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ABSTRACT 

Embedded systems powered from time-varying energy harvesting 

sources traditionally operate using the principles of energy-neutral 

computing: over a certain period of time, the energy that they 

consume equals the energy that they harvest. This has the 

significant advantage of making the system ‘look like’ a battery-

powered system, yet typically results in large, complex and 

expensive power conversion circuitry and introduces numerous 

challenges including fast and reliable cold-start. In recent years, the 

concept of transient computing has emerged to challenge this 

traditional approach, whereby low-power embedded systems are 

enabled to operate as usual while energy is available but, after loss 

of supply, can quickly regain state and continue where they left off. 

This paper provides a summary of these different approaches.  
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1. INTRODUCTION 
The powering of electronic devices from harvested energy (energy 

scavenged from the surrounding environment) has been gaining 

increasing interest over the past decade [1]. It removes the 

inconvenience and cost of battery replacement or recharging or, in 

applications where battery replacement is impossible or inefficient, 

can significantly increase the system’s operational lifetime. 

However, powering electronic systems from harvested energy 

poses a number of challenges that battery-powered systems to not 

exhibit. First, batteries can supply comparatively high levels of 

instantaneous power, but have a constrained energy capacity. In 

contrast, energy harvesting sources offer a theoretically limitless 

energy supply (assuming no fatigue or degradation), but highly 

constrained supply of power typically in the range of μW-mW. 

Furthermore, this supply of power usually exhibits high spatial and 

temporal variation; a transient supply. Consider, for example, a 

photovoltaic cell on a mobile device. The harvestable power will 

continually vary (e.g. with time-of-day, weather, orientation, 

environment) and may even drop to zero (e.g. if the device is put 

into a bag) [2]. For an AC source, e.g. a micro wind turbine (Fig.1), 

 

Figure 1. Typical output voltage from a micro wind turbine. 

further variation is provided that typically needs to be rectified and 

smoothed through intermediate power conversion circuitry. In 

recent years, a range of approaches have been proposed to 

accommodate this variability; this paper provides a summary. 

2. ENERGY-NEUTRAL COMPUTING 
The traditional approach to accommodate the varying supply 

provided by energy harvesting is that of energy-neutral operation 

[3]. Here, an appropriately sized energy store (e.g. a supercapacitor) 

provides a ‘buffer’ between the harvester and load (Fig. 2). 

 

Figure 2. Principles of energy-neutral computing 

Over a defined period of time (e.g. 24 hrs), the energy consumed 

by the load is equal to the energy harvested (Equation 1). Control 

of consumption is obtained through the run-time adaptation of 

workload intensity (e.g. reducing periodic task rates). The 

advantage of this is that, to the application developer, the system 

appears similar to a battery-powered system. Provided there is low-

frequency control of workload intensity to manage consumption, 

the system can be considered as having a stable supply. 
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However, the addition of an energy ‘buffer’ typically incurs 

additional cost, volume/weight, and circuit complexity (for power 

conversion circuitry required to manage charging and discharging). 

3. TRANSIENT COMPUTING  
Transient computing attempts to overcome these disadvantages, by 

removing the energy ‘buffer’ and instead operating directly from 

the harvester’s variable (or transient) supply. As a result, the supply 

can no longer be considered to be battery-like, due to significant 

temporal variation in available power. This creates a major issue: if 

the harvested power is not sufficient to supply the load, its 
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operation will cease and, when a usable supply is restored, 

application execution will have to restart from the beginning. 

A solution to this is to make checkpoints of the system state to non-

volatile memory (NVM) and, at a later time, restore this state and 

continue execution. An early work in this area was Mementos [4], 

where checkpoints were taken regularly at strategic points during 

execution, in case power is lost. This incurs many unnecessary 

checkpoints however, adding time and energy overhead. 

 

Figure 3. Principles of transient computing 

Our recent work, Hibernus [5] takes advantage of the very small 

amount of capacitance in most embedded systems (parasitic or 

decoupling capacitance); C’ in Figure 3. It uses this tiny buffer as a 

‘safety net’ to allow the system to checkpoint its state once an 

outage is detected (when VCC drops below a threshold), thus 

eliminating the need for routine speculative checkpoints and 

reducing overheads. Figure 4 illustrates the behavior of Hibernus 

when executing an FFT across multiple power outages, and the 

associated checkpoint (hibernate) and restore operations. 

QuickRecall [6] uses NVM as the processor’s main memory, and 

hence little volatile state is left which requires checkpointing. This 

results in checkpoint operations being more efficient. However, as 

read/write operations to NVM typically consume more power than 

their volatile counterparts, the steady-state consumption increases 

[7]. Recent attempts overcome such limitations using a non-volatile 

processor, which have no volatile state to checkpoint at all [8]. 

 

Figure 4. Example of transient computing permitting 

algorithm execution across multiple power outages. 

4. POWER-NEUTRAL COMPUTING 
The energy-neutral and transient computing approaches apply quite 

different techniques: transient computing executes a static 

workload but allows it to accommodate supply interruptions, while 

energy-neutral computing attempts to adapt workload intensity to 

meet an energy budget. Power-neutral computing (Fig. 5) 

complements transient computing with this adaptive operation. 

 

Figure 5. Principles of power-neutral computing 

Instead of balancing energy across a large period of time (e.g. a 

day), power-neutral computing attempts balance across δT, a period 

effectively defined by the size of the system’s decoupling 

capacitance C’. If harvested power drops below a usable level, the 

system uses transient computing approaches to save state to NVM, 

and restore at a later time when the supply has recovered. The term 

power-neutral is used as, with a tiny capacitance, the harvested and 

consumed powers are equal, rather than energies (equation 2). 

 

Figure 6. Power-neutral computing: adapting the CPU 

frequency to match harvested and consumed power. 
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Figure 6 shows experimental results obtained from running a 

power-neutral system from a micro wind turbine (Fig. 1). At the 

start of the experiment, the harvester output (blue trace) is 

insufficient to power the microcontroller, and hence it sleeps. After 

~300 ms, Vcc (red line) has risen to a usable level and the 

microcontroller wakes up. As the harvester output rises and decays, 

the CPU dynamically adjusts its frequency (and hence power 

consumption) in response (black trace) and, as a result, stays 

continually operational until ~1.1 s. At this point, Vcc drops below 

the minimum operating voltage, and the system checkpoints and 

then later restores (visible from the spike to 8 Mhz). 
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