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Since their first demonstration some 25 years ago, 
thermally poled silica fibers have been used to realize 
device functions such as electro-optic modulation, 
switching, polarization entangled photons and optical 
frequency conversion with a number of advantages over 
bulk free-space components. We have recently developed 
an innovative induction poling technique that could 
allow for the development of complex microstructured 
fiber geometries for highly efficient χ(2) based device 
applications. In order to systematically implement these 
more advanced poled fiber designs, we report here the 
development of comprehensive numerical models of the 
induction poling mechanism itself via 2D simulations of 
ion migration and space-charge region formation using 
finite element analysis. © 2016 Optical Society of 
America 

OCIS codes: (190.4370) Nonlinear optics, fibers; (230.4320) Nonlinear 
optical devices; (190.2620) Harmonic generation and mixing; (230.1150) 
All-optical devices; (000.4430) Numerical approximation and analysis. 

 

The development of thermal poling, a technique to generate effective second order nonlinearities in silica optical fibers [1], has found widespread applications in parametric frequency conversion [2], electro-optic modulation, switching [3] and polarization-entangled photon pair generation [4]. During thermal poling, the optical fiber is heated in order to increase the mobility of the impurity charge carriers (typically Na+, Li+, K+), while a high voltage is applied for a certain time between two electrodes embedded into the fiber [5]. The static electric field due to the application of the high voltage causes the impurity charges to drift from regions at high potential towards regions at lower potential creating a space charge region located near the anode. When the sample is cooled down whilst the voltage is still applied, an electric field is frozen into the depleted region and an effective nonlinear susceptibility ߯௘௙௙(ଶ)  is induced into the sample due to a process of 

third order nonlinear optical rectification. The early issues mainly related to the high risk of breakdown between the two electrodes (typically separated by a few tens of microns) were addressed by Margulis et al. [6], who demonstrated that it is possible to induce a value of ߯௘௙௙(ଶ)  higher than the one obtained in the conventional case [5] by means of a poling configuration in which the two embedded electrodes are both connected to the same positive potential of the anode. The method for “charging” optical fibers has been recently further developed by De Lucia et al. [7], who discovered that it is possible to create a space charge region using electrostatic induction between an external inductor and the floating electrodes embedded inside a fused silica twin-hole fiber. As this novel technique avoids any physical contact to the internally embedded electrodes, it automatically lifts a number of restrictions on the use of microstructured optical fibers for poling where the multiple contacting of individual electrodes becomes a prohibitive challenge. Thus the induction poling technique, together with the use of embedded liquid electrodes such as Gallium [7], could, for example, allow for the poling of complex photonic crystal fibers (PCF), with the aim of realizing devices that fully exploit the inherently desirable PCF properties of strong optical mode confinement, dispersion, effective group index engineering, etc for highly efficient nonlinear functionality.   In order to systematically implement these advanced device concepts, it is first necessary to develop comprehensive numerical models of the induction poling mechanism itself. To this end, we report here the development of 2D simulations of induced space-charge region formation using COMSOL® finite element analysis. This builds on current numerical models by Camara et al. [8] who developed a two-dimensional analysis that accurately describes the specific geometry of poled fibers with internal electrodes, thus highlighting the role of various cations and the time evolution of second-order nonlinear profile within the fiber geometry. However, our recent experimental demonstration of electrostatic induction poling suggests that substantial modifications to the boundary conditions of these current 2D models are required in order to fully elucidate this novel poling mechanism. In the first instance, this arises due to the inherent assumption [8] that the 
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