are going to be listening to the FIESTA-loT Message Bus, whose
role will be essential in this type of asynchronous service.

Then, if both reservation and subscription processes have been successfully
acknowledged, experimenters will be aware of any future event arisen in any of their
subscribed services. Figure 19 represents the sequence diagram that is prior to start
receiving asynchronous message notifications, whose steps are explained below.

Experimenter

EXPERIMENTER SIDE

FIESTA SIDE

feeccccaa

A
L2

Message Bus
(annotated Data) or
“Topic” related

Subscription

Manager

Figure 19: Experimenter subscription to data sequence diagram

1. The experimenters send a subscription request towards (directly or not) the
Meta-Cloud Data Endpoint. In order to match the Experimenter and the loT
Services that he/she is subscribing to, it is deemed necessary the usage of a
topic-based system, through which the Subscription Manager will be able to
pair, upon the arrival of information belonging to a particular resource, the
subscriber(s) to which the message must be forwarded;

® The reader might take into account that these subscription policies might be bounded to VEs as well,
where an experimenter subscribes to e.g. all the new illuminance observations generated throughout a
street “X” in the city of Santander.

Copyright © 2015 FIESTA-IoT Consortium 54

Fiesta-loT Deliverable 2.4 — FIESTA-loT Meta-Cloud Architecture

2. The experimenter receives an ACK from FIESTA-IoT, containing a
“Subscription ID”, used by experimenters to listening to the Message Bus in
the time negotiated during the Reservation stage.

5.1.2.4 Experiment looks up resources/loT Services (Discovery®)

Probably, the first step an experimenter might take is to search the
resources/services available in the FIESTA-loT meta-test-bed. Assuming that this
concrete search is resource and not VE-oriented, they will (either through the
Experiment Interpreter, which will likely contact the FIESTA-loT Web Browsing &
Configuration FC or directly querying the |oT Service & Resource Registry) finally
reach the loT Service/Resource Registry. Figure 20 illustrates the sequence of
messages that will be involved into the resource/service look-up, whose individual
description is briefly resumed below.

Experimenter Experimenter
)
'
la : é 1., $
' '
' '
EXPERIMENTER SIDE - EXPERIMENTERSIDE |} ¢
']
' '
FIESTA SIDE v i 2b FIESTA SIDE Loy,
R /loT Service Registr v :
esource gy Resource/loT Service Registry
Resource / loT
Service web fle @ Resource / loT
Service web fle @
Resource Manager ~
Resource Manager ~
Resource Broker
Resource Broker
1b t 2a
FIESTA SIDE
TESTBED SIDE ¢
VE Data loT Service
Endpoint Endpoint Endpoint

Resource Manager
w/ Semantic Data (FIESTA aligned)

S. Data

VE

a) Class-l: Resources and services b) Class-Il & -1ll: Resource/Service
are remotely managed by test- description are stored at the
beds themselves FIESTA-IoT SSRD

Figure 20: Resources/loT services discovery sequence diagram

° This use-case assumes prior description and registration of loT Services and Resources

Copyright © 2015 FIESTA-loT Consortium 55

Fiesta-loT Deliverable 2.4 — FIESTA-loT Meta-Cloud Architecture

In the same way as for the previous case, there are two options for the resource/loT
Service discovery (recall that end-users can not only retrieve all the available
resources, but also generate more complex queries selecting e.g. based on location,
phenomena, time intervals, etc.). As an example, an experimenter might want to
retrieve all the resources/loT services with the capability for measuring temperature
in the area of e.g. a rectangle defined from its North/West and South/East corner
coordinates. The response to this query will include the loT descriptions, including
the address of the endpoint able to invoke the 0T Service.

On the left side (Figure 20a), Class-I test-bed follows a top-down approach where
the FIESTA-loT architecture plays the role of an intermediary between the
experimenter and the “fully compatible test-bed”, thus brokering and forwarding the
messages between the endpoints. Moreover, the right side on the picture (Figure
20Db), represents the situations (i.e. Class-Il & -IIl test-beds) where all the descriptions
are replicated and stored into the FIESTA-IoT SSRD. In this latter case, the look-up
operation will be typically supported by the combination of the Resource Broker
(recall that it is the interface upwards the end-users) and the Resource Manager,
which will be in charge of interacting with the loT SSRD and generating (if there is
any) the response to the query. The explicit sequence of message is described
below:

1. The experimenter generates a query (i.e. SPARQL) that aims at retrieving a
list of resources/loT Services that comply with the requirements that shape
such request. It is addressed to the Resource Broker, who, depending on the
type of underlying platform, will either forward it to the corresponding test-
bed’s Resource Manager through its loT Service Endpoint (for Class-I test-
beds, which will lead to the two-fold 1a and 1b messages) or the Resource
Manager (for Class-Il & -1l test-beds);

2. From the results of the query execution in the corresponding repositories, that
is, either test-bed’s SRD (Class-l) or FIESTA-loT SSRD (Class-Il & -lll), a
response is generated and sent back to the experimenter. It is worth recalling
that, for the latter case, the semantic annotator has to tailor the resource/loT
Service descriptions defined in the FIESTA-IoT’s ontologies (which will be
addressed in WP3).

5.1.2.5 Experiment invokes loT Services

From the results gathered in the previous use case (i.e. resource discovery), an
experimenter has now the information he/she needs to start retrieving data from the
resources that are exposed by their IoT Services. Thus, assuming that the loT
Service endpoints are known, experimenters just need to invoke these services
through these addresses and wait until the data is received, following the sequence
diagrams described in Figure 21, which differentiates between the two different ways
that we have been observing throughout this section.

1. For Class-I test-beds (Figure 21a), the loT Service Endpoint does deal with
the incoming request locally at test-bed level and sent back the observation

Copyright © 2015 FIESTA-lIoT Consortium 56

Fiesta-loT Deliverable 2.4 — FIESTA-loT Meta-Cloud Architecture

with all the metadata inside. Otherwise, for Class-ll & -l test-beds (Figure
21b) the observation is retrieved from the underlying resources but, unlike for
the previous case, the format of the measurements needs to be then
translated to the FIESTA-loT semantic format, using the Semantic Annotator.
As can be appreciated, the FIESTA-IoT architecture acts as an intermediary
between experimenters and test-beds so, after receiving the message from
the end-user (message 1a), it just relies on the Broker to forward the
information downwards to the corresponding test-bed’s loT Service (message
1b).

2. Finally, the Resource Broker sends back the response to the experimenter
(message 2a), passing across the FIESTA-IoT meta-architecture (message

2b).
Experimenter Experimenter
las ~ A la! ~A
' ' ' '
EXPERIMENTER SIDE : : EXPERIMENTER SIDE : :
' ' ' '
]
FIESTA SIDE v : 2b FIESTA SIDE v :Zb
Resource/loT Service Registry Resource/loT Service Registry

Resource / loT Resc_Jurce/ loT
Service web fle @ Service web fle @
Resource Manager ~ Resource Manager ~
Resource Broker Resource Broker
1b
FIESTA SIDE 1b t FESTA SIDE

TESTBED SIDE ¥ | 2a TESTBED SIDE

VE Data loT Service | 2a
Endpoint Endpoint Endpoint IoT Service
Endpoint
Resource Manager S. Annotator
w/ Semantic Data (FIESTA aligned)
Resource Manager

WOW Semantic Data

VE @ - i
- <>
Repository

a) Class-I b) Class-Il & -llI

Figure 21: loT Service invocation use case sequence diagram

Copyright © 2015 FIESTA-loT Consortium 57

Fiesta-loT Deliverable 2.4 — FIESTA-loT Meta-Cloud Architecture

5.1.3 Data oriented use-cases

In this section we describe few data-oriented use-cases dealing first with the
publishing of data by Raw-data Producers and then different ways of querying data
from the FIESTA-IoT user’s perspective.

5.1.3.1 Test-bed publishes semantically enhanced Data to the FIESTA-loT
Message Bus

As has been stated a number of times throughout this deliverable, Class-Il & -lll test-
beds do not store semantically annotated data locally (in triple-stores for instance).
As a consequence, they do not provide a local Data Endpoint, hence they will need
to publish semantically enhanced data to the central repository so that it can be
accessed by any third-parties like experimenters, Knowledge Producers or (added-
value) Service Providers. To achieve this, the Message Bus will play an essential
role, acting as the intermediate entity between test-bed and both FIESTA-loT’s Meta-
Cloud Data Endpoint and experimenters, as hinted in Figure 22.

Resource Managers need therefore to feed this Message Bus according to the
publishing policies they are implementing, either their own or the one requested from
experimenters during the Resource Reservation process described in Section 5.1.2.2
(if supported). In order to comply with the semantic descriptions addressed in
FIESTA-IoT, the observations must be translated by the Semantic Annotator prior to
send them through the loT Service Endpoint.

Experimenter

&

EXPERIMENTER SIDE

FIESTA SIDE

2a

2b Subscrip Message Bus
------ lil\/lscnp on (annotated Data) or
2nagey “Topic” related

Meta-Cloud Data Endpoint
Data
Manager
Data Broker

FIESTA SIDE

10

TESTBED SIDE

loT Service
Endpoint

S. Annotator

eg json-> rdf

Resource Manager
w/o Semantic Data or
w/ Sem. Data but NOT FIESTA

aligned

Figure 22: Data publication through the Message Bus sequence diagram

Copyright © 2015 FIESTA-lIoT Consortium 58

Fiesta-loT Deliverable 2.4 — FIESTA-loT Meta-Cloud Architecture

As a result:

* Class-ll test-beds replicate data: locally it is not semantically annotated and
stored, possibly in an either proprietary/standardised format e.g. JSON. Such
test-beds are still able to provide access to information via loT services. When
answering loT Service requests, they would still need to annotate the data
before sending responses to the FIESTA-IoT Resource Broker;

* Class-lll test-beds are most likely unable to provide loT Service exploiting
historical data. However, they will be only able to support loT Services based
on the delivery of the last/current values. Hence, it will be up to the test-beds
the responsibility of publishing/advertising the 10T Services they can serve.

All'in all, the sequence of messages followed in this use case is the one observed in
Figure 22:

1. Every time a physical resource generates an (asynchronous)
observation/measurement, a test-bed Resource Manager sends a (annotated)
message towards FIESTA-loT’s Message Bus;

2. Once the Message Bus gets the information, it sends a copy to those
subscribers that are registered to the concrete topic (or topics) to which the
event (e.g. VE/phenomenal/location) belongs to. As can be appreciated, either
the Meta-Cloud Data Endpoint (message 2a) or experimenters (message 2b)
might be the final destinations of the message.

5.1.3.2 Experiment queries/retrieves Data (Class-I test-beds)

Since Class-| test-beds can be seen as a sort of extension of the FIESTA-loT
platform, their joint operation will work like a distributed storage system. Unlike Class-
Il & -1ll test-beds, all the essential information will be saved locally, at test-bed level.
All datasets (i.e. VEs, Data and Resources/loT Services) will be fully compliant with
the ontologies and annotation formats approved in the scope of the FIESTA-loT
project. Hence, the FIESTA-IoT architecture will play the role of a broker, abstracting
the underlying stuff to end-users and forwarding the queries/responses between the
real endpoints (Experimenters < test-beds). With regards to the data acquisition
over this “ideal” class of test-bed, Class-lI platforms will provide their own Data
Endpoint through which SPARQL (should we decide using SPARQL) queries can be
sent by experimenters in order to retrieve the information directly from the source.

All'in all, Figure 23 shows the sequence that will be followed to collect the data by the
different test-bed categories. We list below the steps/messages that are to be
generated by the different entities.

Copyright © 2015 FIESTA-lIoT Consortium 59

Fiesta-loT Deliverable 2.4 — FIESTA-loT Meta-Cloud Architecture

Experimenter

1la
EXPERIMENTER SIDE

A

'
FIESTA SIDE ' b

Meta-Cloud Data Endpoint

Data
Manager
Data Broker ~

G ooponce

1b
FIESTA SIDE
TESTBED SIDE 23
VE Data loT Service
Endpoint Endpoint Endpoint

Resource Manager
w/ Semantic Data (FIESTA aligned)

VE S. Data

Figure 23: Data collection sequence diagram (Class-| test-bed)

1. A data query (i.e. typically, SPARQL-based) is sent by the experimenter (it is
worth recalling that there are various entities that might be involved in the
communication between the experimenter and the FIESTA-loT Meta-Cloud
Data Endpoint) towards the Meta-Cloud Data Endpoint's Resource Broker,
corresponding to message 1a. Once it has detected that the query is
addressed to a Class-I test-bed, the own Broker will just forward the message
to the test-bed’s Data Endpoint. Then, the query against the test-bed’s
Semantic Data Repository is performed (managed by the test-bed’s Resource
Manager);

2. If the information is there, the Resource Manager will gather the data and
compose a response message, which will be addressed back to the
experimenter, using again FIESTA-loT as a relaying actor.

Copyright © 2015 FIESTA-loT Consortium 60

Fiesta-loT Deliverable 2.4 — FIESTA-loT Meta-Cloud Architecture

5.1.3.3 Experiment queries/retrieves Data (Class-II & -1l test-beds)

Experimenter

A
]
EXPERIMENTER SIDE '
[]

FIESTA SIDE]
v 2

Meta-Cloud Data Endpoint
Data

Manager

Data Broker ~

Figure 24: Data collection sequence diagram (Class-Il & -lll test-beds)

As already discussed in previous use-cases, all data generated by Class-Il & -lll test-
beds is semantically annotated and replicated at the FIESTA-IoT level (namely in the
Meta-Cloud Data Endpoint's Semantic Data Repository); thus storing it at the
Semantic Data Repository. It goes without saying that this information accomplishes
the ontologies defined for annotating data in FIESTA-loT. As can be easily
appreciated in Figure 24, the sequence diagram to retrieve data from those test-beds
is rather straightforward:

1. The experimenter generates a data query (using e.g. SPARQL) and sends it
to the Meta-Cloud Data Endpoint’s Resource Broker. Then, the message will
get the Data Manager, which extracts the raw query (e.g. SPARQL) snippet
from the body of the message and the query is carried out in the Semantic
Data Repository (SDR);

2. The response of this query will be sent back to the experimenter.

5.1.4 VE-oriented use-cases
5.1.4.1 Virtualizer registers a VE

The first thing to do in set an upper layer above the physical resources and their
associated loT Services involves the creation of VE instances, whose VE properties
will be tightly linked to these thing-related stuff. In the same way as the rest of the
use cases we have introduced so far, the category of the test-bed will have a huge
relevance when it comes the time to interact with.

First, Class-| test-beds (already fully FIESTA-IoT compliant) manage locally the
Virtual Entities it is dealing with and stores locally the VE descriptions. Those VE
descriptions should contain at least:

Copyright © 2015 FIESTA-loT Consortium 61

Fiesta-loT Deliverable 2.4 — FIESTA-loT Meta-Cloud Architecture

* ObjectClass: the class of the object according to a domain ontology e.g. Bus;

* Objectld: A unique ID used in order to name non-ambiguously the object when
accessing to object properties;

* Address of the REST endpoint dealing with the Object (where REST get can
be sentto e.g.);

* ObjectProperties: an object properties are qualified by a name, a class (e.g.
temperature), a value (e.g. the current temperature);

* ObjectProperty binding: in addition to name, class and value, the property
must be bound to a loT service which exposes the resource that delivers the
value to the VE property.

If a VE/loT Service association has been set-up (see Section 0) observations made
by the corresponding resource of test-bed (sensor readings) must refer to the VE/VE
property they relate to, as part of the embedded metadata.

Moreover, a test-bed which is not fully FIESTA-loT compliant (i.e. Class-Il) has the
possibility to register the VEs it is manipulating at the FIESTA-IoT level. The VE
Wrapper functional component is then used and subsequent VE descriptions are
sent to the VE Registry at the FIESTA-loT side. Any request concerning VEs
belonging to that test-bed will be answered by the VE Registry at FIESTA-IoT level
via the VE endpoint (meaning that FIESTA-IoT is then responsible for maintaining
values associated with the VE properties).

An explicit REST GET on a property of a given VE will result in a call (REST GET)
from the VE Registry to the loT Service endpoint of the test-bed so that the current
value associated to the property can be received. For the sake of an easier
visualization, the association/binding between VEs and Resources/loT Services is
handled in a separate use case (0)

With regard to the last type, Class-lll test-beds are not concerned with VEs and will
only deal with requests for on-demand access to Resources/loT Services and data
queries.

After this thorough description, Figure 25 illustrates the sequence diagram (without
including the VE/Resource association), whose messages meanings the outlined as
follows:

1. Virtualizers build a VE layer upon an loT service and generate a register
request addressed to the VE manager, which is in charge of storing it into the
VE repository. In this case, these requests can be directly handled by
experimenters or, in a more straightforward manner, relying on the FIESTA-
loT Web Browsing & Configuration FC, which helps virtualizers to select
among all the available resources to compose their own VEs. It is worth
highlighting that this very initial message (1a) is addressed to either the VE
Broker or the VE Web Front-end depending on whether the interaction is
direct or through the browser, respectively. After that, the VE Browser
forwards the message to either the Class-| test-bed VE endpoint (Figure 25a)
or the Class-Il test-bed VE Wrapper (Figure 25b);

Copyright © 2015 FIESTA-loT Consortium 62

Fiesta-loT Deliverable 2.4 — FIESTA-loT Meta-Cloud Architecture

2. For this response, there are two different ways to deal with: on the first hand,
as seen in Figure 25a, Class-| test-bed will save locally all the VEs generated
in the extent of FIESTA-IoT experimentation, so, through their VE endpoints
(message 2), will share the VE descriptions with the FIESTA-IoT VE Registry
FC, which will use the VE Manager to record the information. On the other
hand (Figure 25b), since Class-Il test-beds do not directly “understand” VEs,
they will compose the VE properties from the resource descriptions gathered
by their Resource Managers. In this case, the VE Wrapper will be in charge of
generating the VE description that will be stored in FIESTA-IoT, following the
same steps seen for Class-I test-beds;

3. The FIESTA-loT platform just sends back an ACK message, confirming the
correct registration of the VE description. Alike the case for message 1, we
have two ways to reach back the virtualizers (i.e. direct access or across the
FIESTA-IoT Web Browser & Configuration FC).

Virtualizer Virtualizer

]

: FIESTA-loT Web

: Browsing & Config FC
’

FIESTA-loT Web
Browsing & Config FC
2/3

'
\ A A A 2/3 A

Virtual EntityRegistry 3 — ;/'ff/tua' EntityRegistry) Lo 3

VE web fle VE endpoint 1la’ eb ffe VE endpoint <
VE Manager |
VE Manager o
A VE Broker

VE Broker)

A

1b
2
1,—1 !
loT Service

. VEw

Data loT Service Endpoint

Endpomt Endpoint Endpoint S. AnnOtftZ;
eg json-> i

Resource Manager Resource Manager
9 w/o Semantic Data or
w/ Semantic Data (FIESTA aligned) o G Dt NG EESTA
aligned
:
Rep ositol Rep05|tory ;
Repository

a) Class-I test-bed registration b) Class-Il test-bed registration

Figure 25: VE registration sequence diagram

Copyright © 2015 FIESTA-loT Consortium 63

Fiesta-loT Deliverable 2.4 — FIESTA-loT Meta-Cloud Architecture

Once the VE has been created/registered (i.e. empty state), the next and immediate
state would be to select all those Resources/loT Services that will define the VE
properties of the entity. Last, but not least, it is worth highlighting two important
issues to take into consideration regarding future VE issues: 1- Recall that the role of
a Virtualizer can be played by either a test-bed or a third party. 2- It is important to
highlight here the possibility of handling multi-level or nested VEs, giving rise to
multidimensional VE registration/management.

Resulting from this Association creation process, the VE registry will start managing
the association, meaning polling values from the resource and maintaining VE
properties values. As part of the result, it also starts exposing the VE at the FIESTA-
loT VE endpoint.

5.1.4.2 Experiment looks up/browses VEs

Figure 26 describes the messages exchanged from the moment the experimenter
sends a first query, looking up a particular VE (or group of them) to the instant he/she
receives the corresponding response. As can be seen in the different pictures, the
access to the VE Entity Registry is twofold. End-users can either graphically browse
among the different already-instanced VEs by means of the FIESTA-loT Web
Browsing & Configuration FC or, on the other hand, they can directly interact with the
API that hooks to VE Broker, typically through explicit SPARQL requests.

Having into account that these two options are shared between the different types of
test-beds, the sequence of message would look like this:

1. The first step in this process is to do a look-up on Virtual Entities that have
been either declared to FIESTA-IoT (and then FIESTA-IoT is managing them)
or which are managed locally at the test-bed side by Class-I test-beds. In both
cases, the look-up request is managed at the FIESTA-IOT level and is either
answered by the Virtual Entity Registry (for those VEs that are managed there,
such as test-beds of Class-Il & -lll, as shown in Figure 26b) or by the VE
endpoints at the test-bed side (i.e. Class-| test-beds, Figure 26a). In this later
case, a SPARQL request (as VEs are described semantically) is forwarded to
the VE endpoint. A typical request could be “get me all VEs of type Bus from
the city of Santander” translated in the appropriate SPARQL query and
according to a domain ontology used by the Santander test-bed;

2. The answer to such a request should be composed of VE descriptions that
must also embed the VE endpoint address for further access to VE properties.
As can be observed in both figures, it could either reach the end-user directly
from the Virtual Entity Registry or through the FIESTA-loT Web Browsing &
Configuration FC.

Copyright © 2015 FIESTA-loT Consortium 64

Fiesta-loT Deliverable 2.4 — FIESTA-loT Meta-Cloud Architecture

Experimenter

Experimenter
2b’

A la las A la
0 ' '
] H '
EXPERIMENTER SIDE : . mmen EXPERIMENTER SIDE ' : FIE STA—IOT Web
' : . '] Browsing & Config FC
[] ' Browsing & Config FC FESTA SIDE ' '
FIESTA SIDE M] 2b V¥ 22
\4 M Virtual EntityRegistry
Virtual EntityRegistry 12 2b VE endpoint 1a’ 2b
VE web fle VE endpoint a
VE Manager o
VE Broker
1b
FIESTA SIDE
TESTBED SIDEl 2a
VE Data loT Service
Endpoint Endpoint Endpoint

Resource Manager
w/ Semantic Data (FIESTA aligned)

VE S. Data .

a) Class-Il: Through VE Broker b) Class-ll: Through VE Manager
(managed remotely by the (handled locally at FIESTA
federated test-beds) level)

Figure 26: VE search sequence diagram

5.1.4.3 Virtualizer creates an VE/IoT Service association

This use-case deals with the creation of associations at the FIESTA-IoT level using,
as well as for the previous VE-related use-case, two ways to deal with: 1- through an
specific API offered for that purpose by the VE Registry FC (via VE Browser), 2-
Using the graphical interface (i.e. FIESTA-IoT Web & Configuration FC). In this
stage, virtualizers (including the browsing of resources/loT Services) need to select
those resource descriptions which are to be bound to the VE, as shown in Figure 27.
Said in other world, this particular use cases ties the concepts of two different realms,
thus representing the physical entities in the virtual realm. Below we describe the
sequence of messages followed in this process.

Copyright © 2015 FIESTA-loT Consortium 65

Fiesta-loT Deliverable 2.4 — FIESTA-loT Meta-Cloud Architecture

Virtualizer

4b (VE
jemceaeean f & Res)
1a(VE)/ § p========" '
3a (RES) ! v 1 (RES)
AN ~A FIESTA-loT Web
: E 2b 1a : E Browsing & Config FC
4a (VE ' RES)! eecccceecssss
o B I R e e Ty, 3
& Res) ~ ™
' ! 1b (VE) / 3a (Res) v (Res)|(Res)
Virtual EntityRegistry Resource/loT Service Registry
VE web f/ i Resource / loT
Sunte | (o)
o Resource Manager u
Resource Broker
1c (VE) \
—3 2a (VE) 1c (Res) 2a (Res)
VE Data loT Service
Endpoint Endpoint Endpoint

Resource Manager
w/ Semantic Data (FIESTA aligned)

Repository,

Figure 27: VE loT Service Association Sequence Diagram

O
(08

Repositol

Repository

1. Virtualizers searches are divided in two parts: whilst on the one hand they
browse/query the VE Entity Registry FC in order to find the VE instances they
want to tweak, on the other side they do the same for Resources/loT Service
Registry FC. This latter one can be skipped if virtualizers have already the
knowledge about all the resources that they want to bind to the VE(s). Besides
that, it goes without saying once again that there are two options to establish a
connection and get data from these functional components, heading the
request to the Web Front-end or the Broker as a function of whether we are
dealing with a graphical or APl-based scheme, respectively;

2. Depending on the underlying test-bed(s) to which we are addressing the
requests, they can either reach the test-bed VE/IoT Services endpoints (i.e.
Class-I test-beds) and run the queries at FIESTA-loT level, through the
corresponding Managers (i.e. Class-Il test-beds). Then, the responses are
sent to a) the FIESTA-loT Web Browsing & Configuration if the experimenters
opted for a graphical interaction; otherwise, they will have to take care of these
messages and “manually” establish the association;

Copyright © 2015 FIESTA-loT Consortium 66

Fiesta-loT Deliverable 2.4 — FIESTA-loT Meta-Cloud Architecture

3. The descriptions regarding the Resources/loT Services are sent to the Virtual
Entity Registry FC, where are appended to the VE properties;

4. If the process has been accomplished, an acknowledgement reaches the
Virtualizer.

5.1.4.4 Experiment invoke VE-service (access to VE propetrties)

This use-case assumes that the use-case 5.1.2.3 has been performed, meaning that
the “caller” knows the IDs of the VEs as well as the VE Services it wants to invoke.
This following step therefore consists of sending REST requests to the FIESTA-loT
VE Registry, as shown in Figure 28. Depending on whether the VE is managed at
FIESTA-IoT level or remotely (i.e. Class-I test-beds), the requests will be handled by
the Class-I test-bed VE Endpoint, via the FIESTA-loT VE Registry/VE Broker FC
(Figure 28a), or the FIESTA-loT VE Manager for Class-Il test-beds (Figure 28b).

Experimenter Experimenter
EXPERIMENTER SIDE EXPERIMENTER SIDE
FIESTA SIDE l 2b FIESTA SIDE 5h
(E ;/i;/tual SR S Virtual EntityRegistry
__we e i
VE endpoint VE web fle VE endpoint
VE M
0 VE Manager VE
VE Broker :
VE Broker Repositor
1b 1b
FIESTA SIDE FIESTA SIDE
TESTBED SIDE 23 TESTBED SIDE
4 2a
VE Data loT Service loT Service
Endpoint Endpoint Endpoint Endpoint
Resource Manager S. Annotator
w/ Semantic Data (FIESTA aligned)
Resource Manager

WOW Semantic Data

S. Data

VE .

Repository Reposito

a) Class-I b) Class-Il

Figure 28: Service invocation use case sequence diagram

Copyright © 2015 FIESTA-lIoT Consortium 67

Fiesta-loT Deliverable 2.4 — FIESTA-loT Meta-Cloud Architecture

1.

The experimenter sends the call addressed to the concrete VE Endpoint
he/she wants to invoke, passing across the FIESTA-IoT architecture (message
1a). For Class-| test-beds (Figure 28a, message 1b), the VE Broker just has to
forward the REST request to the test-bed’s VE Endpoint, which will be in
charge of the gathering of all the info and the generation of the response. On
the other hand, for Class-Il test-beds, the process is rather different (Figure
28b, message 1b). After the request reaches the FIESTA-IoT VE Endpoint,
since the information about the VE properties is held in the FIESTA-loT VE
repository, the VE Manager has to search this data there. This data includes
the loT Services that are associated to the VE, so the next step will consist in
invoking (one by one) all the corresponding loT Services. For that purpose,
the VE Broker will be in charge of bypassing the calls to the test-bed loT
Service Endpoint;

In this step, we assume that the |oT Service has been already run and the
test-bed has to send the response back to the experimenter. Whereas Class-I
test-beds have to directly deliver the response to the FIESTA-loT VE Broker,
as reflected by message 2a in Figure 28a, Class-Il (recall that Class-Ill test-
bed does not allow the use of VEs) test-beds need to rely on a Semantic
Annotator to transform the information prior to its delivery (Figure 28D,
message 2a). As can be easily inferred, messages 2b are the forwarded
messages from FIESTA-loT, headed to the experimenters.

6 CONCLUSION

This Deliverable presented the first release of the System Architecture for the
FIESTA-IoT project. It will be extended with a final version by the start of the second
open-call phase so that it can serve then as a one-stop-shop document for
experimenters; however it will be maintained and improved — as a living document-
from now on (especially when defining the interfaces of the already agreed and
developed Functional Components). In a nutshell the planned improvements include:

Complete Functional View comprising definition of all experiment related FCs
(top FG in the Functional View);

Definition of FC interfaces;

Complete Information Views with information about Ontologies and additional
System Use-cases —in particular- tackling the interactions between the
Experiment plane and the already described FCs;

Perspectives: describe the design and Technology choices relating to non-
functional requirements (e.g. Semantic Interoperability);

Deployment View: showing the mapping between logical components and
implemented concrete software components.

Copyright © 2015 FIESTA-loT Consortium 68

Fiesta-loT Deliverable 2.4 — FIESTA-loT Meta-Cloud Architecture

7 BIBLIOGRAPHY

(Cooper D., 2008) Cooper D., Santesson S., Farrell S. Boeyen S., Housley R., Polk
W. (2008). InternetX.509 Public Key Infrastructure Certificate and Cerftificate
Revocation List (CRL) (Project Management Institute, 2013)Profile. IETF RFC 5280,
May.

(DigiMesh, 2015) DigiMesh Networking Protocol. (2015).
http://www.digi.com/technology/digimesh/.

(FIESTA-IoT D2.2) FIESTA-loT Deliverable D2.2 “Analysis of Platforms and Test-
beds”

(FIESTA-IoT D2.3) FIESTA-IoT Deliverable D2.3 “Specification of Experiments, Tools
and KPIs”

(FIESTA-IoT D3.1.1) FIESTA-IoT Deliverable D3.1.1 “Semantic Models for test-beds,
interoperability and mobility support and best practices”

(Vandenberghe, 2013) Vandenberghe, W., Vermeulen, B., Demeester, P., Willner,
A., Papavassiliou, S., Gavras, A., Boniface, M. (2013). Architecture for the
heterogeneous federation of future internet experimentation facilities, In Future
Network and Mobile Summit (FutureNetworkSummit), (pp. 1-11).

(initiative, 2015) FI-WARE initiative (Accessed 2015). https://www.fiware.org/.
FIWARE lab, the open innovation Lab (Accessed 2015). https://www.fiware.org/lab/.

(Jena) Carroll, Jeremy J., et al. "Jena: implementing the semantic web
recommendations."” Proceedings of the 13th international World Wide Web
conference on Alternate track papers & posters. ACM, 2004.

(Gluhak, 2011) Gluhak, A., et al. (2011). A survey on facilities for experimental
internet of things research, IEEE Communications Magazine, vol.49, no.11, pp.58-
67.

(project) Provisioning of urban / regional smart services and business models
enabled by the Future Internet (OUTSMART) project (Accessed 2015).
https://www.fi-ppp.eu/projects/outsmart/.

(Tonneau, 2015) Tonneau, A.S., Mitton, N., Vandaele, J. (July 2015) How to choose
an experimentation platform for wireless sensor networks? A survey on static and
mobile wireless sensor network experimentation facilities, Ad Hoc Networks, Volume
30, pp. 115-127.

(Gavras, 2010) Gavras, A. (2010). Experimentally driven research white paper . ICT-
FIREWORKS .

(Haren, 2009) Haren, V. (2009). TOGAF Verson 9.0.

Copyright © 2015 FIESTA-loT Consortium 69

Fiesta-loT Deliverable 2.4 — FIESTA-loT Meta-Cloud Architecture

(IEEE, 2007) IEEE. (2007). Guide for Monitoring, Information Exchange, and Control
of Distributed Resources Interconnected with Electric Power Systems. |EEE.

(IEEE, 1990) IEEE. (1990). IEEE standard glossary of software engineering
terminology. |IEEE.

(loT-A, 2011) loT-A. (2011, June 16). Retrieved May 29, 2015 from Project
Deliverable D1.2 — Initial Architectural Reference Model for loT: http://www.iot-
a.eu/public/public-documents/d1.2/view

(loT-A, 2013) loT-A. (2013, July 15). Retrieved May 29, 2015 from Deliverable D1.5 —
Final architectural reference model for the loT v3.0: http://www.iot-a.eu/public/public-
documents/d1.5/view

(MyFIRE, 2011) MyFIRE. (2011, May). Retrieved Jully 6, 2015 from D1.2 Taxonomy
on common interpretation of testing, testing approaches and test beds models:
http://www.my-fire.eu/documents/11433/38630/D1.2+-
+taxonomy+on+common-+interpretation+of+testing%2c%20testing+approaches+and
+test+bed+models?version=1.0

(Project Management Institute, 2013) Project Management Institute. (2013). A Guide
to the Project Management Body of Knowledge (5th Edition ed.). USA.

(Soukhanov, Ellis, & Severynse, 1992) Soukhanov, A. H., Ellis, K., & Severynse, M.
(1992). The american heritage dictionary of the english language. Boston, MA:
Houghton Mifflin.

(Volere) “Volere Requirement Specification Template” available at www.volere.co.uk
(last accessed 31/07/2015)

(Haller et al., 2013) “A Domain Model for the Internet of Things”, in iTHINGS’2013
proceeding, Beijing, China (see also IEEE eXplore)

(Rozanski&Woods, 2011) N. Rozanski and E. Woods, “Applying Viewpoints and Views to
Software Architecture”, Addison Wesley, 2011

(IoT-A UNIs) “IoT-A Unified Requirements”, available at http: //www.iot-
a.eu/public/requirements/copy_of requirements (last accessed 31/07/2015

FIESTA-loT 2015

Copyright © 2015 FIESTA-loT Consortium 70

