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ABSTRACT

SRC willow for bioenergy is a promising source of renewable energy for temperate
climates such as the UK. Mass deployment of this technology will require substantial land
use change, which will have consequential effects on ecosystem services. In order to avoid
competition with food, bioenergy production has been proposed for cultivation on
degraded or marginal land. In the UK, this land will likely come in the form of ex set-aside
grasslands. The aim of this work was to quantify the greenhouse gas (GHG) balance of
land use change (LUC) to 2G bioenergy, with a particular focus on SRC willow.

A systematic review and meta-analysis revealed that a conversion from arable cropping to
second generation bioenergy results in an increase in soil carbon, whereas a conversion
from forest results in a loss of soil carbon. Transitions from grasslands to SRC were shown
to be broadly neutral, whereas a transition to perennial grasses such as Miscanthus there
was a loss in soil carbon. This work highlighted the limited long-term empirical data
available surrounding the effects of LUC to bioenergy, with particular uncertainty

surrounding grasslands.

A field site was established at commercial scale in the south of England to conduct a side-
by-side comparison of the net ecosystem exchange (NEE), soil GHG fluxes and soil
properties of an ex-set aside grassland and SRC willow plantation. There was also the
opportunity to capture the effects of a commercial harvest of SRC willow on net gas

exchange.

After three years of measurements, net ecosystem exchange (NEE) indicated that SRC
willow was a net sink for carbon and grassland was a net source. Soil respiration was lower

in SRC willow than in grassland. Soil fluxes of nitrous oxide and methane were low at
i



both sites and did not contribute a significant portion of the GHG balance of these land
uses. However, there was net emission of methane from grassland and a net uptake from
the SRC willow over the measurement period. Soil carbon in the upper 30 cm portion was
higher in grassland than in SRC willow, however for the whole 100 cm profile there was
no significant difference between land uses. The effects of a commercial harvest were
detected in the SRC willow where there was an increase in NEE and ecosystem respiration
(Reco). Despite these increases in NEE and R, the site became a net sink of carbon again
as soon as 3 weeks post-disturbance. Soil chemistry analysis revealed that a conversion

from grassland to SRC willow results in increased bulk density and a lower soil moisture.

Overall, these results suggest that a transition from grassland to SRC willow could result in
GHG savings, though this is likely to be highly site and management specific. SRC willow
Is able to act as a sink for carbon which could have positive implications for climate
change mitigation. Soil carbon differences between sites indicate that the SRC willow is
still in the recovery phase for soil carbon, and these differences are likely due to the larger
input of organic material in the grassland where it is mowed and left on site. Management
plays a large part in determining the whole GHG balance of the grassland ecosystem and
this will need to be considered for future land use change scenarios. Grasslands remain one
of the most viable options for land use change to bioenergy to avoid large loss of soil
carbon (such as those observed from forest transitions) and competition with food crops,

though decisions to convert land will require a site by site evaluation.
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CHAPTER 1: INTRODUCTION — THE CURRENT STATE OF
KNOWLEDGE OF BIOENERGY MANAGEMENT AND
LAND USE CHANGE

1.1 Land-Use Change and UK Bioenergy Cropping Systems

1.1.1 Global land use, climate change & increasing demands

Global greenhouse gas (GHG) emissions have increased over 80% between 1970 and 2010,
from 27 to 49 Gt CO,-eq y™, with the largest increase occurring in the past decade (2.2%
increase per year; IPCC, 2014). A rise in GHG emissions has resulted in a global warming
of the planet as thermal radiation becomes trapped within the atmosphere subsequently
causing global climate change (IPCC, 2007). Global climate change has been
acknowledged as one of the largest threats to human health, energy security, food security
and biodiversity (IPCC, 2014), with serious financial implications if its effects are not
mitigated (Stern, 2008).

It is now recognised that increased global demand for food, water and energy, alongside
the predicted rise in global population and changes in climate, are placing natural resources
under more pressure than ever before (Beddington, 2009; Godfray et al., 2010). At the
centre of this larger demand for food and energy is the availability and sustainable use of a
finite land resource that delivers multiple Ecosystem Services (ES) and goods (Valentine et
al., 2011).

This need is likely to drive an increase in the area of land dedicated to agriculture, although
as in the past, a large proportion of the gains in food production may be achieved through
increased crop productivity per unit land area, rather than an increase in area of the
landscape that is managed and farmed. Since 1970 global agricultural land area has
increased by approximately 5%, whilst crop productivity has increased by more than 50%
(FAOSTAT, 2012). Future increases in agricultural land vary from 5-30%, depending on
the scenario considered (reported by Smith et al., 2010), but all suggest increased land-use
for agriculture, and in contrast to the past fifty years, this food delivery must go hand-in-

hand with other land-use pressures and in the face of climate change (IPCC, 2007).

Land use and land use change (LUC) both hold very large environmental implications

including, but not limited to, reduced carbon stocks, soil quality, water quality and losses
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in biodiversity. Sala et al. (2000) found that LUC is the largest driver of biodiversity loss
globally, closely followed by climate change. LUC was responsible for 6-17% of total
anthropogenic GHG emission during the 1990s, equalling 5.9 Gt CO,-eq y™* (IPCC, 2001).

1.1.2 Energy demand, supply and pressure

The global energy supply is still dominated by fossil fuels with oil, coal and natural gas
accounting for 33, 30 and 24% of the global usage, respectively (BP, 2014). Global energy
consumption grew at a below-average rate of 2.3% in 2013; however the use of renewables
is increasing annually and supplied 2.2% of the total global consumption (BP, 2014; Figure
1.1). Global energy demand is expected to continue rising as the global population rises
and technological advances take place. Current predictions indicate that energy demand
will rise by 37% by 2040 with usage in Europe, Japan, Korea and North America
plateauing, and rising consumption in the rest of Asia, Africa, the Middle East and South
America (IEA, 2014).
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Millian tonnes od equivalent
B Coal 13000
B R
B Hydroelectricity
W Nuclear energy
B Natural gas
Qi

i) 89 o0 L) a2 9 94 95 96 a7 L] 99 00 [} o2 [1c] 04 05 08 o7 17} 09 10 12 1

Figure 1.1: World primary energy consumption for 2013 (Taken from BP Statistical Review of
World Energy, June 2014).

Investment in renewables continues to increase globally, with increased production,
reduction in costs and supporting policies (REN21, 2015). However, investment has
slowed in developed countries with only a 3% increase from 2013 to 2014, whereas
investment in developing countries increased 36% compared to 2013 (RENZ21, 2015;
Figure 1.2). The number of countries with renewable energy targets also continues to grow,



with 164 with renewable energy targets, and 145 of those with policies in place to support
those targets (REN21, 2015).
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Figure 1.2: Global investment in renewable energy technologies in developed and developing
countries, 2004-2014. Source: Renewables 2015 Global Status Report, REN21 (2015).

1.1.3 Role of bioenergy crops in meeting global demand

The International Energy Agency (IEA, 2010) suggests that traditional biomass burning
provides approximately one third of the energy in Africa, Asia and Latin America, with
this figure being as high as 80-90% in the poorest countries around the world (Chow et al.,
2003; Demirbas, 2005). Currently, in a global context, bioenergy is the most significant
renewable, contributing 78% of total renewables supply but remains largely under-utilised
as an energy source (Somerville, 2007). The magnitude of the ‘available, useable resource’
as opposed to the ‘technical potential’ of global biomass availability has recently been
guestioned in several studies where quantification of the global resource has been
attempted and these studies have been brought together by Slade et al. (2011). Some
estimates suggest that there is potential to supply between 13-22% of the world’s global
energy demands by 2050 from biomass (Beringer et al., 2011), whilst the IEA (2009)
suggests 50% of global energy demand is technically possible from bioenergy. Slade et al.
(2011) have reviewed these studies and given a detailed account of the assumptions
underlying these highly contrasting estimates of global biomass potential for bioenergy.
Briefly, they include yield assumptions; technology enhancements for yield (including

breeding and GM); inputs such as nitrogen fertiliser and water; land conversions that



include soil rich in biodiversity; and carbon and grazing land that may or may not become

available.

The biomass resource is considerable and even with moderate future predications, between
10-20% of future energy demand could potentially be supplied from biomass resources
(Slade et al., 2011), with 10% considered more appropriate for UK supply by the recent
Committee on Climate Change review (CCC, 2011). In the CCC review, four scenarios for
land-use were considered to estimate global biomass availability with bioenergy crop
deployment ranging from 100 Mha to 700 Mha of bioenergy cropping. The global land
area was estimated at 13,000 Mha and agricultural land at 4,200 Mha. Of this
approximately 1,550 Mha is currently used for crop growth and it is suggested globally

that 500 Mha may be available from abandoned agricultural land.

A consensus for future energy demand suggests an increase over the next few decades of
between 30-50% on current-day supply (IEA, 2010), with renewable technologies,
including bioenergy, playing an increasing role. Since feedstock supply also impacts on
land-use, special consideration has been given in recent years to how this resource might
be deployed in future. Certainly, Somerville et al., (2011) estimated that less than 1% of
global agricultural land resource was in the past deployed to bioenergy however this is
likely to increase in future and it is this increase, alongside that of food production and a
requirement to fulfil the development goals of the Millennium Ecosystem Assessment
(MEA, 2005), that provides the perfect storm described by Beddington (2009).

Energy from biomass, in addition to enhancing energy security and supply, also has global
social and environmental consequences that are wide-ranging and complex. These include
the contribution of bioenergy chains to ecosystem services and here, the regulating service
of greenhouse gas (GHG) emission and climate regulation is considered alongside the
supporting services for biogeochemical cycling of carbon and other GHGs, particularly
N2O. In the IEA (ETP, 2010) ‘blue map’ scenario — the scenario to achieve a GHG
emissions reduction on 2005 emissions of 50% by 2050 with enhanced energy security,
suggests that renewables will contribute 17% of the required reduction. Within this,
biofuels meet 20% of total transport fuel demand and contribute to more than 30% of
power generation from renewables by 2050. Without the ‘blue map’, the baseline scenario
predicts that GHG emissions will double over the same timeframe, leading to a rise in
temperature in excess of 2.4°C which is considered unsustainable (IPCC, 2007). Thus, in a
global context, the role of bioenergy in contributing to these important regulating and
supporting ES is only just beginning to be considered with limited empirical evidence on
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which to base assumptions. Of particular significance is the LUC, or crop transition that is
associated with the bioenergy crop. Some transitions may be detrimental (e.g. removal of
tropical forest to plant sugarcane), provide no net benefits (e.g. one arable crop exchanged
for another), whilst others may be positive transitions with improved GHG mitigation

potential (e.g., an annual crop replaced with a perennial crop; Hillier et al., 2009).
1.1.4 Types of bioenergy available

Sources of biomass energy come in several forms: first generation (1G) bioenergy crops
which are produced mainly from food crops such as grains, sugar beet and oil seeds; and
second generation (2G) bioenergy crops which are dedicated lignocellulosic feedstocks
such as short- rotation coppice (SRC), willow and poplar, and perennial grasses such as
Miscanthus and (in the USA) switchgrass. Second generation bioenergy feedstocks can
also include crop/forest residues, wood processing waste and solid municipal wastes. Third
generation feedstocks often defined as those from algal growing systems, either as macro-
algae or micro-algae in bioreactors and open ponds, are considered to have limited land-
use implication for the UK; although their potential may be significant, these third
generation (3G) feedstocks are considered beyond the scope of this study. These sources of

biomass are summarised in Table 1.1.

1.1.4.1 First generation feedstocks

First generation (1G) feedstocks are those from ‘traditional’ food crops including wheat,
corn, oilseed rape, sugar beet, sugar cane. These crops are generally used to make biofuels,
through alcohol fermentation, or biodiesel through transesterification of oils and fats. In
2012, there were over 110 billion litres of biofuels produced globally; the largest producers
were the USA with 44 billion litres followed by Brazil with 26 billion litres (EIA, 2015).
The UK produced 336 million litres of biofuel for 2012 (EIA, 2015).

1.1.4.2 Second generation feedstocks

Second generation (2G) feedstocks are crops which have been bred and grown exclusively
for biomass for bioenergy. There are three main types of 2G feedstocks (i) short rotation
coppice (SRC) willow and poplar; (ii) perennial grasses such as Miscanthus and
switchgrass and (iii) short rotation forestry (SRF) such as alder, birch, beech and

eucalyptus. Each type is briefly discussed in the following sections.



Table 1.1: Main forms of biomass feedstock in the UK land system. * Indicates those crop

transitions covered in this study.

Crop Type Source

Crops First generation * Wheat grain, oilseed rape, sugar beet

SRC poplar and willow, Miscanthus, short

Dedicated second generationl rotation forestry (SRF) including

eucalyptus, alder, ash, birch, sycamore,

beech, conifer

Third generation Micro-algae and macro-algae (seaweed)
Residues Forestry Wood chips, sawdust, bark, brashings
Arable crop Straw
Wastes Wood Contaminated wood waste

Animal manures and sewage sludge,

Organic
food and garden waste
Landfill gas Gas from land-fill sites
1.1.4.2.1 SRC

SRC crops undergo coppicing every 3-4 years which results in a multi-stem plant which
can rapidly accumulate biomass, and on average these plantations have a life span of
approximately 20 years. SRC crops are also advantageous because they require low inputs
(fertiliser, pesticides, herbicides, water) and they do not have many pests and are fairly
unsusceptible to disease. Short-rotation coppice and grass cultures are the most promising
source of biomass at present (Rowe et al., 2009) and have been shown to be the one of the
most energy-efficient carbon conversion technologies to reduce GHG emissions (Styles &
Jones, 2007), although there still remains limited experimental data to confirm this
statement. They are also a preferred biomass crop over first generation food crops because
they produce more biomass per hectare and unlike oilseed crops the entire crop is utilized
as a feedstock or to produce fuel. In order for bioenergy crops to present a solution for the

future, they need to be both environmentally and energetically viable and outweigh the
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energy used in the harvest, transportation and production from feedstocks. For example,
when compared to coal, SRC willow is able to yield 36-times more energy than coal per
unit of energy input and simultaneously emit 24-times less GHG than coal (Djomo et al.,
2011). One review, of over 15 years of research, concluded that the benefits of SRC willow
were carbon sequestration into soils, reduced erosion, phytoremediation and lower SO, and
NO emissions when biomass was co-fired with coal (Abrahamson et al., 2002).

1.1.4.2.2 Perennial grasses

The most commonly used perennial grass species for bioenergy are Miscanthus,
switchgrass, reed canary grass and Arundo (Lewandowski, 2003). Miscanthus originates
from Southeast Asia; switchgrass from North America; and reed canary grass and Arundo
are native to Europe. Perennial grasses are often planted as whole rhizomes, and less
commonly seeded. After establishment stems emerge in spring from the rhizome, biomass
is rapidly accumulated during the summer and in autumn the crop undergoes senescence.
Over winter the crop is left to translocate nutrients belowground and reduce the moisture
content of the biomass. The crop is harvested annually in early spring, and then the cycle
begins again. Perennial grasses are becoming increasingly popular as biomass crops due to
their large yields, generally reaching between 10-30 t ha™ y™* (Lewandowski et al., 2000).
With such high yields attainable these crops are able to occupy less land than other
bioenergy species (Heaton et al., 2008). Generally, perennial grasses have been shown to
have large environmental benefits including increased soil sequestration, improved nutrient
cycling, reduced GHGs and little nitrate leaching when considering a transition from arable
cropping (McLaughlin & Kszos, 2005; Voigt, 2015).

1.1.4.2.3 SRF

Short Rotation Forestry (SRF) is used to describe forestry species which are cultivated on a
20 year rotation for bioenergy. They are called ‘short rotation’ as a 20 year cycle is shorter
than rotational lengths usually used in conventional forestry which are around 100 years.
There is less research available on implications of large scale cultivation of SRF, however
given appropriate management practices SRF has the potential to have positive
environmental impacts on the landscape (reviewed in Hardcastle et al., 2006; Pérez-
Cruzado et al., 2012). Due to the wealth of different species that SRF encompasses there is
no singular effect direction that applies to all species. A recent study showed there were
increased carbon stocks under coniferous SRF compared to control arable land, whereas
broadleaf SRF showed no effect and eucalyptus showed a decrease in C stock (Keith et al.,
2015). The authors attribute the loss in soil C under eucalyptus to the young age of the

measured stands; other studies have shown increases in soil C with stand age in eucalyptus
7



compared to pasture lands (Pérez-Cruzado et al., 2012). LUC impacts are also expected to
be highly site specific (Hardcastle et al., 2009).

1.1.4.3 Third generation feedstocks

Briefly, third generation (3G) feedstocks consist primarily of microalgae and are used to
produce biodiesel and bioethanol. Microalgae are able to produce significantly more oil for
biodiesel than 1G crops on a per land unit area and due to the short life cycle they are able
to be harvested several times a year compared to 1G or 2G feedstocks (Dragone et al.,
2010). 3G bioenergy will not be further discussed in this review.

1.1.5 Bioenergy in the UK

In the UK context, the ‘Energy Crop Scheme’ provided by Natural England was a
Government incentive program to encourage farmers to plant second generation, dedicated
lignocellulosic (woody biomass comprised of cellulose and lignin) energy crops in the UK,
in the belief that these crops represent a better GHG balance than arable crops and because
they may be grown on land not suitable for high yielding arable cropping (DECC, 2012;
CCC, 2011; Royal Society, 2008). A grant of up to 50% for the cost of the plantation was
awarded for approved energy crops which included SRC trees and Miscanthus (Natural
England, 2009), but despite this, uptake of these grants has been poor, not surprisingly,
given that they aid crop planting rather than its harvest and profitability. Poor uptake
reflects a complexity of concerns expressed by growers and these extend beyond financial
considerations. The Energy Crops Scheme has now expired and subsidies are no longer
offered; there are no signs yet if they plan to be replaced (Natural England, 2014).
Sherrington et al. (2008; 2010) identified concerns over long-term contracts, long-term
commitment of land to difficult crops and rooting systems and lower returns compared to
annual crops, all contributing to poor uptake. However, they also noted that Miscanthus
appeared to show higher gross margins than willow. A more effective Government
approach could be initiated to provide guarantees for long-term security of income to
enable the industry to flourish. Enabling the price of carbon and carbon credits to be used
as a metric in such circumstances may provide the way forward, but for such a system to
be feasible, a clear empirical evidence base of GHG benefits and costs of different land use
would be required for the UK and this remains limited for SRC and Miscanthus, and is
only now being addressed at the research level. Within Europe, the UK is under-
represented for natural biomass resources, ranking 19 out of 27 countries for forest
resources (Global Forest Resources Assessment, 2005); although it has been highlighted

that this still represents a significant and large source of biomass for the UK. This biomass

8



resource could be available through better management of private forests, providing up to 2
million tonnes of wood annually, for energy uses (Forestry Commission, 2009). Current
estimates of the UK land area use for energy crops are 7100 ha for Miscanthus and 2700 ha
for SRC willow (Digest of UK Energy Statistics, 2014). The use of SRC cultures have the
dual benefit of producing abundant biomass for renewable energy production and the
ability to sequester carbon both into the biomass and into the soil. It was found that in
Western Europe alone SRC could annually sequester 24-29 t CO, ha™ (Deckmyn et al.,
2004). On average, SRC willow is able to sequester carbon at a rate of 3.00 Mg ha™ y™,
with 1.71, 1.25 and 0.04 Mg C ha™ y* allocated to aboveground biomass, belowground
biomass and into the soil to 60 cm depth (Lemus & Lal, 2005). The most recent estimates
show there is a potential 3.5 Mha of land available in the UK for 2G bioenergy which
would not impact on the highest quality agricultural land (Lovett et al., 2014). Cultivation
on this scale could provide over 60% of the demand for both heat and electricity for the
UK (Wang et al., 2014a, Wang et al., 2014b). Cultivation on a smaller, more likely scale
of 0.4 Mha could still provide more than 5% of the UK’s heat and electricity demand by
2020 (Wang et al., 2014b).

1.1.6 Indirect Land Use Change (iLUC)

One of the major constraints with the application of energy from biomass is the land
required to cultivate energy crops. Land use in the UK is particularly strained with a
population density of 256 people per km? versus the USA with only 34 people per km?
(Office for National Statistics, 2011; United States Census Bureau, 2012).

In many places in the world, any land that is fertile and able to grow food crops is likely
already under cultivation, with bioenergy crops directly displacing food or fodder crops.
This direct displacement is now considered to lead to consequential indirect effects
(Indirect Land-Use Change — iLUC) where other land is required to grow additional food
and where this may be high carbon, such as that from deforestation and other pristine areas.
The impact of these indirect effects (Searchinger et al., 2008), is yet to be fully resolved
and is beyond the scope of this review. However in developing sustainability criteria, the
concept of iLUC factors, is being considered and it is likely that these factors may be twice
the magnitude in some circumstances of the GHG costs through direct impacts assessed at
a local level (Melillo et al., 2009). These authors have suggested a global policy to protect
forests and minimise the use of fertilisers (which may make the most significant
contribution to overall GHG emissions), and would contribute towards the development of

global sustainability criteria that take into account indirect effects most effectively.
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Fritsche et al. (2010) review the options for taking account of iLUC in policy development,
and in their review, the CCC concludes that either crop-specific iLUC factors are included
for the growth of specific feedstock crops or limits are placed on the use of feedstocks with
iILUC risks (CCC, 2011). For the present, much emphasis is placed on the growth of
energy crops on less fertile degraded land, areas of ex-set aside or along field margins, thus
avoiding both direct and indirect land- use changes associated with food production.

1.1.7 Policies and obligations

The uncertainties surrounding the sustainability of biofuels (Scharlemann, 2008) has
prompted a number of international initiatives to establish ‘sustainability criteria’ that
propose frameworks and certification, to varying degrees, to ensure bioenergy feedstocks
are planted only when no significant negative impacts are apparent. These standards, and
the assumptions that underlie them, are important, since in Europe, GHG emissions
reduction are central to the development of current and future targets for cultivation within
the EU and also for import of feedstocks and fuel. The research described in this review
will contribute to the development of appropriate criteria since many rely on modelled data
and look-up tables from which to extract the GHG balance data for different cropping
systems. This presents considerable uncertainty to policy development since few empirical
data are available from which to verify figures used in LCA and other sustainability criteria,

and these are prone to errors (Whitaker et al., 2009; Rowe et al., 2011).

The EU (as part of the Renewable Energy Directive; RED) is currently dedicated to
increasing the amount of renewable energy used to 20% of total energy consumption by
2020 whilst simultaneously reducing GHG by 20% by 2020 (European Commission, 2009).
Currently in the EU, around 3% (3.1 Mha) of EU croplands are used for bioenergy,
supplying 8.7% of the total primary energy (IEA, 2010; European Commission, 2014). In
the UK, crops occupy 71% of the total UK agricultural land area (DEFRA, 2014), and of
this only 0.01 Mha is bioenergy crops under cultivation (UK Bioenergy Strategy, 2012).
For first generation crops however, it is less clear how much contributes to bioenergy, for
example Oilseed Rape (OSR) covers 25% of arable land in the UK and is used for both
food and biofuel, but it is unclear how much is dedicated to each use (DEFRA, 2014);
according to the Renewable Transport Fuels Obligation (RTFO) quarterly report,
approximately 3% of all UK cereals were used to produce biofuels in 2009 (RTFO, 2010).
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The UK Bioenergy Strategy (2012) is based on 4 principles:

1) Policies that support bioenergy should deliver genuine carbon reductions;

2) Support for bioenergy should make a cost effective contribution to UK
carbon emissions objectives;

3) Support for bioenergy should aim to maximise overall benefit and minimise
cost across the economy;

4) Policy makers should assess and respond to the impacts of increased

deployment.

Through the RED, the UK should have 15% of all energy from renewable sources by 2020
and to reduce GHG emissions by at least 34% by 2020 and 80% by 2050, as enshrined in
the Climate Change Act 2008 (emissions from a 1990s baseline). Currently bioenergy
provides 3% of the total UK energy consumption, with 65% of this from electricity
generation (UK Bioenergy Strategy, 2012). An analysis undertaken as part of the recent
UK Bioenergy Strategy projects that sustainably sourced biomass will contribute 8-11%
and 8-21% of the total energy by 2020 and 2050, respectively. One estimate predicts that
in order to be able to meet the UK strategy, 350,000 ha of land will need to be under
perennial crop cultivation, requiring an increase of over 2000% in area from only 15,000
ha grown in 2008 (Karp et al., 2009), which had risen to approximately 19,000 ha for
2009/2010 (see Don et al., 2012). The UK Bioenergy Strategy (2012) estimates the
theoretical maximum area available to cultivate SRC willow and Miscanthus is estimated
at between 0.93 - 3.63 Mha in England and Wales. It is clear from these and other studies,
that in order to reach sustainability targets for 2020 and for 2050, the UK will need to
supplement its own biomass with that from international imports (AEA, 2011; Figure 1.3).
The equivalent amount of land required globally to supply the UK has been projected as
0.6-2.2 Mha for agricultural residues, 0.04-2.6 Mha oil crops and 3.7-17.2 Mha for woody
biomass (UK Bioenergy Strategy, 2012). Within this requirement, it is critical that UK-
sourced biomass is grown in a sustainable manner. Whilst this review aims to focus
explicitly on the UK system boundary, there will be global impacts on adoption of
bioenergy crops in the UK. For instance, if we are able to optimise the production of UK-
sourced biomass feedstocks, this reduces the global impact on international imports, for
example, in areas of the tropics where native tropical forest is being removed for bioenergy
crop production. Brazil and Indonesia are responsible for 61% of global CO, emissions
from LUC (Le Quere et al., 2009), although the contribution of bioenergy cropping to this

figure is likely to be small. Presently, the largest UK import of biofuel is Argentinian
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supplied soy-based diesel (DECC, 2012), although this may change with increased
production of Brazilian ethanol in future.
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Figure 1.3: Amount of energy provided from biomass supplied from domestic and international
supplies (from UK Bioenergy Strategy, DECC (2012)).

‘Set-aside’ is land which is prevented from being cultivated on farms across Europe, and
was introduced in 1992 as part of the Common Agricultural Policy (CAP). Previously this
was obligatory and was a percentage of the total land a farmer had in cultivation; however,
as of 2007 it became voluntary to participate and it was completely removed from the CAP
in 2008. The purpose of set-aside was to prevent over-production on farms and to help
avoid negative environmental impacts on the soil and on the landscape. After the set-aside
initiative came to an end, as much as 20% of land in the EU was immediately re-entered
into cultivation (Don et al., 2012). In the UK some of the land was also redistributed into
the Environmental Stewardship Scheme (ESS), another governmental incentive to protect
the landscape, where famers are paid not to cultivate land. It is these lands which have the
potential to be converted into bioenergy crops in the future to avoid cultivation on fertile
lands, and therefore direct competition with food production. However, currently they are
excluded from the ESS: if payment is received for ESS it cannot be received from the

Energy Crops Scheme.

It is important that there is a reliable and rigorous means of measuring LUC when
considering land conversions to bioenergy crops. At present, the IPCC (2006) present a
standard method for estimating soil organic carbon (SOC) stock based on land-use and
management, measured at three tiers, depending on the data collected for that area.

However, there are fundamental flaws in the system, requiring further development and
12



implementation so that LUC decisions can be better informed for conversions like that to
bioenergy crops (Smith et al., 2012). An additional policy issue highlighted by Gallardo
and Bond (2011) is that in the UK there is no legal mandate for conducting assessment for
LUC to bioenergy crops (except for rare cases where protected lands are involved),
therefore highlighting that more could be done at a governmental level to help protect the

environment.
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1.2 The Effects of Land Use Change on Soil Carbon and GHG

Emissions

1.2.1 The importance of the soil for GHG mitigation in land use transitions to

bioenergy

The soil is extremely important in the global carbon cycle as it holds 1500 Pg C
(equivalent to 1500 billion tonnes), which is more than the vegetation and atmosphere are
able to hold together (Fig 1.4), representing the largest terrestrial stock of carbon. Lal
(2004) highlights the importance of SOC for its on-site and off-site values to our landscape
and to human well-being (Table 1.2). SOC is considered as any organic input from plant,
animal or microbial matter which is at any stage of decomposition. The amount of carbon
fixed into the soil is the balance between the rate of inputs, in this case from litter for
example, and the mineralization of the existing soil carbon stores (Jenkinson, 1988; Post &
Kwon, 2000). The global carbon pool is made up of 5 main pools as shown in Figure 1.5;
these all play a part in CO, efflux from the soil but only *SOM-derived CO;’ significantly
contributes to changes in atmospheric CO, concentration (Kuzyakov, 2006). It is important
to be able to measure the different sources of CO, efflux from each of the different pools,
as this allows us to evaluate whether the soil is acting as source or a sink for CO,; this can
be found in a comprehensive review of partitioning methods by Kuzyakov (2006). The soil
is not an unlimited sink, and has a limited carbon storage capacity which is determined by
vegetation type, climate, nutrient content, hydrology and topography (Gupta & Rao, 1994;
Nair et al., 2009). Anthropogenic activities such as LUC and land management have
extremely large impacts on the soil carbon pool, resulting in increased emission of CO,

due to decomposition of SOM or increased soil respiration (Schlesinger, 2000).

Soil functioning underpins ecosystem services and is important to consider when
discussing the effects of LUC, although few studies have considered processes such as
predation in bioenergy systems. In a comprehensive review by Baum et al. (2009), it was
found that land conversions to SRC willow and poplar can have both positive effects (such
as increased abundance of earthworms and positive effects on nutrient cycling), as well as
negative effects (such as dominance of arbuscular mycorrhizal host plants). Rowe et al.
(2013) have also considered ecosystem functioning alongside biodiversity and report
significant increases in predator abundance and altered decomposition rates in SRC willow

compared to arable crops.
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Table 1.2: Onsite and offsite benefits of SOC on the landscape (From Lal, 2004)

On-site benefits of SOC

Source and sink of principle plant nutrients

Source of charge density and responsible for ion

exchange

Able to absorb water at low moisture potential

thereby increasing plant available water capacity

Promotes soil aggregation which improves soil
tilth

Caused high water infiltration capacity & low

losses due to surface runoff

Substrate for soil microbial communities

therefore increase biodiversity

Provides strength to soil aggregates leading to a

reduction in erosion susceptibility

Encourages high nutrient and water use due to
reduced losses by drainage, evaporation and

volatilization

Buffers against pH fluctuations due to addition of

agricultural chemicals

Moderates soil temperature through effect on

soil colour and albedo

Off-site benefits of SOC

Reduced sediment loads in streams and

rivers

Filters pollutants from agricultural chemicals

Aids biodegradation of contaminants

Buffers GHG emissions from soils into the

atmosphere
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Figure 1.4: The global carbon cycle showing where carbon can be stored in pools or where it is

released as fluxes (Adapted from http://globecarboncycle.unh.edu/diagram.shtml)

1.2.2 Initial conversion considerations

The initial conversion process from one land-use to another usually results in a release of
emissions due to the removal of the current crop cover (manually, with fire, or by
chemicals), preparation of the land for planting (chemical and mechanical), and then the
crop establishment phase (chemical). Miscanthus propagation in particular is known to be
energy and GHG-intensive during the first stage of crop establishment (Styles & Jones,
2007). In a conversion from arable to SRC poplar, Arevalo et al. (2011) found initially a
release of carbon occurred, but the soil had become a net sink by year two. The point at
which the newly established land-use is equal to that of the previous land-use is sometimes
referred to as the ‘break-even point’ or ‘carbon neutrality’ — in one study for arable to SRC
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Figure 1.5: Soruces of biogenic CO, efflux from soil in order of turnover rates and mean residence

times in the soil (Adapted from Kuzyakov, 2006).

poplar it was found to be 4 years, similar to other studies for this type of conversion (Price
et al., 2009). The first year of cultivation has been highlighted as a particularly sensitive
year with respect to carbon balance. Data from a clustered eddy covariance approach
shows how large carbon imbalances can be invoked, but also how a conversion to
bioenergy can help stabilize and negate emissions in the long term (Zenone et al., 2011).
Abbasi and Abbasi (2010) are careful to point out that while bioenergy crops are
considered ‘carbon neutral’, they are not necessarily ‘nutrient neutral’ as each crop will

exert varying amounts of pressure on the nutrients of the soil on which they are cultivated.

A second study looking at the effects of the first year after establishment found that a
conversion from arable land to SRC willow and poplar incurred a GHG debt of 7.4 and
11.6 Mg ha™ y*, showing that while CO, emissions were 29-42% less than arable, the
amount of N,O emissions and nitrate leaching increased in the SRC plots (Nikiema et al.,
2012). This highlights the importance of taking into account all the effects of a conversion,
showing how critical the first year can be in determining GHG savings; in the long term
however these debts should be repaid and the overall environmental gain should be greater
than if no conversion was to occur. Styles and Jones (2007) found that while the

conversion from de-stocked grassland to bioenergy crops would create a small increase in
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GHG emissions during cultivation, these would be greatly offset by their displacement of
traditional fossil fuel use, a full LCA showing almost a 90% decrease in GHG emissions.

The importance of initial site conditions have also been highlighted when considering LUC
to bioenergy. Palmer et al. (2014) showed that a conversion from grassland to SRC
willow/poplar resulted in larger emissions at establishment when grassland had a higher
initial C stock. The site with higher C stocks had been grassland for over 20 years, whereas
the other grassland had been under row crop cultivation 5 years prior to SRC establishment.
The resultant GHG emissions were 43.2 and 33.0 t CO,-eq ha™ in the long-idol site
compared to 4.8 and -1.5 t CO,-eq ha™* in the recently disturbed site, for SRC poplar and

willow respectively.

The initial land-use, management and fertiliser regime are the main factors in determining
whether a conversion to bioenergy crops will be beneficial or detrimental, and also the
conversion crop type (e.g. Tolbert et al., 2002; Morris et al., 2010). For liquid transport
fuels, 1G crops OSR and wheat are primarily cultivated (Gallardo & Bond, 2011), and
which are annual row crops. Most annual cropping systems are associated with lower SOC
contents than perennial crops and therefore these losses incurred (mainly by harvesting,
ground preparation practices and removal of residues) need to be compensated by other
management practices such as fertiliser of winter cover crops (discussed later in section
3.2). In a comparison between the effects of growing OSR versus Miscanthus and SRC
willow, it was shown that OSR not only has detrimental effects on soil quality with
decreased amounts of SOC during occupation but also had the highest acidification and
eutrophication potentials (Brandao et al., 2011). This study highlights the need to
understand the full array of consequences of land-use and also how differing management
strategies impact on the life cycle of various crops. Figure 1.6 shows that fertiliser is the
main contributor to the GHG emissions of the life cycle for OSR due to associated field
CO; and N,O emission, as well as the emissions associated with manufacturing the
fertiliser. Miscanthus and willow SRC do not have fertiliser-associated emissions as they
do not undergo this management type, and the sequestration via the soil offsets any other
life cycle emissions. There are no associated life cycle emissions for the collection of
forest residues for use as bioenergy.
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Figure 1.6: GHG emissions of different land uses broken down into contributing factors from

different parts of the life cycle, expressed per reference unit (ha™ yr") (from Brandao et al., 2011).

When discussing the effect of LUC on soil carbon stocks, it seems most appropriate to start
with the classic review by Gou and Gifford (2002). Gou and Gifford (2002) conducted a
meta-analysis to quantify the effect of LUCs on soil carbon stocks and their results are
summarised in Table 1.3. It is clear from this analysis that a conversion to croplands is
detrimental and any conversion out of a cropland system causes an increase in soil carbon
stocks — this is likely due to vast differences in management practices. The main take-
home message from this paper, and a wealth of others in the published literature, is
generally that a conversion away from the native land-use tends to have a negative effect
on carbon stocks (e.g., Fargione et al., 2008). It is not to say, however, that these changes
are permanent, as these time-series are limited. One benefit of this review is that it
considered soil depth in some detail and given the literature on tillage (see Section 1.2.3.1),
it is likely that this may impact the potential for bioenergy cropping systems to lead to

improved soil carbon.
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Table 1.3: Summary of the findings from Gou and Gifford (2002) who conducted a meta-analysis to
assess the effects of LUC on soil carbon stocks across all regions of the world. ‘Native forest’ is
forest before clearing for other land use; ‘Pasture’ is for grazing (including natural grasslands);
‘Crop’ is land cultivated for food and fibre; ‘Secondary forest’ is forest that has regenerated on
abandoned land after being used for other purposes; and ‘Plantation’ is forests established through

human activity.

Original Land use Transition to: Effect on soil carbon stocks
Pasture Plantation -10%

Native forest Plantation -13%

Native forest Crop -42%

Pasture Crop -59%

Native forest Pasture +8%

Crop Plantation +18%

Crop Pasture +19%

Crop Secondary forest +53%

The “carbon debt’ is a measure of the extent to which the use of bioenergy is able to reduce
carbon emissions relative to a fossil fuel reference system. This is most often reported as
an amount of years which will be required for the land conversion to be able to ‘pay back’
the carbon debt to the land. For example, in a study by Fargione et al. (2008), it was shown
that a conversion from US grassland to corn for bioethanol would incur a carbon debt of 93
years, and from abandoned cropland to corn, a 48 year carbon debt. This again presents
another example where a conversion from a native ecosystem leads to more negative
environmental impacts than a conversion from an already anthropogenically altered
ecosystem. A more worrying estimate was one of a conversion to corn, again in the USA,
presenting a 167 year payback time when indirect effects on land-use were also considered
(Searchinger et al., 2008). Recently, Mello et al. (2014) showed the payback time for soil

C was only 8 years for a conversion from native vegetation to sugarcane ethanol, though
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these estimates do not consider the GHG and ecosystem C changes. Failure of studies to
take into account the effects of LUCs (both direct and indirect) will give an inaccurate
picture of the effects of a conversion to bioenergy crops and needs to be incorporated into

all studies considering land conversions (Searchinger et al., 2008; Fargione et al., 2008).

Soil methane (CH,) fluxes are often not discussed in many papers due to the fluxes being
very small in relation to CO,, but they are still an important component in the GHG
balance of bioenergy crops. The soil acts as an important biological sink for CH,, fixed by
oxidation by methanotrophic bacteria in aerobic soils; however in anaerobic environments
methanogenic bacteria dominate, resulting in an emission of CH, (see refs within Kern et
al., 2012). In a comparison between annual and perennial bioenergy crops, it was found
that annual crops consumed more CHy, 6.1 pg CHs m? ha™* versus 4.3 ug CH, m™ ha™ for
perennial bioenergy crops; it appears that soil water content is the main reason this
difference is seen (Kern et al., 2012). Thus far it has been found that perennial crops have a
far greater environmental advantage over first generation annual crops, however in the case
of CH,4 emissions annual crops seem to come up ahead in this case. The overall GHG
balance can be supplemented by the fact that CH, is taken up by the soil; Kern et al. (2012)
predicted that 3-4% of CO,-eq from soil borne N,O emissions can be compensated by the

consumption of methane in this experiment.
1.2.3 Specific crop transitions of relevance to the UK

1.2.3.1 Transition from arable to bioenergy crops

Several studies have investigated the effects of a conversion from traditional annual, arable
to perennial bioenergy crops. The general consensus is that this conversion to SRC and
Miscanthus results in increased SOC and soil quality (e.g. Tolbert et al., 2002; Anderson-
Teixeira et al., 2009). However, care should be taken in assessing the results since many
rely on modelled and not measured data, and when measured studies are undertaken, often
only the top 30 cm soil profile is investigated. In an analysis of the literature, Harrison et al.
(2011) have concluded that this can lead to erroneous conclusions, and caution against
shallow soil sampling in studies to quantify soil C pools and changes in soil C over time.
New data are now emerging such as Gauder et al. (2012), who have measured GHG flux
across willow SRC, Miscanthus and corn at two levels of fertiliser, and show fluxes of
these gases to be greatest from fertilised corn, but no data as yet are available for SOC. It’s
likely that these studies over the long-term will provide more conclusive data to address

this question.
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Future research should be focused on long-term measurement campaigns with field-grown
trees and grasses, in controlled replicated studies to ensure the evidence base to assess

changes in soil carbon is firm and UK-specific.

Future research should target resources for long-term soil-based studies that include the

whole soil profile down to 1 m.

The UK Bioenergy Strategy (2012) found that the energy balance of dedicated biomass
crops can have lower direct carbon impacts between 0.5 — 6.1 t CO,-eq ha™* y*, than food
production 3.4 — 11 t CO,-eq ha™* y™*. The detrimental impacts of arable lands have been
highlighted in several studies; one study found that if 50% of the area in the EU which is
currently planted with silage corn is replaced by permanent grass or temporary grass, GHG
emissions would be reduced by 1.3 Mt CO,-eq ha™ y* and 0.9 Mt CO,-eq ha™ y* (Mt =
10° tonnes; Henriksen et al., 2011). The complete conversion of arable land to permanent
grass is estimated to increase soil carbon by 0.5 t ha™ y™* (IPCC, 2001; Conant et al., 2001).
In terms of SOM, annual crops to SRC results in an average SOM increase of 1t C ha™* y™:;
yield increases due to every additional tonne in SOM are approximately 5% (see refs
within Nijsen et al., 2012). These carbon gains from conversion are likely mainly due to
the change in management practice, particularly no-tillage, thereby highlighting the vast

impact management can have on carbon balance (See section 3.2).

A comparison between fields under two different land uses (space-for-time comparisons) is
one method to investigate the experimental effects. In one study where arable OSR and
wheat were compared to SRC willow and Miscanthus, it was shown that the main
difference was the N,O fluxes were significantly smaller for bioenergy crops than arable
crops (Drewer et al., 2012), but this effect was reversed when fertiliser was added to the
perennial bioenergy crops in both Miscanthus and SRC; this suggested that the GHG
mitigation potential of crop transitions from arable to perennial crops is highly dependent
on fertiliser regime. In a review by Anderson-Teixeira et al. (2009), it was shown that upon
conversion to perennial species the average SOC accumulation rate was <1 Mg C ha*y™ in
the top 30 cm of soil. Similar data were reported in a review by Don et al., (2012), with
0.44 Mg soil C hay™ for poplar and willow and 0.66 Mg soil C ha™ y* for Miscanthus.
For switchgrass, up to 1.1 Mg soil C ha® y* was reported (Monti et al., 2012). These
changes are likely attributable to a change in management practice and changes to soil
properties by the crop cultivated; for example a switch to a “no-tillage regime” results in

less exposure of SOM and therefore decreased decomposition, but this may be complicated
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at depth in the profile and this is often not fully investigated in approximately 50% of the
studies reported by Anderson-Teixeira et al. (2009).

The consensus of evidence available suggests that transitions from annual arable to
perennial grass and SRC crops leads to improved SOC, but the overall GHG balance to
farm-gate may be positive or negative and largely driven by fertiliser input and consequent

N,O emissions. Accumulation of SOC is in the range 0.44-1.1 Mg C ha™* y™.

The cultivation of perennial crops helps to stabilise the soil after a conversion by allowing
the soil to accumulate into macro-aggregates, thereby allowing the sequestration of more
organic carbon (Grandy & Robertson, 2007). Perennial crops are also able to provide
benefits through their deeper and more extensive rooting system, providing both physical
stability and chemical stability through the presence of mycorrhizal fungi in symbiosis
with roots. Godbold et al. (2006) illustrated in a Free Air CO, Enrichment (FACE) carbon
labelling experiment using poplar SRC that movement of carbon into the SOM pool was
predominantly via the mycorrhizal external mycelium, exceeding the input from leaf litter

and fine root turnover.

The benefits of a conversion to SRC cultivars for energy have been quantified in other
studies as an economic value which represents the savings that will be made as a result of
the LUC; for example Updegradd et al. (2004) found a saving due to carbon sequestration
of $13-15 ha™ over a 5-year rotation period for SRC poplar when used as a bioenergy crop.
More recently Valentine et al. (2011) have extended this and placed a value of $56-218 bn
per annum for the carbon emissions savings globally, given the price of carbon at $40 per

tonne.

1.2.3.2 Transition from degraded, marginal and abandoned land to bioenergy
crops

It has been suggested that the indirect impacts of increased bioenergy crop deployment
globally, could be largely mitigated if energy crops are planted on degraded and abandoned
land that does not provide any provisioning ecosystem services (Gallagher, 2008). The
problem with this approach is two-fold. Firstly, such areas may provide significant ‘other’
ecosystem services related to biodiversity and amenity that may be enhanced or lost with
transition to bioenergy crops. Secondly, considerably lower crop yields are likely from
such land. The total global area of degraded land has been estimated in several recent
studies, with varying results. Nijsen et al. (2012) gave a figure of 1836 Mha, with less than
6% of this in the EU (Nijsen et al., 2012). A study based on satellite and historic data
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suggested an abandoned agricultural land resource between 385-472 million hectares
(Campbell et al., 2008), with a mean bioenergy crop yield of 4.3 t ha™ y™. Cai et al. (2010)
estimated marginal agricultural land at 320-702 Mha (increasing to 1411 Mha if grassland
savannah and shrubland with marginal productivity were included), with a suggestion that
Africa and Brazil together have more than half of the total marginal land available for
bioenergy crop production. This further emphasises the likely requirement of Europe to
seek imported feedstock resources in future, where sustainability standards are difficult to
control. Globally, the main causes of soil degradation are deforestation (29.4%),
overgrazing (34.5%), and intensive agriculture (28.1%) (Oldeman, 1994; Lemus & Lal,
2005). Growing any crop on marginal, degraded or poor quality lands will result in lower
yields due to lower levels of water and nutrients. Simulations performed by Nijsen et al.
(2012) showed that woody crops (SRC willow and poplar) and grass species (switch grass
and Miscanthus) yielded 8.9 and 6.8 odt ha™ y™ on degraded lands respectively; Campbell
et al. (2008) suggest 4.3 tonnes ha™ y™*. These projected yields are lower when compared
to the latest available varieties in the UK at 6.71 — 12.3 odt ha™ y* and 12-16 odt ha™ y™
for SRC willow and Miscanthus respectively (Macalpine et al., 2011; Natural England,
2007). This suggests that breeding targets in future should focus on breeding for optimum,
rather than maximum, yields with limited inputs of fertiliser and water (Sims, et al., 2006;
Karp & Shield, 2008).

The type and the severity of the degradation will determine the amount of yield losses,
varying between 4.6 - 88% yield reductions (Nijsen et al., 2012). Such losses however may
not be permanent due to the positive effects of planting SRC and Miscanthus on the land.
These crops are able to significantly increase the productivity of the landscape by
increasing soil stability through rooting structures, increased SOM through residue/litter
fall and increased biodiversity (e.g. Rowe et al., 2010). SRC willow and poplar are known
for their ability to grow on poor quality lands and for their phytoremediation capacity,
making them well suited to cultivation on marginal and degraded lands (e.g. Doty, 2008;
Baum et al., 2009).

Several different estimations have been given for the potential of growing energy crops on
degraded lands (Table 1.4); on average, together they predict a potential between 4.2 —
24.2 EJ Mha™ y, irrespective of yield and therefore variable depending on crop and level

of degradation.
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Table 1.4: Global energy potential for the production of bioenergy on degraded lands.

Area of degraded land Bioenergy Potential Yield
Reference
(Mha) (EJyY (Mg ha™ y™)
430 - 580 8-110 1-10 Hoogwijk et al. (2003)
500 45 4.5 Tilman et al. (2006)
550 43 Van Vuuren et al
(2009)
1836 151 - 193 6.8-8.9 Nijsen et al. (2012)

In the context of this review with focus on the UK, agricultural land classes (ALCs) may
be used to identify areas of low productivity and these have been linked to other land
constraints including national parks, pristine high-carbon soils and land with high
biodiversity value in Sites of Special Scientific Interest (SSSI). Using this constraint
mapping approach, estimates of biomass supply have been made for both SRC and
Miscanthus. Lovett et al. (2014) reported that between 4-28% low quality agricultural land
would be required to supply 3.5 Mha Miscanthus, with a total production of 4.56 Modt
from England that would enable 2.4% of total energy demand to be met - just from
plantings in very poor agricultural land. Similarly for SRC in England, Aylott et al. (2010)
showed that 7.5 Modt was realistically available for England, requiring growth on 800,000
ha of poor-quality land, supplying 4% of current electricity demand. Research is currently
in progress to identify how these two crop types will act together, since in general, SRC
yields better in the westerly areas of the UK, whilst Miscanthus shows preference for the
south and east (Bauen et al., 2010); this has also been confirmed by more recent work
(Tallis et al., 2013) and within the ETI (BVCM research project; Richter et al., data
unpublished; Taylor et al., data unpublished). More recent analyses show planting of
Miscanthus and SRC in the south-west and north-west England, respectively, have
multiple yield and ES benefits (Milner et al., 2015)

Others have also investigated mass scale afforestation on degraded or poor-quality land

with SRC cultures; for example in a modelling study in Canada, afforestation with SRC
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willow over 2.12 Mha of marginal land in Saskatchewan showed sequestration rates of 5.7-
7.5 Mg C ha™ y™* over a 44 year simulation (Amichev et al., 2012). The importance of
taking into account the quality of the land can be seen when comparing a grassland to
degraded grassland; for example, conversion from a grassland to corn caused an emission
of 79 gCO,/MJ whereas a conversion from degraded grassland sequestered 11 gCO,/MJ
(Lange, 2011). Beringer et al. (2011) warns that if biomass cultivation is not restricted to
abandoned or marginal lands, the spatial expansion will put already vulnerable ecosystems

at further risk.

1.2.3.3 Transition from grassland to bioenergy crops

Improved grasslands are important sources of terrestrial carbon storage, holding the second
largest store after bogs, with approximately 274 million tonnes of carbon (Ostle et al.,
2009). It has been shown that a conversion of arable to permanent grass will increase soil
carbon by 0.5 t ha™ y* (IPCC, 2001; Conant et al., 2001). Ostle et al. (2009) found that the
single largest contributor to soil carbon losses due to LUC was the conversion from
improved grassland to arable crops, between 1990 and 2000 in the UK. In the UK context,
conversion of semi-permanent, permanent or managed grassland to bioenergy cropping
systems probably represents one of the most controversial land-use transitions as grassland
is a significant part of the UK landscape (4-5 Mha, DEFRA, 2007) and because
management of different grasslands can vary widely in the UK, particularly with respect to
fertiliser input and grazing. This can have a dramatic impact on the GHG benefit or cost of
transition to either first, or second generation bioenergy cropping systems. St Clair et al.
(2008) and later refined by Hillier et al. (2009) provides the most comprehensive UK-
centric data set, used in the recent CCC review (2009). Here the results are clear (Figure
1.7): transition from grassland to 1G crops results in a net loss of carbon from the system
whilst transition to 2G crop provides a net benefit. However, these data represent modelled
outputs only, with limited validation. Consideration of limited, but increasing, field data
sets from long-term studies provides no clear picture on the likely consequences of

grassland conversion.
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Figure 1.7: Taken from Hillier et al. (2009). Net annual gas (t CE ha™, CE = carbon equivalents)
balance for all replacement scenarios, arable, grassland and forest/semi-natural, with bioenergy in
the UK. Black — soil emissions, grey — incorporating before and after management emissions; light

grey — incorporating fossil fuel substitutions. Error bars represent + 2 SD.

In one report, long-term belowground storage of carbon by bioenergy crops has been
shown to be equal to or greater than that of grasslands due to the long rotation and
extensive fine roots of SRC crops and the rhizome mass of Miscanthus (see refs within
Style & Jones, 2007). However, recent work by Zimmermann et al. (2012) in a comparison
of Miscanthus and tilled grassland at 16 sites following conversion in 2006 showed no
significant improvement in SOC when sampled after 2-3 years post-conversion. However,
for a switchgrass modelling study that considered 12 simulation scenarios, a net C
sequestration was observed in 11 out of 12 simulations, as determined by amount of
nitrogen fertilisation and initial soil carbon stocks (Garten, 2012); this makes
generalisations difficult. Again, these are modelled data with few empirical studies
available. Monti et al. (2011) confirmed both positive and negative changes in soil C for
switchgrass, but in a modelling exercise by Anderson-Teixeira et al. (2009), grassland
conversion to either Miscanthus or switchgrass resulted in a net increase in SOC, with the

largest effects seen in switchgrass.

The GHG benefit of conversion from grassland to second generation cropping systems
remains uncertain due to limited empirical data and mis-match between modelling and

measurement reports.
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Conversion of grassland to 1G crops appears to provide a more robust dataset. Conversion
to soybean from unmanaged grassland and arable lands have been compared and it was
shown that there are greater benefits from converting from arable lands as there is a lower
soil quality and lower initial carbon stocks (Bhardwaj et al., 2011). In Europe, the
conversion from set-aside grassland and improved grassland to OSR has been shown to
sequester 0.6-3.3, and 2.2-10.6 t CO»-eq ha™* y*, respectively (Flynn et al., 2012). Smeets
et al. (2009) in a modelling study reported reduced GHG balance of sugar beet, OSR and
wheat relative to a grassland control; although most of the study was considering N,O
fluxes rather than soil sequestration. Lange (2011), considered transitions from both
grassland and degraded grassland and for wheat found that emissions savings associated
with LUC were both positive and negative depending on grassland type, with more
productive grassland conversion found to have a smaller change in soil carbon. Hillier et al.
(2009) show that all emissions were increased following grassland conversion to either
OSR or wheat.

There is likely to be a negative impact on GHG balance of transition from grassland to

first generation bioenergy cropping systems.

Grasslands could also be considered as a source of energy themselves; for example Tilman
et al. (2006) suggested that low-input, high-diversity prairie systems involving mixtures of
native grassland perennials can provide more usable energy, greater environmental benefits,
and less agrichemical pollution per hectare than corn-ethanol or soybean biodiesel.
However, in recent experimental work, this notion has been questioned, since the low
biomass yields in such biodiverse systems (~4 t ha™ y™*) do not compare favourably with

those of switchgrass and Miscanthus (Tilman et al., 2006).

Biodiverse grasslands are unlikely to provide significant yields enabling them to compete
commercially with bred varieties of perennial bioenergy grasses and should not be

considered further as sources of biomass feedstock.

1.2.4 Management practices and their relevance to bioenergy

Management practices are important when assessing GHG and soil carbon impacts on the
land regardless of the land-use type. The way the land is managed is one of the key
contributors to the GHG balance and soil carbon; this can be done in such a way to reduce
emissions, but more frequently is referred to in the literature as a means by which we are

causing an excess of emissions, such as modern agriculture.
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Several strategies are now being employed to encourage carbon sequestration and to
minimise disturbance that may cause a large release of emissions into the atmosphere.
These include, but are not limited to, retention of residues on the soil, decreased/optimised
fertiliser application, reduced or no-tillage and reduced/optimized irrigation. It should be
kept in mind that current and past breeding for yield may have mitigated against soil
stability and improved GHG balance. Future breeding and management are much more
likely to be focussed on ‘efficient crops’ that are managed for optimum rather than

maximum yields (Kell, 2011)

Work undertaken by the IPCC investigated the potential GHG mitigation strategies
available to us and how we can manipulate current agricultural practises to aid carbon
mitigation. Table 1.5 shows the GHG savings that could be made if certain land
management strategies were improved from their current state, including the use of
bioenergy crops as a whole. Davis et al. (2013) recently coined the term ‘management
swing potential’ which describes how management can be used to alter the GHG
mitigation potential of LUC to bioenergy. She outlines a number of case studies which
highlight the ways in which bioenergy crops can be managed to ensure minimal
environmental impacts as a result of LUC to bioenergy, such as by rotation length, use of
fertiliser to increase C fixation and timing of harvesting (Davis et al., 2013). Data on all
management practices employed in any land use system must be collected therefore to
properly evaluate the potential GHG benefits that can be derived from LUC to bioenergy.

To enable the soil to be used as a sink for anthropogenic sources of excess CO, from the
atmosphere, the amount of SOC needs to be increased. This can be done by increasing the
amount of SOM which enters the soil and this can be achieved by changing the way crops
are managed; Lal et al. (1999) suggested these need be as simple as conservation tillage,

irrigation, reducing/eliminating fallow and retention of crop residues.

The above mentioned management strategies will be discussed in this report in the context
of bioenergy crops, whilst other land-use and management strategies for increasing carbon
sequestration exist, they will not be discussed due to lack of relevance to bioenergy
cropping systems. The use of these management strategies will vary largely based on the
crop being assessed and may not be relevant to all crop types.
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Table 1.5: IPCC mean estimate of GHG-mitigation potential of management strategies (From
Smith et al., 2007).

Mitigation Strategy Mitigation potential | Climatic Zone

(t CO,-eq ha'y™)
Improved water management 1.14 All climatic zones
Improved crop management 0.39 -0.98 Dry and moist
Improved tillage and residue management | 0.53 — 0.72 Cool-moist & warm moist
Bioenergy crops 0.53-0.72 Cool-moist & warm moist
Improved nutrient management 0.33-0.62 Dry and moist
Improved tillage and residue management | 0.17 — 0.35 Cool-dry & warm-dry
Bioenergy crops 0.17-0.35 Cool-dry & warm-dry

1.2.4.1 Tillage as a management strategy

Tillage is defined as the practice where soil is prepared for planting by mechanised
disturbance using digging and overturning. Several types of tillage exist, namely
conventional tillage, conservation or reduced tillage and no-tillage, and these categories
refer to the amount of soil disturbance and amount of residue that is buried. Once a crop
has been harvested there will be residue left on the surface. Conventional tillage will cause
almost all residues to be turned and mixed in with the soil, with less than 10-15% residue
left on the soil surface. Reduced or conservation tillage will leave between 15-30% of
residues on the soil surface and in a no-tillage system, the ground is not tilled but will only
be disturbed during planting.

Within the literature there is general agreement that reduced tillage provides less
disturbance and therefore will be a more suitable means of sequestering carbon within the
soil compared with conventional tillage (Paustian et al., 1997; van Groenigen et al., 2011;
Chen et al., 2009). Decreased disturbance results in decreased aeration, decreased soil
erosion, water and heat/thaw cycles, minimised oxidation of organic matter and encourages

better aggregation, all contributing to the stabilization of soil organic matter (SOM,;
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References within Lennon & Nater, 2006). The IPPC guidelines for GHG accounting
inventories suggest a multiplication factor of 1.0 for a conversion from conventional tillage
to reduced tillage (IPCC, 1997), which translates to an approximate SOC increase of 10%
(West & Post, 2002). Paustian et al. (1997) showed in a comparison of 39 paired sites
(conventional tillage vs no-tillage) that soil carbon was 8% (285 g m™) higher when
subjected to a no-tillage management regime. It should be noted that the compared studies
were not necessarily looking at the GHG balance and soil sequestration potential of the two
management regimes, so are likely an under-estimate of the effect of reduced tillage on
carbon storage. In a global analysis of the effect of tillage on soil C sequestration, West
and Post (2002) found that a switch from conventional tillage to no tillage can sequester 57
+ 14 g C m? yr' and that the majority of the SOC change seen occurs in the first 10-15
years following the switch over. Reduced tillage encourages SOM accumulation by
reducing disturbance of the soil and limiting soil and residue contact (Carter, 1992).
Reduced tillage shows an increase in bulk density in the upper soil layers (~0-30 cm; Van
Groenigen et al., 2011; Dolan et al., 2006). A recent meta-analysis has shown that no
tillage reduced surface runoff by 21.9% and 27.2% compared to reduced and conventional

tillage, respectively (Sun et al., 2015).

Whilst many have found reduced or no-tillage treatments do sequester more carbon than
their conventional tillage counter parts (Van Groenigen et al., 2011; West & Post, 2002;
Ogle et al., 2005), there remain inconsistencies. It appears that the amount of sequestration
may often be equivalent, but the distribution of stored carbon may differ along the entire
soil profile (Dolan et al., 2006; Blanco-Canqui & Lal, 2008; Angers et al., 1997; Vanden
Bygaart et al., 2002). Dolan et al. (2006) and others showed that the amount of SOC and
soil nitrogen was significantly higher in the no-tillage treatments compared to conventional
tillage for the top 0-15 cm of soil. They found 15-20 cm to be a transition zone where there
was no significant difference in SOC or soil N, but then for the deep parts of the profile,
20-45 cm, conventional tillage showed a higher amount of SOC and soil N. When
summating for the entire profile (0-45 cm), there was no significant difference in SOC
between tillage treatments, but soil N was significantly higher in no-tillage treatment
(Dolan et al., 2006). This shows that while reduced tillage is often favoured for its
environmental impacts, it may be less effective than thought as a management tool for soil
carbon sequestration, with effectiveness determined by soil type, nitrogen treatments and
other soil characteristics such as fungal community (Six et al., 2004). In a review of our
current knowledge on tillage and carbon sequestration, Baker et al. (2007) reported that the

majority of studies have only sampled soil to a depth of 30 c¢cm, this perhaps being the
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reason why there is widespread preference for reduced/no-tillage systems. However,
studies which sampled to lower depths found no significant difference in carbon storage
between conventional and reduced/no-tillage systems and in many cases found that more C
was stored beneath conventional systems (Baker et al., 2007; Blanco-Canqui & Lal, 2008).
It should also be highlighted that many studies on tillage are taken on small experimental
plots which minimise interference of other variables which is important for establish
effects, but is not necessarily how these management strategies will be put into practice on

a commercial scale (Blanco-Canqui & Lal, 2007).

Dolan et al. (2006) found that the profile effect documented for SOC and soil N was the
same for bulk density (higher in conventional tillage surface soils but lower below 30 cm
compared to no-tillage) and for the 313C signature (less negative in surface soils for
conventional tillage and then more negative below 30 cm compared to no-tillage). This
also appears consistent with other findings (Blanco-Canqui & Lal, 2008), and it is
recommended that future research on bioenergy LUCs should consider the whole soil
profile in some detail. In a meta-analysis by Angers and Eriksen-Hamel (2007), it was
concluded that effects of no-tillage on soil organic C content above and below 35 cm
differed, and this was an extensive study using more than 25 pieces of original research,
varying from 5 to 30 years duration. The authors were unable to identify why they found a
significant stock change in SOC between no-tillage and tillage with increased SOC above
35 cm, with a relative accumulation of SOC at depth in the tillage regime. This was a
general conclusion not limited by soil type. It is important to understand this management

change in order to achieve effective soil carbon sequestration.

In addition to soil profile depth, several studies have highlighted the importance of
sampling strategy to ensure a full picture of what is occurring is captured (Dolan et al.,
2006; Blanco-Canqui & Lal, 2008). This includes one of the largest and most highly cited
reviews on the effects of tillage on C sequestration, which drew many of its conclusions
from studies which only sampled the top 30 cm of soil (West & Post, 2002). The effect of
tillage on SOC and soil N are site- and soil-specific, leading many studies to have highly
variable results (Blanco-Canqui & Lal, 2008; Chen et al., 2009; Lennon & Nater, 2006;
Dolan et al., 2006). Kaiser et al. (2014) recently showed a depth-specific response to
tillage regimes, with a larger labile C and N stocks under reduced and no-tillage compared
to conventional tillage; which showed to have a higher labile C and N pool for sub-surface

soils.
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Bioenergy cropping systems encompass both annual and perennial crops, with the
assumption that no-tillage operations associated with perennial crops are likely to lead to
enhanced SOM and soil carbon. In general, in the context of bioenergy crops this type of
land preparation would be expected to occur more often for 1G crops (annual crops such as
wheat and sugar beet) than for 2G crops (lignocellulosic such as willow and Miscanthus).
However, the long term effects of the tillage may be offset because 2G crops will be in the
ground for at least a 10 year cycle. From the above literature, it can be concluded that there
is still a lively debate occurring since the effect of a change from conventional tillage to
reduced/no-tillage may merely redistribute the carbon in the soil profile rather than affect

the amount of carbon stored.

The magnitude and direction of change in soil carbon in relation to no-tillage treatments
in bioenergy cropping systems remains uncertain and future work should focus on long-
term experiments where soil profiles to 1 m are sampled with replicated tillage and no-
tillage plots under different land use regimes in side-by-side comparisons.

1.2.4.2 Residues as a management strategy

It seems the most appropriate topic to follow tillage is the effects of residue management
on the soil C and GHG balance of the soil, due to the close link these two management
practices hold. Residues, also known as stover, may be defined in agricultural use as the
parts of the crop that are not harvested and as a result are left on the soil. In bioenergy
chains, residues have another meaning in that they can be the ‘remains’, ‘wastes’ or more
commonly ‘co-products’ following primary energy or chemical extraction from the
feedstock, and their end-use may have a large impact on the whole life cycle carbon cost of
the bioenergy chain (Whitaker et al., 2009).

Whether the residues are left on the soil or are removed will depend (i) on the management
regime of that crop, (ii) whether the residues can be used as biomass, and (iii) economic
limitations of the plantation. Residues as co-products of some crops can themselves be
used as a renewable source of energy by conversion to bioethanol, which holds some great
potential according to several authors; for example for the US alone, 244 million Mg of
stover could be used to produce bioethanol every year (Tally, 2000). Use of forest residues
left over from timber harvesting is an alternative proposed use of residues for bioenergy
production. However the reduction of carbon stocks as a result of decreased litter input is
large compared to the amount of energy produced, so would only be viable as a long term
source of energy, for a minimum of 60-80 years (Repo et al., 2015). Other options

currently being considered for the use of crop residues is the CROPS idea: Crop Residue
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Oceanic Permanent Sequestration. This is where crop residues are transported deep into the
ocean floor to help sequester carbon dioxide, a technique boasting to be the most
permanent and rapid solution to removing CO, from the atmosphere (Stand & Benford,
2009). Whilst both of these ideas are interesting, one must consider the effect this removal
will have on the land and the cost and benefits associated with these techniques. It appears
from the literature that residue removal is generally considered detrimental to the
management of crops, but this can vary depending on the soil and crop type (Andrews,
2006).

Residue retention can have various positive effects on the soil including decreased soil
erosion and runoff, increased SOM, increased soil function, decreased disease-producing
organisms, increased crop yields, enhanced soil biodiversity from habitat and substrate and
increased soil sequestration (Andrews, 2006; Lal 2008; Franzleuebbers 2002). Many of
these positive effects are interdependent and highly interactive with one another, and this
has been summarised by Lal (2008) and can be seen in Figure 1.8. Much of the above
discussed benefits are very direct effects on the soil but removal of residues also has
indirect effects such as compaction from the increased use of machinery during removal
which can in turn affect root growth and increase soil erosion (Wilhelm et al., 2004). Here
we will briefly discuss some of these benefits in more detail providing examples from

experimental trials.
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Figure 1.8: The interacting benefits of returning residues to the surface. (Adapted from Lal, 2008).

The surface cover provided by crop residues is extremely important and it is this loss of
cover which results in many of the detrimental effects we see when it is removed. For
example, residues largely influence the radiation balance and energy fluxes of the soil
thereby reducing the evaporation rate (Wilhelm et al., 2004). This is also linked to the
change in yield seen when crops are removed. The effect of residues on yield, like all other
effects, varies depending on soil type, crop and climate. Several authors have shown
removal of residues results in reduction in yields (e.g., Wilhelm et al., 1986; Linden et al.,
2000; Lal, 2008). Wilhelm et al. (1986) found reduced grain and biomass yield for corn
and soybean crop attributable to reduced water availability and increased soil temperature.
In certain conditions yields can be decreased by 10-20% due to residue removal (Lal,
2008). Ismayilova (2007) showed that the removal of two thirds of forest residues results
in increased surface run off, increased sediment yield and increased transport of nitrogen
and phosphorus. But it did show a decrease in the level of nitrate in the ground water of

that area.

Residue retention is considered a major management strategy for sequestering carbon into

the soil sink; calculations have estimated that global retention of residues on croplands can
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sequester 1 billion t C y™* which is equivalent to 30% of the annual increase in atmospheric
CO; (Karlen et al., 2009). There have been many examples in the literature to support this
contention: Bushford & Stokes (2000) estimated a 60% increase in soil C storage when
residual slash is incorporated into SRC poplar plantations; Dolan (2006) found that
retained stover residue stored significantly more SOC and soil N across the whole of the
soil profile (0-45 cm).

It is clear that the ability to increase sequestration into the soil from the retention of
residues is due to the increased C inputs. This was nicely shown by Paustian et al. (1992)
using the CENTURY model, where there was a positive linear relationship between C
inputs and SOC change; these findings have been confirmed by many field observations
(see Refs within Wilhelm et al., 2004). In a recent review, Lemke et al. (2010) reviewed
35 studies, finding 27 of these reported increase soil C for residue retention but only 7 of

which were significant.

Quantitative data to compare the removal of residues for energy purposes or the
remainder in the soil for sustainability and GHG balance are limited, but are likely to be
crop specific. In the UK context, with future emphasis on SRC and Miscanthus which have

minimum residues, this is likely to not be an issue of significant concern.

In summary, it is extremely important for soil health that residues remain, due to the
various benefits as described above; this also has the benefit of saving money for the land
managers as work is not required to remove and dispose of residues. In a comparison of the
use of residues for ethanol production versus improving soil quality, Lal (2008) concluded
that residues should be retained to improve soil quality, despite the large potential for

producing bioethanol from residues.

1.2.4.3 Fertiliser as a management strategy

Several reports in this review suggest that the largest component of GHG balance in
bioenergy cropping systems is that determined by fertiliser usage and consequent N,O
emission, with associated increased nitrate in soil and water, run-off leading to
eutrophication and long-term application leading to decreased soil health. Over 30 million
tonnes of fertiliser was utilised in the EU in 2008, with 7.1 million tonnes of this being
nitrogen surplus — equivalent to 55 kg N ha™* (Henriksen et al., 2011). Fertiliser production
also has a CO, cost, with the production of inorganic fertiliser using 1.2% of the world’s

energy and being responsible for 1.2% of global GHG emissions (Kongshaug, 1998).
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The use of fertilisers is largely associated with 1G energy crops, in the UK context, but can
also be applied to 2G energy crops such as SRC willow and Miscanthus, particularly when
yields may begin to decline after third rotations; however, limited experimental evidence
or commercial practice is available on which to make generalisations. The application
strategy will vary dependant on the individual needs of the sites, but generally 1G
bioenergy crops are fertilised every year. For SRC and Miscanthus which grow very
rapidly, it is difficult to fertilise in the years after establishment, so all fertilisation is

usually completed in year one.

There are two broad categories of fertiliser, namely organic and inorganic. Organic
fertilisers are a more traditional means of fertilising crops and can include manure - the
faeces of animals such as cows and horses - and sewage sludge which is produced from an
array of organic and sewage wastes. Inorganic, or chemical fertilisation, is the most widely
applied type of fertiliser in UK agricultural practices; most commonly this is made up of
phosphorus (P), potassium (K) and nitrogen (N) in varying ratios depending on the user
needs. The rise in atmospheric nitrous oxide (N,O) is the main consequence of fertiliser
application and animal production (IPCC, 2007), and is of particular concern as a GHG
because it is 298 times more potent than CO, (IPCC, 2007). An understanding of the point
at which fertiliser application will no longer benefit yield and also limits the amount of
nitrous oxide flux coming from the soil is important to maximise economic benefits and
minimise environmental impacts. A small decrease in the amount of fertiliser can show
large changes in the amount N,O flux; for example, a study of a corn-wheat rotation
showed that reducing fertiliser by only 25 kg N ha™ (to 125 kg N ha™) caused a 34%
reduction in N,O flux without significantly changing yield (Sehy et al., 2003). One
estimate of this equilibrium amount of N-application has been suggested for corn-soybean
rotations in the Midwestern US at 135 kg N ha™ a value which restricts N,O emissions and

does not significantly affect yield (Sawyer et al., 2006).

It is also important to understand the way in which these emissions arise and the time
frames over which they occur after fertiliser application. In a comprehensive study by
Hoben et al. (2011), it was shown that the increase in soil inorganic N occurred within 11
days of application and the majority of the N,O emissions occur in weeks 4-8 after
application. They concluded that the way in which these fluxes occur are non-linear, and
often exponential with increasing N concentration after fertiliser application, with 180 and
225 kg N ha™ causing a 44% and 115% increase in N,O flux over the baseline 135 kg N
ha™. Other studies have highlighted the long duration over which N,O fluxes continue to
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be seen after application: for SRC willow and poplar, enhanced N,O emissions were seen
for up to 4 weeks (Hellebrand et al., 2008).

As well as chemical fertilisation, sewage sludge can be used as an agricultural fertiliser as
it contains essential crop nutrients, such as nitrogen and phosphorus. The UK produces
approximately 1.35 million tonnes annually, a proportion of which is used as an
agricultural fertiliser (UK Water Report, 2009), so there is great potential to use this as an
alternative to chemical fertilisers. Potential advantages of using sewage sludge is that 40-
60% of the nitrogen is inorganic (DEFRA, 2003), therefore readily available for the plant
to use, and the main attribution of emission from N application is due to the organic
fraction of the nitrogen occurring though processes of nitrification and denitrification in the
soil. Gilbert et al. (2011) compared the effect of inorganic fertiliser and sewage sludge to a
no fertiliser reference scenario LCA, and found that inorganic fertiliser increased the
Global Warming Potential (GWP) by 2% and sewage sludge increased it by a lower extent
when applied to SRC willow and Miscanthus. This translates to a need for a <0.2 t ha™
yield increase to offset the emissions associated with producing these fertilisers.
Applications of sewage sludge and waste water as a means of fertilising bioenergy crops
has also proven to be economically advantageous in Europe due to increased yields and

reduced fertilisation costs (Dimitriou & Rosenquist, 2011; and references within).

Several studies have shown that addition of organic fertilisers can increase SOC
(lazurralde et al., 2001; Kaur et al., 2008; Fronning et al., 2008; Hellebrand et al., 2008).
In a comparison between organic and inorganic fertilisers on SOC under a corn-wheat
cropping system it was shown that in both cases SOC increased, and those active fractions
of SOC increased significantly, specifically for the integrated use of both organic and
inorganic fertiliser (Kaur et al., 2008). In a perennial cropping system of SRC willow and
poplar, fertiliser blocks showed increased SOC, perhaps due to increased crop residues,
whereas non-fertilised blocks experience significant decreases in SOC (Hellebrand et al.,
2008). This study also showed that annual crops had higher N,O fluxes than perennial SRC

willow and poplar.

Different bioenergy crops are able to utilise different amounts of N-fertiliser; for example,
in a comparison between annual and perennial crops it was shown that annual cropping
combined with fertiliser application doubles the amount of N,O emissions (4.3 kg ha™ vs.
1.9 kg hal), indicating that the use efficiency of nitrogen was greater for perennial plants
(Kavdir et al., 2008). Corn, a principle feedstock in the USA, has the highest application

rates of both fertiliser and pesticides per hectare (FAO, 2008) whereas an SRC willow
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plantation will often be unfertilised and has very few pests. Trials with SRC willow have
shown that yield increases can be obtained from modest application rates of 60 kg N ha™,
with declines in productivity observed with higher application rates (Sevel et al., 2014).
Miscanthus is a commonly fertilised 2G bioenergy crop, and recent analyses have shown
that the yield increases achieved are more than sufficient to offset associated N,O
emissions (Roth et al., 2015).

Large scale cultivation of bioenergy crops requires that all species grown are consistent
and reliable in terms of yield and response to management treatments such as fertiliser.
Work conducted with SRC poplar, to be used as an energy crop, showed that while landfill
leachate fertilisation was able to increase aboveground biomass the trait response of these
trees varied depending on the clonal variety treated (Zalesny Jr. et al., 2009). Whilst it is
important to plant mixed varieties to increase resistance of the crop as a whole, such clonal
variation can be problematic in terms of economic returns for fertiliser applied versus yield
out, which may be off putting to certain farmers. Therefore in order for the cultivation of
bioenergy crops to remain an attractive investment such variation needs to be restrained to
within reasonable limits. Work on SRC and Miscanthus suggests that nitrogen fertiliser
application may be the most significant management practice determining GHG balance
(Drewer et al., 2012).

Fertiliser application in bioenergy cropping systems may lead to large emission of N,O,
contributing the most significant part of the GHG balance for these cropping systems.
Future efforts to improve NUE (nitrogen use efficiency) are urgently required, as are

management strategies to reduce unnecessary fertiliser use.
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1.2.4.4 Water use and irrigation as a management strategy

The water footprint of bioenergy cropping systems has proved to be controversial in recent
years. In the USA, reports suggest detrimental effects on water supply following large-
scale cultivation of perennial energy grasses such as Miscanthus (VanLoocke et al., 2010;
Phong et al., 2011), with water-use increased more than 50% compared with corn. The
water-use footprint of 13 biofuel/energy crops was estimated by Gerbens-Leenes et al.
(2009) and showed that Jatropha (a tropical 2G crop used for biodiesel) used more water
than all 1G crops studied, including five times the water used for ethanol corn. However,
all of these reports rely on modelled data or inventories: these are blunt tools with which to
determine future policy, since there is very little experimental evidence on which to base
model assumptions. These models also assume uniform cultivation across landscapes, but
plantations can be managed and sited to more effectively use limited water resources.
Indeed, when spatial water use and variation in crop cover were incorporated into
hydrodynamic models, VanLoocke et al., (2010) were able to identify less sensitive areas
for Miscanthus cultivation and reduce predicted hydrological impacts. Such areas should
be targets for experimental verification, enabling the development of prescriptions for
hydrologically and environmentally sustainable Miscanthus cultivation. Water use in SRC
and Miscanthus has been guantified and work by Finch and Richte (2008), suggests lower
transpiration rates when compared to grass, winter wheat and corn; however interception
losses due to an extensive canopy may be higher in Miscanthus (Finch and Riche, 2010).
Vanloocke et al. (2010) also showed that water use in Miscanthus could out-pace supply in
many areas of the mid-west USA, so there is cause for concern. In a similar modelling
exercise, Bonsch et al. (2014) showed that in order to output 200 EJ y™* from bioenergy by
2095 would result in double the current agricultural water withdrawals. For SRC, it has
been suggested that water use on a seasonal basis is greater than grass or arable crops and
more similar to tall forest (Finch et al., 2004); although recent work on a ForestGrowth-
SRC, a process-based model has shown that water use efficiency in poplar may be twice
that of willow (Tallis et al., 2013), suggesting that there may be room for improvement in
SRC genotypes if this high Water Use Efficiency (WUE) trait can be captured in future
breeding programmes. It also highlights the limitations of process-based models
parameterised for single genotypes, or from data sets in the literature, again representing

blunt tools from which to make generalisations.
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There is adequate data to suggest cause for concern for crop water use in SRC and
Miscanthus, since water use may be greater than other crop types and may outstrip
ecosystem water supply. The impacts of water-use, and interaction with droughted

environments for soil GHG balance remain to be elucidated.

Irrigation is the practice of applying water to crops to aid their growth; plants which are not
subject to irrigation are often referred to as ‘rain-fed’. Irrigation is sometimes necessary to
ensure adequate yields and encourage desirable traits but is associated with additional costs
to the farmer as well as potential environmental problems. Negative impacts of irrigation
include water pollution from run-off, increased soil erosion, salinisation and over-
abstraction, though it does have some positive impacts on certain landscapes, such as
increased biodiversity through the creation of new habitats (Baldock et al., 2000).
Approximately 70% of all freshwater withdrawn globally is used for agricultural purposes
(Comprehensive Assessment of Water Management in Agriculture, 2007), so a potential
increase in agricultural production, including bioenergy crops, could put global freshwater
supplies under pressure through competition. Europe is expected to see increased winter
rainfall and reduced summer rainfall leading to increased drought (IPCC, 2007). This may

increase the need to irrigate in future climates.

Additionally, increased temperatures will result in higher evapotranspiration thereby
increasing the need for irrigation, even if rainfall is not dramatically different in the future
(IPCC, 2007). Land-use and water quality have bidirectional effects on one another; with
land management having direct effects on water quality, but also the water quality of the
land often dictating its use (Bhardwaj et al., 2010).

However, current levels of irrigation in European bioenergy cropping are by no means
excessive compared to the total amount of irrigation applied (crops food and fibre), with
bioenergy crops using only 2.3% of the total irrigation water consumed in Europe (Dworak
et al., 2009). Only 3.2% of the total cropping area in Europe is taken up by bioenergy
crops and of this total area only 1.9% is subject to irrigation treatments (See Fig 1.9;
Dworak et al., 2009). In a study where three scenarios were examined (‘business as usual’,
‘increased irrigation water demand’ and ‘water saving scenario’) it was shown that even
with future climates and a 4.5-fold larger bioenergy cropping area by 2020, that water
availability will not present a problem for consumption by bioenergy crops (Dworak et al.,
2009). Even the scenario where water use is more restricted will not affect the ability to
produce large amounts of biomass, and in general the increased area will not require an
increase in irrigation (Dworak et al., 2009). More recent analyses suggest that if dedicated
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bioenergy crops are prohibited from irrigation a substantial increase in the amount of land

would be needed to produce the same level of output (Bonsch et al., 2014).

Legend
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Figure 1.9: Relative irrigation water consumption presented as a % of total irrigation water

consumption for bioenergy crops (From Dworak et al., 2009).

Presently, it is uncommon in the UK to irrigate plantations of 2G crops as the amount of
rainfall is sufficient to support their growth to satisfactory yields, though irrigation is
common in Mediterranean climates where summers are drier (Sevigne et al., 2011). For
example, ranges of applied irrigation for SRC poplar in different regions of Spain range
from 2000-6500 m*® ha®t y* (Sevigne et al., 2011; Sixto et al., 2007), in some cases
representing up to 48% of the total water consumption in high-density plantings (Sevigne
et al., 2011). Miscanthus generally has a much higher WUE (due to C4 photosynthetic
pathway and a larger/deeper rooting system) and the amount of biomass used to contribute
to the production of bioenergy crops is generally larger, with 1G crops only having about
50% of their aboveground biomass directly contributing to the production of biofuel
(Wirsenius, 2000; Zeri et al., 2013). 1G bioenergy crops therefore tend to continue to be

42



treated as if they were cultivated for traditional purpose, be it food or fibre, by being
subjected to a level of irrigation scheduling.

Proper applied use of irrigation as a management strategy to reduce GHG could be
effective; as an increase in biomass (as a result of irrigation) will lead to increased carbon
sequestration as C is fixed into above- and belowground biomass (Henriksen et al., 2011).
Partial root-zone irrigation is one of the latest methods which could be effective at
reducing the environmental impacts of irrigation (Henriksen et al., 2011). This method
works by irrigating half the root zone and allowing the other half to dry out, with the side
which is irrigated being alternated periodically to prevent permanent damage being done. It
has been shown to have little effect on the yield and physiology of the plant compared to
full irrigation and conventional deficit irrigation, and confers a significant increase in
Irrigation Water Use Efficiency (IWUE) across many crop types (Sadras, 2009; Kirda et
al., 2007)

To conclude, irrigation has the potential to increase carbon sequestration due to increased
plant biomass but remains an environmental threat from the perspective of water
availability, particularly in the face of climate change. Though at present very few
bioenergy crops are irrigated, the need for irrigation may increase with future predicted
climates. More effective irrigation strategies have a role to play also in GHG savings

through reduced use of automated farm machinery and better use of irrigation water.

43



1.3 Conclusions

The review has highlighted a number of trends and gaps:

- The review illustrates gaps in the literature. These are particularly apparent for forest
transitions into first generation crops and uncertainties surrounding grassland
transitions. Forests transitions may not be relevant in a UK context given the limited
scope for enhanced planting of first generation crops for future feedstock supply and
because in the UK context de-forestation goes against current policy and is unlikely to
be an important LUC. This transition is, and will be, of great importance in tropical
regions where deforestation for 1G feedstock supply is currently taking place. More
detailed consideration needs to be given to the grassland to bioenergy transitions, since
it is here where there is the largest paucity of data and because this represents an
important transition for the UK. GHG benefits of this transition remain uncertain and
may depend strongly on management regime, fertiliser use and grazing, as well as the

age and soil conditions. Given these caveats, generalisations are difficult.

- Analysis of the literature reveals limited soils data that assess the whole soil profile
down to 1m, and yet conflicting results on soil carbon sequestration are apparent,

when only top soil layers are considered.

- The consensus for transition from annual arable to perennial grass and SRC crops
suggests improved SOC, but the overall GHG balance to farm gate may be positive or
negative and largely driven by fertiliser input and consequent N,O emissions.

Accumulation of SOC is in the range 0.44-1.1 tonnes C ha™* y*.

- There is likely to be a negative impact on GHG balance of transition from grassland to

first generation bioenergy cropping systems.

- The magnitude and direction in soil carbon in relation to no-tillage treatments remains
uncertain for bioenergy cropping systems but for second generation crops, with long
rotation times, this may not be significant, although long-term experiments are

warranted with soil profile sampling to 1 m.

- Quantitative data to compare the removal of residues for energy purposes or the

remainder in the soil for sustainability and GHG balance are limited, but are likely to
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be crop specific. In the UK context, with future emphasis on SRC and Miscanthus,

with minimum residues, this is likely to not be an issue of significant concern.

- Fertiliser application in bioenergy cropping systems may lead to large emissions of
N.O, contributing the most significant part of the GHG balance for these cropping
systems. Future efforts to improve NUE (nitrogen use efficiency) are urgently required,
as are management strategies to reduce unnecessary fertiliser use. There is a strong
case for improved real-time instrumentation in the network of sites to capture this and
other trace GHGs.

- There is adequate data to suggest cause for concern for crop water use in SRC and
Miscanthus, since water use may be greater than other crop types and may outstrip
ecosystem water supply. The impacts of water-use, and interaction with droughted

environments for soil GHG balance remain to be elucidated.

This review has revealed some major knowledge gaps and highlighted areas of uncertainty
where further data are required. This evidence has informed the design of the PhD thesis in
such a way that | will be assessing the impacts of a transition from grassland, assessing soil
carbon to 1 m; and assessing the impacts of a commercial harvest on ecosystem carbon

balance.

45



1.4 Systematic Review Methodology

Systematic search methodology (Pullin & Stewart, 2006) was used to collect publications
for use in literature review and subsequent meta-analysis (Chapter 3) to understand the
effects of land use change to bioenergy cropping systems. The initial search was conducted
in 2011 using a structured search string (Figure 1.10) using Web of Scholar, Science Direct
and Google Scholar to capture grey literature. The search was subsequently repeated in
summer 2013 and early 2014 to capture the most up to date publications, but only using
Web of Science and Science Direct. Google Scholar was not used in subsequent searches
as it produced an extremely large number of hits with very few being of relevance to the
literature review or meta-analysis. The search string used can be seen in Figure 1.10. For

full systematic search methodology see Appendix A.

Species Parameter

Poplar
Willow
Miscanthus
Wheat

“Qilseed rape”

Measure Parameter Energy

Land Parameter ] ]
Soil organic carbon

Greenhouse gas * iofuel

Land management _ _ Biofue

Life cycle analysis .
Bioenergy

Parameter

Land use change * Canola

“Sugar beet”
“Short

rotation

© N o g > 0w Db PE

Life cycle assessment

forestry”
9. Eucalyptus
10. Alder

Example search string: “Land use change” AND “soil organic carbon” AND “biofuel” AND

Figure 1.10 - Search terms used for systematic review and meta-analysis literature assimilation.
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1.5 Aims of Thesis and Chapter outlines

1.5.1 Overall study aims

Biomass for bioenergy is a proposed means to provide both renewable energy and to
sequester CO, to help mitigate the effects of climate change. Utilisation of bioenergy in the
UK would result in large landscape changes in the form of land use change. As learned
from this literature review, little is currently understood about the long term effects of LUC
to bioenergy in the UK, especially from grasslands. This thesis, therefore, aims to assess
the current state of knowledge regarding the effects of land use change to bioenergy in
temperate regions using a systematic review and meta-analysis. Through a field study, this
thesis also aims to detect any difference in GHG balance between an established grassland
and SRC willow plantation. Additionally, a commercial harvest took place in SRC willow
during the experiment. This thesis aims to capture the effect of the harvest on the soil and

ecosystem GHG balance of the SRC willow.
1.5.2 Chapter outline

Chapter 2: Research Spotlight: The ELUM project: Ecosystem Land-Use Modeling
and Soil Carbon GHG Flux Trial

Chapter 2 is a published paper from the journal Biofuels which outlines the Ecosystem
Land-Use Modeling and Soil Carbon GHG Flux Trial (ELUM) project. The ELUM project
was a multi-million pound, seven-member consortium project which looked to elucidate
the effects of land use change to bioenergy in the UK. The final output of the project was a
meta-model with a user-friendly interface which would allow predictions of the effects of
LUC in the UK on soil carbon and GHGs for specified transitions. This PhD work
contributed to the delivery of this project.

Chapter 3: Land use change to bioenergy: A Meta-Analysis of Soil Carbon and GHG

Emissions

This Chapter is a published paper which featured in a special edition of Biomass and
Bioenergy from the 1% International Bioenergy Conference, which took place in
Manchester, UK, March 2014. Chapter 3 is a quantitative analysis of the effects of LUC to
bioenergy in temperate regions of the current published literature. This Chapter aims to
quantify the effects of LUC on soil carbon and GHG emissions using meta-analysis.
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Chapter 4: The effect of land use change from grassland to SRC willow for bioenergy

on GHG emissions and soil carbon: a paired site approach

Work conducted in previous Chapters highlights knowledge gaps in the literature of our
understanding of the effects of a conversion from grassland to bioenergy species. This
Chapter uses a paired site approach on a commercial scale bioenergy plantation of SRC
willow and an ex set-aside grassland to help close these gaps. Whole ecosystem carbon
balance and soil GHGs are monitored in the two land uses to allow conclusions to be made
about the possible effects of LUC from grassland to SRC willow in Southern England.

Chapter 5: Influence of land use, litter fall and litter decomposition on soil chemistry

This chapter aims to assess the influence of land use change on soil chemical and physical
properties in both grassland and SRC willow, as well as the impacts of litter fall and litter

decomposition in SRC willow only.
Chapter 6: General Discussion

The final Chapter discusses the findings of the thesis in relation to the viability of
bioenergy in the UK. This Chapter discusses bioenergy in the context of climate change
and current policy initiatives. It highlights the importance of the influence of management
practices in determining the LUC impacts of 2G bioenergy cultivation. Study limitations
are discussed and suggestions for further research needed to help close current knowledge

gaps surrounding the effects of LUC to 2G bioenergy on soil carbon and GHG emissions.
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2.1 Abstract

There is increasing interest in the use of non-food second-generation (2G) lignocellulosic
feedstocks and a move away from food crops for bioenergy applications, but questions still
remain on sustainability. Empirical data are needed to quantify the greenhouse gas (GHG)
balance of land-use transition to lignocellulosic bioenergy cropping systems, to inform life

cycle analyses and aid model validation.

The aim of this project ‘Ecosystem Land Use Modelling & Soil Carbon GHG Flux Trial’ is
to produce a framework for predicting the sustainability of bioenergy deployment across
the UK. This £4m consortium project is commissioned and funded by the Energy
Technologies Institute, UK.
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2.2 Introduction

Although bioenergy is considered to be one of the key renewable energy technologies set
for future expansion [1], concern still remains over its sustainability. In particular, the
greenhouse gas savings that are possible in many bioenergy and biofuel chains have
recently been questioned [2]. Although bioenergy may help meet national and international
targets for emissions reductions, significant work is still required to establish robust
sustainability criteria [3, 4]. Within the UK, much of the current bioenergy feedstocks are
imported, and this may have wider implications for a range of ecosystem services that we
are only just beginning to quantify [5].

One of the main concerns surrounding commercial bioenergy deployment in the UK is the
potential displacement of food production and disturbance of valuable landscapes and the
ecosystem services they provide, including erosion and flood regulation, pest and disease
control, pollination and habitat provisions and soil and water quality. If we are able to
understand the effects of land-use change (LUC) to bioenergy cropping systems, in a UK
specific context, more informed decisions can be made and more appropriate policies put
in place to safeguard against use of unsuitable. The focus of the *Ecosystem Land Use
Modelling & Soil Carbon GHG Flux Trial’ (ELUM) project is to assess the potential scale

of a future UK bioenergy sector based on domestic production of 2G feedstocks.

The ELUM project is a consortium of seven UK partners; the Centre for Ecology &
Hydrology (CEH), University of Aberdeen, University of Southampton, Forest Research,
Aberystwyth University, University of Edinburgh and University of York, and is
commissioned and funded by the Energy Technologies Institute (ETI), a public—private
partnership between global energy and engineering companies and the UK Government.
The 3-year, £4m project is coordinated by CEH and consists of four work packages (Figure
2.1a): a data mining exercise, meta-analysis and extensive literature review; cataloguing of
soil carbon and changes in soil carbon pools using a paired site approach across the UK;
establishment of paired field sites to assess the effects of direct LUC to bioenergy; process-
based modelling to determine the effects of LUC to bioenergy in the UK using inputs from
the other work packages. The ultimate product of the project will be a user-friendly and
freely available meta-model that can predict the impacts of LUC to bioenergy spatially
across the UK out to 2050. The transitions of interest are those from a primary land use,
including grassland/pasture, arable and forestry to second generation bioenergy crops,
including Miscanthus, short rotation coppice (SRC) willow and short rotation forestry

(SRF). The model can also consider transitions into arable from forest and grassland. The
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ELUM project is unique in that firstly, the majority of experimental work is located on
commercial farms across the UK rather than in controlled plot-scale experiments and

secondly, that model and experimental work are brought together under one project.
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2.3 Data mining exercise

The preliminary focus of this project is nearing completion and was to assess the current
state of knowledge that exists in the literature for the effects of LUC to bioenergy on soil
carbon and GHG emissions. This work was undertaken by conducting a systematic search
of the literature using three commonly used search engines, namely Google Scholar,
Science Direct and Web of Science, coupled to a meta-analysis. Exclusion criteria were
clearly defined to allow papers to be selected and included in review and meta-analysis if
appropriate. The findings of the literature review and meta-analysis showed that there are
significant gaps in our knowledge surrounding LUC to bioenergy [6]. There were
particular data gaps for transitions to SRF and high levels of uncertainty around transitions
from grasslands to non-food bioenergy crops, largely reflecting the importance of
management activities such as fertiliser input and tillage. This work confirmed the need for
further studies to generate datasets to fill these gaps, from which to derive evidence-based
models; which are scheduled to take place as part of the ELUM project. A systematic
review was also conducted into the effects of bioenergy cultivation on a wide range of
ecosystem services, highlighting the levels of uncertainty which surround our
understanding of these changes, with significant data gaps in most types of ecosystem

service [5].

This work is being undertaken by the University of Southampton.
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a) ELUM Project Structure

: N ..)/@gy
Leac! Investigator: Niall McNamara technologies
Project Manager: Jonathan Oxley \ institute
Define uncertainty & }} WP1 )} Literature Review
knowledge gaps
Gail Taylor
l\ /I University of Southampton
}} WP2 )) Soil C Stock Assessments
Improve knowledge Niall McNamara
& close gaps Centre for Ecology & Hydrology
\/ }} wes3 }} Network GHG Field Sites
Jon Finch
Centre for Ecology & Hydrology

J\ /L Pete Smith

University of Aberdeen

Develop spatial land-
S e AN

Ecosystemsand Land- Dissemination of results
use Model through web database
b) Map of Network Sites Techniques Used

East Grange
Short Rotation Forestry and

grass
Forest Research s i i
Willow SRC and arable Static Chambers: Soil CO,, N0, CH,, Flux
CEH Edinburgh ] 7 J 7 T
g g 411
N Lincolnshire i wld Eddy Covariance:
? i_ Willow SRC, Whole Ecosystem
£ Miscanthus, CO, Flux
Arable
Aberystwyth CEH & U of York Automated -
Miscanthus and grass CRANGE Chambers: Soil
U of Aberystwyth CO; Flux
Bioenergy Crops of Interest
ABERYSTWYTH
Sussex
Willow SRC and grass
U of Southampton

SRF

SRC Willow Miscanthus

Figure 2.1: (a) An overview of the project structure, with key tasks, responsible organisations and
individuals, their linkage and outputs. (b) An overview of the network sites and the measurements

made: eddy covariance, static soil GHG emissions and dynamic CO, soil respiration.
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2.4 Field studies

The empirical studies in this project take four approaches: the large-scale sampling of
paired field sites (original land use versus bioenergy) across the entirety of the UK; the
establishment of a network of six paired sites where transitions to bioenergy are assessed
for GHG emissions and soil C changes; an experimental plot field trial assessing the
potential of different Miscanthus genotypes as future bioenergy crops; the use of **CO,
pulse labelling of vegetation to track shorter term carbon flow through the plant and soil

system.
2.4.1 Paired site approach

A paired site approach is a method used to assess the effects of a treatment, in this case
LUC to bioenergy crops, on a particular variable, soil carbon, over an extended duration of
time. These ‘space-for-time’ replacements have been used in many ecological and
environmental studies and are highly appropriate for measuring landscape-scale soil
processes [7]. Fields where bioenergy crops of several different ages are cultivated were
sampled to assess the changes in soil carbon over time. Critically, this technique
overcomes the common challenge of repeated sampling of the establishment phase of
perennial energy crops in the first few years, and thereby generates unique and meaningful
data on the mature crop in different locations. The sampling gave good spatial coverage of
the UK, with a total of 70 sites representing 117 sampled fields. A detailed soil analysis
was conducted on over 10,000 soil samples on cores taken to depths of up to 1 m.
Assessment of the soil carbon to depth below 30 cm is important as there have been several
studies which have over- or under- estimated soil carbon due to insufficient sampling
depths [8,9]. In addition, under SRF transitions laboratory experiments measured potential
GHG fluxes under controlled temperature and moisture conditions, in combination with
assessments of soil microbial populations. Physiochemical fractionation of soil samples is
being undertaking to allow assessment of any changes in soil carbon pools and the likely

direction of any future changes in soil carbon.

The wealth of soil data from the paired site approach will provide an extensive data set for
model testing and parameterisation, whilst the fractionation work will allow the assessment

of model performance in modelling soil carbon portioning and residence times.

This work is being undertaken by CEH, Forest Research, and the University of Edinburgh.

73



2.4.2 A network of paired GHG sites

A network of six paired experiments at four sites has been established across the UK
(Figure 2.1b), with contrasting climate and soil types; Scotland, Wales, northern and
southern England. These sites cover five transitions to bioenergy including, arable to SRC
willow, arable to Miscanthus, grass to Miscanthus, grass to SRC willow and grass to SRF.
These sites were all planted at commercial scale on commercial farms following typical
cultivation practices, and are representative of the crop species that would be cultivated in
that area, such as SRF in Scotland, as shown in Figure 2.1b. Over 24 months all sites
undergo periodic monthly gas sampling to assess soil fluxes of carbon dioxide (CO;) by
infra-red gas analyser and nitrous oxide (N,O) and methane (CH,) using the static chamber
approach with subsequent sample analyses by gas chromatography. At selected field sites,
higher temporal resolution measurements of soil respiration are being made using
automated chambers. As well as soil fluxes, each site is equipped with state-of-the-art eddy
covariance systems which allows continuous measurements of whole crop ecosystem CO,
exchange at a scale of a few 100 m? [10]. These instruments measure the ‘covariance’ of
wind turbulence, air temperature and CO, concentration 20 times a second to calculate CO,
fluxes across the crops upwind at any moment. Automatic meteorological stations at the
sites measured weather variables to enable determination of the relationship with GHG

fluxes.

These intensive measurements will not only produce a large amount of GHG flux data to
allow us to understand the processes affected by LUC but will also feed into the modelling

for parameterisation and validation.

This work is being undertaken by CEH, University of Southampton, University of York,
Forest Research and Aberystwyth University.

2.4.3 Miscanthus genotyping

The majority of Miscanthus planted commercially in the UK is the single clone Miscanthus
X giganteus (Mxg). To determine the extent to which models based on Mxg will apply to
future Miscanthus varieties under development, 15 diverse Miscanthus genotypes,
including parental species M. sinensis, M. sacchariflorus, and their interspecific hybrids,
were analysed to represent the morphological and physiological diversity present within
the breeding population. Our aim is to understand the processes driving atmospheric CO,
capture and carbon sequestration by Miscanthus crops and to assess genotypic variation in

carbon sequestration potential. Phenotype analysis, GHG sampling and soil sampling have
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been conducted across all genotypes and six have now been chosen for a more intensive

analysis.
This work is being undertaken by Aberystwyth University and CEH.
2.4.43CO, pulse labelling

Large scale *CO,-pulse chase experiments have been conducted under adjacent SRC
willow and Miscanthus plots in Lincolnshire and in diverse Miscanthus genotype plots at
Aberystwyth. Crops were enclosed in large transparent tents and exposed to highly-
enriched **CO, with plants, soils and soil-atmosphere CO, exchanges being sampled for
months afterwards. These experiments will allow us to understand carbon allocation within
the plant, the flow of carbon in soils and transformations of plant inputs to soils by
microbial groups [11].

This work is being undertaken by CEH and Aberystwyth University.
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2.5 Modelling

Detailed process modelling provides a mechanism to scale point values gained at the
network of field sites, up to the whole UK, providing a resolution to 1 km? for the GHG
balance of the land-use transitions to non-food bioenergy crops. Based on the outputs of
the process model, which models yield, and soil processes, a user-friendly meta-model is
being developed with a graphical user interface (GUI) to allow users to undertake spatial
estimations for GHG emissions from bioenergy cropping. The model is able to predict
effects out to 2050 for the whole UK, with areas unsuitable for transitions removed, such
as urban areas or protected green sites. The user will be able to select an area of land
anywhere in the UK, define a LUC transition and see the effects of the change on GHG
and soil carbon (derived from the ECOSSE model [12]), with the addition of estimated
yields (input derived from ForestGrowth[13,14], Forest-GrowthSRC [15] and Miscanfor
models[16]). The meta-model and GUI will be available for download from the CEH and
project webpages, enabling use by the wider scientific community, policymakers, land
planners, and those with a commercial interest in developing sustainable bioenergy

feedstock crops.

This work is being undertaken by the University of Aberdeen.
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2.6 Future perspectives

The outcomes of the ELUM project include an increased understanding of the way in
which transition to 2" generation non-food crops impacts soil and crop processes related to
GHG emissions. New data include GHG measurements and soil carbon stocks of relevance
to national inventories. The meta-model and associated GUI will provide a valuable
resource for the scientific community and a wide range of stakeholders including growers,
land managers, energy companies and policy makers. The meta-model is due for public
release at the end of the project in 2014. Overall the outcomes of the project should enable
a better understanding and informed decision making around the deployment of sustainable

bioenergy. For further information on the ELUM project please visit: www.elum.ac.uk.

77


http://www.elum.ac.uk/

2.7 Executive summary

e An extensive literature review and meta-analysis highlighted significant gaps in our
current understanding of the impacts of land use change to bioenergy cropping
systems on GHG balance.

e Paired site comparisons of land-use transitions into bioenergy has occurred at 70
land-use transitions across the UK, assessing the longer term effects of established
bioenergy plantations on soil carbon stock compared to their original land use.

e A network of new sites has been established across the UK to monitor GHG
emissions and soil carbon changes occurring after/with a transition to bioenergy
cropping systems, representing a world-leading infrastructure from which to assess
long-term impacts of land-use change on GHG emissions.

e Plot experiments are being used to assess the mechanisms underpinning Miscanthus
soil carbon sequestration and test if there is a difference in the carbon sequestration
and vyield potential of 15 Miscanthus genotypes representing the diversity within
the UK Miscanthus breeding programme.

e Modelling efforts combine all aspects of the ELUM project and data collected to
provide detailed effects of land use conversion for bioenergy in the UK. The final
product will be a user-friendly model intended to provide an industry standard for

land planners, industry and policymakers.
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CHAPTER 3: LAND USE CHANGE TO BIOENERGY: A
META-ANALYSIS OF SOIL CARBON AND GHG
EMISSIONS

Harris ZM, Spake R, Taylor G (2015) Land use change to bioenergy: A meta-analysis of
soil carbon and GHG emissions. Biomass & Bioenergy, 82, 27-39.

Supplementary material can be found in Appendix B.
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analysis with the help of Rebecca Spake who wrote the script for the R programming
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3.1 Highlights

» Meta-analyses were conducted on 27 publications concerning land use change to

bioenergy.

* Transitions from arable to 2G bioenergy crops showed an increase in soil carbon.

* Transitions from forest to 2G bioenergy crops showed a decrease in soil carbon.

« Uncertainty exists in predicting the impact of transition to 2G crops from grasslands.

« Significant knowledge gaps exist for GHG balance associated with transition to 2G

energy crops.

3.2 Abstract

A systematic review and meta-analysis were used to assess the current state of knowledge
and quantify the effects of land use change (LUC) to second generation (2G), non-food
bioenergy crops on soil organic carbon (SOC) and greenhouse gas (GHG) emissions of
relevance to temperate zone agriculture. Following analysis from 138 original studies,
transitions from arable to short rotation coppice (SRC, poplar or willow) or perennial
grasses (mostly Miscanthus or switchgrass) resulted in increased SOC (+5.0 £ 7.8% and
+25.7 + 6.7% respectively). Transitions from grassland to SRC were broadly neutral (+3.7
* 14.6%), whilst grassland to perennial grass transitions and forest to SRC both showed a
decrease in SOC (—10.9 = 4.3% and —11.4 + 23.4% respectively). There were insufficient
paired data to conduct a strict meta-analysis for GHG emissions but summary figures of
general trends in GHGs from 188 original studies revealed increased and decreased soil
CO, emissions following transition from forests and arable to perennial grasses. We
demonstrate that significant knowledge gaps exist surrounding the effects of land use
change to bioenergy on greenhouse gas balance, particularly for CH4. There is also large
uncertainty in quantifying transitions from grasslands and transitions to short rotation
forestry. A striking finding of this review is the lack of empirical studies that are available
to validate modelled data. Given that models are extensively used in the development of
bioenergy LCA and sustainability criteria, this is an area where further long-term data sets

are required.
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3.3 Introduction

Over the last three hundred years, more than half of the global land surface has been
impacted by human activity [1] and [2]. Land Use Change (LUC) is a major driver of
global environmental change [3] and [4] and also an important driver of increased
greenhouse gas (GHG) emissions, contributing to the 180 + 80 Pg C rise in atmospheric
CO;, between 1750 and 2011 [5]. LUC may lead to altered soil organic carbon (SOC) and
changes in a host of ecosystem services [6], [7], [8], [9] and [10]. The majority of LUC is
driven by demand for food, fibre and fuel and the nexus between water, energy and food is
now clear, with much on-going debate amongst scientists and policy makers on how we
can achieve intensification of land use whilst at the same time preserving natural capital
[11].

There is an urgent need to mitigate the impacts of LUC, through sustainable land
management strategies that include renewable energy technologies such as bioenergy,
which has the potential to provide both carbon sequestration and a displacement of fossil-
based fuels. Renewable energy targets across Europe and in both national [12] and
international [13] future energy scenarios, suggest a central role for bioenergy where 10—
20% of primary energy supply is provided from green plants in some form, including to
generate electricity, heat and liquid transport fuel [14]. In order to reach future targets, a
substantial increase in bioenergy crop plantings will be required. In the UK, for example,
recent estimates show that there is a potential 35 000 km? of land available for dedicated
lignocellulosic bioenergy cropping that would not impact on the highest quality
agricultural land [15], with the potential to supply 66% and 62% of the total heat and
electricity demand, respectively [16]. It is therefore important to quantify the direct
impacts of LUC for GHG balance, SOC and other landscape scale effects, so that

appropriate land management strategies can be put in place.

The carbon and GHG balance associated with dedicated bioenergy crops has been the
subject of considerable debate in recent years. Empirical measurements on the direct
impacts of land use change to bioenergy are only just starting to emerge [e.g. [17] and [18],
with the indirect impacts of land-use change remaining difficult to quantify [19], [20], [21]
and [22]. There are also conflicting messages from a fragmented literature regarding LUC,
as these effects can vary depending on the starting land use, the initial carbon stocks, the
management regime and the climatic region where the land exists. Quantitative syntheses
are lacking which are able to bring this body of research together in a succinct analysis.

Meta-analysis provides a useful approach to identify the general trends in the effects of
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LUC to bioenergy cropping on GHG emissions and SOC. Meta-analyses are becoming
increasingly common in the scientific literature, expanding out from the traditional subject
area of clinical medicine into ecology and environmental science [23]. Meta-analyses are a
robust statistical method of identifying trends and patterns that exist within the literature
which may be overlooked or undervalued in a traditional narrative review [24]. Gou and
Gifford [25] performed a highly-cited meta-analysis of the effect of LUC on SOC and
found that transitions from forest or to arable resulted in decreased SOC, with several other
large scale meta-analyses taking place in this research area following this [26], [27] and
[28]. Here we are able to complement these studies by focussing our investigation on the
effects of land use change to bioenergy cropping in temperate zones, relevant to recent
policy development including the Renewable Energy Directive (RED) which requires a

better understanding of LUC to bioenergy cropping for GHG savings [29].

The aim of this study was to assess the state of the current literature on LUC effects to
bioenergy and to quantify the scale of these effects specifically focusing on SOC and GHG
emissions. Our “controls’ were existing land uses - arable, grassland and forests, and our
‘treatments’ were the bioenergy land uses - ‘1% generation’ crop (‘1G’; food crops, e.g.
wheat, corn, sugar beet etc.) and 2™ generation’ crops (2G) grouped into short rotation
coppice ‘SRC’ (short rotation coppice willow or poplar), ‘perennial grasses’ (e.g.
Miscanthus, switchgrass etc.) and short rotation forestry ‘SRF’ (e.g. poplar, alder, birch,
beech etc.; Table 3.1). The outcomes from this study will assist decision making for both
land managers and policy makers regarding the effects of LUC to bioenergy cropping in
temperate regions. In addition, we identify existing knowledge gaps which may be present

to help direct future research efforts to close such knowledge gaps.
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Table 3.1: Grouping of bioenergy land use types and potential crop species

Bioenergy Land Use Type Inclusive Species

Wheat Triticale
1% Generation
Oilseed Rape Canola

Corn Sugar Beet

Barley

Willow
Short Rotation Coppice (SRC)

Poplar

Miscanthus
Perennial Grasses

Switchgrass

Reed canary grass

Eucalyptus Conifer
Short Rotation Forestry (SRF)

Alder Beech

Birch Poplar

Sycamore




3.4 Materials & methods

3.4.1 Systematic review scope

We followed standard systematic review methodologies [30] to collate empirical studies
from temperate regions that measured SOC or GHGs in ‘treatment’ bioenergy plantations,
relative to ‘control’ existing common land uses - arable, grassland and forests (see
Appendix B.1 for glossary). The land use transitions of interest were grouped to cover a
conversion from arable, grassland or forest to 1G, SRC, perennial grasses or SRF (Table
3.1).

We used a structured search string to ensure all relevant literature was captured without
bias (see Appendix B.2 for systematic search query methodology). To ensure meaningful
comparisons, publications had to satisfy strict inclusion criteria. These were as follows: (1)
appropriate response metrics must be measured in the publications: SOC measures as C
(carbon) in units of t ha* y* (or a convertible figure) and GHG emissions for crop life
cycle, partitioned into CO,, N,O, CH4 or ‘all’ measured as carbon dioxide equivalents
(COe) in units of t ha* y* (or convertible figures); (2) studies featured transitions of
interest (Table 3.1); (3) studies had to report both pre-existing (control) and post-
conversion land-use (treatment) values for the response metric(s) of interest. Studies were
also eligible if they documented a land conversion not strictly for use as bioenergy, but
used similar land management practices as would be used for bioenergy cultivation. (4)
study locations were relevant to a temperate climate i.e. within the 23.5° and 66.5°
latitudinal band and (5) the species were inclusive of 1G and 2G bioenergy crops (Table

3.1), but only those able to be cultivated in a temperate region.

Data from relevant publications were extracted in pre-defined units for the meta-analysis;
standard unit conversions were performed where necessary. Authors were contacted in
instances where data were insufficiently reported for inclusion in the meta-analysis. For
those studies that reported data in figures only, numerical information was extracted using
DATATHIEF [31].

3.4.2 Statistical analysis

3.4.2.1 Effect size calculation
Three key values are required to perform a meta-analysis, a mean (x), a standard deviation

(SD) and a sample size (n) for the control and treatment. For each comparison, the log
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response ratio (InR) of SOC was calculated between a pre-existing land use (control group)
and bioenergy (treatment group):

InR = ln(fbioenergy) — In(Xcontror)

(2.1)

Where Xp,;oenergy treatment is the mean SOC of bioenergy, post-conversion land use and
Xcontror 1S the mean SOC of the control, pre-conversion land use. The InR describes the
proportional difference in the response metric between control and treatment groups. The
natural log transformation of the response ratio both linearizes the metric, treating
deviations in the denominator and the numerator as equal, and normalises its otherwise
skewed distribution [32]. InR values can be transformed to show change more intuitively as
percentage difference from control groups.

A negative effect size (InR) indicates loss in SOC as a result of LUC to bioenergy; a
positive effect size indicates an increase in SOC as a result of LUC to bioenergy.

3.4.2.2 Meta-analysis

Random-effects models [33] were applied to calculate overall effect sizes for the following
LUC for SOC: Arable to perennial grasses, arable to SRC, forest to SRC, grass to perennial
grasses and grass to SRC. Studies included in this meta-analysis differ intrinsically in the
methods used, site characteristics, sampling depth etc. Random-effects models allow for
different study-specific effect sizes and assumes that heterogeneity among studies in their
true effect sizes is due to random variation around the overall mean effect of the population
of studies [33]. Each study included in the meta-analysis is assumed to be a random sample
of a relevant distribution of effects, and the combined effect estimates the mean effect in
this distribution. If the 95% confidence intervals did not overlap zero, the treatment
bioenergy land use transition was regarded as having significantly different SOC content
than the control land use. The meta-analysis was weighted in that each study-wise effect
size was weighted by the inverse of its variance [24] and [32]. All models used the
restricted maximum-likelihood estimation (REML) estimate. Grand log response ratios
characterising the mean log response ratio for a population of studies were back-
transformed to represent more intuitive changes in terms of percentage difference in SOC
relative to controls. We examined heterogeneity, the between-study variation, using a
heterogeneity measure (Q), calculated by weighting the sum of squared differences
between individual effects and the pooled effect, tested against a chi-square distribution.

Restricted maximum-likelihood estimation was used to estimate T (see Appendix B.3 for
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calculations [34]). All statistical analyses and calculations were performed in R version
3.0.2 [35] using the METAFOR package 1.9-3 [36].

Publication bias may be suspected if small positive studies are present without small
negative studies [37]. This was tested by assessing funnel plots of effect size vs. standard
error of the effect size (see Appendix B.4 [38]) using the METAFOR package [36].
Weighted regression with multiplicative dispersion using standard error as the predictor
did not detect funnel plot asymmetry, (t=-1.66. ¢ = 136, p = 0.0994), indicating no
evidence of publication bias.

A meta-analysis on the effect of LUC to bioenergy on GHG emissions was not conducted
due to insufficient reporting of error terms. Therefore, with the data that were available, an

arithmetic mean of the studies were calculated and presented in a standard histogram.
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3.5 Results

Contrary to traditional statistical tests, in the case of a meta-analysis, the magnitude of the
effect size is more important for interpretation of the results than the p-value [33]. p-values
are able to indicate, with 95% confidence, that the result differs to the null hypothesis, and
when read are rarely considered with the sample size. Effects sizes, produced as a result of
meta-analysis, take into account the sample size of the included studies and weight them
accordingly, thereby relieving the study of any bias due to larger sample sizes. Therefore
whilst a grand mean may not be statistically significant it should not be discounted as not
being of relevance to the research question; as the magnitude of the effect size indicates the
general trends of the effects of LUC on SOC as observed in the literature. The Q statistic,
indicated that all transitions studied showed a significant degree of between-study

heterogeneity.

The literature search yielded ¢.8000 publications. Of these, 27 satisfied inclusion criteria
concerning climate, LUC, bioenergy crops and appropriate SOC and GHG data (Fig. 3.1).
For SOC there were 13 publications amounting to a total of 138 observations. There were
insufficient data to conduct a meta-analysis on GHG data; therefore a summary table of the
available data was produced representing 14 publications containing 188 observations. Of
all the land use transitions initially targeted, it was only possible to perform meta-analysis
on 5 transitions for SOC, and 8 transitions contributed to a summary figure for GHG

emissions (Table 3.2) of the total 12 possible transitions we aimed to cover.
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Table 3.2: Summary of data sufficiency for meta-analysis for land-use change to bioenergy

cropping systems. Where this was not possible a summary figure was constructed.

Soil Organic Carbon | GHG Emissions
Arable — SRC Summary figure
Grass — SRC Summary figure
Forest — SRC *
Arable— Perennial Grasses Summary figure
Grass — Perennial Grasses Summary figure
Forest — Perennial Grasses x Summary figure
Arable — 1* Gen Crops x Summary figure
Grass — 1* Gen Crops x Summary figure
Forest — 1% Gen Crops x Summary figure
Arable — SRF x x
Grass — SRF % x
Forest —» SRF x x
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Figure 3.1: Total number of studies which contributed to each analysis for all combined greenhouse gases (GHG) and soil organic carbon (SOC).




Although SOC and GHG emissions are likely to vary with time since LUC and sampling
depth, it was not possible to partition the studies according to these variables. The average
time since transition across all studies was 5.5 years (Xmax = 16, Xmin = 1) for SOC. It was
also not possible to partition by soil sampling depth, since the majority of studies
considered SOC at the 0—-30 cm profile only, although further depths were covered (ranges
of 0-150 cm), these were inadequate for meta-analysis. Conclusions drawn from this meta-
analysis can therefore be considered appropriate for the 0-30 cm sampling depth and c.6
years after transition to bioenergy cropping (Table 3.3). Longer-term experimental studies

are lacking beyond this time-frame.
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Table 3.3: Summary of changes in SOC as a result of LUC to bioenergy, showing time since

transition and soil depth of included studies

Average time since Average soil depth
Change in transition
sSOC (number of studies at each
Transition (years) depth)
(% £ SE) Mean | Xmin Iy
Arable —
Perennial 5.4 2 16
Grasses 25.7+6.7
Arable — SRC 5.7 1 9
50+7.8
Forest — SRC 5.7 2 9
-11.4+£ 234
Grass — Perennial
5.8 3 6
Grasses -10.9 4.3
Grass - SRC 3.7+14.6 7.1 2 15
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3.5.1 Soil organic carbon

Sufficient data were available to analyse the effects of LUC on SOC from arable to both

perennial grasses and SRC, both showing that a transition to 2G cropping resulted in an

increase in SOC (Table 3.4, Fig. 3.2 and Fig. 3.3). Arable to perennial grasses showed a

significant increase in SOC of +25% (+6.7%). Arable to SRC showed an increase in SOC

of +5.0% (+7.8%), though this was not significant. As for forest transitions, there were

only sufficient data for a transition to SRC, showing a loss in SOC of —11.4% (£23.4%),

though this was not significant. There was not a consensus on the effect of LUC to

bioenergy cropping on SOC for grassland transitions. A transition from grass to perennial

grass showing a significant decrease in SOC of —10.9% (£4.3%) whilst a transition to SRC

showed a slight increase in SOC of +3.7% (+14.6%), though this was not significant.

Table 3.4: Meta-analysis outputs for land use transitions to bioenergy on Soil Organic Carbon

(SOC). Negative % change denotes a loss in SOC. n=number of studies.

In(R) % change
Effect Percentage p value n Refs
, SE SE
Size Change
39]-[42],
Arable — [39]-[42]
- [48], [50]-
Perennial
51
Grasses 0.23 0.03 25.7 6.7 | <0.0001] 63 [51]
41], [43]-
Arable — SRC [41], [43]
0.05 0.04 5.0 78 | 02003 | 18 [47]
Forest — SRC [43], [46]
-0.1209 | 0.11 -11.4 23.4 | 0.2589 7
Grass — Perennial
[42], [49]
Grasses -0.1158 | 0.022 -10.9 43 | <0.0001 | 43
Grass - SRC 0.04 0.07 3.7 14.6 | 0.6003 7 [46]-[47]
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Figure 3.2: Percentage change of SOC as a result of land-use change to bioenergy crops, a) arable to perennial grass and b) grass to perennial grasses.

Individual study data are shown and summary effect sizes are shown in red with the mean and 95% confidence intervals.
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3.5.2 Greenhouse gas emissions

Meta-analysis of GHG emissions between control and treatment land uses was not possible
due to inadequate reporting standards concerning error terms. Sufficient data were
available to assess the effects on all GHGs of interest but not all transitions were covered.
Fig. 3.4, Fig. 3.5 and Fig. 3.6 show the general trends of GHG changes as a result of LUC
to bioenergy crops in the form of a summary histogram. The effect of LUC to bioenergy on
CO, emissions can be seen in Fig. 3.4, showing that transitions from arable to 2G crops
results in reduced emissions of CO,, -2.1 and —2.2 t ha * y ! for SRC and perennial grasses
respectively. The transition from arable to 1G cropping was broadly neutral with the few
differences likely to be due to management regime, rather than crop species planted.
Grassland to perennial grasses showed a slight reduction in CO, emissions of —0.8 t ha™*
y ! and grass to 1G showed a slight increase in CO, emissions of 1.9 t ha* y . Grassland
to SRC showed a more pronounced increase in CO, emissions of 6.7 t ha * y %, though this
transition represents a change after only 7 years, whereas the previous grass transitions
were around 25 year post-transition (Table 3.5). Forest transitions to bioenergy show the
most pronounced changes in CO, emissions, with a transition to perennial grasses resulting

1

in an increase of 20.8 t ha® y ! and a transition to 1G cropping showing the most

pronounced emissions at 26.5tha y .
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Figure 3.4: The effect of land-use change to bioenergy on CO, emissions. Standard errors are shown with n denoting the number of observations. Positive

values represent emissions and negative values represent sequestration. Refs: [18], [41], [53]-[54], [57], [59]-[63].
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Table 3.5: Summary of change GHG emissions as a result of LUC to bioenergy and the time since

transition.
Change in GHG emissions as Average time since
COs-eq transition
Transition
GHG (tha'y™ (years)
CO, -2.2 14.8
Arable — Perennial
N,O -0.2 12.7
Grasses
CH, -0.4 9
CO, -2.1 12.5
Arable — SRC N,O -0.2 11.9
CH, -0.2 6.5
CO, -0.1 20
Arable — 1% Gen
N,O -0.1 20
Grass — Perennial Grasses CO, -0.8 26.5
CO, 6.7 7.1
Grass - SRC N,O 25 2.2
CH, -0.007 15
CO, 1.9 24.6
Grass — 1% Gen
N,O 0.5 20
Forest — Perennial Grasses CO, 20.8 30
Forest — 1% Gen CO, 26.45 30
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Fig. 3.5 shows the effect of LUC to bioenergy on N,O emissions for 5 transitions; there
were insufficient data for the other land use transitions, as indicated on the graph. Similarly
the effect of conversion from arable to 2G bioenergy cropping was a very small reduction
of —0.2 t ha *y ! for both SRC and perennial grasses for N,O. There was little effect on the
conversion from arable to 1G cropping of —0.1 t ha * y™* which again may be due to a
change in management regime. The only transition where there was sufficient data for
LUC from grassland to 2G cropping was grass to SRC which showed a slight increase in

N,O emissions (2.5 t ha ' y %), a transition to 1G showed an emission of 0.5 tha >y .

There were very limited data to assess the effects of LUC to bioenergy on methane
emissions, with only 3 transitions being covered (Fig. 3.6). All transitions showed a very
slight reduction in CH,4 emissions; arable to perennial grasses and SRC with —0.4 and —0.2
t ha* y ! respectively, and grass to SRC with —0.007 t ha * y*. Current literature [17],
[18], [64] and [65] and work currently being undertaken in the UK [66] indicates that
methane only plays a minor role in the overall GHG balance during LUC to bioenergy

cropping systems.
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3.6 Discussion

3.6.1. Main outcomes

Using a total of 13 publications, containing 138 studies we have quantified the effects of
LUC to bioenergy cropping for 5 out of 12 possible transitions for SOC. There were
insufficient data to conduct a strict meta-analysis on GHG data, so a summary figure was
constructed using 14 publications containing 188 studies for CO,, covering 8 of the 12
LUC transitions, N,O and CH,, covering 5 and 3 of the 12 transitions, respectively. The
transitions investigated in this work are appropriate for the land use types currently under
cultivation across Europe and the USA. It is unlikely that we will see land converted from
forest or agricultural croplands to bioenergy cropping, in these areas, with the most likely
transitions from grasslands, ex-set aside lands or degraded lands that are unsuitable for
crop production. This is concerning since most studies consider conversions from
croplands and forests, in the case of transitions related to tropical ecosystems [27] where
conversion from primary forests to sugarcane and maize resulted in more than a 25% loss
of SOC. Here we have focused entirely on temperate zone LUC and provided a firm

evidence base for policy and land management strategies.

For GHG emissions the effect of a conversion to bioenergy cropping is usually seen
immediately, with land preparation and planting resulting in increased emissions [67].
After establishment, the crop may enable a net gain in SOC, until the net sequestration by
the crop is equal to that of the initial emission event. It is only past this point, when the
‘carbon debt’ has been paid, that the crop be considered to be actively adding to the carbon
sink. A number of LCA studies overlook the importance of the establishment phase of
bioenergy planting following land conversions, as these will have a large influence over
the resulting carbon debt which has to be repaid and similarly do not take management
events into account, such as harvesting and fertilisation [68]. Several studies have shown
that the initial landscape conditions and land-use history are key to determining the time
required to repay the carbon debt as a result of LUC to bioenergy cropping systems [69].
Arable to bioenergy cropping showed decreases in emissions of CO,, N,O and CHj in this
analysis, across a timeframe of 1.5-23 years. Though the difference between 1.5 years and
23 years post-conversion is rather large the general trend is a decrease in emissions, with
the mean time since transition approximately 10 years (Table 3.5). This change may reflect
a difference in structure of the species, with 2G crops accumulating more biomass with a

deeper rooting system [70] and as the result of change in management practice with
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reduced inputs such as fertiliser. Recent work on SRC and Miscanthus suggests that
nitrogen fertiliser application may be the most significant management practice
determining GHG balance [68] and [71].

For soil carbon a much longer time frame is often required to restore the land to its original,
or new equilibrium, carbon stock as this pool develops much slower over time compared to
the rate of GHG emissions [72]. The amount of carbon present in soil depends on the rate
of decomposition of SOC to CO, by micro-organisms and the rate of organic matter input
from plant residues; in temperate climates a new equilibrium is often achieved with an
exponential change time constant of 30-40 years [73]. Soil carbon assimilation rates will
vary from site to site and depend on the existing carbon pool, the soil properties and
climatic region [61] and [74]. It is estimated that a conversion from annual to perennial
rotations, or vice versa, will influence the SOC in mineral soils over a period of 30-50
years in temperate regions [75]. In our study we found that a conversion from arable to
perennial grasses and SRC resulted in a net increase in the SOC of 25.7% and 5.0%
respectively. Higher carbon accumulation rates are observed in perennial crops than annual
crops across the literature [74], with the management and inputs largely influencing this
difference [72] and [76]. The limited data on forest conversions indicate that a LUC from
forest to SRC resulted in an 11.4% decrease in SOC, but in the UK this would not be a
likely transition given policy initiatives to increase forest cover. Whilst we observed that a
transition from arable to 1G cropping was broadly neutral for GHG emissions, there is
likely more research needed here. This LUC represents a change from a ‘food use’ of the
land - in all cases wheat cultivation, transitioning to sugar and oil crops for biofuel
production which tend to have higher associated GHG emissions and are more intensively
managed [54]. In this type of analysis it is very difficult tease out the effects of
management on SOC and emissions when considering arable or 1G, although several

meta-analyses have completed in an attempt to elucidate these effects [27].

This analysis delivers a mixed message on the overall effect of converting grassland to 2G
bioenergy cropping, with no definitive change being indicated. SOC was found to decline
by 10.9% for grass to perennial grass and increase by 3.7% for grass to SRC. This
difference may be explained by soil sampling depth, where transition to perennial grasses
only considered in the top 30 cm of the soil and transition to SRC had some studies which
considered the 30-60 cm profile. For GHG emissions there were also mixed messages as a
result of LUC. For CO, there was a small decrease of 0.8 t ha* y* emissions, for a

conversion from grass to perennial grasses and a conversion to SRC or 1st generation
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bioenergy cropping showed increased emissions for CO, and N,O. This result was not
entirely surprising given that grassland are known to be highly variable in both quality and
soil carbon stocks [77]. There are also very large differences in how grasslands are

managed which will have a large impact on both SOC and GHG emissions [78].

Results from previous meta-analyses may allow us to infer the effect of transitions which
we were unable to capture in these analyses. Gou and Gifford [25] measured ‘plantations’
which are managed forests which may result in similar effects of planting to SRF and
found that LUC from pasture and forest to plantation resulted in a decrease in SOC of —10%
and —13%, whereas a transition from arable cropping to forest plantation resulted in an 18%
increase in SOC. Lagniere et al. [26] showed that the positive effects of afforestation on
arable land on SOC was more pronounced than that in pastures and grasslands, which is in
agreement with our findings where the most pronounced effects are as a result of LUC to
2G cropping whereas transitions from grassland to 2G show both increases and decreases
in SOC.

3.6.2 Limitations

The main limitation of this review was that a meta-analysis could not be conducted for
GHG emissions because the available data were largely unsuitable for meta-analysis
techniques. Studies that measure whole ecosystem GHG emissions, such as eddy
covariance, require expensive equipment resulting in low replication, in many cases
yielding an n = 1. There is also the need for the pre-existing land use to allow comparison
of a transition. Many studies measure the carbon and GHG balance of individual fields,
forests and arable land and several look at bioenergy cropping, however few look at them
together where they are comparable. Even fewer studies have measured the existing land

use and capture the conversion process to the new bioenergy plantation.

The data included in the analysis were annualised to allow comparisons across different
studies. Since the largest impact of LUC may occur over the first few years post
conversion [64], [65] and [68], conversions studied over a shorter time frame are likely to
show exaggerated changes in SOC and GHG emissions compared to those over a longer
time-course and may be a source of error in the work reported here. However, an
advantage of the studies included in this analysis is that they were all over similar time
scales, up to approximately 15 years which for land use and SOC is relatively short term.
However, the median time since LUC was only 3 years, and our analysis was limited by
available data, which in future could be improved as new longer-term studies emerge. This
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highlights the importance of taking into account the amount of time needed, post-
conversion, to determine the overall effect on the ecosystem, and if a loss of carbon is seen
how long is will then be to repay this carbon debt. It should be noted that RCUK grants are

rarely long enough for such experiments where at least 610 years data are needed.
3.6.3 Knowledge gaps & future research

This review has revealed a knowledge gap concerning the existence of robust, empirical
studies investigating both the short-term and long-term consequences of LUC to bioenergy
on SOC and GHG emissions in temperate regions. Just 13 and 14 published studies were
available for meta-analysis for SOC and GHG emissions, respectively. A reason for this
small number is that many studies incorporated experimental designs that suffered from
pseudoreplication [79]. Furthermore, several studies had investigated SOC and GHG
emissions in response to the LUC, but did not report the summary statistics that are
required for meta-analysis (x, n and SE). We urge that studies on LUC to bioenergy report
such statistics to allow their inclusion in future meta-analyses. We assert the framework
proposed by Whitlock [80] which states data should be archived with enough clarity and

supporting information that they can be accurately interpreted by others.

Whilst research in this area is increasing, the most valuable data sets will come in two
forms (1) replicated long term monitoring of an existing land use measuring the change of
interest, monitoring of the conversion process and monitoring of the bioenergy crop and (2)
a paired-site approach measuring two sites in parallel, with one representing an initial land
use and the other representing the post-conversion bioenergy crop. The ideal design for
assessing the impacts of LUC to bioenergy would be in the form of a Before-After,
Control-Impact (BACI) design as this allows for both a change in the land use but the
maintenance of a control site to allow any climatic variability to be taken into account [81].
Whilst these study designs are most desirable they are extremely difficult to execute on
field scale due to the space and funds required, especially to measure whole ecosystem
GHG balance.

For the transitions covered here there are two that demand further consideration. Firstly,
transitions from grassland and secondly the lack of publications on transitions to SRF.
There is large uncertainty surrounding transitions from grassland, a potentially very large
carbon sink [82] with a global land converge of 25% of the earth's land surface [83].
Grassland degradation is a large threat to these sinks as recent results show globally almost

50% grassland have been degraded, with climate change and human activities being the
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dominant causes resulting in 45.5% and 32.5% degradation respectively [84]. Grasslands
have been shown to be extremely variable in their carbon stocks across different climatic
gradients and management regimes [77] with sampling depth and bulk density
considerations varying across published studies. In particular the effect of management of
these grassland, including fertiliser application, type and intensity of grazing and rotation
length, greatly affecting the overall GHG balance, especially with regard to N,O and CH,4
emissions which are more radiatively active than CO, [85]. Understanding these effects
and applying the appropriate land management strategy, such as planting system and
grazing intensity can help to manage the land more effectively for carbon sequestration
[86]. As the average rotation of SRF is 18-20 years, it is difficult to cover the whole
rotation period, with many studies thus far reporting mainly on biomass yields and effects
of management regimes [87]. It is likely that transitions to SRF, from arable and (with less
certainty) grassland will result in net GHG savings and increase SOC [88], [89], [90] and
[91].

Based on the limitations and knowledge gaps discussed above we recommend [66] and
[92]:

1. Studies should be designed to monitor the entire transition since capturing the effects of

the conversion process would enhance our understanding of LUC to bioenergy.

2. Monitoring experiments at commercial scale should be maintained to assess the long-
term effects of LUC.

3. Increased empirical research on the effects of LUC, especially for grassland transitions

including rotational and permanent grass, and for SRF where there are limited data.

4. Authors are urged to make all data freely available with appropriate error terms, for

meta-analysis.

In summary, we have quantified the impacts of LUC to bioenergy cropping on SOC and
GHG balance. This has identified LUC from arable, in general to lead to increased SOC,
with LUC from forests to be associated with reduced SOC and enhanced GHG emissions.
Grasslands are highly variable and uncertain in their response to LUC to bioenergy and
given their widespread occurrence across the temperate landscape, they remain a cause for

concern and one of the main areas where future research efforts should be focussed.
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4.1 Abstract

The effect of a transition from grassland to second-generation (2G) bioenergy on soil
carbon and greenhouse gas (GHG) balance is uncertain, with limited empirical data on
which to validate landscape-scale models, sustainability criteria and energy policies. Here
we have quantified soil carbon, soil GHG emissions and whole ecosystem carbon balance
for SRC bioenergy willow and a paired grassland site, both planted at commercial scale.
We quantified the carbon balance of both sites for a two year period and captured the
effects of a commercial harvest in the SRC willow. Soil fluxes of nitrous oxide (N.O) and
methane (CH,) did not contribute significantly to the GHG balance of these land uses. Soil
respiration was lower in SRC willow (911.6 gC m™? y™) than in grassland (1521.7 gC m?y
1. Net ecosystem exchange (NEE) reflected this with the grassland a net source of carbon
with mean NEE of 118.9 gC m™ y and SRC willow a net sink, mean NEE -620.0 gC m™
y'*. When carbon removed from the ecosystem in harvested products was considered (Net
Biome Productivity) SRC willow remained a net sink of carbon. Despite negative NEE,
soil carbon stocks (0-30 cm) were higher under the grassland possibly due to negative
impacts of the soil disturbance associated with SRC crop establishment. There was a larger
NEE and increase in ecosystem respiration (Reco) in the SRC willow after harvest, however
the site still remained a carbon sink. Our results indicate that once established, significant
carbon savings are likely in SRC willow compared to the minimally managed grassland at
this site. Although these observed impacts on carbon balances may be site and
management dependent, they add to the accumulating evidence that land use transition to
2G bioenergy has the potential to provide a significant improvement on the ecosystem

service of climate regulation.
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4.2 Introduction

Dedicated second-generation (2G) feedstocks offer the opportunity to provide biomass for
both electricity and biofuels without utilising or competing with land for food crops (Stoof
et al., 2015). Short rotation coppice (SRC) willow and poplar, and perennial grasses such
as Miscanthus are likely to have positive impacts on soil properties (Kort et al., 1998),
greenhouse gas (GHG) emissions (see refs within Rowe et al., 2009) and a whole basket of
associated ecosystem services (Holland et al., 2015). Although recent reports suggest that
energy and food may be produced in a multi-functional landscape in a sustainable way
(Souza et al., 2015; Manning et al., 2015), many of these positive effects are dependent on
land management, vegetation type, and in particular, the land use change (LUC)
implemented when the bioenergy crop was planted (Milner et al., 2015). It is therefore
important to consider how these crops will be placed within the landscape (Dauber et al.,
2010) and the impacts of particular land use transitions on ecosystem services, of which
climate regulation is of outstanding importance (Anderson-Teixeira et al., 2012). In 2013,
51 x 10° ha (0.8% total arable land) were used to grow bioenergy in the UK (DEFRA, 2014)
and at the same time, it is estimated that there are 3.5 x 10° ha of land currently available to
grow bioenergy crops without impacting food production (Lovett et al., 2014), with
estimated yields ranging from 6-12 t ha® y* for SRC willow (Hastings et al., 2014).
Adoption of bioenergy will inevitably result in large scale LUC, therefore it is important to
consider which land classes are most suited to the conversion to minimise environmental

damage and competition with food crops.

LUC, irrespective of crop type, may have many direct consequences on climate regulation,
such as altered GHG emissions (IPCC, 2007a), changes in soil carbon (Guo & Gifford,
2002) as well as impacts on other ecosystem services and biodiversity (Sala et al., 2000).
Additionally for bioenergy crops, the impacts of indirect land use change (iLUC;
Searchinger et al., 2008; Melillo et al., 2009; Finkbeiner, 2014) and that of quantifying the
counterfactual land use (DECC, 2014; Mathews et al., 2014) are increasingly recognised
and considered in land use conversions. St. Clair et al. (2008) found that former land use is
the most important consideration determining whether a transition to 2G bioenergy will
result in a net source or net sink of carbon. A number of studies and meta-analyses have
suggested that, although dependant on site, LUC from arable cropping to 2G bioenergy is
most likely to result in neutral or net increases in soil carbon (Harris et al., 2015; Qin et al.,
2015; Don et al., 2012; Dimitriou et al., 2012). Similarly, reductions in GHG emissions
have also been reported for LUC from arable to 2G bioenergy (Drewer et al., 2012; Gauder
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et al., 2012; Zona et al., 2013a; Palmer et al., 2014), a proportion of which is attributable
to change in management and land use intensity. However, there is much more uncertainty
surrounding the effects of LUC from grassland to 2G bioenergy crops (Harris et al., 2015;
Qin et al., 2015), partly reflecting the considerable variability that is found amongst
grassland types with significant differences in management which can dictate GHG
balance (Soussana et al., 2010). Though grassland may be managed to encourage a carbon
sink (defined here as an ecosystem in which the net absorbance of carbon is greater than
the net loss; Smith et al., 2014), other management practices such as fertiliser addition and
grazing lead to large emissions of nitrous oxide (N,O) and methane (CH,). Ciais et al.
(2010) suggested that emissions of N,O and CHy,, arising due to management practices,
may offset approximately 70-80% of the net carbon sink in European grasslands. This
indicates that conversion to 2G bioenergy cropping may result in additional GHG savings.
Moreover, Styles and Jones (2007) demonstrated that initial cultivation emissions
associated with LUC from grassland to SRC willow could be offset by GHG emissions
savings from replacing fossil fuel usage, although the timescale for this ‘payback’ remains
the subject of debate (Fargione et al., 2008; Don et al., 2012).

Two limitations are apparent when considering much of the literature in this controversial
area. The first is that many studies rely entirely on modelled data with extremely limited or
no validation (Cherubini et al., 2009) and this is worrying, given that outputs from such
models, often parameterised for non-bioenergy ‘exemplar’ arable, grass and tree ideotypes,
may be used to develop sustainability criteria and policy instruments in this complex area
(Creutzig et al., 2012; Buchholz et al., 2014). Secondly, when empirical data have been
captured for model validation, they have often been small research-scale plots of limited
commercial relevance (e.g. Nikema et al., 2012; Zatta et al., 2014). Additionally, there are
methodological considerations which may affect the conclusions drawn about LUC, such
as soil sampling depth (Dolan et al., 2006; Blanco-Canqui & Lal, 2008) and calculation of
soil carbon stocks using a fixed depth method (Walter et al., 2015). The aim of this study
was to quantify the impacts of a land-use change at commercial scale from a grassland
with limited management intervention, to that of SRC willow and to quantify the
ecosystem GHG balance of this change seven years after conversion. During three years of
measurement the SRC willow was harvested at commercial scale, and the impact of this

activity on GHG balance and whole ecosystem carbon balance was also quantified.
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4.3 Materials and Methods

4.3.1 Site description and management

This study was conducted in the south of England (50° 58' 38"N, 0° 27' 33"W) in an
established SRC willow plantation (8.1 ha) and permanent grassland with low inputs (7.4
ha).

SRC willow was planted in June 2008 on a grassland field, previously defined as set-aside
(2000-2007; set-aside defined as land which is taken out of agricultural production to
prevent over production and encourage land restoration) at a density of 15,000 stems ha™
in double rows with distances of 0.75 m in the row and 1.4 m between the rows (Forestry
Commission, 2002). Prior to planting, the site was ploughed in 2007 and treated with
herbicide (Glyphos Supreme at 3.5 | ha®, Headland Agrochemicals, Flintshire, UK) and
insecticide (Dursban at 1 kg ha™, Dow AgroSciences Ltd, Herts, UK). In 2008 the site was
power harrowed and there was a further application of herbicide (Glyphos Supreme at 3.5 |
ha). At pre-emergence the site was treated with herbicides (Flexidor at 2 | ha™, Dow
AgroSciences Ltd; and Stomp at 3.3 | ha™, BASF, Cheshire, UK) and insecticide (Durshan
at 1 kg ha™). The SRC willow was cut back in March 2009, further treated with herbicide
(Weedazol at 10 | ha™, Nufarm, Bradford, UK) and then underwent a rotation of 5 years

prior to harvest in April 2014.

The grassland site was enlisted in the set-aside scheme until 2004 and was maintained as
low input grassland thereafter. There were no inputs to the site other than an addition of a
total of 10 t of manganese lime across the site in April 2011. Management was variable
year to year, with grazing by sheep once per year (2-4 weeks), or if this did not occur, the
grass was mown to control grass height. During the experiment, the site was grazed for 2
weeks in 2012 and the grass was mown in August/September in 2013 and 2014. Mowed

grass was left at the site and was not removed.

Mean annual rainfall at the sites is 794 mm and mean annual temperature is 11.0 °C (1960-
2010; Met Office, 2015). The soil is silt loam (7% clay, 53% silt, 40% sand) with a pH of
5.5. Predominant winds occur from the south westerly position in both fields therefore
eddy covariance towers were established in the north-easterly corner of the grassland and
SRC willow in order to ensure enough fetch (Fig 4.1).
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Figure 4.1: Site maps of grassland and SRC willow, including wind rose for each site showing a
predominant north-easterly wind. Black circle indicates location of eddy covariance tower and
meteorological station. Grey circles indicate experimental plots where soil GHG, litter fall, litter

decomposition measurement were taken. 100 m rule indicated for scale.

4.3.2 Experimental timeline

The aim of this side-by-side comparison was to develop an intensive data set for all
components of the ecosystem GHG balance from a commercial plantation over a period of
two years, including bioenergy SRC harvest. The experimental set up was established in
November 2011 and measurements continued through until December 2014 (Fig 4.2).
Periodic sampling with a portable soil respiration system to assess soil CO, efflux started
in November 2011. Static chambers to measure soil GHG fluxes (N,O and CH,) were also
installed at both sites in November 2011 (Fig 4.1). Automated soil respiration chambers
were installed in April 2012 in SRC willow only to measure both total and heterotrophic
respiration through root-exclusion subplots (Ventura et al., 2015). Eddy covariance towers
were established in August 2012 and November 2012 for SRC willow and grassland,
respectively. Aboveground biomass was taken four times in the SRC willow and twice in
the grassland. Belowground biomass was measured twice in the grassland and estimated
for the SRC willow. Leaf litter fall and leaf decomposition were measured in the SRC

willow.
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4.3.3 Micrometeorological measurements

A meteorological station was installed in SRC willow in August 2011 and in grassland in
November 2011 (Fig 4.2). Each station measured soil temperature and heat flux at three
depths (5, 10 and 15 cm; TCAV, Campbell Scientific, Logan, UT, USA; HFP01SC heat
flux plates, Campbell Scientific), soil water content using time-domain reflectometers
(TDR CS616, Campbell Scientific), incoming photosynthetically active radiation (SKP215
quantum sensor, Skye Instruments, Powys, UK), net radiation (NR-LITE, Kipp and Zonen,
Delft, The Netherlands), air temperature and humidity (HMP155A, Vaisala, Vantaa,
Finland). Additionally, precipitation (52203, Young, Traverse City, Michigan, USA) and
wind speed and direction (05103-5, Young) were measured at the SRC willow site only. At
both stations, variables were measured at 0.1 Hz and then collected and averaged half-
hourly using a CR1000 datalogger (Campbell Scientific). The 50 year (1960-2010) average
monthly temperature and rainfall for the region were obtained from the UK Met Office
(Met Office, 2015).

4.3.4 Soil GHG fluxes

Eight plots were established in random locations in the SRC willow and grassland in
November 2011 to measure soil GHGs, soil chemistry, aboveground and belowground
biomass; litter fall and litter decomposition (Fig 4.1). Within these plots, soil CO, efflux
was measured at monthly intervals using a portable chamber (SRC-1, PP Systems,
Amesbury, MA, USA) coupled with an IRGA (EMG-4, PP Systems). Every effort was
made at each sampling date to measure soil efflux on bare soil at both sites, although it
remains possible that small amounts of vegetation were inside the chamber and therefore
soil CO; flux may be overestimated. Air temperature, soil temperature (stab probe, Testo,
UK; 0-10 cm) and soil moisture (Theta probe, Delta-T, UK; 0-6 cm) were also measured
around the chamber at the time of sampling. As soil temperature is generally a good
predictor of soil respiration, a continuous data set was constructed using a simple
exponential function and continuous soil temperature data measured at each weather
station (Raich & Schlesinger, 1992; Raich et al., 2002).

At each of the eight sampling locations, N,O and CH, soil fluxes were measured using
closed vented static chambers (Hutchinson and Mosier, 1981; Smith et al., 1995; Smith &
Mullins, 2000) made of PVC base rings (8 cm high with a diameter of 40 cm), inserted in
the soil to 5 cm depth, and chamber lids (20 cm high with a diameter of 40 cm). To
determine GHG fluxes, headspace gas (10 ml) was sampled from a self-sealing septa in the
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chamber lid using gas-tight syringes, at 0, 15, 30 and 50 min after closure; it was
immediately stored in pre-evacuated gas-tight vials (3 ml, Labco Ltd, UK). Gas samples
were analysed on a PerkinEImer Autosystem XL Gas Chromatograph (GC) fitted with a
flame ionisation detector (FID) for CH,4 and an electron capture detector (ECD) for N,O.
All results were calibrated against certified gas standards (BOC, UK; Case et al., 2014).
N2O and CHj, flux rates were determined by linear regression of the four sampling points
for each chamber and by applying a temperature and pressure correction (Holland et al.,
1999). The analytical precision of the GC for standards at ambient concentration was
approximately 2%, using two standard deviations as a measure of mean error. Sampling for
soil GHG fluxes took place every month from November 2011 until December 2014.
Sampling of the grassland initially took place in a smaller grassland site from November
2011 until August 2012 when sampling was moved to an alternative larger site (to
accommodate eddy covariance equipment). Grassland sites were both sampled for GHG
fluxes for 3 months to compare fluxes and there was no significant difference between the
sites (t2=-0.06, p=0.95). Non-CO, GHG fluxes were first converted into CO, equivalents
using the global warming potentials over a 100 year horizon of 298 for N,O and 25 for

CH, and then to carbon equivalents using a conversion factors of 0.2727 (IPCC, 2007b).

Six (two per plot: one root excluded, one total respiration) automated soil chambers were
also established in the SRC willow in February 2012 (Ventura et al., 2015). These
chambers measured soil CO; flux every 4 hours, and 3 of the chambers were placed in root
exclusion chambers to allow the partitioning of autotrophic and heterotrophic respiration.
Data from automated chambers were regressed against periodic measurements to test the

agreement between datasets.
4.3.5 Soil analysis

Soil C was measured for 0-30 cm (15 cores) and to 1 m depth (3 cores) in both grassland
and SRC willow (and initial grassland). Samples were only taken once during the
experiment in October 2012. Fresh soil was sieved to 2 mm before being frozen at -80°C
and subsequently freeze dried for minimum of 24 hours. A subsample of the freeze dried
soil (20-30 ml) was milled to a fine powder in a ball mill (Planetary Mill, FRITSCH, Idar-
Oberstein, Germany). A 200 mg subsample of the milled soil was used for the assessment
of C concentration using an elemental analyser (Leco Truspec CN, Milan, Italy). Total soil
C stock for the 0-30 and 0-100 cm fractions was calculated on an equivalent soil mass
basis (Keith et al., 2015).
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4.3.6 Aboveground and belowground biomass and net primary production

4.3.6.1 Aboveground Biomass

In SRC willow, aboveground biomass was estimated from the stem:volume index
(Pontailler et al., 1997) which was calculated for 160 trees using stem diameter (22 cm
from ground height; Rae et al., 2004) and dominant stem height. Non-destructive sampling
took place every year in winter during the experiment. Destructive sampling of SRC
willow was also conducted prior to commercial harvest in November 2013, to allow an
estimation of actual biomass from stem:volume index values. A linear regression, of
stem:volume index against fresh weight, allowed estimation of total dry weight (kg tree™)
from trees which were non-destructively sampled (see table C1 for raw data). Total C
contained in aboveground biomass was calculated by assuming that the amount of C
contained in woody biomass was approximately 49.3%, calculated from an assessment on
measured values in the literature for SRC (Fahmi et al., 2007; Bridgeman et al., 2008;
Gudka, 2012; Sannigrahi et al., 2010).

Willow leaf litter was collected in trays during the months of litter fall, July-December, to
guantify leaf biomass. Leaf litter was oven dried at 80°C for 48 hrs, weighed and
extrapolated from tray to tonnes per hectare. Litter decomposition was measured over two
years in SRC willow. Mesh bags (20 x 10 cm; 1 mm aperture) each containing 5 g leaf
litter (picked green leaves) were placed by each of the GHG chambers in November 2011.
Bags were collected at several points post-insertion - 2 weeks then 1, 2, 4, 6, 9, 12, 18 and
24 months. Leaf litter was gently washed with water, then dried at 85°C for 24 hours
before dry weight was recorded. See table C2 for extrapolation from measured values to t

ha™.

Aboveground biomass was estimated in the grassland by cutting all biomass within a
50x50 cm quadrat with hand shears flush to ground. Samples were taken twice during the
experiment, in August 2013 and August 2014 prior to the mowing of the field. Samples
were oven dried at 80°C for 48 hours, weighed and extrapolated from quadrat to tonnes per

hectare.

4.3.6.2 Belowground Biomass

Belowground biomass in SRC willow was estimated using a root:shoot ratio of 0.5:1 for
annualised aboveground biomass according to (Pacaldo et al., 2013a), where the
belowground component encompasses belowground stool, fine root and coarse roots and

the aboveground portion included aboveground stool and stem biomass. In the grassland,
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belowground biomass was measured using 5 cm diameter auger and taken at three depths
(0-10 cm, 10-20 cm and 20-30 cm). Roots were sieved consecutively through sieves of
decreasing mesh size (3350, 2000 and 500 um), oven dried at 85°C for 24 hours, weighed
and extrapolated from quadrat to tonnes per hectare (see table C3). Total biomass was
calculated by summing total aboveground biomass and belowground biomass; for SRC
willow the aboveground components included stem, branch and leaf biomass. Net primary
production (NPP) was calculated on an annual basis using two consecutive harvest datasets.

4.3.7 Eddy Covariance measurements

Eddy covariance towers were installed in SRC willow in April 2012 and in grassland in
August 2012 to measure ecosystem CO; fluxes. Each system consisted of an open path
infrared gas analyser (Li-7500A, Licor, Lincoln, NE, USA) and a sonic anemometer
(Windmaster Pro, Gill, Hampshire, UK). Data were logged at 20 Hz to an industrial grade
USB stick in the LiCor interface box. Instrument height was 2.5 m from the ground for the
grassland site. For SRC willow, instrument height was 8 m at the start of the experiment
and extended as the crop grew to a maximum measuring height of 9.3 m in March 2014.

After harvest the instrument height was reduced to 3.6 m above ground level.

Eddy covariance data were processed using Eddy Pro (Licor) and averaged over 30-minute
intervals. The applied methodology was based on the EuroFlux protocol (Aubinet et al.,
2000). Data were then elaborated and quality controlled using Stata IC 10 (StataCorp LP,
College Station, Texas, USA). Data were rejected when fluxes came from outside the flux
footprint which was between 135-262° for SRC willow and 140-290° for grassland.
Gapfilling to estimate Net Ecosystem Exchange (NEE) and flux partitioning, intro
Ecosystem Respiration (Reco) and Gross Primary Production (GPP), were done according
to the standard methodology used in Fluxnet (http://www.bgc-
jena.mpg.de/~MDIwork/eddyproc/; Reichstein et al., 2005).

4.3.8 Ecosystem GHG Balance

A conceptual summary figure was constructed to represent the whole system GHG balance
for both grassland and SRC willow for two whole years during the measurement period,
January 2013-December 2014 (Fig 4.2, blue box). All gas flux data were expressed as gC
m™ y™ and soil storage terms presented as standing stock (g m). The terminology used is
as defined by Chapin et al. (2006), however we assigned a positive sign to emission of C to
the atmosphere and a negative sign to an uptake of C by the ecosystem. Briefly, Net

Ecosystem Exchange (NEE) was defined as the CO, exchange between the ecosystem and
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the atmosphere, measured using the eddy covariance technique. Gross Primary
Productivity (GPP) was defined as the fixation of carbon by autotrophic organisms and
Ecosystem Respiration (Reco, ) is the net respiration by both autotrophic and heterotrophic
organisms in the ecosystem. Soil respiration is the sum of CO, respired by roots
(autotrophic respiration) and by microbes (heterotrophic respiration). Net Biome
Production (NBP) describes the difference between Net Ecosystem Productivity (NEP,
negative sign of NEE; Reichstein et al., 2012) and the carbon removed through harvest.
The sign of NBP is opposite to all other measures described above, where negative
indicates a release to the atmosphere and a positive value indicates an uptake by the
ecosystem. NBP was only calculated for SRC willow where harvested biomass was
removed from the system; grassland biomass was cut and remained on the surface

therefore leaving the C to remain in the system.
4.3.9 Statistical Analysis

A t-test was performed to detect any significant difference in soil carbon stocks at 0-30 cm
(n=15) and 0-100 cm (n=3) between land uses, using SigmaPlot 12.5. All statistical
analyses for GHG and eddy data were conducted in the R programming environment (R
version 3.1.3). GHG data were analysed using linear mixed models (Bates et al., 2014)
where fixed effects were treatment, year, soil temperature and soil moisture. Air
temperature and soil temperature exhibited collinearity so could not both be included in the
model. Chamber number was used as a random factor to account for repeat sampling over
time. Main effects were tested in addition to all second order interactions. Analysis of N,O
and CH,; reveal normality of residuals and homoscedasticity, however there was
heteroscedasticity detected in the CO, data therefore log-transformation was performed.
Model selection was performed according to Crawley (2007) using AIC to construct the

minimum adequate model (See table C4).

For eddy covariance data a global model was constructed to assess the effects of land use
and climate variables (Fixed effects: treatment, photosynthetically active radiation (PAR),
wind speed, rain, soil temperature, relative humidity (RH) and soil water content; random
effect: date) on NEE using daily averaged data. There was collinearity between air
temperature and soil temperature so only one was used in the model, likewise for soil water
content at both depths. Data were then partitioned by site and two separate models were

constructed for each data set to see if the drivers of NEE differed between fields.
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4.4 Results

4.4.1 Weather patterns

Air temperatures in 2012 were close to average values for the region. Spring of 2013 was
cooler than average, whereas winter 2013 and spring of 2014 experienced higher than
average temperatures (Fig 4.3). The spring/summer of 2012 and winter 2013 were notably
wet years with above average rainfall for the region, whilst in contrast the spring and
summer of 2013 were drier than average (Fig 4.3). 2013 was cooler and much drier than
both 2012 and 2014 with an average air temperature of 9.9°C and rainfall of 673.3 mm.
2012 was slightly cooler but wetter (10.6°C and 1318 mm) than 2014 which experienced
an average temperature of 11.1°C and 1023 mm rainfall.
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Figure 4.3: (a) Monthly mean values of air temperature (°C) showing 50 year average (1960-2010; black line) and values measured by site met station (grey line). (b) Sum

of rainfall (mm) for 50 year average (1960-2010; black line) and measured on site (grey line).
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4.4.2 Net Primary Production

Total aboveground biomass in SRC willow increased from the first measurement, March
2012, to the final measurement before the harvest, November 2013 (Fig 4a). Biomass was
rapidly accumulated after the harvest in April 2014 with total aboveground woody biomass
reaching 11.4+1.1 t ha™ (mean+SE) by the end of 2014. Leaf litter was similar for 2012
and 2013 with 5.6+0.2 and 5.8+0.2 t ha™ y™ respectively. There was a decrease in leaf
litter fall after the harvest in 2014 with only 2.1+0.2 t ha™ y™*. The majority of SRC willow
leaf litter decomposed within the first year, with only 17% leaf litter remaining after 12
months and only 8% remaining after 2 years (Fig C1). Total grassland biomass was over
double that in 2014 compared to 2013, for both aboveground and belowground biomass
(Fig 4b). Total biomass in 2013 was higher in SRC willow (55.7+2.9 t ha™) than grassland
(8.7+1.5 t ha), but was similar in 2014 after SRC willow had been harvested and begun
regrowing (18.3+1.4 and 20.8+1.6 t ha™ for SRC willow and grassland respectively). The
NPP post-harvest was slightly reduced compared to 2012 and 2013 (Fig 4c). In 2014, the
NPP in grassland, 4.9 t C ha™ y™, was less than that of SRC willow, 6.8 t C ha™ y™* (Fig 4c).
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Figure 4.4: (a) Total biomass for SRC willow (t ha™) including measured stem (checkerboard
hatching) and leaf biomass (diagonal hatching), and estimated root biomass (grey fill). Error bars
show standard error. (b) Grassland biomass from measured aboveground (checkerboard hatching)
and belowground sampling (grey fill). Error bars show standard error. (c) Net primary productivity
(NPP) for SRC willow (white bars) and grassland (black bars).
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4.4.3 Soil respiration

CO; accounted for the majority of soil GHG flux, ¢.96% and ¢.99% for grassland and SRC
willow respectively. Mean soil respiration (2012-2014) was higher in grassland (1532.4 +
38.9 gC m™ y!) than in SRC willow (896.0 + 41.5 gC m? y'*; Fig 4.5, Table S1, p=0.03).
Year, soil temperature and soil moisture were all factors affecting soil respiration
(p<0.001), as well as second order interactions involving treatment and year (p<0.001),
treatment and soil temperature (p<0.001), and year and soil moisture (p=0.007; Table C5).
According to continuous soil respiration measurements (Ventura et al., 2015),

heterotrophic respiration accounted for 84% of total soil respiration in the SRC willow.
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Figure 4.5: Soil CO, flux (gC m d*) for SRC willow (a; white circles) and grassland (b; black circles). Periodic sampling events (circles) and modelled CO, flux (black line;

using soil temperature) are shown. Green line indicates 5" and 95" percentiles around the modelled values. Additionally, modelled CO, data are regressed against

measured CO, data for both sites and the relationship shown on the graph as R®.
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4.4.4 Eddy flux measurements

After quality control checks and footprint analysis of eddy covariance data, there was 40%
for grassland and 37% for SRC willow of data remaining in 2013. In 2014, the remaining
data for each site was 46% and 20% for grassland and SRC willow respectively. These
data were subsequently gapfilled to give a complete dataset as described in methods. The
energy balance closure for the sites was a 73% for grassland (Fig 4.6A) and 77% for SRC
willow (Fig 4.6B).

For grassland, the NEE over two years (2013-2014) was 237.8 gC m™. In year one (2013),
the grassland was a net source of carbon, 246.4 gC m™ y™*, whereas in year two (2014) it
was a net sink, -8.6 gC m? y™. In year one there was a small uptake of carbon during the
growing season from June 2013 to the end of July 2013 (Fig 4.7a), however in year two
there is a more defined uptake period starting from March 2014. This early onset of carbon
fixation could be attributed to the higher mean monthly temperature in January-March
2014 compared to 2013 (Fig 4.3). SRC willow was a C sink for the two year duration of
the experiment with a mean annual NEE of -620.0 gC m™ (Fig 4.7b). In the first year,
which corresponded to the 4™ year of growth, the site was a large sink of carbon (-901.4
gC m?y™). The NEE for the second year, after harvest in April 2014, was smaller (-338.7
gC m™ y!). NEE was consistently lower in the SRC willow than in grassland (p<0.001).
Analyses of eddy covariance data also revealed that NEE in grassland and SRC willow
were driven by different components (Table C6). In the grassland, PAR (p<0.001), year,
(p<0.001) soil (and air) temperature (p<0.001), wind speed (p=0.005) and rain (p=0.022)
were factors affecting NEE. Whilst in the SRC willow only PAR (p<0.001), year (p<0.001)
and soil water content (p<0.001) were also factors affecting NEE. Relative humidity was

not found to be a factor affecting NEE at either site.

There were also differences in the modelled estimates of Rec, and GPP between grassland
and SRC willow. Reco was 33% higher in 2014 than in 2013 in grassland (1261.3 gC m? y*
and 1674.8 gC m™ y for year one and year two respectively). Reco in SRC willow in year
one was lower than both years in grassland at 971.4 gC m? y* In 2014, Rec Was larger
than year one in SRC willow and both years in the grassland site at 1970.6 gC m? y™*. GPP
in grassland was 1014.9 and 1683.4 gC m™ y™ for year one and two, respectively. In SRC
willow, GPP was higher than the grassland for both years at 1872.8 and 2309.3 gC m? y*

for year one and year two respectively.
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Figure 4.6: Energy balance closure for grassland (a; black circles) and SRC willow (b; white circles)
for 2013-2014, where H is sensible heat flux, LE is latent heat flux, G is soil heat flux and Sg is soil
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Red line shows 1:1 line, or 100% energy closure.
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Figure 4.7: Net Ecosystem Exchange (NEE; gC m™ d'l) for grassland (a; black circles) and SRC willow (b; white circle) for 2013-2014. Harvest events at

both sites are indicated by dashed arrows.
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4.4.5 Belowground carbon pools

Soil carbon stocks (Table 4.1) for the 0-30 cm profile were higher in the grassland than in
the SRC willow (t,g=-5.30, p<0.001), 63.4 + 3.5 (meanzst.err.; n=15 cores) t C ha™ and
42.62 + 1.8 t C ha respectively. The low replication of the 0-100 cm profile, however, did
not detect a difference in soil C at this depth (t,=-3.84, p=0.062; n=3 cores), where samples
had 107.6 + 1.8 t C ha™ in grassland and 77.3 + 7.7 t C hain SRC willow. Interestingly,
the grassland which was used initially for chamber measurements had a similar C stocks to
grassland in the upper 30 cm (61.2 + 2.8 t C ha™), but did not differ detectably in C in the
100 cm profile with the SRC willow (63.8 + 4.1t C ha’; Table 4.1).

Table 4.1: Soil carbon stocks (t C ha™) under grassland and SRC willow, calculated on an

equivalent soil mass basis, for 0-30 cm and 0-100 cm. n=15 for 0-30 samples and n=3 for 0-100

cm samples.
Grassland SRC willow Initial Grassland
Soil depth (cm) Mean # SE (t C ha™) Mean # SE (t C ha™)
0-30 63.35+351 42.56+1.75 * 61.2+2.84
0-100 107.58+1.82 77.28+7.68 ns 63.84+4.14

4.5.6 Soil GHG fluxes

N.O and CH,4 were not important contributors to the GHG balance of these two particular
sites, accounting for less than 4% (3.4% N,O and 0.4% CH,) for grassland and less than 1%
(0.77% N0 and 0.07% CH,) for SRC willow. Mean N,O fluxes at both sites (2012-2014)
were very low (within detection limit of equipment) with emissions of 4.4 gC m™ y* and
4.9 gC m? y*! for grassland and SRC willow respectively (Fig C.2). There was no
difference between N,O fluxes between the sites (p=0.81; Table C7). N,O flux was
significantly affected by year across both sites (p=0.003), as well as an interaction between
year and soil moisture (p=0.007). CH,4 was also very small at both sites, however there was
a difference between the sites with an emission of 0.2 g C m? y* from grassland and
uptake of -0.2 g C m? y* in SRC willow (p=0.003, Table C8, Fig S4). For both sites, soil
temperature significantly affected CH, flux (p<0.001), as well an interaction between soil
moisture and soil temperature (p=0.02).

4.5.7 Conceptual summary figure

Data from January 2013 to December 2014 were summarised in a conceptual summary
figure to allow visualisation of a side-by-side comparison of the grassland and SRC willow
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(Fig 4.8). This figure allows visualisation of the movement of carbon through the
ecosystem. The harvested carbon is shown, 344.0 g C m? y* and 405.8 g C m? y* for
grassland and SRC willow, respectively. However, as the mowed grass was not removed
from the site, NBP is equal to NEE. Thus, mean NBP (2013-2014) was -118.9 g C m? y*
for grassland and 214.2 g C m? y* for SRC willow which despite the removal of 405.8 g C
m2 y™ biomass from the SRC field, remained a net sink for carbon.

4.5.8 Impact of harvest in SRC willow

The SRC willow was harvested in April 2014 which corresponded to year 5 of the first
rotation. There was no detectable effect of the harvest on soil moisture or soil temperature
in the SRC willow, compared to pre-harvest measurements. The effect of the harvest on the
NEE can be seen in Fig 4.7b (dashed arrow indicated harvest date), where NEE is
decreasing into the growing season then the harvest occurs and the NEE quickly increases.
The smaller NEE and increased Rec, observed in SRC willow in 2014 compared to 2013 is
likely attributable to the disturbance caused by the harvest. The site quickly became a net C
sink again as there was a rapid re-sprout of willow stumps and understory vegetation.
There was no noticeable effect on soil CO, and CH, emissions as a result of the harvest.
There was a large one-off emission of N,O in June 2014, 2 months post-harvest, which
may be linked to the harvesting process (Fig C.2b).
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Figure 4.8: Annual GHG budget for grassland and SRC willow for measurement period January 2013 to December 2014. All fluxes are in gC m™? y™ in

square boxes and soil storage terms presented as standing stock (g m'z) in oval boxes. Measured values are presented as mean + standard error. Note:

for all fluxes, apart from NBP, a negative flux indicates a gain to the ecosystem and a positive flux indicates a loss to the atmosphere.
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4.6 Discussion

This research has demonstrated that over a two year period (including the harvest operation
in SRC willow), during a side-by-side commercial-scale comparison, SRC willow was a
net sink for carbon, whilst the minimally managed grassland, was a net source for carbon.
We have also shown that there was lower total soil respiration in SRC willow compared to
grassland. N,O and CH,4 emissions were generally low for both sites, contributing little to
the total GHG balance for these contrasting land-use types in southern England. Thus we
can conclude that seven years post land use transition and this site and pending further
replication, SRC willow, had an improved GHG balance relative to the adjacent grassland.
This suggests that not only did this LUC provide bioenergy as a net provisioning
ecosystem service, but was also able to provide improved climate regulation through the
generation of a net carbon sink relative to the original land use. In the controversial area of
bioenergy science, this is an important empirical finding and suggests that in temperate
climates, where reasonable land use transitions are considered, bioenergy may add
positively to the multi-functional landscape, as suggested recently by those such as
Manning et al. (2015) and Souza et al. (2015).

Improved grasslands are important sources of terrestrial carbon storage, holding the second
largest store after bogs, with approximately 274 x 10° t C (Ostle et al., 2009). In a UK
context, conversion of semi-permanent, permanent or managed grassland to bioenergy
cropping systems probably represents one of the most controversial land-use transitions,
since grassland is also a significant part of the UK landscape (4-5 x 10° ha; DEFRA, 2007)
and because management of grasslands can vary widely in the UK, particularly with
respect to fertiliser input and grazing. This can have a dramatic effect on consequential
GHG and carbon balance as a result of LUC. To our knowledge there has been only one
previous limited study of eddy covariance measurements over SRC willow for bioenergy
(Drewer et al., 2012), our study being the first to have a paired site comparison of SRC
willow and grassland. There have been studies which have used the eddy covariance
technique on SRC poplar. These studies have observed SRC poplar to be a net sink of
carbon at the ecosystem level (Arevalo et al., 2011; Jassal et al., 2013; Sabbatini et al.,
2015), even as soon as two years post-establishment (Verlinden et al., 2013).

Retention of cut grass on the surface, which results in no C exports from the system, is
fairly uncommon with the most common practice to have the land grazed or mowed for

hay or silage (Smit et al., 2008). Qun & Huizhi (2015) investigated similarly managed
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grassland where there were no exports of carbon and found that the site was a net source of
carbon, with a NBP of -138.4 g C m? y™. This is less than half that of our grassland which
is likely due to reduced rainfall and lower biomass observed in the Qun & Huizhi study
(2015). We identified PAR and soil moisture to be the main climatic drivers of NEE in
grassland and SRC willow, which has been found in other studies (Ruimy et al., 1995; Qun
& Huizhi, 2015; Shao et al., 2015). Others have identified leaf area index (LAI) to be the
main biophysical driver of NEE in SRC poplar (Broeckx et al., 2014; Zenone et al., 2015).
Data syntheses from a network of sites such as FLUXNET have already begun identifying
driving factors of NEE, GPP and Rec, over a number of biomes (Law et al., 2002), and as
the amount of flux data from bioenergy crops increases there is potential for syntheses in

these biomes in future.

Grasslands have been shown to be both temporally variable (Soussana et al., 2007) and
spatially variable (Imer et al., 2013), for GHG emissions and carbon balance. Evidence of
this variability can be seen in this study, where we observed grassland to be a net source of
carbon in 2013 and a net sink in 2014. This difference could be attributable to the higher
temperatures observed in January-March 2014 compared to 2013. Grass has been shown to
begin growth when air temperature exceeds 5°C (Robson et al., 1988), which was achieved
in early 2014. This combination of increased temperature with an increase in winter
rainfall (which resulted in increased soil moisture) could explain the higher aboveground
biomass in grassland and consequently why the site was a net sink in 2014 (Pitt & Heady,
1978).

As well as large variability, there are also large uncertainties surrounding the carbon
balance of temperate grasslands (Janssens et al., 2003). Within the literature there are
reports that grasslands are acting as both carbon sources and carbon sinks (Scurlock & Hall,
1998; Bellamy et al., 2005; Soussana et al., 2007; Ciais et al., 2010; Merbold et al., 2014;
Schipper et al., 2014; Rutledge et al., 2015). The carbon balance of grasslands is quite
often dictated by favourable management regimes (Smith, 2014) however changes in
management can cause grasslands to switch from a source to a sink (Merbold et al., 2014).
Grassland management practices such as fertilisation, grazing and mowing lead to large
N,O and CH,4 emissions which counterbalance this CO, sink (Ciais et al., 2010; Imer et al.,
2013). For our study, N,O and CH,4 did not make up a significant part of the whole GHG
balance of either land uses and both were present in small quantities. SRC willow has been
found to be a net sink for CH, in other studies to a similar extent to that found here (Kern

et al., 2012; Drewer et al., 2012). For both sites, there was an effect of soil moisture, and a
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significant interaction for soil moisture and soil temperature on CH, fluxes. Other studies
have confirmed the influence of soil moisture on CH4 emissions under bioenergy crops
(Kern et al., 2012; Drewer et al., 2012) and grasslands (Kammann et al., 2001; Imer et al.,
2013).

Here we found that grassland had significantly higher soil carbon stocks than the SRC
willow to 30 cm but examination to 1 m depth revealed no significant difference in soil C
stock between land use types. Sampling depth is a recurrent problem in studies which
attempt to quantify soil carbon (Dolan et al., 2006; Blanco-Canqui & Lal, 2008) and it is
essential that the whole profile is sampled to draw robust conclusions (Harrison et al.,
2011). We were able to sample two grassland sites and whilst they were in agreement for
the top 30 cm, the data down to 100 cm showed higher stocks for one grassland (compared
to SRC willow) and lower carbon stocks for the other; though neither was significantly
different from the SRC willow. This demonstrates the large variability that exists amongst
grasslands, even those in a similar location, on the same soil type and under similar
management. A larger sample size would be needed to demonstrate if there is a difference
in soil C to 100 cm at these sites, as a true difference may not have been detected in this

case due to a low sample size.

At our site, the higher soil C observed in grassland may be attributable to the amount of
organic material left on the soil surface after mowing (Post & Kwon, 2000). There have
been reports in the literature of both increased soil carbon under SRC compared to
grassland (Arevalo et al., 2009; Zan et al., 2001), as well as others which have found no
significant difference (Grigal & Berguson, 1998; Walter et al., 2015). Walter et al. 2015,
from a chronosequence of SRC sites, suggested this transition results in a redistribution of
carbon through the profile, despite total SOC stock not being significantly different. After
seven years post-conversion, we may be beginning to see redistribution of C in the soil
profile. We found that at the two grasslands sites 59% and 96% carbon was stored in the
top 30 cm, whereas in SRC willow 54% carbon was stored in the top 30 cm of the whole
100 cm profile. Whilst these differences are not large, it may be the early stages of C
redistribution through the soil profile. Chronosequence data also suggest that after initial
conversion from grassland to SRC willow, there can be a loss of soil carbon for up to 5
years, which is followed by recovery up to 19 years (Pacaldo et al., 2013b). Our site is
only seven years post-conversion, therefore is likely still in the recovery phase with respect

to soil carbon.
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In this study we were able to capture the effects of a commercial harvest on the soil and
ecosystem GHG balance. This is an essential management practice which takes place every
three to four years in SRC willow and exerts major changes on the plantation; changes
about which little is known for GHG balance in SRC willow (Vanbevern et al., 2015).
Harvesting is recognised as one of the most energy intensive stages of the SRC willow life
cycle due to the large consumption of diesel fuel (Murphy et al., 2014). From our study we
have shown that whilst there is an increase in Rec, after the harvest, the site is able to
quickly become a large carbon sink as soon as three weeks after harvest. Other LCA
findings have shown that whilst the harvest can increase emissions due to the harvest
machinery, the carbon sink created by SRC willow is able to offset these emissions and
result in a negative GHG balance (reported in the range of —138.4 to —52.9 kg CO,-eq. per
odt biomass; Caputo et al., 2014). We also observed a one off peak in N,O emissions, two
months post-harvest, which was the largest emission observed across both sites for the
duration of the experiment. Other studies have observed little effect of harvest on N,O
emissions from SRC cultures (Zona et al., 2013b). It is possible that this emission arose as
a result of increased soil exposure after harvest and increased rainfall in May and June
2014, relative to 2013. Soil N,O fluxes are known to vary spatially and temporally and to
arise quickly after changes in rainfall, temperature and management (Skiba & Smith, 2000).
N,O emissions, therefore, require more intense monitoring to be able to capture these
emissions, as one large emission can account for a large proportion of total N,O fluxes

over a measurement period (Zona et al., 2013Db).

To conclude, we have found that LUC to SRC willow from grassland can result in reduced
GHG emissions. At our site we found that grassland was a net carbon source and SRC
willow was a net carbon sink seven years after land conversion. However, soil carbon
stocks were likely still in recovery as soil C at the SRC site remained significantly lower
than grassland, even after this time since establishment. Whilst grasslands have been
shown to be highly variable, there is evidence that this LUC may result in climate
mitigation advantages. As our sites were both low input and were not fertilised, N,O and
CH, emissions did not make a significant contribution to the whole GHG balance.
Additional research is however, required on the effects of LUC from grasslands which
consider a range of management options, particularly with respect to fertiliser and rotation

length, so that wide-ranging conclusions can be made on this important land use type.
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CHAPTER 5: INFLUENCE OF LAND USE, LITTER FALL
AND LITTER DECOMPOSITION ON SOIL CHEMISTRY

Statement of contribution: | performed all data collection, CEH undertook analysis of
soil samples, whilst | completed data analysis and wrote the chapter. Willow genotyping
by SSR was kindly undertaken by Dr Steve Hanley at Rothamsted Research (see Appendix
E for SRC willow genotyping).

5.1 Abstract

Land use change from grassland to SRC willow results in a change to vegetation and a
change in the type of organic inputs which will likely result in changes belowground. The

aim of this chapter is to assess the effect litter fall and decomposition on soil chemistry.

Litter fall and litter decomposition was measured for the duration of the experiment in SRC
willow using litter traps and mesh decomposition bags. The rate of litter fall and litter
decomposition can inform us about the movement of carbon from aboveground pools to
belowground pools. SRC willow produced on average 5.5 t ha™* y™* of litter for the 4/5 year
of growth and 2.1 t ha™* y* litter for the first year post harvest. This is higher than other
values found in the literature indicating high productivity at this site. Litter decomposition
was found to be quite rapid, with over 80% litter decomposed within the first year. This

was similar to what has been found in the literature.

Soil cores were taken throughout the experiment in both grassland and SRC willow and
were analysed for soil chemistry. Analysis of soil chemistry revealed there was an increase
in bulk density, a reduction in soil water content and a decrease in dissolved organic
carbon as a result of land use change from grassland to SRC willow. There were more
nitrate in grassland and more ammonium in SRC willow. There was no significant
difference in water filled pore space or C:N ratio between sites. The change in bulk density
did not appear to have an effect on SRC willow rooting behaviour as there was high
productivity of the crop. A reduction in soil water is a positive change as the grassland was
found to be consistently waterlogged which resulted in CH4 emissions; SRC willow was
found to be a sink for CH,4. A decrease in soil carbon content is a negative effect of LUC to
SRC willow. The literature indicates a loss in SOC can be observed for up to 5 years post
conversion, followed by recovery up to 19 years after conversion. It has been 7 years since

the site was converted, indicating SOC in SRC willow may still be in the recovery phase.
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5.2 Introduction

The soil is an essential medium for all life on earth allowing the cultivation of primary
producers and playing a vital role in biogeochemical cycling. The soil is a complex

medium which mediates feedbacks between aboveground and belowground productivity.

Soil quality is defined as the ability of a soil to sustain environmental quality, foster
biological productivity, and stimulate plant and animal health (Weinhold et al., 2005). The
quality of the soil will be dependent on the intended use of the field and the expected
production from land owners. There are several types of assessments of soil health through
assessing both physical soil characteristics and chemical characteristics (Table 5.1; Larson
& Peirce, 1994; Schoenholtz et al., 2000; Wienhold et al., 2005). The idealised soil
composition is predominantly made up of solid matter in the form of minerals (45%) and
organic matter (5%), with the remainder made up of water (25%) and air (25%). The
amount of solid matter per volume of total soil is referred to as bulk density. A lower bulk
density (BD) is preferable for root growth; when BD exceeds a certain value root activity
is restricted; this upper bound of BD differs depending on soil type. The spaces between
the solid matter (or aggregates) is known as pore space; the amount of pores within the
solid medium is measured as soil porosity. We can estimate the amount of water present
within the soil medium by measuring the amount of pore space saturated with water, or the
water-filled pore space (WFPS). For WFPS there is an optimal range which is suitable for
microbial activity at approximately 60% WFPS, which corresponds to a moist, well-
aerated soil (Fig 5.5; Wienhold et al., 2005; Linn & Doran, 1984). At 80% WFPS
anaerobic conditions dominate and result in processes such as denitrification. Soil water
content, measured here as gravimetric moisture, indicates how much water is held in the
soil medium. Soil moisture affects movement of gases through the soil and can dictate if
soil is an aerobic or anaerobic environment. These physical measures allow an
understanding of the soil composition and arrangement which give an indication of the
ability of the soil to support root growth, host soil fauna and determine decomposition rates

of organic material.

Chemical properties which are important indicators for soil health, are soil organic carbon
status, nutrient availability, soil acidity and salinity (Schoenholtz et al., 2000). Soil organic
carbon has been found to influence all aspects of soil health as it is the primary source of
energy for soil organisms and affected nutrient availability though mineralization.

159



Table 5.1: Potential soil properties for assessing soil quality and function. Taken from Weinhold et

al. (2005).
. . . . . . Biological
Soil function Physical Properties | Chemical Properties 10 oglt?a
Properties
Substrate for plant Bulk density Electrical conductivity
growth
Aggregate stability Sodium adsorption
ratio
Soil depth
Nutrient reservoir Inorganic N content Potential

Extractable P

mineralization

pH
Atmospheric interactions | Water-filled pore CO, flux
space
NO, flux

Methane flux

NH, flux

Storage and purification
of water

Infiltration rate

Water-holding
capacity

NO3-N concentration

Extractable P

Biological activity

Water-filled pore
space

Microbial biomass
Soil respiration

Potential
mineralization

Earthworm
population
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Nutrient availability again is essential for biogeochemical cycling as well as plant
productivity. Nitrogen is the main limiting nutrient in terrestrial ecosystems. Nitrogen in
the soil is utilised by both the plant, taken up through the roots, and by soil microbes,
metabolised as an energy source. There are 5 main pathways by which nitrogen is
transformed in the soil, detailed in Table 5.2. The main forms by which nitrogen is utilised
by plants and microbes is as nitrate (NO3) and ammonium (NH,"). Plants preferentially
take up N in the form of nitrate, though are able to take up ammonium; conversely
microbes preferentially assimilate ammonium over nitrate or nitrite (NO). If conditions in
the soil are predominantly aerobic, nitrate will be the dominant form of nitrogen in the soil.
If oxygen is limited, therefore creating anaerobic conditions, nitrate will be reduced and
ammonium will be produced which may then lead to production of N,O and N, gases. The
nitrate ion is extremely soluble; therefore excessive nutrients (which often arise as a result

of fertilisation) can lead to contamination of surface and ground water as a result of runoff

or leaching.
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I
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Figure 5.1: Hypothetical relationship between water filled pore space and microbial activities.
Taken from Wienhold et al. (2005), originally from Linn & Doran, 1984.
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Table 5.2: Process by which nitrogen is transformed in the soil. Adapted from Coyne & Frye (2005).

Process

Mode of action

Equation

Mineralisation

(ammonification)

(1) Organic N is hydrolysed to release ammonia (NHz) which is then protonated to
become ammonium (NH,")
(2) Urea is rapidly hydrolysed by the enzyme urease to produce carbon dioxide

and ammonia

(1) Organic N (R — NH,) > NH; - NH;

Urease

(2) H,0 + NH,CONH, — CO, + 2NH,

Assimilation

(immobilisation)

The incorporation of inorganic N as NH,", NO3 or NO,  into biomass

NH} - Organic N (R — NH,) OR
NO3 or NO; —» NHf - Organic N (R — NH,)

Nitrification

The oxidation of reduced inorganic and organic N to NO, or NOj3 via an
autotrophic or heterotrophic pathway.

(1) Autotrophic nitrification is a two-step process which carried out by
chemolithotrophic bacteria, examples given in equation.

(2) Heterotrophic nitrification is carried out by chemoheterotrophic bacteria and
fungi (e.g. Arthrobacter, Streptomyces and Aspergillus), usually in soils too acidic

for autotrophic nitrification

(1) Simplified autotrophic nitrification:

Nitrobacter
_—
3

+ Nitrosomonas _
_
NH; P NH, NO,

(2) Simplified heterotrophic nitrification:
Organic N (R — NH,) - NO; orNO3

Nitrate reduction

Reduction of nitrate occurs in two ways, predominately via denitrification and
dissimilatory nitrate reduction to ammonium (DNRA). Both these processes occur
primarily under waterlogged and anaerobic conditions

(1) Denitrification is a multistep process by which nitrate are reduced to nitrogen
gas (N,) by a series of enzymes.

(2) DNRA is the reduction of nitrate to ammonium (NH,")

Nitrate reductase Nitrite reductase

(1) NO5 NO;

Nitric oxide reductase

Nitrous oxide reductise
2 2

(2) NO; -» NO; — NHf

N, fixation

Process by which nitrogen gas (N,) is energetically reduced to ammonia (NH3) by
prokaryotic bacteria, either independently or in symbiosis with leguminous or

nonleguminous plant species.

Nitrogenase

N, + 16Mg — ATP + 8H" ———— 2NH,
+ H, + 16ADP + 16Pi

+ 16Mg**
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Soil acidity, measured as soil pH, affects both plant growth and microbial community
composition and activity. Soil salinity is a measure of salts present in the soil solution, high
levels of which have negative impacts on plant growth and can lead to reductions in water

quality and soil erosion.

Finally, there are soil biological properties which affect the soils ability to decompose
organic material and recycle nutrients from aboveground biomass to the belowground
community. This is mainly assessment of the living microbial community in the soil, such
as microbial decomposers and earthworms, which has been measured on site as part of the
EUROCHAR project (Jenkins, unpublished).

The ratio of C:N in the soil is another important indicator of ecosystem function as it can
indicate the rate of decomposition and quality of SOM. The C:N ratio of the soil is
determined by the input of litter from vegetation. A high quality litter is one that has a low
C:N ratio as it is most rapidly decomposed into SOM by microorganisms requiring
nitrogen (Jahren, 2013). However, there are varying nitrogen requirements within the
microorganism community. Fungi have a lower N requirement than bacteria, therefore it
has been surmised that the ideal C:N ratio is 24:1 as this meets the requirements of all
microorganisms. Above this ratio, net immobilisation occurs and additional N is required

for decomposition to occur (Hodge, 2005).

Leaf litter fall and decomposition are the primary means by which carbon and nutrients are
recycled from aboveground biomass back into the soil. It is estimated that over 50% of net
primary productivity (NPP) is returned to the soil via decomposition of leaf material
(Wardle et al., 2004). Quantification of leaf litter mass allows an understanding of what
proportion of total aboveground biomass is allocated to the leaves, and consequently how
much litter will fall to the ground to allow return of carbon and nutrients to the soil. It is
understood that there are four main factors affecting leaf litter decomposition: climate,
litter quality, soil quality and the composition and activity of soil communities (Wardle et
al., 2004; Berg & McClaugherty, 2008). The ability of SRC willow to effectively recycle
nutrients through leaf biomass is documented within the literature (Ericsson, 1994) and is
one of the reasons why these plantations do not require nutrient supplementation in the
form of fertiliser. Leaf litter inputs are essential for the formation of soil organic matter
(SOM) and accumulation of soil organic carbon (SOC) in the top soils (Tolbert, 2002;
Rytter, 2012; Hangs et al., 2014). Raich and Nadelhoffer (1989), and more recently
confirmed by Davison et al., (2002), showed that total belowground carbon is at least

double that of aboveground litter fall in mature forests demonstrating the importance of
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leaf litter in linking the aboveground and belowground carbon (Waddle et al., 2004).
Accurate quantification of litter fall in SRC willow plantations would improve carbon
balance estimates of these bioenergy crops, as it is recognised as a known source of

uncertainty in LCA calculations (Caputo et al., 2014).

Plant species composition, management and land use change (LUC) can have marked
effects on all aspects of soil structure, microbial community composition and chemistry
(Post & Kwon, 2000). In this section I will measure some of the basic properties of the soil
under both land uses and the influence of litter fall and decomposition in SRC willow.
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5.3 Methods

5.3.1 Leaf Litter Fall

Plastic trays measuring 35x45 cm were deployed into the field in June of each year and
secured with pegs into the ground. Drainage holes were drilled into the trays prior to
deployment to allow drainage of rain and escape of any small animals. Leaf litter was
collected every 2-4 weeks and placed into labelled bags to be transported back to the lab.
Leaf litter was collected until the trees were bare of all leaves and no more litter was
accumulating in the trays. Leaf litter was oven dried at 80°C for 48 hours. Leaf litter was
weighed on a balance and recorded. Total leaf litter from a collection point was summed
and a cumulative total calculated. Cumulative total was plotted against week of the year to
see if the timing of leaf fall differed between years. Mean litter fall per square hectare was
calculated by taking an average of the total litter fall from all plots and dividing by the size

of the collection tray.
5.3.2 Leaf litter decomposition

Willow leaf litter was collected in autumn 2011 when litter had already begun to fall
naturally from the trees. Leaves were removed from the stems of the trees by running
hands up the stems and collecting any litter that came away easily. This was placed into
plastic bags and transported back to the lab. All litter was air dried in aerated crates, tossed
by hand twice a day, until fully dry. Exactly 5 g of dried leaf litter was then placed into
pre-made mesh bags. Mesh bags were 10x20 cm; heat sealed to contain the litter then each
bag was labelled using a plant label tagged to one corner. Mesh size was 1 mm aperture
and was sufficient to allow access by macrofauna, as well as microfauna. A total of 72
bags were made to be placed at each experimental plot throughout the field, with 9 bags at
each location. Bags were placed either within the row (in the middle of the double row of
planted trees) or between the rows (between each pair of planted rows), as per the location
of the chamber (Figure 4.1). Bags were placed on the soil surface in the willow field and
kept in place with potting labels pushed into the ground. Litter decomposition bags were
collected at several time points post insertion - 2 weeks then 1, 2, 4, 6, 9, 12, 18 and 24
months. At collection, litter bags were carefully taken from the ground and any visible mud,
root or other debris was carefully removed before placing into a small labelled plastic zip-

lock bag and transported back to the University of Southampton.
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Once back at the lab, the litter bags were inspected for any noticeable damage, for example
large holes due to animal chewing, and any debris, such as mud/roots carefully removed
from the outside of the bag. The litter bags were cut open along 3 sides and the leaf litter
was washed with water to remove any mud or other debris, so only plant leaf material was
collected. Tweezers were used to handle leaf litter and any small fragments were all
collected and placed into a labelled paper bag. The leaf litter was then oven dried for 24
hours at 85°C, weighed, and weight recorded. This was repeated for each litter bag.

All litter bag removals were made on schedule apart from the 18 and 24 month collections
as the field was harvested in April 2014 meaning the litter bags had to be removed from
the field. The litter bags were out of the field for 43 days, from 18/03/14 to 30/04/14.
During this time they were carefully removed from the ground, placed in a plastic zip-lock
bag and transported back to the lab. Litter bags were stored at -20°C to ensure there was no
further decay or decomposition during the time out of the field. Litter bags were replaced
in as close as a position from which they were removed and the dates of collection were

adjusted to account for the time out of the field, i.e. shifted back 43 days.

To calculate the average rate of litter loss of each sampling time point, all values were
summed and divided by the total, n=8. Percentage loss over time was plotted to assess the

rate of loss over time.
5.3.3 Soil chemistry

5.3.3.1 Taking soil cores in the field

Soil cores were taken every quarter of the year in November, February, May and August,
starting in November 2011 (when the static chambers were first installed) until November
2014. Samples were taken on the same day as the soil GHG measurements to allow any
link between soil chemistry and GHG flux to be identified. Both the grassland and SRC
willow sites were sampled where 4 out of the 8 chamber locations were randomly chosen
to be sampled. At each sampling event, plastic pipes of 15 cm depth and 5 cm diameter
were hammered into the soil using a rubber mallet and removed using pliers. Soil samples
were left in the pipes, placed into a labelled plastic bag and placed immediately in a cooler
to reduce any effect on soil chemistry of the sample. Samples were transported back to the

lab and stored at 4°C until processed.

5.3.3.2 Processing soil cores in the lab
Soil cores were removed from their bags, weighed and depth of soil in the core recorded.

Soil was removed from the core and cut longitudinally into 4 sections, each section was
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individually weighed. Each section was then sieved to remove any roots or stones and
stored in a labelled plastic bag until ready for processing. Three of the four sections were
used for extractions and the last section was split between two 50 ml labelled falcon tubes

and stored at -80°C as a spare.

5.3.3.3 Soil Physical Properties

For determination of gravimetric moisture, labelled crucibles were placed into an oven at
105°C for at least 1 hour prior to use to remove any moisture within the crucible. Once
removed from the oven, crucibles were placed into a desiccator to cool. Cooled crucibles
were weighed and 10 g of fresh soil was added, the soil and crucible were then weighed.
Crucibles were placed in the oven at 105°C for 24 hours, cooled in a desiccator then re-

weighed.
The following calculation was used to estimate gravimetric moisture (GM):

. . . Mass loss (g)
Gravimetric Moisture (%) = Mass of oven dried soil (g) %X 100

(5.1)

where:

Mass loss (g) = Wet soil & crucible — Dry soil & crucible
(5.2)

and:

Mass of oven dried soil (g) = dry soil & crucible weight — crucible weight

(5.3)
The bulk density (BD) of the soil can be calculated using the following equation:
Bulk Densit 5« _ Estimated dry mass of core
u ensity (g cm”) = Volume of core
(5.4)
where:
) ) ) Xg dry soil
Estimated dry core mass = soil core weight x (T)
(5.5)
and :
Volume of core = nr2d
(5.6)
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Total porosity (TP) can be calculated as below, using bulk density from equation 5.6 and a
particle density of 2.65 Mg/m? (for most mineral soils; Freeze and Cherry, 1979):

N e 00 = (1 ( Bulk Density ) % 100
otat rorosity () = Particle Density

(5.7)

Water-filled pore space (WFPS) can be calculated as per below using gravimetric moisture
from equation 5.3, bulk density from equation 5.6 and total porosity using equation 5.9.
Bulk Density

0, = ] X X
WEFPS (%) = Grav Moisture Total Porosity 100

(5.8)

5.3.3.4 Estimation of Soil Dissolved Organic Carbon (DOC)

After sieving, 10 g of soil were mixed with 70 ml deionised water for 10 minutes on an
orbital shaker. The homogenised mixture was filtered through Whatman No.1 filter paper;
this step sometimes took several hours, so filtration was left in a 4°C cold room overnight.
Samples were vacuum filtered through cellulose filter paper, collected into two 50 ml
falcon tubes and stored at -20°C. The analysis of the extracts took place at CEH Lancaster
due to a desire for consistency among sample analysis for all partners in the ELUM

consortium.

5.3.3.5 Estimation of Soil Ammonium (NH;") and Nitrate (NO3)

After sieving, 10 g of soil were mixed with 100 ml of 6% analytical grade potassium
chloride (KCI) and left to stand for 15 minutes with occasional stirring. The mixture was
filtered through Whatman No. 44 filter paper and the first few millilitres rejected. Filtered
extract was collected into two 50 ml falcon tubes and stored at -20°C. As with the DOC

extraction (section 5.4.2.4), all samples were processed by CEH Lancaster.

5.3.4.6 Estimation of Soil Carbon and Nitrogen Content

After sieving, soil samples were placed at -80°C for a minimum of 24 hours before being
freeze dried for a further 24 hours. Freeze dried soil was ball milled for 1 minute at 300
RPM to grind the soil into a fine dust in preparation for analysis. Soil samples were

analysed using a LECO TruSpec C/N Analyser. Ten blanks were run prior to loading any
168



samples; while this was completed the samples were prepared for analysis. Soil was
weighed into foil cups to approximately 0.2 g on scales and the weight sent to the analyser
software. The foil cup, containing soil, was shaped into a ball and placed into the loading
dock of the analyser. This was repeated for all samples, including a standard which was
run before the samples, and after every 20 samples to account for any machine drift. All
samples were drift corrected according to the standards. Samples were automatically
loaded into the analyser where they were combusted in a furnace operating at 950°C. As a
result of dry combustion, carbon was estimated via infrared detection and nitrogen through
thermal conductivity detection. Data were outputted as % of C and N, downloaded into a
USB and analysed in Microsoft Excel. The C:N ratio was calculated by dividing %C
by %N.
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5.3.4 Statistical Analysis

All statistical analyses were conducted in the R programming environment (R version
3.1.3). Data were analysed using linear mixed models (Pinheiro et al., 2015) where
chamber, nested within row type, was used as a random factor in all models to account for
repeat sampling over time. There were 8 chambers in total, 4 of which were placed within

a row and 4 placed outside a row.

Differences in total annual litter fall data were tested using a one-way ANOVA with
posthoc Tukey testing to confirm differences between years. For litter fall and litter
decomposition in SRC willow, a random effects model was constructed to test for the
effects of year, air temperature and genotype on litter production (eq 5.9 and 5.10). Air
temperature was found to correlate with soil temperature and soil moisture, therefore due

to collinearity, only air temperature is included in the model.

Litter fall ~ year + air_temp + genotype, random= ~ 1 | row_type/chamber
(5.9)

Decomp ~ air_temp+genotype, random = ~ 1| row_type/chamber
(5.10)

For soil properties, a global model was used to test for effects of treatment on various
measures of interest, then individual models specific to each site dataset were used to test
for effects of other variables. Analysis of variance was used to determine effect of each

variable in the model on the response variable.

For soil properties including, bulk density, total porosity, gravimetric moisture and water
filled pore space there was collinearity detected between air temperature, soil temperature

and soil moisture. The following model was constructed:

Soil property ~ site + month + year+ air.temp, random=~ 1 | cha

(5.11)
Gravimetric moisture could not be tested for an effect of air temperature, soil temperature
or soil moisture, as gravimetric moisture is a measure of soil water content as is soil
moisture.
For dissolved organic carbon, ammonium and nitrate content there was collinearity
detected between air temperature, soil temperature and soil moisture; BD and TP; and GM
and WFPS. This means that only one of these terms can be included in the model; if one of

these terms are found to be significant we can assume the variable which colineates is also
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significant. The following models were constructed where ‘chemical property’ was DOC,
NO3", NH," or NO3 : NH," ratio.

Global model:
Chemical property ~ Treatment+Year+Month+air.temp+BD+WFPS, random=~1|Chamber

(5.12)
Site specific model:

Chemical property ~ Year+Month+air.temp+BD+WFPS, random=~1|Chamber

(5.13)
For C:N ratio, the following models were constructed:
Global model:
C:N ratio ~ Treatment+Year+Month+air.temp+BD, random=~1|Chamber
(5.14)
Site specific model:
C:N ~ Year+Month+air.temp+BD, random=~1|Chamber
(5.14)

The significance of the model terms were assessed using a Likelihood Ratio test. Post-hoc
Tukey tests were used after ANOVA to confirm how yearly and monthly means differed in

models where they were found to be statistically significant (Hothorn et al., 2008).

Effects displays were constructed for all models (Fox & Hong, 2003) which can be found
in Appendix D.
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5.4 Results

5.4.1 Leaf litter fall

The timing of leaf litter fall was similar for 2012 and 2013 (Figure 5.2). The first collection
was made in early July (week 27/28) and the final collection in December (week 48-50).
However for 2014, which was the year of the harvest, litter fall started much later in the

year, in early September (week 36) and required less frequent collections than 2012/2013.
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Figure 5.2: Cumulative litter fall for sampling years. Note harvest took place in April (week 17) of

2014.
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Litterfal (t haly?)
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Year

Figure 5.3: Annual litter fall for SRC willow site with SE shown. Note harvest took place in April
2014.

Leaf biomass contributed to 13.8%, 11.3%, 15.7% of total aboveground biomass for 2012,
2013 and 2014, respectively (Figure 4.4). Assuming a carbon content of leaves of 50%, we
could estimate that approximately 2.1 t C ha™* y™ is returned to the soil via leaf litter. Total
litter fall was similar for 2012 and 2013 with 5.6 and 5.3 t ha™ y* (Fig 5.3). A one-way
ANOVA detected a difference in the litter fall between years (F;2:=76.4, p<0.001), with a
posthoc Tukey test confirming litter fall was lower in 2014 with 2.1 t ha™ y™ than in both
2012 and 2013 (p<0.001). There was no difference in litter fall between 2012 and 2013
(p=0.70). Statistical analyses revealed that there was no effect of year (p=0.89), air
temperature (and by associated soil temp and spoil moisture; p=0.24) or genotype (p=0.57)
on leaf litter fall.

5.4.2 Leaf litter decomposition

The majority of leaf litter underwent decomposition within the first year, with only 17%
leaf litter remaining after 12 months. After 2 years there was approximately 8% of the leaf
litter remaining. There was relatively low variation around the mean rate of decomposition
across the plots at the site (Fig 5.4). Statistical analyses revealed there was no effect of air
temperature, and therefore soil temperature or soil moisture, on the rate of decomposition
(p=0.68).
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Figure 5.4: Willow leaf litter decomposition over time, averaged for 8 plots across the site. Max and

Min values show variation across the site.
5.4.3 Soil properties and soil chemistry

The average BD for the three year measurement (2012-2014) period was 1.2 + 0.0 g cm®
for grassland and 1.4 + 0.0 g cm® for SRC willow (Table 5.3). BD was higher in SRC
willow than in the grassland (F1s:,=77.94, p<0.001), however there was no effect of
chamber, month, year or air temperature (soil temperature and soil moisture). GM was
higher in grassland at 39.1 £ 1.6% than SRC willow at 26.5 £ 1.1% for the three year
measurement period (F1=80.52, p<0.001; Table 5.3), though there was no significant
effect of any other tested variables. There was an effect of site on TP, averaging 53.2 £ 0.7%
in grassland and 44.9 + 0.6% in SRC willow (F181=77.94, p<0.001; Table 5.3). WFPS was
higher in grassland (82.9 £ 2.7%) than in SRC willow though this was not significantly
different (F18=3.39, p=0.069; Table 5.3). Air temperature (and by association soil
temperature and soil moisture), year and month were found to have a significant effect on
WFPS (F15=16.54, p<0.001; F,5=8.66, p<0.001; F35,=33.03, p<0.001 respectively). A
posthoc Tukey test revealed that WFPS was higher in 2014 (p=0.003) and 2012 (p<0.001)
than 2013. There was no significant difference in WFPS in 2012 and 2014 (p=0.85).
Additionally, WFPS was found to be higher in February and November compared to
August (p<0.001 for both comparisons).

Data for monthly, annual and a three year measurement average of DOC, NH4*, NO3™ and
the ratio of ammonia to nitrate can be found in Table 5.4. DOC in the top 15 cm of soil was
found to be higher in grassland (12.6 + 1.3 mg/kg) than in SRC willow (9.3 + 0.6 mg/kg;
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F180=5.63, p=0.02; Figure 5.5, Table 5.4). In grassland there was no significant effect of
any of the tested variables on DOC content; however in SRC willow year had a significant
effect on DOC content. DOC content in 2014 was higher than 2012 or 2013 (F,3,=22.61,
p<0.0001; Figure 5.6). NH4" content was higher in grassland than in SRC willow (Fy 7 =
6.32, p=0.01; Figure 5.7, Table 5.4). NH;" was lower in both fields in 2012 compared to
2013 and 2014 (F,3, = 5.11, p=0.011 for grassland and SRC willow; Table 5.4). NO3  were
higher in SRC willow (0.65 = 2.03 mg/kg) than in grassland (0.34 £ 2.53 mg/kg; Fi79 =
8.03, p=0.006). NO3 were also lower in 2012 than 2014 in grassland (post-hoc Tukey test
p=0.036) whereas NO3 were lower in 2012 compared to both 2013 and 2014 in SRC
willow (F,3, = 10.30, p=0.0004; post-hoc Tukey test: 2012-2013 p<0.01, 2012-2014
p=0.031; Table 5.4). The ratio of NO3;™ : NH," is different between grassland and willow
(F179 = 9.36, p=0.003). Grassland has more NO3 than NH,4" with a ratio of 1:0.86 whereas
SRC willow had more NH,4" than NO3" with a ratio of 1:1.84.

The C:N ratio was not significantly different between land uses, with 10.0:1 in grassland
and 10.3:1 in SRC willow (Fy g0 = 1.42, p=0.24). However there were differences within
each site. For grassland, year and month were found to be significant variable affecting
C:N ratio (F,33 = 5.10, p=0.011 and F3 33 = 4.25, p=0.012 respectively). A post-hoc Tukey
test revealed that C:N ratio, in grassland, was higher in 2014 than in 2012 (p=0.007) and
C:N was lower in May than November across all measurement years (p=0.027). Air
temperature (and by extension soil temperature and soil moisture) and bulk density (and by
extension total porosity) were found to have a significant effect on C:N ratio in SRC
willow (Fy 3, = 4.84, p=0.035 and F; 3, = 16.36, p=0.0003 respectively).
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Table 5.3: Physical soil properties under grassland and SRC willow showing mean + standard

error. Annual average (n=16), monthly average for each year (n=4), and a three-year average

(n=48) are shown.

Grassiand | P Do [ Cranmete | poroay 61| por oo
2012 1.2+0.0 39.3+2.0 53.3+1.1 86.7+3.0
February 1.3+0.0 37.9+0.3 53.0 £ 2.2 91417
May 1.2+0.1 41.7 + 4.6 57.0+1.3 92.1+43
August 1.2+0.1 30.4£2.9 51.1+0.8 70.8+6.1
November 1.1+0.0 47.1+2.4 52.0 + 3.0 92.6+34
2013 1.2+0.0 36.9 3.2 51.9+ 1.4 77662
February 1.2+0.0 43.7+1.1 53.1+ 2.4 96.6+2.2
May 1.3+0.1 37.3+6.2 51.1+45 86.2+8.2
August 1.1+0.0 21.6+1.0 49.9 2.2 39.5+£20
November 1.2+0.1 45.1+7.0 53.4+2.7 88.2+5.6
2014 1.2+0.0 41.0+2.8 54.3+1.0 844141
February 1.2+0.0 49.7 £ 2.0 53.4+1.1 98.2+1.8
May 1.2+0.1 40.4 + 4.2 54.9 1.7 84.3+£7.6
August 1.3+0.1 27.0+3.4 56.8 + 3.3 63.2+5.9
November 1.1+0.1 47.0+4.9 52.1+1.1 91.9+21
Grass (‘12-14) 1.2+0.0 39.1+1.6 53.2+0.7 82.9+27

srowilon | PO Do | et | oracun ) | ot
2012 1.4+0.0 270+1.7 458 +1.0 80.1+4.2
February 1.4+0.1 23.2+4.6 47.7+0.6 66.5+10.5
May 1.5+0.0 274+23 46.0 £ 3.2 93.9+4.0
August 1.4+0.0 254+ 2.4 46.8 2.0 70.7£6.9
November 1.4+0.1 31.8+3.8 42.7+1.6 89.5+13
2013 1.4+0.1 242+21 44.4+1.0 68.8 + 5.6
February 1.4+0.1 29.8+1.9 45.7 £ 1.1 89.0£3.1
May 1.4+0.1 27.5+6.0 475+2.3 705£9.1
August 1.3+0.1 14.2+1.0 40.8 £ 0.5 38.7+6.2
November 1.4+0.1 253+1.2 435+2.2 77.1+5.6
2014 1.4+0.0 28.3+2.0 445+ 1.3 85.8+3.8
February 1.4+0.0 33.6+3.1 43.4+15 96.8+1.9
May 1.5+0.0 28.6+3.1 44.6 +3.3 90.9+38
August 1.5+0.1 19.8+2.2 47.3+3.0 70.5+10.6
November 1.4+0.0 31.3+45 42.9+2.4 85.0+6.2
Willow (‘12-'14) 1.4+0.0 265+ 1.1 44.9+0.6 78.3+2.8
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Table 5.4: Concentrations of dissolved organic carbon (DOC; mg/kg), nitrate (NOs; mg/kg),
ammonium (NH,"; mg/kg) and the ratio of nitrate to ammonia (NO5 : NH,") in grassland and SRC
willow in the top 15 cm soil. Data are mean + standard error. Annual average (n=16), monthly

average for each year (n=4), and a three-year average (n=52) are shown.

Grassland DOC (mg/kg) | NOs (mg/kg) | NH," (mg/kg) | NOs : NH," Ratio
2012 11.95+2.54 0.12 +0.62 0.31+0.04 1:0.44
February 11.52 +2.54 0.15+0.23 0.23 £ 0.07 1:0.79
May 20.37 £9.22 0.03 + 0.07 0.46 +0.19 1:0.09
August 9.99+0.42 0.05+0.28 0.22 +0.03 1:0.21
November 5.91+0.42 0.34 +0.57 0.39+0.02 1:0.89
2013 11.25+ 3.64 0.38+0.78 0.53 £ 0.06 1:0.9
February 5.95+0.51 0.32+£0.16 0.69 £ 0.15 1:0.52
May 23.07 £ 14.18 0.51 +£0.83 0.35+0.1 1:1.57
August 8.33+£0.59 0.35+0.11 0.56 £ 0.12 1:0.69
November 7.65+0.37 0.37 £ 0.99 0.53+0.07 1:0.83
2014 16.82 £+ 2.04 0.57+£1.6 0.53+0.21 1:1.34
February 26.91 +4.23 1.04+£6.26 0.44 +0.04 1:3.28
May 14.57 £ 1.55 0.8+1.35 0.77 £0.13 1:1.1
August 15.06 + 3.64 0.25+0.61 0.46 £ 0.04 1:0.55
November 10.73+1.01 0.18 £ 0.13 0.44 £ 0.04 1:042
Grass (‘12-'14) 13.44+1.51 0.34+2.53 0.45+0.03 1:0.86

SRC Willow DOC (mg/kg) | NOs (mg/kg) | NH," (mg/kg) | NO;: NH," Ratio
2012 8.31 £ 0.87 0.14 £ 0.74 0.23 £ 0.06 1:0.61
February 12.16 £1.23 0.04 +0.27 0.15+0.01 1:0.24
May 8.23+2.34 0.08 + 0.35 0.22 +0.03 1:0.35
August 6.56 + 0.56 0.02 £0.14 0.27+£0.1 1:0.04
November 6.29 £ 0.72 0.43+£0.47 0.29 £ 0.06 1:1.8
2013 6.7 +0.63 0.97+1.24 04+0.14 1:3.16
February 5.7+1.26 0.46+0.8 0.61+0.13 1:1.33
May 5.34+1.12 0.99+2.22 0.3+0.04 1:3.65
August 6.19 + 0.65 141+2.16 0.45+0.03 1:3.25
November 9.57 £ 0.94 1.03x25 0.23 £ 0.02 1:4.39
2014 13.7+0.78 0.83 + 3.57 0.43 +0.05 1:1.76
February 15.12+15 1.82 +6.07 0.54 £ 0.02 1:3.48
May 13.72 £ 1.05 1.03+1.84 0.43 £ 0.07 1:2.32
August 13.62 £ 2.68 0.3+0.42 0.36 + 0.03 1:0.82
November 12.34 + 0.57 0.17 £ 0.04 0.4+0.01 1:0.43
Willow (‘12-'14) 9.85 + 0.58 0.65 + 2.03 0.35+0.1 1:1.84
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5.5 Discussion

Here we have shown that litter fall made up approximately 15% of total SRC willow
biomass, and after 1 year 83%, of the leaf litter had decomposed. Analysis of soil physical
properties showed that grassland had lower bulk density, higher gravimetric moisture and
lower porosity than SRC willow. There was no significant difference in WFPS between
sites. There were more nitrate in grassland and more ammonium in SRC willow meaning
there was a higher ratio of NO3 : NH;" in SRC willow. There was no significant difference
in C:N ratio between sites. C:N ratio in grassland was higher in 2014 than 2012 and for all
measurement years, C:N was lower in May than November. Air temperature, soil
temperature, soil moisture, bulk density and total porosity all affected C:N ratio in SRC

willow.

Pre-harvest, year 4 and 5 leaf litter fall averaged 5.5 t ha™ y™* for the SRC willow, which is
markedly higher than some other estimates in the literature which have reported
approximately 1.5 t ha® y* (Rytter, 2012) and another reported a 4™ year production of 3.3
t ha™ (Hangs et al., 2014). The post-harvest litter fall is also higher in this experiment at
2.1t ha'y* compared to Rytter (2012) who reported 1.3 t ha™* y™ for the first year. These
data would suggest that the SRC willow at this site are particularly productive in terms of

leaf litter accumulation.

In this experiment we observed that the majority, 83%, of the leaf litter had decomposed
within the first year. This is similar to what has been reported for SRC willow in other
studies (Hangs et al., 2014). Whilst it has been observed that the willow genotype has an
effect on decomposition (Slapokas, 1991; Slapokas & Granhall, 1991; Hangs et al., 2014)
we did not observe any effect of genotype on litter decomposability. We also found that
there was no effect of climatic variables on litter decomposition which are known to
control decomposition rate (Berg & McClaugherty, 2008). Leaf litter quality is also known
to affect the rate of decomposition, where it has been shown that litter quality primarily
drives decomposition during the first year after leaf drop(Berg & McClaugherty, 2008).
The C:N ratio of the leaf litter is known to affect decomposition by the decomposer
community (Wardle et al., 2006) and a recent meta-analysis showed that for macrofuana
decomposition the decomposition rate was highest when there was an intermediate C:N
ratio (between 20-30; Frouz et al., 2015). SRC willow has been shown to have high quality
litter (i.e. a low C:N ratio) as well as high abundance of soil fauna and microbial biomass

which may explain their rapid decomposition as observed in this experiment (Hedénec et
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al., 2014). In this experiment the C:N ratio was 10:1 for SRC willow. A ratio of 10:1 tells
us that there is rapid turnover of organic material into the soil (Hodge, 2005). C:N ratio
was found to be higher in SRC willow in 2014 compared to previous years; this may be
due to the increased aboveground inputs as a result of the SRC willow harvest where a lot
of material was left on the ground. The ratio was lower in May than in November; again
this is likely attributable to a change in organic inputs. SRC willow experiences litter fall
beginning early July and ending in December, therefore only experiences organic inputs on
a seasonal basis and not all year round. Litter decomposition has been shown to be very
important for soil carbon sequestration and recycling of nutrients back into the soil, some
studies finding that litter fall is responsible for up to 70% of annual nitrogen input (Bauer
et al., 2000). In a comparison between woody bioenergy crops (willow, poplar and black
locust) and herbaceous energy crops (giant reed, Miscanthus and switchgrass) it was found
that there was higher SOC accumulation in the top 10 cm under woody crops which has
been attributed to litter fall input (Chimento et al., 2014). LUC to bioenergy cropping
systems have been shown to influence both the direction and magnitude of decomposition
dynamics (Kallenbach & Gandy, 2014). Pairwise comparisons of SRC willow and arable
fields have shown that decomposition is higher in SRC willow; likely due to the increased
abundance of macrofauna such as earthworms and woodlice and microbial communities in
the soil (Rowe et al., 2013; Makeschin, 1994). Given the predicted change in climate and
rise in CO, concentrations there have been some studies that have shown that in forested
ecosystems under elevated CO, there was little to no effect on litter production but
increased decomposition rates (Cotrufo et al., 2005). It was also observed in this study that
increased CO, in SRC plantations result in lower leaf nitrogen concentrations, therefore
causing a reduction in N entering the soil via leaf litter which could have implications for

future nutrient cycling under increased atmospheric CO, concentrations.

There was no significant difference in the C:N ratio between land use types, with both
having a ratio of around 10:1. The ideal ratio to accommodate the nutrient requirements of
all soil microbes is 24:1 (Hodge, 2005), and the ratio observed here is markedly lower than
this. Stauffer et al. (2014) reported C:N values similar to that reported in this study with
9.6 for SRC willow and 10.2 for grassland. Jenkins (unpublished) found that the species
richness of both bacteria and fungi were higher in the grassland than in the willow at these
sites, though this does not seem to have a functional effect on the C:N ratio. Jenkins did
however find there was an increase in the fungi Basidiomycota (20%), of an unidentified
Agaricales family which are usually related to tree root symbiosis and saprotrophic

degradation of wood. This suggests that the shift in microbial community has occurred to
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accommodate the change in organic inputs that the soil will be receiving in the form of
woody material. Whilst abundance of bacterial and fungal microbial biomass has not been
measured at this site, other studies have found an increasing fungal biomass in SRC soils
relative to bacterial microbial biomass (Stauffer et al., 2014; Liang et al., 2012). This
effect may be a result of the compounds contained within SRC willow leaf litter that
promote fungal growth (Stauffer et al., 2014).

In this study we found that there was a higher bulk density in SRC willow than in
grassland. This is likely due to the effects of compaction when the site was converted and
subsequently underwent harvest. Compaction in SRC willow has been documented in other
studies, where it is discussed in the context of the effects on rooting and yield (Souch et al.,
2004; Kuzovkina et al., 2004; Edelfeldt et al., 2013). For the expected level of farm
machinery and foot traffic there was no significant effect of compaction on willow rooting
behaviour of yield (Kuzovkina et al., 2004; Souch et al., 2004). Bulk density is intimately
linked to total porosity, where an increase in bulk density results in a decrease in total
porosity, as observed here. A decrease in soil porosity can be detrimental as it affects the
movement of water and gases through the soil profile (Nimmo et al., 2005). Any potential
waterlogging that may occur as a result of reduced total porosity will unlikely have
negative impacts on an established field of SRC willow, as they have been shown to
tolerate waterlogged conditions (Volk et al., 2006) with no reduction in yield (Kuzovkina
et al., 2004).

Whilst SRC willow had a lower TP than grassland, there was no significant difference in
WEFPS between sites. This indicates that there was not a higher level of water retention in
SRC willow relative to the grassland site. WFPS was found to be lower in 2013 compared
to the other measurement years; this is attributable to reduced rainfall in 2013 relative to
2012/2014 (673 mm vs. 1318/1023 mm, respectively). Additionally, WFPS was higher in
February and November compared to August; again this is due to the higher rainfall
experienced in these months relative to August (Figure 4.3). Gravimetric moisture was
found to be consistently higher in the grassland than in SRC willow. This was also
observed at monthly GHG sampling events where soil moisture was measured with a stab
probe. SRC willow have been shown to have a much deeper rooting system and show a
higher water use efficiency compared to grassland and arable crops (Don et al., 2012). A
comparison of SRC willow and grassland showed that SRC willow consumes more water
than grassland, but has a smaller water footprint (water use per unit of biomass produced)
than grasslands (Borek et al., 2010). Through observation during field visits, the grassland
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was waterlogged for the majority of the year, which can be observed with WFPS
exceeding 90% for the majority of measurement increments. Retention of water in the soil
can lead to anaerobic conditions, which results in NO3™ within the soil being reduced to
NH,". Grassland had more NH," than NO3;™ compared to the SRC willow, which may be
explained by anaerobic soil conditions. Additionally, grassland showed emissions of soil
methane throughout the experiment which have likely arisen due to high soil moisture and
soil NH4". SRC willow, which experienced lower soil moisture content and lower WFPS
had more NOj3" than grassland. Haycock & Pinay (1993) compared grassland and poplar as
riparian buffer strips and found there was less runoff of NO3™ for poplar. They surmised
that the higher aboveground inputs contribute to soil microbial biomass which are
responsible for the reduction of NO3". This may be why grassland is seen to have a lower
NOs relative to SRC willow in this study, as there are higher C inputs in grassland

allowing the reduction of NOs3'.

Over the 0-15 cm profile, DOC was higher in grassland than in SRC willow for the three
year measurement period. This is consistent with the findings in Chapter 4, where there is
more carbon stored in the top 0-30 cm profile, though there is no significant difference
down to 100 cm. The difference in carbon in these land uses is likely due to the amounts of
organic carbon being received from aboveground biomass. It was shown in Chapter 4 that
after mowing 344 g C m™ y* was left on the ground in grassland, whereas leaf litter fall
reached a maximum of 291.7 g C m? y™* in 2013. DOC was higher in 2014 at both sites,
compared to previous years. In grassland, this was likely due to an increase in aboveground
biomass (Figure 4.4), which resulted in increased inputs to the soil. In SRC willow, the site
underwent harvest in April 2014 and the shoots rapidly began re-sprouting. There was less
leaf litter in 2014 than in previous years (Figure 5.2), however as a result of the harvest
there was a lot of both leaves and woody debris left onsite. Reduction of SOC observed in
SRC willow has likely occurred as a result of land preparation during the conversion from
grassland. Site preparation for planting SRC willow usually includes ploughing to 30 cm
and subsequent harrowing to make the land amiable for planting (Tubby & Armstrong,
2002). The effects of soil surface disturbance have shown to result in losses in soil carbon
such as when arable land undergoes tillage (Kaiser et al., 2014). Kahle et al. (2013)
showed a conversion from an established SRC plantation to arable cropping results in a
loss of soil carbon due to the excessive soil disturbance associated with management
practices such as tillage.
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This chapter has demonstrated that land use change from grassland to SRC results in
changes in soil properties. The positive changes have been a reduction in the soil moisture
content of the soil; where it was observed in grassland these conditions led to methane
emissions. The negative changes that have occurred as a result of this transition are an
increase in bulk density which may subsequently impede root growth; though given the
yields of SRC willow this has likely not been the case. Additionally, there was a reduction
in soil carbon observed as a result of land use change to bioenergy. This is likely as a result
of the management practice employed in the grassland where cut material is left on the
surface, therefore affording the grassland higher C inputs. Other studies have found that
the recovery time of soil carbon from a transition from grassland to SRC willow can take
up to 19 years (Pacaldo et al., 2013). Whilst there may have been an initial loss of carbon
as a result of transition, the SRC willow is fixing carbon into its biomass on an annual
basis, whereas the grassland is a small source of carbon (discussed in Chapter 4). Future
work at this site should look to measure the decomposition rate of grass as this was not
measured in this study.
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CHAPTER 6: FINAL DISCUSSION

The aim of this study was to assess the effects of land use change to bioenergy on soil
carbon and GHG emissions. This was achieved in two ways, firstly through systematic
review and meta-analysis of the existing literature and secondly through a field study of an

ex-set aside grassland and SRC willow bioenergy plantation.

This PhD project formed part of a seven-member consortium project whose aims were to
assess the effects of land use change to bioenergy at a number of sites, employing several
different measurement techniques (Harris et al., 2014; Chapter 2). The ELUM project has
the strength of combining sampling at multiple sites to draw more robust conclusions than
would be possible from single site evaluations. One of the main outputs of the ELUM
project was a meta-model which can estimate the associated GHG emissions and soil
carbon changes from conversions to bioenergy in the UK. This model comes with a user
friendly interface to allow policy makers and land managers to select the land of interest
and assess potential impacts of LUC. The model is also parameterised for future climate
scenarios out to 2050. Model parameterisation and validation was completed using data
collected from two sources; (1) Data which were collected as part of the data mining work
package - forming this literature review and meta-analysis, and (2) Data collected from a
network of field sites which took similar measures to those collected in Chapter 4, as well
as multi-year chronosequence soil sampling campaign. The model has shown significant
association between modelled and measured values of CO,, N,O and CHy; and an ability to
predict impacts of LUC to bioenergy on GHG at site and national level (Dondini et al.,
2015).

The systematic review of the literature and meta-analysis of available data on the effects of
LUC to bioenergy on soil C and GHG emissions demonstrated our current understanding
and highlighted knowledge gaps (Harris et al., 2015; Chapter 3). This analysis revealed
that in general a transition from arable to 2G bioenergy was largely positive resulting in
reduced GHG emissions and increased soil carbon. A transition from forest to 2G
bioenergy resulted in an increase in GHG emissions and a loss of soil carbon. Transitions
from grasslands were not harmonious for 2G bioenergy types; a transition to SRC willow
resulted in a slight increase in soil carbon whereas a transition to perennial grasses such as
Miscanthus resulted in a loss in soil carbon. One of the large knowledge gaps identified is
that surrounding non-CO, GHGs. The most abundant data surrounding the effects of LUC

to 2G bioenergy on GHG emissions is for CO,, which is appropriate since this is by far the
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most important GHG in relation to LUC, in the context of 2 G bioenergy. Most of the
transitions of interest had some data for N,O however there was a lack of data for CH,
emissions. Methane is important to consider as it has a GWP of 24 and therefore may have
a large influence on the GHG balance of these transitions. In this study, it was observed
that SRC willow was a sink for methane whereas grassland is a source. This finding is
significant as SRC willow may result in reductions of CH4, as well as CO,. These
emissions may also arise as a result of management practice as a significant portion of
anthropogenic CH, emissions arise as a result of grazing animals on permanent pastures
(Miller et al., 2013). The other main knowledge gap that the meta-analysis highlighted was
the lack of data on transitions to SRF, which is a potential candidate for bioenergy in the
UK (Hardcastle et al., 2006; McKay, 2011; Leslie et al., 2012). A recent chronosequence
showed that transitions from arable land to coniferous SRF for bioenergy there was an
increase in soil carbon; whilst a transition to broadleaf SRF there was no change; and a
transition to eucalyptus there was a loss of soil C (Keith et al., 2015). These results have
helped fill this knowledge gap but have also opened up an opportunity for further research
into these land use types and the effect of LUC to SRF.

The experimental work conducted as part of this research investigated the effects of LUC
from grassland to SRC willow at a commercial site in Southern England (Harris et al.,
submitted; Chapter 4 and 5). Both sites were low-input systems; grassland was an ex-set
aside field which was mowed once a year, and material was left onsite. SRC willow
received no inputs other than initial herbicide applications at establishment; after harvest
no fertiliser was applied. Results from this site showed that grassland was a net source of
carbon and SRC willow was a net sink. Soil N,O and CH, fluxes were very low for both
sites. Soil carbon was higher under grassland than SRC willow for the top 0-30 cm, though
there was no significant difference to 100 cm, although the trend was similar to the 0-30
cm measurement. The loss of soil carbon in the top 0-30 cm likely occurred as a result of
site establishment and is still in recovery from initial stocks in grassland. Grassland
experiences higher inputs of carbon from mowed biomass compared to that received in
SRC willow from leaf litter inputs. Despite this impact on soil carbon, the net ecosystem
exchange of these land uses show that on an annual scale carbon was being removed from
the atmosphere and fixed into SRC willow biomass, whereas the grassland ecosystem was

losing carbon to the atmosphere.
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6.1 Bioenergy and climate change

Global climate change is occurring rapidly with an increase in global temperature,
increased frequency of extreme weather events and loss of biodiversity (IPCC, 2014).
Bioenergy is a proposed solution to help mitigate climate change by fixing atmospheric
carbon, and also to increase energy security in the light of diminishing fossil fuels (IPCC,
2011). SRC crops have been shown to produce 14 to 85 times more energy than coal per
unit of fossil energy input, with GHG emissions that were 9-161 times lower than coal
(Djomo et al., 2011). Current estimates suggest that if all available land for cultivation in
the UK, (8 Mha of low agricultural land classes) was utilised for Miscanthus and SRC
cultivation this could provide over 60% total heat and electricity needs in the UK (Wang et
al., 2014). With a more realistic deployment scenario of 0.4 Mha, 2G bioenergy could
provide more than 5% of the UK’s heat and electricity demand by 2020 (Wang et al.,
2014), helping meet the EU commitment to have 20% energy demand met by renewables
by 2020 (European Commission, 2009).

Several studies agree that any initial losses in soil carbon that arise as a result of LUC to
bioenergy from arable cropping are likely to be repaid within a few years of crop
establishment through increased C fixation into biomass and the displacement of
transitional fossil fuels, although this *payback’ time may be variable (Fargione et al., 2008;
Mello et al., 2014). Larger ‘payback’ times for conversions of native lands including
forests and grasslands seem likely (Fargione et al., 2008; Gelfand et al., 2011; Elshout et
al., 2015). All these studies highlight the importance of the initial conditions, the location
(payback times appear longer in the tropics) and the management practices which will

change along with the LUC.

As well as the carbon balance associated with bioenergy crops, there are a whole suite of
other ecosystem services (ES) which may be affected by large scale cultivation of
bioenergy. A recent analysis showed, with high confidence, that a transition from arable to
2G bioenergy resulted in the greatest improvements in ES, including hazard regulation
disease and pest control, pollination, soil quality and water quality (Holland et al., 2015).
The data surrounding the effects of LUC from grassland are less clear but there are
anticipated positive impacts on hazard regulation, soil quality and water quality. Effects on
disease and pest control and pollination are thought to be broadly neutral, and effects on
water availability are thought to be negative (Holland et al., 2015). Transitions from forests,

again lack certainty but are found in general to have broadly negative impacts on ES.
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Spatial mapping estimates that SRC willow can be planted on 71890 ha in the UK to obtain
beneficial ES impacts, with the most beneficial area of planting to be north-west England
(Milner et al., 2015). Another common theme emerging from the available data on ES

impacts of LUC to bioenergy is the site specific nature of these impacts.

6.2 Importance of management in determining impact of crop

cultivation

One of the major themes emerging in the literature, and also from this study, is the
importance of management in determining the impact of LUC to bioenergy on soil carbon

and GHG emissions.

Management has been shown to be significant in affecting the payback time of the carbon
and GHG debt incurred as a result of LUC to bioenergy. Gelfand et al. (2011) showed that
LUC from grassland to 1G bioenergy would incur GHG debts three times higher if
conventional tillage was utilised compared to non-tillage management. Strictly in terms of
soil carbon, Mello et al. (2014) showed a payback time of only 8 and 3 years for LUC from
native forest and pasture to sugarcane in Brazil, respectively. These payback times are
much shorter than those observed elsewhere in the literature (Fargione et al., 2008) and can
be attributed to fertiliser applications which result in high biomass yields and return of
carbon to the soil, but ignore any other LUC impacts such as N,O emissions. Similarly,
Elshout et al. (2015) has shown a change from no-input to high-input farming, in terms of
irrigation and fertiliser application, will reduce the greenhouse gas payback time by more
than 100 years.

Management can be utilised to change the cultivation of a bioenergy species from being a
carbon source to a carbon sink, and vice versa. This has been termed ‘management swing
potential’ (Davis et al., 2015). For SRC willow, rotation length is a key aspect for
management swing to ensure maximum biomass production (Tubby & Armstrong, 2002;
Davis et al., 2013). For Miscanthus, management swing involves leaving the crop over
winter to allow reallocation of nutrients into the soil and avoiding overfertilisation (Davis
et al., 2015). Management swing potential is not limited to bioenergy crops; it applies to all
ecosystems including grassland (Smith, 2014). In this experiment, the grassland was
managed in a fairly uncommon way where grass was mowed and left on the surface,
resulting in large C inputs which can help maintain soil C stocks. Grasslands are most

often grazed or mowed for hay or silage, and many are often subject to a fertilisation
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regime. Sites which undergo these management regimes have been shown to be both net
sinks, and net sources (Soussana et al., 2007; Chang et al., 2015). Fertilisation can improve
carbon balance through increased biomass and soil C (Conant et al., 2001). However, for
this field site, application of fertiliser would most likely result in large soil N,O emissions
due to the high soil moisture at the site. SRC willow at the site was managed fairly
typically for 2G bioenergy, though the site was not cut on a 3-year cycle. The harvest was
delayed until year 5, which may have resulted in a lower GHG mitigation potential of the
SRC willow than was possible if it had been harvested earlier (Tubby & Armstrong, 2002;
Davis et al., 2015).

6.3 Policy to support bioenergy deployment

Despite there being unsolved challenges of bioenergy deployment and lacking a ‘one rule
fits all’ for LUC effects, bioenergy will still have an important role in future energy mixes
and reaching emission reduction targets. The EU, as part of the Renewable Energy
Directive (RED), is currently dedicated to increasing the amount of renewable energy used
to 20% of total energy consumption by 2020 whilst simultaneously reducing GHG by 20%
by 2020, with 10% of all liquid transport fuel coming from biomass (Directive
2009/28/EC). Recent revisions to RED from December 2014 state that biofuels produced
from dedicated 2G feedstocks will count double towards the 10% target for liquid biofuels
for transport while capping at 5% the share that may be met through 1G feedstocks.
Additionally, this revision looks to better address the impacts of Indirect Land Use Change
(iILUC) by introducing mandatory iLUC reporting for producers. iLUC occurs when the
cultivation of biofuels displaces an existing land use which will need to be relocated
elsewhere. The amended legislation should help prevent the impacts of iLUC, not only in
the EU but globally as a 7% impact threshold now applies to all imported biomass as well
as domestic supply. Despite this policy implementation, in order for bioenergy to make a
substantial contribution towards emissions reduction scenarios it is likely to require
sustained investment, government incentives and appropriate policies alongside a
commitment from industry. Energy markets are dynamic and the discovery of a new oil
source which causes a rapid decline in the price of oil can have severe knock-on effects for
renewables, such as that observed in the latter half of 2014 (REN21, 2015). The latest
threat to renewable energy investments is the renewed interest in fracking for natural gas in

the UK. The IEA (2011) warned that the use of fracking and natural gas resources will lead
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to a lack of investment in renewable energy resources, with some evidence that there is

already a curb in investment in renewables as a result (EREC, 2013).

Within recent years the available data on the effects of land use change to bioenergy has
increased, adding to our knowledge and highlighting uncertainties. Watson et al. (2015)
argue that in a time of rapidly changing environment and increasing pressures on global
supplies, the addition of more data will not help us find a silver bullet solution. They
acknowledge that there are uncertainties surrounding bioenergy deployment, but suggest
these need to be managed and risks minimised to allow investment in these technologies to

help reach future energy and sustainability targets.

6.4 Study limitations

There were four main limitations to this study: (1) That we were unable to follow the
whole transition from planting to harvest; (2) The limited duration over which
measurements were taken; (3) The frequency of the soil GHG fluxes measurements. (4)

The lack of replication of net ecosystem exchange measurements.

In order to fully quantify the effects of LUC to 2G bioenergy on GHG emissions and soil
carbon, the whole process of the conversion should be monitored. As mentioned in Chapter
2, the ideal design for this would be in the form of a Before-After, Control-Impact (BACI)
design (Block et al., 2001). This type of experimental design would allow assessment of
initial conditions, capture the immediate effects of land use change and take into account
any climatic variability which is difficult to account for in paired-site studies. However,
these studies are difficult to implement on field scale, in a real commercial setting,
especially to measure whole ecosystem GHG balance using eddy covariance towers which
would be costly. Implementation of this kind of experimental design would help inform us
further on the effects of LUC to bioenergy and allow portioning on effects into actual LUC

and other sources such as climatic, spatial and temporal variability.

The second limitation of this study is the short duration over which measurements were
taken. This study was one of the first to have a paired site comparison of a grassland and
SRC willow plantation using the eddy covariance technique. When the eddy covariance
technique was first becoming popular in the scientific literature, publications would cover
a growing season or a year (Baldocchi, 2014). As the field has advanced, publications have
reported an increased time series and the technological advances and affordability of

equipment have also increased. And thus, publication requirement has become more
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stringent. In this study | was able to capture the effects of a commercial harvest on the
GHG balance, showing that despite a slight increase in NEE, the site quickly became a
sink 3 weeks later and was a net sink for the year. As this site continues to run, several
mores years’ worth of data will be accumulated over the second rotation which will further

our understanding of these systems.

The third limitation is the frequency at which the soil GHG fluxes were measured. For soil
N,O and CH, in the SRC willow, and all soil GHG fluxes in grassland, measurements were
only taken on a monthly time step with static GHG chambers. In the SRC willow we were
able measure soil CO, flux from dynamic chambers taking measurements every 4 hours.
Being able to measure GHGs on a finer temporal scale would have provided more certainty
for these measurements. As both soil N,O and CH,4 were low in both land uses this may not
have been a large problem for this study. However other studies have shown that soil
GHGs, in particular N,O emissions, can arise quickly after rain events or management
intervention and a large one off emission can account for a large portion annual budget
(Zona et al., 2013a). Fast-sensors which can measure ecosystem N,O and CH, using the
eddy covariance method have only recently become technologically sophisticated and
affordable (Baldocchi, 2014). Use of these techniques would reduce uncertainties which
may arise from measurement on a smaller spatial or temporal scale which are extrapolated
to an annual budget (Kroon, 2010; Yu et al., 2013; Zona et al., 2013b).

The final limitation of this study is the lack of replication for the net ecosystem exchange
measurements. The reason for this lack of replication is due to the expense of the kit
required to make these measurements; to equip one field site with eddy covariance
equipment and a meteorological station costs in the region of £40,000. This lack of spatial
replication means that the results found cannot be accurately up-scaled to regional or
national scales, and conclusions drawn are solely for the site being measured. Despite the
lack of replication, these data are still informative and will contribute to global networks of
data being collected. FLUXNET is a global database where researchers can upload data
from individual sites; and other can subsequently use this data to detect global trends
surrounding land use, management and disturbance; as well as quantify annual and

regional variation (Baldocchi et al., 2001).
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6.5 Conclusions

This research has shown that there is not a common and consistent effect when it comes to
LUC to bioenergy. The initial conditions of the land, the species transitioned to, the
management employed and the regional climate will all dictate how LUC to 2G bioenergy
alters the net GHG balance of the system. Future assessments of the effects of LUC to
bioenergy will likely need to be decided on a site by site basis for maximum certainty of
any consequences of cultivation. Bioenergy will have an important role to play in future
energy mixes on a global scale, and if sited appropriately can bring multiple ES benefits
here in the UK. Whilst there is still some uncertainty surrounding the effects of LUC to 2G
bioenergy, in order to meet future targets progress must be made and lands managed as

appropriately as possible to encourage GHG mitigation.

6.6 Future work

Future research in this area will need to focus on three main areas; (1) increasing empirical
data on carbon and GHG movement in different land uses; (2) assessing a range of
management options and effects; (3) fine-tuning model predicative capabilities, through
improved parameterisation and validation at multiple sites and over multiple years and

different crop types.

This research highlighted several important knowledge gaps in our understanding of the
effects of LUC to bioenergy cropping in the UK. Future research should be focused on
transitions to SRF, transitions from grassland and the effect on non-CO, GHG emissions.
Management can be a key aspect to determining the net effect of LUC to bioenergy and
this is not entirely understood as of yet. More research needs to be conducted into how
management interacts with LUC effects. Finally, research efforts need to continue into
integrating empirical measurements into predictive models. Modelling is a powerful means
by which to try and understand future impacts of LUC in a changing environment.

Modelling potential effects out to the future can help inform effective decision making.
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APPENDIX A: SYSTEMATIC SEARCH METHODOLOGY

The initial search method was developed in 2010 by Mathew J Tallis and was adapted by
Zoe M Harris in 2011 when the work began. Searches were conducted using three
commonly used search engines, namely Google Scholar, Science Direct and Web of
Science. The use of different search engines was to ensure that all publications that fall
under the criteria of our search were captured and the search was truly exhaustive. For
example, Google Scholar is able to capture grey literature, such as governmental reports,
which the other search engines will not capture. Science Direct was used as peer-reviewed
publications in its databases, provided by Elsevier, were excluded from results in Google
Scholar searches at the time of the original searches, although this has now changed and
may be one reason why between 2010 and 2011 the numbers of hits from Google Scholar
showed an increase. Web of Science was searched using two techniques, one with
quotation marks around the search terms and the other without, as differences were found
in the papers retrieved from the search from using either method. For example when
searching ‘LUC, SOC and biofuel” in 2011, the search with quotation marks gave 5 results
whereas the search without yielded 18 results. It is not entirely clear why the use of
quotation marks yields slightly different results, it is likely due to the search algorithms
employed by the search engine. This is shown in figures and in text using: “WoS” or WoS,
for each search technique respectively. The ability of Google Scholar to act as a scholarly
search engine has been called into question since its beta release in 2004 (Jacsé, 2005). An
understanding of search engine algorithms is important, enabling users to have an idea of
how searches are performed, to assess the reliability of any search for their own purpose.
Google does not disclose what algorithm they use but from several studies it appears that it
uses a combination of ranking factors (Beel & Gipp, 2009a; Beel & Gipp, 2009b), taking
different weightings compared to other search engines which allow the user to select how
the papers are ranked; for example Science Direct allows users to select between relevance
and date (Beel & Gipp, 2009a). It is apparent now, 7 years after its release, that Google
Scholar is a contender in the scholarly domain and is challenging the more conventionally

used search engines, Science Direct and Web of Science (Yang & Meho, 2006).

Search terms were defined and searched in a standardised format across the search engines
with slight modifications made to suit the searching preferences of the particular engine.
The search string was made up of four tiers, which allowed filtering of the papers through
the searches and also allowed us to highlight the difference in area of interest between crop

species (Fig 1.1). The results from these search engines were uploaded into a database for
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systematic review, but in the first instance the number of hits from the search was recorded.
Search terms were defined to capture all literature which would contribute to covering the
assessment of the effects of LUC to bioenergy crops in a UK context. SRF was initially
one of the species terms used in the ETI contract but it was agreed at a later date, following
our consultation with the consortium, that the individual species under SRF would provide
a more effective search term, as these individual species terms captured references not

captured by applying the generic term “SRF”.

This search stage was comprised of 1024 unique searches which resulted in a total of 5786
individual references once duplicates were removed. These papers were firstly ‘raw
processed” by assignment of the categories ‘useful” and ‘not useful’ based on a pre-defined

selection criteria as outlined in the ETI contract. The criteria for selection were:
- the location (to be UK applicable),
- the species concerned (inclusive of first and second generation bioenergy crops)
- the mention of the metrics which we used in the meta-analysis.

After this first round of processing, the papers were more carefully inspected to extract the
data in pre-defined units for the meta-analysis, performing standard unit conversions if
required. The data extraction parameters were chosen to ensure they cover soil processes,
GHG emissions and LCA, shown in Figure Al.1.
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Figure Al1.1 - Data extraction parameters for meta-analysis including standard units for

measurements

The data extraction parameters were chosen to allow the meta-analysis to be conducted,

but also to feed into model parameterisation and validation which took place in the ELUM

project.
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APPENDIX B: SUPPLEMENTARY MATERIAL FROM
META-ANALYSIS PUBLICATION

Appendix B.1 — definition of terms

1% Generation (1G) bioenergy crops: Energy crops which are primarily derived from
food crops made up of simple sugars which most often are used to make biofuels.

Examples include: wheat, corn, oilseed rape, canola and sugar beet.

2" Generation (2G) bioenergy crops: Energy crops which are derived from deciduous
lignocellulosic crops which are most often used as biomass for heat and electricity
generation. Examples include: SRC poplar and willow, Miscanthus and short rotation
forestry (SRF).

Global Warming Potential (GWP): A relative measure of how much thermal radiation a
greenhouse gas traps in the atmosphere commonly calculated over a 100 year horizon in
CO,-equivalents. Over a 100 year horizon nitrous oxide has a GWP of 298 and methane
has a GWP of 25 (IPCC, 2007)

Greenhouse gases (GHG): Gases which directly contribute to the greenhouse gas effect
by absorbing and emitting thermal radiation. In this case we focus solely on the three major
GHGs; carbon dioxide (COy), nitrous oxide (N,O) and methane (CHy).

Perennial grasses: Perennials are plants which live for longer than one year (annuals). In
the context of this work perennial grasses are a group of grasses which are typically used
for bioenergy cultivation. Examples include: Miscanthus, switchgrass and reed canary

grass.

Short rotation coppice (SRC): These trees are planted as cuttings and cut after a year to
encourage coppicing. Biomass is rapidly accumulated in multistems and the crop is
harvested after 3-4 years. Trees can typically be in the ground for up to 20 years with

regular coppicing without losing productivity. Examples include willow and poplar.

Short rotation forestry (SRF): These trees are planted and grown until the trees have
reached a certain diameter. Rotations are typically 15-20 years. Examples include:
Eucalyptus, alder, ash, beech, birch, sycamore, conifer and spruce.

Soil organic carbon (SOC): The organic fraction of carbon contained within the soil
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Appendix B.2: Systematic search query methodology

Species Parameter
1. Poplar
2. Willow
3. Miscanthus
4. Wheat
5. “Oilseed rape”
6. Canola
Measure Parameter Enerqy Parameter 7. “Sugar beet”
Land Parameter Soil organic carbon Biofuel 8.  “Short rotation forestry”
Land use change Greenhouse gas 9. Eucalyptus
+ _ g _ + Bioenergy + 10. Alder
Land management Life cycle analysis 11. Ash
Life cycle assessment 12. Birch
13. Sycamore
14. Beech
15. Conifer
16. Spruce

Example search string: “Land use change” AND *“soil organic carbon” AND “biofuel” AND “poplar”

Figure B.1 — Systematic search string used in ISl Web of Knowledge and Google Scholar to capture all data for literature and meta-analysis
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Appendix B.3 — Meta-analysis Calculations

The standard error of each study was calculated as:

v 2 v 2
Ntreatment (xtreatment) Neontrol (xcontrol)

1 1
SEing = Y, Ving = \/52( + )

The Q statistic describes the degree of between-study heterogeneity in a pool of studies. A
significant result indicated that the estimated effect sizes are more heterogeneous than
would be expected by chance. Q is calculated as follows:

k

2

(Z'-‘=1W-Y-2)

Q= ) WY - =5 =
i=1Wi

i=1

Where Wi is the study weight, Yi is the effect size and k is the number of studies.

205



Appendix B.4 - Assessment of publication bias
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Figure B.2: Funnel plot of InR versus standard error of the effect of LUC on SOC for all transitions. The presence of symmetry within the funnel plot

indicates little or no publication bias (regression test: t=-1.66, 4+=136, p=0.0994).
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Figure B.3: Funnel plots of InR versus standard error of the effect of LUC on SOC plotted by
transition. The presence of symmetry within the funnel plots indicates little or no publication bias
(regression tests: Arable to perennial grasses: t=0.32, =61, p=0.7522, Arable to SRC: t=1.71,
=16, p=0.1072, Grass to perennial grasses: t=-0.91, 4+=41, p=0.3700, Grass to SRC: t=-1.0591,
4=5, p=0.3380, Forest to SRC: t=0.51, 4=5, p=0.6309).
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APPENDIX C: IDENTIFYING THE GOOD BIOENERGY
OPTIONS - LAND USE CHANGE FROM GRASSLAND TO
SRC WILLOW HAS AN IMPROVED CARBON BALANCE
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Figure C.1: Percentage mass loss from leaf litter decomposition in SRC willow over 24 months.
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Figure C.2: Soil N,O flux (mg N,O m* d'l) for (a) grassland, (b) SRC willow and (c) both sites
where grassland is shown as black circles and SRC willow is white circles. Monthly sampling took

place from 8 chambers per field, standard error shown.
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Figure C.3: Soil CH, flux (mg CH, m? d™) for (a) grassland, (b) SRC willow and (c) both sites
where grassland is shown as black circles and SRC willow is white circles. Monthly sampling took

place from 8 chambers per field, standard error shown.

235



Table C1: SRC willow stem and branch biomass scaled up from measured values to t ha™.

Site Year Plot | Total dry Mean £ SD Stem density | Mean £ SD
weight (kg stump™) (t ha™)
(kg stump'l)

Willow | Mar 2012 1 1.59

Willow | Mar 2012 2 2.10

Willow | Mar 2012 3 1.40

Willow | Mar 2012 | 4 131 13333 22 84 +

Willow | Mar2012 |5 | 1.94 17104 5.61

Willow | Mar 2012 6 2.28

Willow | Mar 2012 7 111

Willow | Mar 2012 8 1.98

Willow | Nov 2012 1 2.86

Willow | Nov 2012 2 2.95

Willow | Nov 2012 |3 2.28

Willow | Nov 2012 | 4 1.99

Willow | Nov2012 |5 | 2.47 260%05 13333 34.7+6.23

Willow | Nov 2012 6 3.23

Willow | Nov 2012 7 2.05

Willow | Nov 2012 | 8 2.99

Willow | Nov 2013 1 3.63

Willow | Nov 2013 2 3.68

Willow | Nov 2013 3 3.13

Willow | Nov 2013 4 2.61

Willow | Nov2013 |5 3.33 340205 13333 457..31?31

Willow | Nov 2013 6 4.02

Willow | Nov 2013 7 2.78

Willow | Nov 2013 8 4.06

Willow | Dec 2014 1 0.70

Willow | Dec 2014 |2 0.74

Willow | Dec 2014 |3 0.85

Willow | Dec 2014 | 4 0.61

Willow | Dec2014 |5 | 0.96 086503 13333 11.4x3.37

Willow | Dec 2014 6 1.42

Willow | Dec 2014 7 0.74

Willow | Dec 2014 | 8 0.81
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Table C2: Willow leaf litter fall extrapolated from measured values to t ha™.

Year Plot Total leaf fall (g) | Litter trap size Mean + SD
(m?) (t ha-1y-1)

2012 1 75.547

2012 2 65.7752

2012 3 61.2177

2012 4 65.5149

2012 5 53.1042 0.12 5.6 +0.7

2012 6 78.1607

2012 7 69.786

2012 8 64.866

2013 1 59.562

2013 2 71.202

2013 3 76.046

2013 4 69.309

2013 5 62.355 0.12 5.8+0.7

2013 6 81.909

2013 7 78.712

2013 8 60.976

2014 1 19.746

2014 2 15.095

2014 3 32.414

2014 4 31.095

2014 5 26.458 0.12 21+0.6

2014 6 25.483

2014 7 36.399

2014 8 17.144
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Table C3: Above and belowground biomass measured in grassland scaled up from measured plot

values to t ha™.

Site Year | Biomass Plot | Dry weight | Area Scaleduptot | Mean +
measured (9) measured | ha™ SD

(m? (t ha™)
Grass | 2013 | Aboveground |1 55.28 221
Grass | 2013 | Aboveground | 2 172.99 0.25 6.92 5.08 +
Grass | 2013 | Aboveground | 3 130.79 5.23 2.03
Grass | 2013 | Aboveground | 4 148.93 5.96
Grass | 2014 | Aboveground |1 327.82 025 13.11 12.12 +
Grass | 2014 | Aboveground | 2 278.26 ' 11.13 1.40
Grass | 2013 | Belowground 1 0.48 2.43
Grass | 2013 | Belowground | 2 0.80 0.025 4.07 3.58 +
Grass | 2013 | Belowground | 3 0.87 ' 4.42 0.88
Grass | 2013 | Belowground | 4 0.67 3.39
Grass | 2014 | Belowground 1 2.015 10.26
Grass | 2014 | Belowground | 2 1.43 7.28 8.69 +

0.025 o

Grass | 2014 | Belowground | 3 1.641 8.36 1.24
Grass | 2014 | Belowground | 4 1.736 8.84
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Table C4: Model selection: variables included in linear mixed models developed to explain variation in soil GHG flux

Model selection for methane (CH,) soil flux

# Treatment Year Soil. T  Soil.Moist
Minimum
Adequate + - + -
Model
2 + - + +
3 + + + +
4 + + + +
5 + + + +
6 + + + +
7 + + + +
Global
Model * * * *

Model selection for nitrous oxide (N.O) soil flux

# Treatment Year Soil.T  Soil.Moist
Minimum
Adequate - + - +
Model
2 + + - +
3 + + + +
4 + + + +
5 + + + +
6 + + + +
7 + + + +
Global
Model * * * *

Treatment
. Year

Treatment
. Year

Treatment
: Soil. T

Treatment
: Soil. T

Treatment
: soil.Moist

Treatment
: soil.Moist

Year
:soil.T

Year
:soil.T

Year
: soil.Moist

Year
: soil.Moist

Soil.T
: soil.Moist

Soil.T
: soil.Moist

1|Site

1|Site

df

10
13
16
19
20

21

10
11
12
13
14
17
20

21

AlIC

1170.5

1179.3
1192.0
1211.9
1222.0
1245.4
1254.0

1264.5

AIC

-98.4

-90.4
-78.3
-67.8
-56.8
-46.4
-26.2

-10.6

A
AIC

-8.8

-12.6
-19.9
-10.1
-23.4

-8.6
-10.5

92.4

-12.1
-10.5
-11.1
-10.3
-20.2
-15.6

138.9

Margzinal
R

0.06

0.06
0.06
0.07
0.07
0.08
0.08

0.08

Margzinal
R

0.04

0.04
0.04
0.04
0.04
0.05
0.06

0.07

Conditional
RZ

0.07

0.08
0.08
0.09
0.09
0.10
0.10

0.09

Conditional
RZ

0.05

0.05
0.05
0.05
0.06
0.07
0.08

0.08

Model selection for carbon dioxide (COy) sail flux
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Adequate
Model
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+ +
+ +
+ +
+ +
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. Year

Treatment
: Soil.T
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. soil.Moist

Year
1 soil.T

Year
. soil.Moist

Soil. T
. soil.Moist
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16

19
20

21

AlIC

-47.3

-22.3
-5.4

7.0

A
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-24.9

-16.9
-12.4

454.3

Margzinal
R

0.65

0.65
0.65

0.65

Conditional
RZ

0.66

0.66
0.66

0.66
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Table C5: Output table for minimum adequate model for soil CO, flux. Minimum Adequate Model: CO2 flux ~ treatment + year + soil.T + soil. Moist +

treatment:year + treatment:soil. T + year:soil. Moist + (1[site).

Variable F
treatment 60.313
year 6.783
soil.T 291.284
soil.Moist 5.256
treatment:year 7.139
treatment:soil. T 15.196
year:soil.Moist 4.051

Df
1,571
3,572
1,575
1,576
3,570
1, 569
3,572

p
3.78E-14

0.000169
<2.2e-16
0.022229
0.000103
0.000109
0.007257
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Table C6: Output table of linear mixed models statistics on net ecosystem exchange data. Global model: (NEE~ treatment + year+ wind.speed+rain+tsoil. 1+RH+SWC.1,
data=eddy.data). (NEE~ data=eddy.grass.data). SRC (NEE~
year+wind.speed+rain+tsoil. 1+RH+SWC.1, data=eddy.willow.data). Where ‘tsoil’ is soil temperature, ‘RH’ is relative humidity and ‘SWC.1' is soil moisture. Collinearity was

Grassland model: year+wind.speed+rain+tsoil. 1+RH+SWC.1, willow model:

detected for soil and air temperature; and for soil water content at 2 depths therefore only one term was utilised in the model. Significance codes: ns = not significant, * p <
0.05, ** p<0.01, *** p < 0.001.

global model Grassland model SRC willow model
Variables t p sig t p sig t p sig
treatment -15.102 < 2e-16 ok - - - - - -

year 2921 0.003545 *x -6.75 3.27E-11 rhx 3.604 0.000338 ok
wind.speed -0.071 0.943713 ns -2.79 0.00542 ** 0.495 0.621039 ns
rain 1.966 0.049509 * 2.295 0.02206 * -0.745 0.456724 ns
tsoil.1 -3.472 0.000534 | *** | 4.457 9.79E-06 ok -0.68 0.496799 ns
RH 0.233 0.815815 | ns 0.127 0.89902 ns -1.34 0.18057 ns
SWC.1 -1.931 0.053655 ns 1.061 0.28911 ns 10.173 < 2e-16 ek
PAR -14.141 < 2e-16 *x 1-10.313 < 2e-16 rhx -16.711 < 2e-16 rork
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Table C7: Output table for minimum adequate model for soil N,O flux. Minimum

Adequate Model: N20 flux ~ year + soil.Moist + year:soil. Moist + (1 [site).

Variable
year
soil.Moist
year:soil.Moist

F Df
4.6343 3,591
1.5546 1,594
4.0656 3,591

p
0.003261

0.212948
0.007105

Table C8: Output table for minimum adequate model for soil CH, flux. Minimum

Adequate Model: CH4 flux ~ treatment + soil. T + soil. T:soil. Moist + (1 |site).

Variable
treatment
soil.T
soil.T:soil.Moist

F Df
8.8689 1,591
18.3989 1,592
10.12 1,594

p
0.00302

2.09E-05
0.001543
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APPENDIX D: ADDITIONAL DATA
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data=DOC.data, na.action="na.omit")
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Figure D19: Effects plot for grass C:N ratio. gCNRatio.model = Ime(CN~Year+Month+air.temp+BD, random=~1|Chamber, data=gCN.data,

na.action="na.omit").
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Figure D20: Effects plot for SRC willow C:N model. wCNRatio.model = Ime(CN~Year+Month+air.temp+BD, random=~1|Chamber, data=wCN.data,

na.action="na.omit").
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APPENDIX E: IDENTIFYING GENOTYPES OF SRC WILLOW

Introduction

Willow (Salix spp) breeding programmes were established in 1987 in Sweden and 1996 in the UK
(Lindegaard et al., 2001), to create high yielding, disease- and pest-resistant crops suitable for mass
cultivation and mechanical harvesting. At present there are several high performing lines which are
typically planted in mixed stands to incur greater resistance; a list of the available and outclassed
(commercial) genotypes in the UK can be seen in Table 5.1. As willow varieties are being selected based
on different traits, the genotype of the willow may result in a difference in soil GHG fluxes, litter fall, soil
chemistry and aboveground biomass. For example the unreleased Endurance tends to outperform other
genotypes in all locations for yield but other varieties which are less highly yielding have other
advantages, such as Terra Nova which is free from disease and pests, and is able to retain leaves even if

shadowed by other willow genotypes (Lindegaard et al., 2011).

The aim of this section is to establish which genotypes are planted in the SRC willow field.
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Table E.1: SRC willow genotypes and their commercial availability. Data sourced from the Teagasc & AFBI (2012)

and personal communication with Rothamsted Research (2015).

Genotype Availability in UK Reference Tested for
Advance Possible release 2014 Teagasc & AFBI, 2012 No
Asgerd No longer available Teagasc & AFBI, 2012 Yes
Astrid No longer available Teagasc & AFBI, 2012 Yes
Baldwin Unknown Yes
Beagle Commercially available Teagasc & AFBI, 2012 Yes
Bjorn No longer available Teagasc & AFBI, 2012 Yes
Bowles Unknown Yes
Discovery No longer available Teagasc & AFBI, 2012 Yes
Doris No longer available Teagasc & AFBI, 2012 Yes
Endeavour Commercially available Teagasc & AFBI, 2012 Yes
Endurance Possible release 2015 Teagasc & AFBI, 2012 No
Gudrun Commercially available Teagasc & AFBI, 2012 Yes
Helga Unknown Yes
Inger Commercially available Teagasc & AFBI, 2012 Yes
Jorr Commercially available Teagasc & AFBI, 2012 Yes
Jorunn No longer available Teagasc & AFBI, 2012 Yes
Karin No longer available Teagasc & AFBI, 2012 Yes
Klara Not yet trialled in UK Teagasc & AFBI, 2012 Yes
Loden No longer available Teagasc & AFBI, 2012 Yes
Meteor Possible release 2014 Teagasc & AFBI, 2012 No
Nimrod No longer available Teagasc & AFBI, 2012 Yes
Olof Commercially available Teagasc & AFBI, 2012 Yes
Orm No longer available Teagasc & AFBI, 2012 Yes
Quest No longer available Teagasc & AFBI, 2012 Yes
Rapp No longer available Teagasc & AFBI, 2012 Yes
Resolution Commercially available Teagasc & AFBI, 2012 No
Roth Chiltern Commercially available Teagasc & AFBI, 2012 Yes
Roth Cotswold Commercially available Teagasc & AFBI, 2012 Yes
RR04250 Unknown Yes
Sherwood No longer available Teagasc & AFBI, 2012 Yes
Stott No longer available Teagasc & AFBI, 2012 Yes
Sven Commercially available Teagasc & AFBI, 2012 Yes
Terra Nova Commercially available Teagasc & AFBI, 2012 Yes
Tora Commercially available Teagasc & AFBI, 2012 Yes
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Tordis Commercially available Teagasc & AFBI, 2012 Yes
Torhild Commercially available Teagasc & AFBI, 2012 Yes
Ulv No longer available Teagasc & AFBI, 2012 Yes
Methods

Sampling location

Sampling took place around the location of the 8 experimental plots where soil GHGs were measured
(Figure 4.1). A total of 56 samples were taken from the field; 5 from around the location of each static
chamber and 4 samples from the met station and 4 from the flux tower, one from the north, south, west

and east of each piece of kit.
Leaf sampling from the field

Sampled trees were marked using a GPS, so co-ordinates of the location could later be mapped. Two
juvenile-to-maturing leaves were carefully removed from mid-way up the stem of the tree and placed into
a pre-made foil packet. The foil packets were sealed and placed immediately into a dewar of liquid
nitrogen. Once all samples had been collected they were transported back to the lab and stored at -80°C

until they were ready for processing.
Willow leaf litter DNA extraction

Leaf material for each sample was ground in liquid nitrogen using pre-chilled pestle and mortar to ensure
samples did not defrost during grinding. Ground leaf material was transferred into 2 ml Eppendorf Safe-
Lock tubes and stored at -80°C until ready for extraction. DNA was extracted from the ground leaf
material using a modified hexadecyltrimethylammonium bromide (CTAB) extraction protocol (Doyle et
al., 1987). The quantity of DNA was measured using a Thermoscientific NanoDrop 1000
spectrophotometer v3.7. Any samples which were found to have less than 100 ng/ul of DNA were re-
extracted. Some samples were re-extracted up to 4 times, if at the end of this time they still did not yield
more than 100 ng/ul of DNA the highest yielding extraction was taken. All extracted samples were then
sent to Steve Hanley at Rothamsted Research (Harpenden, UK) where they were screened with 8
microsatellite markers which can differentiate the varieties and compared to a database of 34 known
varieties. This work was unable to be completed at the University of Southampton because the markers

are not readily available and we do not have these facilities available.
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Results

Samples from the SRC willow field consisted of five different genotypes, two of which did not match
anything in Rothamsted’s database. The three identified genotypes were found to be Tora, Terra Nova,
and Tordis. A field map showing the locations of the identified genotypes can be seen in Figure 5.1 and
the genotypes for each chamber location can be found in Table 5.2. The samples which did not match any
existing known genotypes were re-tested and the same result was found. It is believed that it is not a
technical or contamination issue as an allele was found in one of the samples that is unique and not in any
other varieties. As the willow field was harvested, there is no way to collect leaf material from exactly the
same tree and repeat the protocol.

Table E.2: Willow genotypes identified for tree closest to each Static Chamber location in willow SRC field.

Chamber Tree genotype
number

1 Tora

2 Terra Nova

3 Terra Nova

4 Terra Nova

5 Tordis

6 Terra Nova

7 Terra Nova

8 Tora
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Terra Nova
Tora
Tordis

Unknown

© 2014 Google

Figure E.1: Field map of Gatewick field showing location of sampled SRC willow trees and their corresponding

genotype.
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Discussion

The purpose of this experiment was to identify the genotypes of the SRC willow varieties. SRC willow
crops are typically planted in rows using a mix of 4-6 different genotypes to confer pest, weather and
disease resistance in the crop. The owner of the field was told by the contractors who planted the field:
“The varieties planted were a mix of at least 4 taken from Tora, Torhild, Tordis, Jorunn, Jorr, Sven, Olof
and Sherwood”, with no further specifics. There is a possibility that the ‘unknown’ genotypes are one of
the listed above but were unable to be identified due to low yielding DNA (‘001’ and ‘Flux2’ had 13.82
and 14.85 ng/ul of DNA respectively). However as the field was harvested it is very difficult to identify
the exact tree from which these samples were collected and therefore no further efforts were be made to
try to identify these two individuals. From Figure 5.1 it can be seen that the locations of the genotyped
trees and the colouring of the crops match up very well. Terra Nova is located centrally in a lighter

coloured canopy and Tora and Tordis on the field margins in a darker canopy.

Tora is the benchmark against which other varieties are compared due to its consistently high yields
across all regions of the UK. It has some susceptibility to pests and a medium tolerance to frost, as well as
a quite low calorific value resulting in a need for more chipping to produce the same amount of energy as
other varieties. Terra Nova is one of the lowest yielding willow varieties but has a high conference for
pest and disease resistance; it also has one of the highest calorific values compared to other varieties.
Under good conditions, Tordis can have comparable yields to Tora, but on more depleted lands it does
not perform as well. Tordis is considered one of the best varieties for cutting production and biomass

productivity, with good yields and an above average calorific value (Teagasc & AFBI, 2012).
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Abstract

This article evaluates the suitability of the ECOSSE model to estimate soil greenhouse gas (GHG) fluxes
from short rotation coppice willow (SRC-Willow), short rotation forestry (SRF-Scots Pine)
and Miscanthus after land-use change from conventional systems (grassland and arable). We simulate
heterotrophic respiration (Ry), nitrous oxide (N,O) and methane (CH,) fluxes at four paired sites in the
UK and compare them to estimates of Ry, derived from the ecosystem respiration estimated from eddy
covariance (EC) and Ry, estimated from chamber (IRGA) measurements, as well as direct measurements
of N,O and CHjy fluxes. Significant association between modelled and EC-derived R, was found
under Miscanthus, with correlation coefficient (r) ranging between 0.54 and 0.70. Association between
IRGA-derived Ry, and modelled outputs was statistically significant at the Aberystwyth site (r = 0.64), but
not significant at the Lincolnshire site (r =0.29). At all SRC-Willow sites, significant association was
found between modelled and measurement-derived Ry, (0.44 <r <0.77); significant error was found only
for the EC-derived Ry, at the Lincolnshire site. Significant association and no significant error were also
found for SRF-Scots Pine and perennial grass. For the arable fields, the modelled CO,correlated well just
with the IRGA-derived Ry, at one site (r = 0.75). No bias in the model was found at any site, regardless of
the measurement type used for the model evaluation. Across all land uses, fluxes of CH4 and N,O were
shown to represent a small proportion of the total GHG balance; these fluxes have been modelled
adequately on a monthly time-step. This study provides confidence in using ECOSSE for predicting the

impacts of future land use on GHG balance, at site level as well as at national level.
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Introduction

The interest in using bioenergy crops as an alternative energy source to fossil fuels, and to reduce
greenhouse gas (GHG) emissions, has increased in recent decades (Hastings etal., 2014). The
commitment of the European Union is to increase the percentage of energy from renewable sources to 20%
of total energy consumption by 2020 (EU, 2009). Under the Climate Change Act 2008 (Great
Britain, 2008), the UK government committed to reduce GHG emissions by 80% in 2050 compared
to 1990 levels; the use of bioenergy could contribute to this target using dedicated ‘second generation’
(2G) lignocellulosic crops/plantations, including short rotation coppice (SRC), Miscanthus and short
rotation forestry (SRF) (Somerville et al., 2010; McKay, 2011; DECC, 2012; Valentine et al., 2012).
Consequently, a substantial land-use change (LUC) may occur, and it might have considerable

environmental and economic impact (Fargione et al., 2008; Searchinger et al., 2008; Gelfand et al., 2011).

Carbon dioxide (CO;) emissions of bioenergy had previously been assumed to be zero (Gustavsson
et al., 1995; UK, 2008) on the assumption that emissions during combustion are balanced by the carbon
(C) uptake during the growth of these bioenergy plantations, but this fails to take account of GHG
emissions following LUC and subsequent crop growth. To this end, it is important to assess the GHG

balance of bioenergy crops, particularly during the first years after conversion.

Two approaches have been widely used to monitor CO; fluxes: eddy covariance (EC) and the enclosure
(or chamber) method. Eddy covariance (McMillen, 1988; Aubinet et al., 2012) is a technique developed
to estimate land—atmosphere exchange of gas and energy at ecosystem scale. The measured CO; flux,
known as net ecosystem exchange (NEE), includes ecosystem respiration (Reco) Which consists of
heterotrophic (R,) and autotrophic (R,) respiration, and gross primary production (GPP) at ecosystem
scale. As photosynthesis only occurs during daylight hours, the night time flux is typically used to
partition the NEE signal between GPP and Rec. A flux-partitioning algorithm that defines a short-term
temperature  sensitivity of Reo is  applied to extrapolate CO,fluxes from night to day
(Reichstein et al., 2005). In a plant removal experiment (Hardie et al., 2009), the total R, from the whole
soil profile was found to be approximately between 46 and 59% of the total Reco. Abdalla et al. (2014)
used these values to simulate Ry, from selected European peatland sites using a soil process-based model,
ECOSSE.

Enclosure methods have been developed to measure CO, efflux from soil; these methods involve

covering an area of soil surface with a chamber and the soil CO, efflux can be determined using two main
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modes: dynamic (closed or open) and closed static. In the former mode, a steady stream of air is pumped
directly in to the chamber (Christensen, 1983; Skiba et al., 1992). The latter mode simply involves
closing the chamber for approximately 20-60 min and taking gas samples at intervals for analysis
(Hutchinson & Mosier, 1981), or circulating the chamber air through a nondestructive infrared gas
analyser (IRGA) for approximately 2 min (Norman et al., 1992; Smith & Mullins, 2000). Several studies
have used the closed chamber method combined with root-exclusion methods, tree grilling or stable
isotopes to understand the relative contribution of R, and R, to total soil respiration (Ry) under different

land uses.

Byrne & Kiely (2006) demonstrated that R, under grassland soil in Ireland accounted for approximately
50% of Ry during the summer months and 38% during the rest of the year. Pacaldo et al. (2013) reported
a contribution of R, of about 18-33% of R,; under SRC-Willow at three different development stages in
the USA. In a study on commercial farms located across the UK, Koerber et al. (2010) reported a
contribution of Ry on Ry for wheat of approximately 32% from January to May, 79% from June to
September and 67% from October to December. A meta-analysis of soil respiration partitioning studies
reported values for the ratio Ry/Ry for forest soils as ranging from 0.03 to 1.0 (Subke et al., 2006).
Overall, the ratio was higher for boreal coniferous forests than temperate sites. In temperate, mixed
deciduous forests ranges for Ry/Rit 0f 0.3-0.6 were reported (Gaudinski et al., 2000; Borken et al., 2006;
Millard et al., 2010; Heinemeyer et al., 2012). Several studies have also shown that bioenergy plantations
have low nitrous oxide (N.O) emissions compared to agricultural crops because of their lower nutrient
requirements, thus reducing the fertilizer requirements, and more efficient nutrient uptake, thus increasing
competition with microbial organisms of N,O production (Flessa et al., 1998; Hellebrand et al., 2010;
Drewer et al., 2012).

Methane (CH,) is another important GHG that may be a substantial component of the GHG balance from
several terrestrial ecosystems (van den Pol-van Dasselaar et al., 1999). In agricultural systems, soil is
typically a small net source or sink for CH4 (Boeckx & Van Cleemput, 2001). Bioenergy crops usually
present either a small CH,sink (Hellebrand et al., 2003; Kernetal., 2012) or a small CH, source
(Gelfand et al., 2011). The magnitude of the CH, flux is typically much smaller than CO, and N0, in
both agricultural soils (Boeckx & Van Cleemput, 2001) and bioenergy crops (Hellebrand et al., 2003).
However, very few studies (Hellebrand et al., 2003; Gelfand et al.,2011; Kern et al., 2012) have reported
on the contribution of CH4 emission from bioenergy systems, increasing uncertainty in the direction of
this small flux (Zona et al., 2013).
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Several factors control the GHG emissions of both bioenergy and conventional crops, such as site
management, for example fertilization (Crutzen et al., 2008; Hellebrand et al., 2008, 2010), previous land
use (Smith & Conen, 2004) and climatic conditions (Flessa et al., 1998; Hellebrandet al., 2003). Despite
the high variability of the GHG fluxes, to our knowledge, only one study in the UK (Drewer et al., 2012)
has reported on all three GHG fluxes (CO;, N,O and CH,;) from soils under bioenergy crops
(Miscanthus and SRC-Willow) and, in particular, after transition from former conventional systems. To
fill this gap, soil models are a useful tool to predict GHG fluxes when site measurements are not available,
especially when studying the effects of the change in land use over time and under different climatic

conditions over large areas.

However, soil models need to be extensively tested under a range of climates and soils before being
applied under conditions different from those used to parameterize and calibrate the model itself. In fact,
model evaluation involves running a model using input values that have not been used during the
calibration process, demonstrating that it is capable of making accurate simulations under a wide range of
conditions (Moriasi et al., 2007). A model can only be properly evaluated against independent data and a
useful model should be able to simulate those data with some degree of accuracy (Smith & Smith, 2007).

Although several soil models have been developed for conventional agricultural and forest systems, most
of them have not been fully parameterized and effectively tested for application on 2G bioenergy crops,
such as Miscanthus, SRF and SRC (Dimitriouetal., 2012; Borzecka-Walker et al., 2013;
Robertson et al., 2015). Here, we focus on the applicability of the process-based model ECOSSE to
predict soil CO, (heterotrophic respiration), N,O and CHy, after transition from conventional to bioenergy

crops.

The ECOSSE model was developed mainly to simulate the C and nitrogen (N) cycles using minimal input
data on both mineral and organic soils (Smith et al., 2010a,b). The ECOSSE model has been previously
evaluated across the UK to simulate the effect on soil C of LUC to SRF
(Dondini et al., 2015a), Miscanthus and SRC-Willow (Dondini et al., 2015b), to simulate soil N,O
emissions in cropland sites in Europe (Smith et al., 2010b; Bell et al., 2012) and CO, emissions from
peatlands (Abdalla et al., 2014).

This article evaluates the suitability of ECOSSE for estimating soil GHG fluxes from SRC-Willow, SRF-
Scots Pine and Miscanthus soils in the UK after LUC from conventional systems (grassland and arable).
Based on previously published recommendations, a combination of graphical techniques and error
statistics has been used for model evaluation (Moriasi et al., 2007). Model testing is often limited by the
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lack of field data to which the simulations can be compared (Desjardins et al., 2010). In this study, the
model is evaluated against 2 years of observations at four locations in the UK, comprising one transition
to SRF-Scots Pine, three transitions to SRC-Willow and two transitions to Miscanthus. Modelled GHG
fluxes from conventional systems have also been evaluated against field measurements (three grassland

and two arable fields).

Materials and methods

ECOSSE model

The ECOSSE model includes five pools of soil organic matter, each decomposing with a specific rate
constant except for the inert organic matter (IOM) which is not affected by decomposition.
Decomposition is sensitive to temperature, soil moisture and vegetation cover; soil texture (sand, silt and
clay), pH and bulk density of the soil along with monthly climate and land-use data are the inputs to the
model (Coleman & Jenkinson, 1996; Smith et al., 1997). The ECOSSE model is able to simulate C and N
cycle for six land-use categories of vegetation: arable, grassland, forestry, seminatural, Miscanthus and

short rotation coppice willow (SRC-Willow).

The vegetation input to the soil (SI) is estimated by a subroutine in the ECOSSE model which uses a
modification of the Miami model (Lieth, 1972), a simple model that links the climatic net primary
production of biomass (NPP) to annual mean temperature and total precipitation (Grieser et al., 2006).
For a full description of the ECOSSE model and the plant input, estimates refer to Smith et al. (2010a)
and Dondini et al. (2015b).

The minimum ECOSSE input requirements for site-specific simulations are as follows:
Climate/atmospheric data:
« 30-year average monthly rainfall, potential evapotranspiration (PET) and temperature,
e Monthly rainfall, temperature and PET.
Soil data:
« Initial soil C content (kg ha ™),

« Soil sand, silt and clay content (%),
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« Soil bulk density (g cm™3),
e Soil pHand
o Soil depth (cm).
Land-use data:
e Land use for each simulation year.

The initialization of the model is based on the assumption that the soil column is at steady state under the
initial land use at the start of the simulation. Previous work has used soil organic carbon (SOC) measured
at steady state to determine the plant inputs that would be required to achieve an equivalent simulated
value (e.g. Smithetal., 2010a). This approach iteratively adjusts plant inputs until measured and
simulated values of SOC converge. In the absence of additional measurements, estimated plant inputs
were calculated from a feature built in the ECOSSE model which combine the NPP model Miami
(Lieth, 1972, 1973), land-management practices of the initial land use and measured above-ground

biomass (details are given in Dondini et al., 2015b).

Data

In 2011-2013, four sites were sampled in Britain using a paired site comparison approach (Keith
etal., 2015; Rowe et al., 2015). The sites and the relative measurements contribute to the ELUM
(Ecosystem Land Use Modelling & Soil Carbon GHG Flux Trial) project (Harris et al., 2014). Each site
consisted of one reference field (arable or grassland, depending on the previous land use of the bioenergy
fields) and one or more adjacent bioenergy fields (Miscanthus, SRC-Willow, SRF-Scots Pine), for a total
of six transitions to bioenergy at four site across UK (Table 1). A full description of the sites can be found
in Drewer et al. (2012, 2015); J. McCalmont, N. McNamara, I. Donnison and J. Clifton-Brown (in
preparation); and Z. M. Harris, G. Alberti, J. R. Jenkins, E. Clark, R. Marshall, R. Rowe, N. McNamara

and G. Taylor (in preparation).
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Table 1. Details of soil C, soil bulk density and soil pH to 1 m soil depth, as well as information on the land-use
history at the study fields. Soil texture to 1 m soil depth was extracted from the soil database (1 km resolution)
described in Bradley et al. (2005).

) Latitude, | Establishment Nitrogen | Bulk density
Site Land use ) Carbon (%) >
longitude | year (%) (gcm™)
West Short rotation coppice
) 50.9,-0.4 2008 0.63 0.17 15
Sussex (SRC)-Willow
Grassland 50.9, -0.4 2000 0.53 0.17 1.55
East Short rotation forestry
) 56.0, -3.6 2009 0.95 0.18 1.47
Grange (SRF)-Scots Pine
Grassland 56.0, -3.6 2009 1.3 0.17 1.49
SRC-Willow 56.0, -3.6 2009 1.57 0.17 1.38
Arable 56.0, -3.6 Pre-1990 1.37 0.18 1.57
Lincolnshire  SRC-Willow 53.1,-0.3 2006 1.26 0.11 141
Miscanthus 53.1,-0.4 2006 13 0.13 153
Arable 53.1,-0.5 Pre-1990 1.47 0.13 1.37
Aberystwyth  Miscanthus 52.4,-4.0 2012 0.98 0.25 1.21
Grassland 52.4,-4.0 Pre-2007 1.16 0.26 1.45

At each bioenergy and reference field, the NEE data were obtained from continuous EC measurements
(McMillen, 1988; Aubinet et al., 2012) using open path IRGAs (LI-7500) and sonic anemometers. All
details regarding the EC data corrections, quality control, footprint and gap filling procedures can be
found in Aubinet et al. (2003). The night time fluxes were used to partition the NEE flux measurements
into GPP and R, (Reichstein et al., 2005).

Soil GHG fluxes were measured on a monthly basis at eight points randomly distributed within each field.
Soil CO; fluxes were measured using an IRGA connected to an SRC-1 soil respiration chamber (PP
Systems, Amesbury, MA, USA). Measurements of soil CH4 and N,O fluxes were made using a static
chamber method (approx. 30 I) with the addition of a vent to compensate for pressure changes within the
chamber during times of sampling. Gas samples were analysed by gas chromatograph. All details
regarding the chamber data can be found in Drewer et al. (2012), Yamulki et al. (2013) and Case et al.
(2014).

Measurements of soil C, soil bulk density and soil pH to 1 m soil depth, as well as information on the
land-use history, were collected for each field (Keith et al., 2015; Rowe et al., 2015). Soil texture was
measured for each site up to a depth of 30 cm; values to 1 m soil depth were extracted from the soil
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database (1 km resolution) described in Bradley et al. (2005), which is a collated soils data set for
England and Wales, Scotland and Northern Ireland. Air temperature and precipitation data at each
location were extracted from the E-OBS gridded data set from the EU-FP6 project ENSEMBLES,
provided by the ECA&D project (Haylock et al., 2008). This data set is known as E-OBS and is publicly
available (http://eca.knmi.nl/). For each location, monthly air temperature and precipitation for the
30 years before measurements started were used to calculate a long-term average (Table 2). At each site,
air temperature and precipitation were collected during the entire study period and monthly values were
used as input to the model. Monthly PET was estimated using the Thornthwaite method
(Thornthwaite, 1948), which has been used in other modelling studies when direct observational data
have not been available (e.g. Smith et al., 2005; Dondini et al., 2015a).
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Table 2. Long-term (30 years) monthly rainfall, temperature, potential evapotranspiration (PET). Monthly rainfall and temperature were extracted from the
E-OBS data set (Haylock et al., 2008;http://eca.knmi.nl/). Monthly PET was estimated using the Thornthwaite method (Thornthwaite, 1948).

Aberystwyth East Grange Lincoln West Sussex
Month Rain  Temperatur PET Rai Temperature Rain Temperature PET Rain Temperature PET

(mm) e (C) (mm)  Rain(mm) e PETMM) mm) () (mm)  (mm) (C) (mm)
January 152 4 15 103 3 11 48 4 13 80 5 16
February 112 4 17 72 3 15 37 4 17 54 5 18
March 124 5 29 74 5 27 41 6 30 55 7 30
April 86 7 45 53 7 47 43 9 48 46 9 48
May 82 10 69 61 10 72 45 12 73 47 12 73
June 93 13 89 60 13 96 56 14 97 48 15 95
July 105 15 101 67 14 105 49 17 112 49 17 110
August 114 14 93 77 14 96 55 17 103 52 17 103
September 121 13 71 84 12 70 49 14 76 60 15 79
October 174 10 46 100 9 43 55 11 46 99 12 51
November 171 7 27 94 5 22 53 7 25 88 8 29
December 168 4 17 91 3 12 51 4 14 86 6 18
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Model evaluation and statistical analysis

Monthly simulations of soil CO,, N,O and CH, fluxes were evaluated against monthly chamber
measurements. In addition, the soil CO; predicted by the ECOSSE model was compared to estimates
of Ry, derived from the NEE measured by the EC.

At each site, the ECOSSE model has been run for the reference field (i.e. no land-use transition) and the
bioenergy crop field (i.e. following transition from the reference land cover). The reference fields have
been run for the conventional crop (arable, grassland) with no LUC, and the length of the simulations has
been defined by the age of the plantation. At the bioenergy sites, the model has been run for the reference
fields (conventional crop) with LUC to bioenergy crop; the length of the simulations was based on the
time after transition to bioenergy crop. Measured soil characteristics and meteorological data have been
used as inputs to drive the model (see above for input details), and the results of the simulations were

compared to the GHG fluxes measured at the sites.

We expected a monthly underestimate of the soil CO, flux simulations because the ECOSSE model
simulates Ry, (from living micro-organisms + decomposition of old C sources, i.e. saprotrophic), while the
CO,, fluxes measured at the sites represent the total CO, efflux from the soil profile (R, + Ry, chamber
measurements) or NEE (EC measurements). To compare the modelled and measured Ry, we estimated
the Ry, as a proportion of the measured CO, flux, depending on the measurement type (except EC data),

vegetation type and growing season.

The EC measurements of NEE were used to derive Reco; to our knowledge, only the study by Abdalla
et al. (2014) has reported estimates of Ry from Rec,. Abdalla et al. (2014) applied the approach proposed
by Hardie et al. (2009) for peaty soils and reported a contribution of Ry, t0 Rego 0f 46-59%.

To represent the variations in R, throughout the year, Abdalla et al. (2014) assumed that R, was at the
lowest value of the range (46% Reco) during the summer (June-August), the highest value (59%Reco)
during the winter (December—February) and at the mean value (52.5% Reco) during the rest of the year
(March—-May and September—November). In this study, we used the same approach of Abdalla et al.

(2014) to derive Ry from EC measurements from all land-use systems.

Chamber measurements represent the total CO; flux from the soil as the sum of R; and Ry, with the
exception of grassland where exclusion of full leaves from the chamber is difficult, and therefore, above-
ground plant respiration is also included in the measurements. We conducted a literature review to

determine the partitioning of Ry measured by the chambers under different vegetation types. Additional
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experiments within the ELUM project were also undertaken to directly quantify R, and R, at selected
network sites (data not shown); where available, we used theRpsite data to
estimate R, from Ry, measured by the chambers (Lincolnshire — Miscanthus, West Sussex — SRC-Willow,
Aberystwyth — Miscanthus). An overview of the data source and the monthly proportion of Ry, for each

vegetation type and at each site are shown in Table 3.
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Table 3. Contribution of heterotrophic respiration (Ry) on total respiration (Ry) at the study sites.

Arable SRC-Willow Grassland SRF-Scots Pine
fooeretal, Pacatloctal Miscanthis g\ e & Kiely (2006)  Millard et al. (2010)
January 32% Ry 75% Ry 41% Ry
February 32% Ryt 75% Riot 41% Ryt
March 32% Ry 75% Ry 85% Ryot
April 32% Ryt 75% Riot 85% Riot
L May 32% Ryt 75% Ryt 85% Ryot
@ June 79% R 75% Rex 85% Rio"
8 July 79% Riot 75% Ryot 44% Ryt
'5 August 79% Ry 75% Riot 44% Rtota
September  79% Ry 75% Ryt 44% Ryt
October 67% Ryt 75% Riot 44% Ry,
November 67% Ry 75% Ryot 41% Ry
December 67% Ry 75% Riot 41% Ryt
January 82% Ryt 60% Rio(’
February 82% Ry 60% Rio(’
March 82% Riy 60% Riot’
April 82% Ry 60% Ry’
$ May 82% Ry 60% Riot”
% June 82% Rio 40% Ry’
7 July 82% Ryo 40% Riof’
2 August 82% Rio" 40% Riot”
September 82% Ryt 60% Rio(’
October 82% Ry 60% Ry’
November 82% Ryt 60% Rio(’
December 82% Riot 60% Ry’
January 62% Riot 60% Riot’
February 62% Ryt 60% Ry’
March 36% Ryt 60% Rio(’
April 36% Rioi® 60% R’
Fé May 36% Ryt 60% Rio’
= June 9 a 9 b
2 July 2202 Etma 38‘;0) Etmb
8 tot tot
< August 36% Rioi® 40% Ryof’
September 36% Riot 60% Riot’
October 36% Ryt 60% Ry’
November 62% Riot 60% Riot’
December 62% Ryt 60% Ry’
January 32% Ryt 25% Ryt 60% Ryt 61% Ryt
7 © February  32% R 25% Ry 60% Ry’ 61% R
(i g March 32% Ryt 25% Ryt 60% Ry, 61% Ry
April 32% Ryt 25% Ryt 60% Ryt 61% Ryt
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May 32% Rtot 25% Rtot 60% Rtotb 61% Rtot

June 79% Riot 25% Riot 40% Ry’ 61% Ryt
July 79% Ryt 25% Ryt 40% Ry 61% Ry
August 79% Riot 25% Ryt 40% Ry 61% Ryt
September  79% Ry 25% Riot 60% Ry 61% Ryt
October 67% Riot 25% Riot 60% Ryt 61% Ry
November 67% Ry 25% Ryt 60% Ryt 61% Ry
December 67% R 25% Riot 60% Rtotb 61% Riot

 Values derived from direct measurements on root-exclusion plots.
® Where Ryt is 60% of measured CO, to account for plant respiration.

A quantitative statistical analysis was undertaken to determine the coincidence and association between
measured and modelled values, following methods described in Smith et al. (1997) and Smith & Smith
(2007). The statistical significance of the difference between model outputs and experimental
observations can be quantified if the standard error of the measured values is known
(Hastings et al., 2010). The standard errors (data not shown) and 95% confidence intervals around the

mean measurements were calculated for all field sites.

The degree of association between modelled and measured values was determined using the correlation
coefficient (r). Values for r range from —1 to +1. Values close to —1 indicate a negative correlation
between simulations and measurements, values of 0 indicate no correlation and values close to +1
indicate a positive correlation (Smith & Smith, 2007). The significance of the association between

simulations and measurements was assigned using a Student's t-test as outlined in Smith & Smith (2007).

Analysis of coincidence was undertaken to establish how different the measured and modelled values
were. The degree of coincidence between the modelled and measured values was determined using the
lack of fit statistic (LOFIT), and its significance was assessed using an F-test (Whitmore, 1991) indicating
whether the difference in the paired values of the two data sets is significant. The EC measurements were
not replicated, so the coincidence between measured and modelled values was determined using the mean
difference (M), calculated as the sum of the differences between measured and modelled values and
divided by the total number of measurements (Smith et al., 1997). The variation across the different
measurements was then used to calculate the value of Student'st-test and compared to
the t distributions (two-tailed test) to obtain the probability that the mean difference is statistically

significant. All statistical results were considered to be statistically significant at P < 0.05.
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Results

The ECOSSE model was evaluated by comparing the outputs to the EC-derived and IRGA-derived Ry,
fluxes from eleven fields over four sites, representing the following land-use systems: grassland
(permanent), arable (barley), Miscanthus, SRC-Willow and SRF-Scots Pine.

Soil CO; fluxes under Miscanthus were measured at two sites, Lincolnshire and Aberystwyth. At both
sites, the modelled Ry, followed the same seasonal pattern of measured data (Fig. 1). At the Lincolnshire
site, a statistically significant association between modelled and EC-derived Ry(r = 0.54) was found, but a
small significant bias in the model simulations when tested against the EC-derived R, was also found
(Table 4). On the other hand, the IRGA-derived Ry, did not correlate well with the modelled outputs

(r =0.29), but no bias was found in the model simulations (Table 4).
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Figure 1. Eddy covariance derived (dotted line with diamond markers), IRGA derived (filled triangle)
and modelled (solid line with circle markers) monthly heterotrophic CO, (Ry) under

Miscanthus plantations during the measurement period.
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Table 4. ECOSSE model performance at simulating heterotrophic respiration (R;,) at the study sites

Land-use system Miscanthus SRC-Willow SRE}iZOIS Grass Arable

Site Aberystwyth Lincolnshire West Sussex East Lincolnshire East Grange West Sussex Aberystwyth East Lincolnshire East
Grange Grange Grange

Measurement type EC IRGA EC IRGA EC IRGA IRGA EC IRGA EC IRGA EC IRGA IRGA IRGA EC IRGA IRGA

r = Correlation Coeff. 0.7 0.64 0.54 0.29 0.77 0.75 0.73 0.7 0.44 0.7 0.62 0.87 0.48 0.52 0.54 0.5 0.75 0.03

t = Student's t of r 4.65 3.92 2.88 1.44 3.99 5.41 3.72 4.32 2.32 4.1 3.6 5.33 2.66 2.85 2.98 191 531 0.12

t-value at (P = 0.05) 2.07 2.07 2.09 2.07 2.2 2.07 2.18 2.09 2.07 2.1 2.08 2.26 2.07 2.07 2.08 2.2 2.07 2.16

LOFIT = Lack of Fit

F N/A 0.88 N/A 0.42 N/A 0.51 0.6 N/A 0.55 N/A 0.4 N/A 0.5 1.47 1.14 N/A 0.61 0.27

F (Critical at 5%) N/A 1.6 N/A 1.58 N/A 1.58 1.84 N/A 1.58 N/A 1.61 N/A 1.58 1.6 1.61 N/A 1.6 1.8

M = Mean Difference . - 260 - -3 -3 - 233 - 10 - -104 - - - 530 -

(Kg Cha month™)

t = Student's t of M 1.89 - 4.8 - -0.57 -0.57 - 6.14 - 3.6 - -2.23 - - - 5.54 -

t-value (Critical at

2.5% — two-tailed) 2.23 - 2.09 - 2.2 2.2 - 2.09 - 2.1 - 2.26 - - - 2.2 -

Number of Values 24 24 22 22 13 25 14 21 22 24 23 11 24 24 23 13 22 14

Comparison of model outputs with eddy covariance (EC)-derived and IRGA-derived R;. Association is significant for t > t-value (at P = 0.05). Error between measured and modelled values is not significant for F < F-value

(critical at 5%). Mean difference is not significant for t < t-value (Critical at 2.5% — two-tailed).
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At the Aberystwyth site, significant association between modelled and measurement-derived Ry, was
found, regardless the type of measurement used. A slightly higher correlation coefficient was calculated
correlating the modelled Ry, with the EC-derived Ry, (r = 0.70) compared to the one arising from the
correlation with the IRGA-derived R, (r = 0.64). No significant error between simulated and IRGA-
derived Ry, was found for this site, but a bias in the model was found when it was tested against the EC-
derived Ry, (Table 4).

The model performance to simulate soil CO, fluxes under SRC-Willow was tested against measurements
taken at three sites: Lincolnshire, West Sussex and East Grange (Fig. 2). At all sites, a good agreement
was found between simulations and measurement-derived Ry, with r values ranging from 0.44 to 0.77.
Also, no significant error between simulated and measurement-derived Ry was found, with the exception
of the EC-derived Ry, at the Lincolnshire site (Table 4).
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Figure 2. Eddy covariance derived (dotted line with diamond markers)

measurement period.

289



Model performance to simulate soil CO; fluxes under SRF-Scots Pine has been evaluated against data
collected at the East Grange site (Fig. 3). The modelled outputs followed the same pattern of the
measured values, and the statistical analysis showed good correlation with both IRGA- and EC-
derived Ry. Moreover, we found no statistically significant error between modelled and measured values

as well as no bias in the model (Table 4).
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Figure 3. Eddy covariance derived (dotted line with diamond markers), IRGA derived (filled triangle) and modelled
(solid line with circle markers) monthly heterotrophic CO, (R;) under short rotation forestry-Scots Pine plantation

during the measurement period.

Model simulations of soil R, have also been evaluated for conventional crops (arable and grassland).
Overall, the simulated CO, follows the same pattern as the measured values at all sites (Figs 4 and 5). The
statistics highlighted a significant correlation (ranging between 0.48 and 0.87 across all sites and
measurements types) and no significant error between modelled and measured values as well as no model
bias under perennial grass (Table 4). For the arable fields, the modelled CO, was significantly correlated
to the measured value just for the IRGA-derived Ry, at the Lincolnshire site (r = 0.75); however, no bias in
the model was found at any site, regardless of the measurement types used for the model evaluation
(Table 4).
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Figure 4. Eddy covariance derived (dotted line with diamond markers), IRGA derived (filled triangle) and modelled
(solid line with circle markers) monthly heterotrophic CO, (R;) under arable plantations during the measurement

period.
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Figure 5. Eddy covariance derived (dotted line with diamond markers), IRGA derived (filled triangle) and modelled
(solid line with circle markers) monthly heterotrophic CO, (R;) under grassland plantation during the measurement

period.



Monthly fluxes of CH, and N,O were shown to be highly variable, both spatially and temporally, across
all land uses, so we present an example of the correlation between modelled and measured soil N,O and
CHy, fluxes for each land use. Both N,O and CH, are very small fluxes and the model outputs were within
the errors of the measurements, for both GHGs and at all sites (data not shown). However, low correlation
between measured and modelled values has been found for the majority of the sites, ranging from —0.02
to 0.61 for N,O and from —0.29 to 0.53 for CH4. The high variability of the measured N,O and
CH, fluxes led to a statistically significant error between simulated and measured values at most of the
study sites (Tables 5 and 6).
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Table 5. ECOSSE model performance at simulating N,O fluxes at the study sites

Land-use SRF-
Miscanthus SRC-Willow Scots Grass Arable
system h
Pine
. . . . . East West East West East . . East
Site Aberystwyth Lincolnshire Lincolnshire Grange Sussex Grange  Sussex Aberystwyth Grange Lincolnshire Grange
;gfo”e'at'o” 0.34 -0.15 -0.13 0.12 -0.02  0.19 0.25 0.06 -0.12 ~-0.20 0.61
Lf:rSt”dems o1 0.64 0.66 048 008  0.86 124 03 0.56 0.97 3.25
t-value at
(P = 0.05) 2.07 2.1 2.06 2.12 2.06 2.08 2.06 2.07 2.08 2.07 2.1
LOFIT = Lack of
Fit
F 0.37 3.34 54.66 22.62 0.37 40.75 0.62 0.68 312.92 0.43 0.25
F (Critical at 5%) 1.63 1.69 1.59 1.74 1.59 1.63 1.59 1.62 1.63 1.6 1.69
Number of 24 20 26 18 26 23 26 24 23 25 20
values
Association is significant for t > t-value (at P = 0.05). Error between measured and modelled values is not significant for F < F-value (critical at 5%).
Table 6. ECOSSE model performance at simulating CH, fluxes at the study sites
Land-use system Miscanthus SRC-Willow SRF-Scots Pine Grass Arable
) ) ) ) ) West West East ) . East
Site Aberystwyth Lincolnshire Lincolnshire East Grange East Grange Aberystwyth Lincolnshire
Sussex Sussex Grange Grange
r = Correlation Coeff. 0.31 0.28 0.18 0.53 0.18 0.53 0.27 0.51 0.41 -0.29 0.05
t = Student's t of r 1.52 1.28 0.88 2.51 0.91 2.68 1.4 2.81 1.91 1.44 0.2
t-value at (P = 0.05) 2.07 2.09 2.07 2.12 2.06 2.1 2.06 2.07 2.1 2.07 2.1
LOFIT = Lack of Fit
F 0.33 3.61 6.5 0.53 0.61 2.38 0.3 0.34 4.09 0.66 0.76
F (Critical at 5%) 1.62 1.65 1.6 1.74 1.59 1.63 1.59 1.62 1.63 1.62 1.69
Number of values 24 22 25 18 26 23 26 24 23 24 20
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Discussion

Soil CO, emissions under Miscanthus have been quantified at two sites (Lincolnshire and Aberystwyth)
using two different sampling methods (EC and IRGA methods). At both sites, we found a high correlation
between measured and modelled Ry, ranging from 0.54 to 0.60, except for the IRGA values at
Lincolnshire site (r =0.29, Table 4). The lack of association at this site was mainly due to differences
between modelled and IRGA-derived Ry, in the year 2013 (Fig. 1b). In April 2013, the soil was harrowed
and disked to break up the rhizomes for improved yield, so the system was out of balance; the farmer also
applied waste wood products, which led to high CO, emissions, undetected by the model (May-August
2013 in Fig. 1b) as this was not included in the management file. In the ECOSSE model, the patterns of C
and N debris return during the growing season follow a standard exponential relationship, as originally
derived by Bradbury et al. (1993). Any alteration, such as harrowing or waste application, cannot be
easily entered by the user. The scope of the present study is to evaluate the model using independent data
which has not been used to develop the model. Therefore, we deliberately chose not to apply any
modifications to the model to fit the measured data. However, the model was able to simulate

independent data derived from two different sources with a good degree of accuracy.

Soil CO, emissions under SRC-Willow and SRF-Scots Pine plantations have been quantified using the
same sampling methods. At all sites, the modelled Ry, significantly correlated with all types of

measurements, showing no significant error between measured and modelled values (Fig. 2).

The model has also been tested against CO, fluxes measured under conventional crops. At all three
grassland sites (West Sussex, Aberystwyth and East Grange), the measured CO, fluxes correlate
significantly with the modelled values and the statistical analysis showed no error between measured and
modelled values, and no bias in the model (Fig. 5). This is a striking result which underlines the good
quality of the data provided for the model evaluation, as well as the good model performance to simulate

soil CO, fluxes.

Under grassland, Ry, derived from the IRGA measurements does not always show a high correlation with
the modelled values, particularly during the summer months (Fig. 5). This lack of correlation is mainly
due to the difficulties in the separation of soil respiration from grassland, due to the possible inclusion of
vegetation within the chamber. When deriving R, from grassland, we estimated that 60% of the measured
CO; can be attributed to plant (leaf) respiration, as reported by Byrne & Kiely (2006), but this crude
estimate does not always reflect the field conditions. For an accurate quantification of the proportion of
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the CO, derived from the plant occluded in the chambers, field experiments would be needed to explicitly
quantify plant respiration and biomass.

The analysis of the soil R, fluxes from the arable fields reveals reasonable model performance at
the Lincolnshire site, while at the East Grange site, correlation between modelled and measured IRGA
values was poor (Table 4). This discrepancy between modelled and measurement-derived Ry, appears to be
due to the nature of the source data; in fact, the IRGA-derived Ry, is estimated from a single data point
which is taken to represent monthly CO, fluxes. Therefore, the monthly CO, flux might not be properly
represented if high flux variation occurred within the month. Another explanation could also be the
discontinuity of the IRGA measurements taken at the East Grange site (Fig. 4b). The latter hypothesis is
supported by the Ry, results of the arable field at the Lincolnshire site. In fact, the IRGA measurements at
the Lincolnshire site have been taken over a 2-year period, and the statistical analysis shows a good
correlation against the model output (r = 0.75; Table 4). Therefore, we conclude that the low correlation
at the East Grange arable field is mainly due to the variability and quantity of the measurements, and that

the model accurately describes the CO,emissions from arable crop.

Generally, the model was able to predict seasonal trends in Ry at most of the sites; however, the model
occasionally over/underestimated the flux values during the warm weather in spring and summer. This is
particularly evident at the Lincolnshire site, resulting in a high mean difference between modelled and
EC-derived Ry, (Table 4). Despite using a generic method to estimate Ry from R, therefore providing a
challenging test for the model, we found no significant mean difference between modelled and EC-
derived Ry, at three sites (for a total of four land uses), proving that the model adequately simulates soil

processes under different land-use systems and climate/soil conditions.

Low correlation between measurements and model simulations arose predominantly when comparing
model outputs against the IRGA-derived data set; this is mainly due to the nature of the measurements
(single data point representing total monthly CO; flux), an aspect not related to the soil processes
described in the model. However, it is to notice that the IRGA-derived Ry, has been estimated from direct
measurements of total soil respiration and the degree of correlation between measured and modelled Ry, is
also related to the Ry : Ryt ratio adopted. On the other hand, the EC-derived Ry was estimated from
the Reco during daytime, which is a modelled flux driven by air temperature and other environmental
factors. Further model evaluation should be based on comparison of the model output with direct
measurements of soil R, fluxes, possibly using automatic chambers on soil plots where roots have been

excluded. This measurement technique would provide continuous Ry, measurements which would be
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directly comparable to the model outputs and therefore would provide a more accurate evaluation of the
performance of the model. However, given the very limited input data used to run the model and the
number of sites/locations used for the model evaluation, we conclude that the simulations are robust and

the model adequately simulate soil CO, fluxes under five land-use systems.

Model simulations of N,O and CH, fluxes resulted in low correlation and association at most of the study
sites (Tables 5 and 6), which is expected with such low fluxes, and does not represent a failure of the
model. In fact, the measured N,O and CH, fluxes are pooled from sample data points containing outliers
and extreme variation between sample points in each site, which results in a high standard error of the
measured values. But the N,O and CH, flux simulations are within the 95% confidence interval of the
measured values, showing that the model cannot be improved to better fit these data and suggesting that
the lack of correlation between modelled and measured values is due to the high variation in the measured
fluxes, which is a common phenomenon verified in many N,O (e.g. Oenemaetal., 1997;
Skiba et al., 2013; Cowan et al., 2015) and CH, flux measurement experiments (Parkin et al., 2012;
Savage et al., 2014). Moreover, if the measured values do not show any seasonal trend, a significant
correlation with the model outputs cannot be obtained (Smith & Smith, 2007) and low correlation is

expected.

Measured fluxes of CH4 were shown to be negligible across all land uses and their contribution to the
total GHG balance, when converted to CO;equivalent, was on average <0.2%, except for the
Miscanthus field at the Aberystwyth site (3% of the total GHG balance). The high mean value recorded
for Miscanthus in 2012 is driven by one replicate with very high CH,4 production and there was large
standard error associated with the measurements. In general, CH,4 production or consumption was

negligible also for this field.

Across all land uses, measured fluxes of N,O represent a small proportion (<1.5%) of the total GHG
balance, with the exception of the arable field at the Lincolnshire site and the Miscanthus field at the
Aberystwyth site (6% of the total GHG balance over the 2 years measurement period at both fields). Due
to technical issues and issues regarding access to sites for sampling, the data set for the arable and SRC-
Willow fields at East Grange is missing a substantial number of months, and therefore, it was not possible

to determine the annual GHG balance.

Despite the very low values of the CH, and N,O fluxes, and their small contribution to the total GHG
balance at all experimental sites, both fluxes have been modelled adequately on a monthly time-step and
no improvements can be made to the model with the available flux data.

297


http://onlinelibrary.wiley.com/doi/10.1111/gcbb.12298/full%23gcbb12298-tbl-0005
http://onlinelibrary.wiley.com/doi/10.1111/gcbb.12298/full%23gcbb12298-tbl-0006
http://onlinelibrary.wiley.com/doi/10.1111/gcbb.12298/full%23gcbb12298-bib-0053
http://onlinelibrary.wiley.com/doi/10.1111/gcbb.12298/full%23gcbb12298-bib-0063
http://onlinelibrary.wiley.com/doi/10.1111/gcbb.12298/full%23gcbb12298-bib-0015
http://onlinelibrary.wiley.com/doi/10.1111/gcbb.12298/full%23gcbb12298-bib-0055
http://onlinelibrary.wiley.com/doi/10.1111/gcbb.12298/full%23gcbb12298-bib-0060
http://onlinelibrary.wiley.com/doi/10.1111/gcbb.12298/full%23gcbb12298-bib-0066

In this study, all major GHG fluxes from five land-use systems were reasonably well estimated using the
ECOSSE model. The results from this evaluation exercise show that ECOSSE is robust for simulating
GHG fluxes from cropland, grassland, SRC-Willow, SRF-Scots Pine and Miscanthus (and transitions
from the former two land uses to the latter three energy crops). This validation builds confidence that the
model can be used to investigate the impacts of land-use transitions spatially in the UK and to investigate

the effects of converting large areas to grow bioenergy crops.
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