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Inferring the Predictability Induced by a Persistent Regressor
in a Predictive Threshold Modef

Jesis Gonzalo Jean-Yves Pitarakis
Universidad Carlos Ill de Madrid University of Southampton
Department of Economics Department of Economics
28903 Getafe (Madrid) - Spain  Southampton SO17 1BJ, U.K
Abstract

We develop tests for detecting possibly episodic predictability induced by a persistent pre-
dictor. Our framework is that of a predictive regression model with thresHhtédts and our
goal is to develop operational and easily implementable inferences when one does not wish to
imposea priori restrictions on the parameters of the model other than the slopes corresponding
to the persistent predictor. erently put our tests for the null hypothesis of no predictability
against threshold predictability remain valid without the need to know whether the remain-
ing parameters of the model are characterised by threslifi@cdt® or not (e.g. shifting versus
non-shifting intercepts). One interesting feature of our setting is that our test statistics remain
undfected by whether some nuisance parameters are identified or not. We subsequently ap-
ply our methodology to the predictability of aggregate stock returns with valuation ratios and
document a robust countercyclicality in the ability of some valuation ratios to predict returns
in addition to highlighting a strong sensitivity of predictability based results to the time period

under consideration.
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1 Introduction

Predictive regressions are simple regression models in which a highly persistent variable is used as
a predictor of a noisier time series. The econometriéadilties that arise due to the combination

of a persistent regressor and possible endogeneity have generated an enormous literature aiming to
improve inferences in such settings. Common examples include the predictability of stock returns
with valuation ratios, the predictability of GDP growth with interest rates amongst numerous others
(see for instance Valkanov (2003), Lewellen (2004), Campbell and Yogo (2006), Jansson and
Moreira (2006), Rossi (2007), Bandi and Perron (2008), Ang and Bekaert (2008), Wei and Wright
(2013) and more recently Kostakis, Magdalinos and Stamatogiannis (2015, KMS2015 thereafter)).

In a recent paper Gonzalo and Pitarakis (2012) have extended the linear predictive regression
model into one that allows the strength of predictability to vary across economic episodes such as
expansions and recessions. This was achieved through the inclusion of thre&uikivehich al-
lowed the parameters of the model to switch across regimes driven by an external variable. Within
this piecewise linear setting the authors developed a series of tests designed to detect the presence
of threshold &ects inall the parameters of the model by maintaining full linearity within the null
hypotheses (i.e. restricting both intercepts and slopes to be stable throughout the sarfipie). Di
ently put this earlier work was geared towards uncovering regimes within a predictive regression

setting rather than determining the predictability of a particular predictor per se.

The goal of this paper is to develop a toolkit that will allow practitioners to test the null hypothe-
sis of no predictability induced by a persistent regressor explicitly without restricting the remaining
parameters of the model (e.g. intercepts may or may not exhibit thresfietdsg. Indeed, a re-
searcher may wish to assess the presence of predictability induced solely by some pxedictor
while remaining agnostic about the presence or absence of regimes in the remaining parameters.
Moreover, in applications involving return predictability with valuation ratios such as the dividend

yield and a threshold variable proxying the business cycle, rejection of the null of no predictability
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on the basis of a null hypothesis that restricts all the parameters of the model as in Gonzalo and
Pitarakis (2012) may in fact be driven by the state of the business cycle rather than the regime

specific predictability induced by the dividend yield itself.

The type of inference we consider in this paper naturally raises important identification issues
which we address by exploring the feasibility of conducting inferences on the relevant slope pa-
rameters that are immune to any knowledge about the behaviour of the intercepts and in particular
to whether the latter are subject to regime shifts or not. Our null hypothesis of interest here allows
for the possibility of havinghuisanceparameters that may or may not switch across regimes. This
is fundamentally dferent from the setting considered in Gonzalo and Pitarakis (2012) where the
intercepts were also restricted to be equal under the null hypothesis of no predictability and the

only nuisance parameter was the unknown threshold parameter itself.

Our proposed inferences are based on a standard Wald type test statistic whose distribution
we derive under the null hypothesis of no predictability induced by a highly persistent regressor.
The limiting distribution of our test statistic evaluated at a particular location of the threshold
parameter is then shown to be immune to whether the remaining parameters of the model shift or
not. Since the limiting distribution in question depends on a series of nuisance parameters it is
not directly usable for inferences unless one wishes to impose an exogeneity assumption on the
predictor. Using an Instrumental Variable approach we subsequently introduce a modified Wald
statistic whose new distribution is shown to be standard and free of nuisance parameters under a

very general setting.

The plan of the paper is as follows. Section 2 presents our operating model and the underlying
probabilistic assumptions. Section 3 develops the large sample inferences. Section 4 illustrates
their properties and usefulness via a rich set of simulations. Section 5 applies our proposed methods
to the predictability of aggregate US equity returns using a wide range of valuation ratios and

threshold variables and Section 6 concludes.

ACCEPTED MANUSCRIPT
2



Downloaded by [University of Southampton] at 13:28 03 April 2016

ACCEPTED MANUSCRIPT

2 The Model and Assumptions

We operate within the same setting as in Gonzalo and Pitarakis (2012). Our predictive regression

model with thresholdf@ects orPredictive Threshold Regressi@ATR) is given by

Yerr = (@1 +BX)(0h < ) + (a2 + B2X) 1 (G > ) + Uit (1)

where the highly persistent predictqris modelled as the nearly integrated process

c

Xt = prX-1+W, PT=1—? (2)

with ¢ > 0 andg; = uq + Uy denoting the stationary threshold variable with distribution function
F(.). Before proceeding further it is useful to reformulate our specification in (1) in matrix form.
In doing so we make use of the propelfg: < y) = I(F(qy) < 2) = Iy andl(q: > y) = |(F(q) >

A) = Iy with A = F(y) so that in what follows the threshold parameter can be referred to as as

eithery or A interchangeably. We now rewrite (1) as

y = Qu+XB8+u 3)

with Q, = [I1 1] and X, = [x; %] stacking the elementdy 1) and &1 X 12) respectively and
a = (a1 @), B = (B1B2)". Given the assumptions that will be imposedgpfe.g. strict stationarity
and ergodicity) it is useful to note th&f{l] = 2 andE[lx] = 1 — A Yt and throughout the paper
it will be understood thafl € A = [1,A] with 0 < 1 < 1 < 1 < 1. Note that (1) is the same
parameterisation as the one used in Gonzalo and Pitarakis (2012) but its key features are repeated
here for self containedness considerations. When relevant we will also refer to the true value of

the threshold parameter as eithgror Ag.

Our main goal is to focus on the sole predictive powekakithout imposing any restrictions

on thea’s. Note for instance that a null hypothesis suchvas= a»,8; = 8, = 0 may be rejected
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solely due toa; # a» while continuing to be compatible with an environment in whigthas

no predictive content. It is this aspect that we wish to address in the present paper whose goal
is to develop inferences about tg&s without imposing any constraints on thés in the sense

that they may or may not be regime dependent within the underlying DGP. More specifically we
will be interested in exploring testing strategies for testing the null hypoth&sisg, = 8, = 0

while allowing thea’s to be free in the background. This is an important departure from the
framework in Gonzalo and Pitarakis (2012) where we considered Supldype tests of various

null hypotheses which were also restricting the intercepts themselves in addifipandg; (e.g.

a1 = az,B1 = B2 = 0). More importantly in this paper our inferences will be based on a Wald
statistic evaluated at a particular estimator of the threshold parameter (as opposed to taking its
supremum oven) which ensures that its limiting distribution under = 8, = 0 is undfected by

whethera; = a; or @1 # a, and is nuisance parameter free.

We next outline our operating assumptions regarding the probabilistic propertigsvofo
and their joint interactions. Throughout this paper we let the random disturtvaheedescribed
by the linear process, = ¥(L)e,; with the polynomial¥(L) = Z‘j";o\}‘ij having ¥(1) # O,
Yo = 1 and absolutely summable dheients. We also lef; = (u, &)’ and introduce the filtration

Fr = U({S, qu|sS t)-

ASSUMPTIONSAL: E[4|F:1] = 0, E[&{|Fr-1] = = > 0, SUp EL? < co. A2: The sequencily)
is strictly stationary, ergodic, strong mixing with mixing numbegssuch thatZ"n‘;:lan%‘% < oo for
some r> 2. A3: The probability density function(f) of ¢ is bounded away from zero andover

each bounded set.

Assumption Al requires the error process driving (1) to be a martingfigreice sequence with
respect tof; hence ruling out serial correlation iy (but not inv; or g;) while also imposing
conditional homoskedasticity. Both and g, are allowed to be dficiently general dependent

processes. This setting mimics closely the standard framework used in the predictive regression
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literature (e.g. Campbell and Yogo (2006), Jansson and Moreira (2006)) and is in fact slightly
more general since we do allowto be serially correlated. At this stage it is also important to
clarify our stance regarding the joint interactions of our variables. Our assumptions about the
dependence structure of the random disturbances together with the finiteness of moments require-
ments imply that a Functional Central Limit Theorem holdsWpe (U, Ul_1, Vt). More formally

T2 2w = (By(r), Bu(r, 4), By(r) = BM(Q) with Q = 3% E[wow(]. Our analysis will im-

pose a particular structure @dawhich governs and restricts the joint interactionsugfv; andg;.

More specifically we impose

a? Ao o' (1)
Q = /laﬁ /laﬁ Aoy (1) 4)
qu\lj(l) /lo_uv\lj(l) 0_2\11(1)2

whereo? = E[u?], o3 = E[€%] and sinceE[ue,;-j] = O we also writeor,, = E[uv] = E[uen] =

owe The chosen structure 61 is general enough to encompass the standard setting used in the
linear predictive regression literature that typically impogesv;} to be a martingale éierence
sequence and andv; solely contemporaneously correlated. Our assumptions allow us to operate
within a similar environment while also permitting the shocks to the threshold variable to be con-
temporaneously correlated withandor v;. As in Caner and Hansen (2001) and Pitarakis (2008),
By(r, 1) refers to a two-parameter Brownian Motion which is a zero mean Gaussian process with
covariance kernek{ A r,)(11 A 12)02 so that we implicitly also operate under the requirement that
E[U|0h-1, G2, . ..] = o5 as well asE[uwilop-1] = E[uv] = oy and E[UViilG-1, G2, ...] = O

Yk > 1. Given our nearly integrated specification fgrand A1-A3 above it is also clear (see
Phillips (1988)) thatxrg/ VT = Jo(r) with Je(r) = By(r) + ¢ for el-9°B,(s)ds denoting a scalar
Ornstein-Uhlenbeck process. For later use we also define the demeaned versignsaofdB,(r)

asJy(r) = J(r) — [ Je(r) andB;(r) = Bu(r) — [ By(r).
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3 Large Sample Inference

Since within model (1) the null hypothesti$, : 31 = 8, = 0 is compatible with eithett; = a;

or a; # ay in a first instance it will be important to establish the large sample properties of our
threshold parameter estimator(or 7) under the two alternative scenarios on the intercepts. As
our focus is on inferences abggiand mainly for notational convenience it will also be useful to
reparameterise (3) in its canonical form. More specifically, lettifg = | — Q(Q, Q) Q. we

can equivalently express (3) as
y = XB+u )

with y* = Mgy, X} = MgX, andu® = Mgu.

3.1 Threshold Parameter Estimation

The threshold parameter estimator we consider throughout this paper is based on the least squares

principle and defined as

A = arg minSt(d) (6)

with St(1) denoting the concentrated sum of squared errors function obtained from (3) or (5)
under the restrictiop;, = 8> = 0 i.e. St(1) = yY'Mgy. Recall that throughout this paper we use
Aandy = arg min, St(y) interchangeably. Naturally, the behaviouri expected to depend on
whether the underlying true model has # a, (i.e. identified threshold parameter) @ = a»

in which casel vanishes from the true model. The following Proposition summarises the large

sample behaviour of under the two scenarios.

Proposition 1. Under Assumptions A1-A3H 3, = 8, = 0and as T— o we have (i) TA— Aq| =
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Op(1) whena; # o and (ii) A it A" with 2* = arg maxea[By(1) — 1By (1)]%/4(1- 2) whenay = as.

Whenpg; = B, = 0 is imposed on the fitted model and # a, we have a purely stationary

mean shift specification and the result in part (i) of Proposition 1 is intuitive and illustrates the

T-consistency of the least squares based threshold parameter estimator. This is in fact a well

known result in the literature which we report for greater coherence with our subsequent analysis

(see Hansen (2000) and Gonzalo and Pitarakis (2002)). The result in part (ii) of Proposition 1
is particularly interesting and highlights the fact that the threshold parameter estimator obtained
from a model that is linear and contains no threshdldats converges in distribution to a random
variable given by the maximum of a normalised squared Brownian Bridge process. Although the
maximum of a Brownian Bridge is well known to be a uniformly distributed random variable an

explicit expression or closed form density foris to our knowledge not available in the literature.

We next concentrate on the limiting distribution of a Wald type test statistic for tebijng

B1=p2=0in(1).

3.2 TestingHy:B81=82=0

Using the canonical representation in (5) and for a gwen(0, 1) we can write the standard OLS

based Wald statistic for testiridy : 8, =8, = 0 as
WES) = ALY (X XDB)/FE(A) (7)

with B(1) = (X X:)"1Xyy and 53(12) referring to the residual variance estimated from the un-
restricted specification. In what fO||OV\X8/.?IS(;l) will denote the Wald statistic evaluated at the
estimated threshold parameteas defined in (6) and its limiting behaviour is summarised in the

following Proposition.

Proposition 2 Under the null hypothesis¢t 31 = 8, = 0, assumptions A1-A3 and as-b oo we

ACCEPTED MANUSCRIPT
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have

([ %mydBy(r. 1]

WE o2 [ Ji(r)?

+x*(1) (8)

regardless of whether, = a, or a; # .

Proposition 2 highlights the usefulness of the Wald statistic for conducting inferences about the
B’ swithout having to take a stand on whether tHe are regime dependent or not. The interesting
point here is the fact that the limiting distribution of the Wald statistic evaluatadsithe same
regardless of whether, = a, or a; # a; in the underlying model. One shortcoming of our
expression in (8) is caused by the presence of the unknown noncentrality parametieing it
difficult to tabulate in practice. Due to the allowed correlation betw&eand B, it is also the
case that the first component in the right hand side of (8) will depend,prThere is however an
instance under which the limiting distribution simplifies considerably as summarised in Proposition

3 below.
Proposition 3 Under the null hypothesisdt g1 = B> = 0, assumptions A1-A3 together with the
requirement thatr,, = 0in (4) and as T— o we have

WOS() = x*(2) ©)

regardless of whether, = a;, or a; # .

The above result highlights a unique scenario whereby the magnitude of the noncentrality param-
eter no longer enters the asymptotics of the Wald statistic despite a nearly integrated parameter-
isation in the DGP. See also Rossi (2005) for interesting similarities between our asymptotics in

Proposition 2 and distributions arising within a related structural break framework.

In order to address the limitations of our result in (8) we next introduce an Instrumental Vari-

able based Wald statistic designed in such a way that its limiting distribution remains a nuisance
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parameter freg?(2) random variable regardless of whetlagy, is zero or not. This is achieved
through an IV method developed in Phillips and Magdalinos (2009) in the context of the cointe-
gration literature and which we adapt to our current context (see also Breitung and Demetrescu
(2014)). The key idea is to instrumexrtwith a slightly less persistent version of itself using its
own innovations (hence the IVX terminology). Lettitg = (1-c,/T?) for somec, > 0 (sayc, = 1

as discussed in Phillips and Magdalinos (2009) and KMS2015)an(D, 1) the IVX variable is
constructed ak, = thzl gth‘ijj. Within our present context and foe 1, 2 we instrumentl;; in

(1) with bl ;.. Lettingh; denote the vector stacking thg’ sandH, = [y h,] the IVX estimator of

Bin (5) can be formulated as
X)) = (HYX)Hyy (10)

with H; = MgH,. Noting that the projectiofq = Q,(Q,Q.)*Q, is efectively analogous to
applying aregime specific demeanirige above formulation of the IVX estimator also helps high-
light its invariance to using eithéd, or H; as IVs sinceH?’ X; = H/X; andH}'y" = Hy". The IV

based Wald statistic for testify = 8, = 0in (1) (or (5)) can now be formulated as
. A 1 A R
W) = B [(HY XD (HYHDHYX) ™ B85 (11)

and its limiting distribution is summarised in Proposition 4 below.

Proposition 4 Under the null hypothesisH 31 = 8, = 0, assumptions A1-A3 and as-» o we

have V\‘(’X(fl) = x?(2) regardless of whether, = a, or a; # .

The above result provides a convenient test statistic for teblgngs; = 8, = 0 since inferences
can be based on a limiting distribution that does not depend onany endogeneity induced
parameter (as opposed to our formulation in (8)) and are immune to whether the intercepts shift
or not. The parametef used in the construction of the VX variables controls the degree of

persistence of the instruments and plays a key role in ensuring that the Wald based asymptotics are
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free of the influence of the noncentrality parametelt is also important to highlight the fact that
althoughé is a necessary user-input in the constructioN\@‘P‘(fl) it does not play any role in its
limiting distribution which is nuisance parameter free and valid fosatl (O, 1). This of course
does not preclude the fact that particular choice$mfy have important finite samplé&ects and

sizgpower tradefis when basing inferences wig’x(;l), an issue we explore and address below.

As shown in KMS2015 and Phillips and Magdalinos (2009) and as it is also the case for our
estimator in (10) the price to pay for the convenient mixed normal limi*$fwhich in turn leads
to the y? approximation of the associated Wald statistic is a rate of convergence that is slightly
lower thanT and given byO(Tl—Eé), suggesting that a choice 6éfthat is close to 1 may be the
most appropriate when constructing the IVX variables. This is an issue we document and explore
comprehensively in the simulations that follow but before doing so we wish to discuss in greater
detail the key factors that may influence the impaci of the finite sample size and power prop-
erties ofVV"TVX(fl) such as the strength of the correlation betwaeandv; and adapt the practical

recommendations of KMS2015 to our predictive threshold context.

Our Monte-Carlo simulations below robustly demonstrate that for moderate degrees of corre-
lation betweery, andv; our IVX based statistic displays excellent size control regardless of the
magnitude o and a power that increases witlalbeit stabilising for magnitudes in the vicinity of
0.9. This naturally suggests that a choicé af the range [B5, 0.95] should dfer a good compro-
mise between finite sample size and power with only minor finite sample implications whether one
usess = 0.85 oré = 0.95 or another magnitude of similar order. When the correlation between
andy, is allowed to be close to 1 however as it may happen in numerous finance applications infer-
ences based cW#’X(/Al) are characterised by important size distortions that increase and deteriorate
with 6. These finite sample properties we observe within our setting nexactlythe properties
of the IVX Wald statistic documented in the linear predictive regression setting of KMS2015 and
prompted the authors to introduce an intuitive finite sample correction to the formulation of their

IVX based Wald statistic which they shovters excellent size control even under strong degrees
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of endogenity combined with a power that growssaagpproaches 1. The proposed finite sample
correction does not alter the first order asymptotic approximation of the IVX based Wald statistic
hence allowing KMS2015 to argue that for practical purposes their proposed correction resolves
the issue of choosing a suitakie Size is perfectly controlled regardless of the magnitudé of
while power increases monotonically withand mirroring our earlier point above stabilises for
magnitudes in the vicinity of 0.85-0.95. This naturally leads us to adapt the finite sample cor-
rection of KMS2015 to our own specification with thresholteets. It is important to reiterate
however that the proposed correction aplied/\ﬂpx(;l) does not fect its first order limit theory

which remains as in Proposition 4.

The limiting 2 result in (11) naturally originates in the mixed Gaussianitg"tffin turn driven
by the normality of a suitably normalised versiontdf u* = H u* = H,u - H’Q,(Q,Q.)*Q,uin
(10) with the second componeit Q,(Q,Q,)*Q,u arising due to the presence of fitted intercepts
(recall thatQ, = [I I;]) and which vanishes asymptotically. The first order asymptotic behaviour
of H’u* is driven by the asymptotic normality of a normalised versioRigd. Although the second
component’Q(Q’ Q)~*Q'u vanishes asymptotically its presence can cause significant finite sam-
ple distortions compared to a setting with no fitted intercepts, distortions that are further amplified
when the degree of correlation betwagrandy, is large. KMS2015’s correction which we adapt
here is motivated by the need to neutralise this finite sample impact induced by the fitted intercepts
and in proportion to how strongly correlategdandv; are. The finite sample correcwuirvx(fl)

adapted to our present context can be formulated as

WD) = B [(HY X)) GaHy )] A7) (12)
with
G, = () (HyH; +p5HIQUQ Q) Qi H,) (13)

ACCEPTED MANUSCRIPT
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and where?, = @2,/6202. Herew,, denotes an estimator of the long run covariance between
andv; andw? an estimator of the long run variance of tje (see (4)). Note for instance that the
correction in (13) will have little impact for small magnitudesegf while playing an important fi-

nite sample adjustment role when the correlation betweandyv, is large, éectively neutralising

the finite sample distortions resulting from the fitted intercepts. It is also useful to point out that
when suitable normalisations are appliedN@lXC(/Al) defined above, the correction term adjacent

to p2, will vanish asymptotically. Bothw;, and«?2 can be estimated in a straightforward manner
using Newey-West type estimators. For this purpose we proceed as in KMS2015 introducing a

bandwidth parametdf; such thak; — co andKy/ VT — 0 asT — o and using

t=1 =1 t=f+1
0 ZT]0A+1KT(1 ¢ )ZT:VO (24)
Wy = tVi T — - tUt—¢

t=1 T =1 Kr+1 =11

in the construction oW?’XC(fl). Our next goal is to comprehensively evaluate the finite sample
properties of our IVX based test statistics with a particular emphasis on documenting the role

played bys and how best to select its magnitude in applied work.

4 Finite Sample Evaluation

The goal of this section is twofold. First we wish to demonstrate the validity and finite sample
accuracy of our theoretical results presented in Propositions 2-4 through simulations. Second
we wish to use our simulations to comprehensively illustrate the potential influenterothe

finite sample sizower tradefis of our test statistics with the aim of achieving clear and reliable
practical recommendations for the implementation of our IVX based statistics (e.g. for a broad

range of experiments we consider magnitudesmainging between 0.50 and 0.98 with increments

ACCEPTED MANUSCRIPT
12



Downloaded by [University of Southampton] at 13:28 03 April 2016

ACCEPTED MANUSCRIPT

of size 0.02). Due to space considerations we only present key outcomes while relegating a broad

range of additional and supportive simulations to an online appendix.

We initially concentrate on the size properties of our test statistics. Our chosen DGP is given by
(1) withB; = B> = 0. For the parameterisation of the intercepts we consider two scenarios. Namely,
{ag, @z} = {1, 1} and{aq, ar} = {1, 3}. In the latter case we sgt = 0.25 with the threshold variable
taken to follow the AR(1) procesg = 0.5¢;_1 + uy While we setv; = 0.5v;_1 + &, for the shocks
associated with the nearly integrated variakle Finally we take (, &, Uy) to be a Gaussian
vector with covariance given iy = {(1, ou, 0 ug), (Cuv, 1, 0eq), (0ugs Teqy 1)}. We initially focus on
a scenario characterised by, = 0 and subsequently consider the more general case that allows
contemporaneous correlations across all random disturbances. In this context we are particularly
interested in the potential role played by a very strong correlation betwesrdv; and how this
may in turn interact with alternative choices®fFor these reasons we conduct all our simulations

by consideringr,, € {-0.9, -0.6, -0.3, 0.0} and setting ¢uv. oug, eq) = (uv, 0.2,0.2).

We are initially interested in illustrating our result in Proposition 3 stating that the limiting
distribution of the OLS based Wald statistic for testidg: 81 = 8> = 0in (1) isy?(2) regardless
of whethera; = @, or @; # a, and regardless of the magnitude of the noncentrality pararoeter
appearing in the DGP. Table 1 below displays the simulated finite sample critical vaM€§(él1)
together with those of theg?(2) underc = 1 andc = 10. Overall we note an excellent match of
the simulated quantiles with their asymptotic counterparts. It is also clear that variaglittle
impact on the quantiles as expected by our theoretical result. Perhaps more importantly we note the
robustness of the estimated quantiles to the two scenarios abauisthEven under moderately
small sample sizes such @s= 200 the cutés of the asymptotic distribution dN;"S(;l) under

a1 = a anda; # a, remain extremely close as again confirmed by our theory.

We next, concentrate on our IVX based Wald statistics and evaluate their empirical size prop-

erties across alternative scenarios ondigs andds’s. As a benchmark scenario Table 2 initially
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reports empirical sizes for the,, = 0 case which as expected corroborate our quantile based re-
sults of Table 1 while also highlighting the adequacy/‘dl‘x(;l) andW#’XC(fl) when neither would
have been truly needed here due to exogeneity. It is also important to note that size is very accu-

rately controlled regardless of the magnitude aficluding magnitudes in the vicinity of 1.

Table 3 presents size estimates under a nonzero but weak correlation betaedy. V\/';’X(/Al)
continues to ffer excellent size control across all scenarios on the intercepts and non-centrality
parameter and perhaps more importantly magnitudes dindera; = a,,¢ = 1 for instance
the average empirical size across the sevdiermdint magnitudes af ranging between 0.70 and
0.94 was 4.64%. Given the weak degree of endogeneity considered here we also note very similar

outcomes characterising the OLS based Wald statl\ﬁli(;l).

With o, = —0.6 Table 4 focuses on a scenario with a stronger correlation betwesmnd
V;. We can immediately note the important distortions characterising the OLS based Wald statistic
W?'S(fl) which is clearly not suitable under endogeneity as also suggested by our theoretical resultin
Proposition 2. HerWTVX(/Al) Is seen to fier considerable improvements OW?IS(;I). The match of
empirical sizes to their nominal counterparts is good to excellent for moderate magnitddesiof
although finite sample distortions start kicking indgeapproaches 1, overall the distortions appear
acceptable especially for larger sample sizes. Also noteworthy is the excellent match of empirical
sizes oﬂA@’X(fl) based inferences to their nominal counterparts for slightly larger magnitudes of
the non centrality parameter Finally and equally importantly the corrected version of our Wald
statisticV\ﬁ'TVXC(;l) is seen to be characterised by excellent size properties across all magnitddes of
including when the latter are very close to 1. Under 0.94 andT = 400 for instance we note an

empirical size of 4.90% for a 5% nominal size.

Next, Table 5 treats the important casergf = —0.9 which brings the DGP closer to the type
of endogeneity we encounter when dealing with financial returns and valuation ratios. Our results

highlight the remarkable robustness and usefulneWﬁF(i) under more extreme endogeneity
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scenarios combined with choices ®fin the vicinity of unity. This modified IVX based Wald
statistic is seen tofter excellent size properties with empirical sizes in the region of 4.5%-5.1%
for a 5% nominal size. Also noteworthy is the robustness of this feature to alternative magnitudes

of c and to whether the intercepts are allowed to shift or not.

Regarding the uncorrected IVX based Wald statiw',bx(;l), although its size properties are
adequate for magnitudes éfaround 0.70 it is clear that it will lead to too many spurious rejec-
tions of the null unless impractically large sample sizes become available. As discussed earlier
and in analogy with KMS2015 the root cause of this phenomenon originates in the estimation of
intercepts in the fitted specification. Important finite sample distortions appe#fetd the term
H,Q.(Q,Q.)*Q,u in H¥u* despite the fact that it vanishes asymptotically and is dominated by

Hu.

In summary our size experiments have demonstrated the suitability and usefulness of an IVX
type of approach for conducting inferences about episodic predictability in small to moderate sam-
ples. Our IVX based Wald statist\'N?’X(/Al) provides excellent size control under weak to moderate
correlations between; andv; regardless of the magnitude éfincluding values in the vicinity
of 1. For strong to extreme degrees of correlations betweandv; however the same statistic
can lead to serious size distortions for magnitudes iofexcess of 0.70 and its corrected version
VV'%’XC(JI) should be preferred given the excellent size control of the latter for any magnitude of the

pair {oyy, 6}.

We next focus on the ability dW?’XC(/Al) to detect fixed departures from the null hypothesis
across a broad range of scenarios and parameterisations. Results are presented in Table 6 below.
More importantly we here address the issue of the impaétarf finite sample size power trade-
offs more thoroughly by considering fine incrementssaofinging between 0.40 and 0.94 under

both the null and various alternatives, with the outcomes compiled within Figures 1-2 below.

Focusing on the results presented in Table 6 first we note a clear progression of empirical
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power towards 100% as the sample size increases,wq}’fﬁ(fl) achieving power close to 100%
under =1000 and across all intercept, noncentrality parameter scenarios and any magnitude of
6. Concentrating on the casg, = —0.9 we can also observe that empirical power is steadily
increasing withs with a spread in empirical power of about 10% betwéen 0.70 ands = 0.82

albeit with a clear stabilisation for magnitudesdoi the vicinity of the 0.85-0.95 range. Under

{a; = az,c = 1, T = 200 for instance an empirical power of 83.8% whén= 0.82 can be
compared with 86.4% whef = 0.90 and 86.6% whenA = 0.94, a pattern that carries through

across most parameterisations.

The analysis presented in Figures 1-2 below is also highly informative when it comes to assess-
ing the influence of and for providing practical guidelines on its choice. We note thaWﬁ@(/Al)
statistic displays excellent size control as judged by the horizontal line across 5% while its power is
seen to increase with) typically stabilising for magnitudes in the vicinity of or greater than 0.85.
This suggests that selecting ¢hat is close to 0.9 should provide reliable finite sample inferences
with only marginal diferences if it is slightly above or below 0.9. This is also supported by our
application below where our test statistics are seen to have very similar pvalues for any magnitude

of 6 between 0.80 and 0.95.

5 Valuation Ratio Based Return Predictability

Due to its ability to let the data determine the presence or absence of regime specific behaviour in
predictive regressions, our threshold setting is particularly suited for exploring the presence of time
varying return predictability when time variation is driven by economic episodes such as recessions
and expansions rather than calendar time per se. The new inference theory developed in this paper
is an important complement to the two test statistics proposed in Gonzalo and Pitarakis (2012)

allowing us to distinguish between regime specific predictability truly induced by a particular
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predictor such as the dividend yield and regime specific behaviour that may arise solely due to
the variable used for generating the regimes (e.g. average returns varying across business cycle

regimes).

Despite a large literature geared towards testing for the linear predictability of stock returns
with valuation ratios such as the dividend yield it is only recently that empirical work has recog-
nised the possibility that predictability may be kicking in occasionally depending on the state of
the economy. In Gonzalo and Pitarakis (2012) for instance, using aggregate US data over the 1950-
2007 period we established a strong countercyclical property to dividend yield based predictability
of stock returns with aR? as high as 17% in the weak or negative growth regime, dropping to 0%
during expansions (see also Henkel, Martin and Nardari (2011) who reached similar conclusions
using a diferent statistical framework). More recently Gargano (2013) also reached similar conclu-
sions using the dividend to Price ratio as a predictor while also proposing a theoretical framework
that embeds this recessionary period based predictability of stock returns within a consumption
based asset pricing model. Earlier research that highlighted the importance of a changing environ-
ment on predictability include Pesaran and Timmermann (1995), Paye and Timmermann (2006)

amongst numerous others.

We here consider the question of episodic predictability of aggregate US market returns using
four fundamental valuation ratios given by the dividend yield (DY), the book-to-market ratio (BM),
the dividend to Price ratio (DP) and the earnings yield (EP). Although they serfiegedt purpose
we also contrast inferences based on W;hxc(?l) statistic developed here with inferences based
on theS upB” statistic developed in Gonzalo and Pitarakis (2012) and which was designed to test
Ho : a1 = a»,B1 = B> = 0. As the latter null hypothesis could be rejected due to unequal intercepts
we are here able to infer whether episodic predictability is directly induced by the valuation ratios

under consideration.

The potential influence of economic conditions on predictability is captured by the threshold
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variableq, for which we consider three alternative choices proxying business cycle conditions. In
addition to the monthly growth rate in Industrial Production (IPGR) we considered in Gonzalo
and Pitarakis (2012) (data item INDPRO retrieved from the Fred database) we also implement our
analysis using a selection of composite indicators of real economic activity commonly tracked by
policy makers. Namely the 3 month moving average of the Chicago Fed’s National Activity index
(CFNAIMA, 1967:05-2013:12) and the Aruoba-Diebold-Scotti business conditions index (ADS,
1960:04-2013:12) with the shortcoming that these two series are available from the 60s onwards
whereas IPGR can cover the full sample period for which returns and valuation ratios are available.
As the ADS index (see Aruoba, Diebold and Scotti (2009)) is designed to track the econaly in
timeit is constructed as a daily index which we transformed into a monthly series by selecting its
end of the month values. Given our operating assumptions we verified the stationarity properties
of the above three threshold variables through a standard ADF test which led to strong rejections

of the unit root null for all cases.

Compared to our analysis in Gonzalo and Pitarakis (2012) where we had focused solely on
DY over 1950-2007 we also extend our sample to cover the 1927-2013 period using the recently
extended Goyal and Welch data set (see Goyal and Welch (2014) and Welch and Goyal (2008)).
The specific return series we are considering is the recently revised excess returns series referred
to asMkt — RF in Kenneth French’s data library witklkt referring to the value weighted returns

of all CRSP firms listed on the NYSE, AMEX or NASDAQ aif the one month T-Bill return.

Table 7 below presents our empirical results across various valugs$oofthe W‘TVXC(?l) and
SupB* statistics. Note that in analogy to the correction we applied to our IVX based Wald statistic
we also implemented the same correction toShegpB* statistic of Gonzalo and Pitarakis (2012)
and referred to aS upB™© hereafter (see Remark Al in the appendix). Although not reported
here inferences based &upB’* led to outcomes identical to those basedSumpB™* across all
magnitudes ob. Outcomes of th& upAstatistic designed to test the null of linearlty : a; =

a», 81 = B, rather than predictability per se are also included for reference. The underlying theory
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for this test was developed in Gonzalo and Pitarakis (2012).

Focusing first on the DY series with thresholdleets driven by the full history of the growth
rate in industrial production (IPGR 1927-2013) we note that on the basis M/%t’h%(;l) statistic
and all magnitudes of the null of no episodic predictability induced by DY is rejected with a
pvalue of 0.06 undef = 0.86 and a pvalue of 0.10 undér= 0.94. This further corroborates and
strengthens our findings in Gonzalo and Pitarakis (2012) where we had documented the counter-
cyclical predictability of DY over the 1950-2007 period on the basis ofSlugB* statistic. Our
new test statistic leads to rejections of the null hypothiegiss; = 8, = 0 as doesS upB*° which
testsHp : a1 = a2, 81 = B> = 0, suggesting that predictability over the full sample is truly driven

by the DY predictor rather than unequal intercepts arising from our business cycle proxy.

Looking at the IPGR based subperiods we note 8iapB*° based inferences continue to
consistently reject across all scenarios Wmﬂféxc(fl) based inferences attribute a more ambiguous
role to the dividend yield as predictor when restricting the sample to the post 50s period. This
suggests that over this particular subperi8djpAand SupB*¢ may in fact be rejecting their
respective null hypothesddy : @1 = a»,81 = B> andHg : a1 = a»,B1 = B> = 0 mainly due
to unequal intercepts i.e. the regime specific nature of return predictability may in fact be driven
by our business cycle proxy rather than the DY predictor playing a distinct role across expansions
versus recessions. This is in line with a recent branch of the predictability literature which argues
that DY based predictability has declined due to greater dividend smoothing. Operating within a
purely linear setting, KMS2015 documented a very weak return predictability using the dividend
yield over the full sample and no evidence of predictability in the post 50s period. In our current
context it is also important to point out that as we switch from the post 50s to the post 60s sample
theW?’XC(fl) appears to revert and corroborate more strongly the earlier inferences based on the full

IPGR sample.

Our use of alternative drivers of episodic predictability beyond IPGR is here helpful for ex-
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ploring further the post-war period and assessing the robustness of our IPGR based results. Using
both the ADS and CFNAIMA series as threshold variables we note strong rejections of the null
hypothesis on the basis of oW"TVXC(/Al) statistic across all magnitudes &f Combined with our
clear-cut results based on IPGR (1927-2013) we view our results as providing strong empirical
evidence in support of countercyclical predictability of stock returns using DY. This finding also
highlights the crucial importance that needs to be given to the time varying nature of predictability
when evaluating the predictive power of any variable for future stock returns. It is also interesting
to point out that our use of CFNAIMAS as a threshold variable led to an estimate of the threshold
parameter given by = —0.662 which corresponds very precisely to the Chicago Fed guidelines
of interpreting a CFNAIMA3 below -0.7 as signalling an increased likelihood that a recession has
begun. Similarly, we obtainegd = —0.012 for the cutff associated with IPGR (1927-2013) ef-
fectively splitting the sample into periods of positive and negative Industrial Production growth.
The ADS index led to = —0.99, a negative magnitude also interpreted as signalling deteriorating

economic conditions.

Our BM based inferences lead to more ambiguous outcomes and display greater sensitivity to
both the choice of the threshold variable and periods of analysis. It is clear however that with the
exception of the full historical sample period under IPGR there is very little support for any robust
predictive power. An outcome that is also consistent with what has been documented in the linear

predictive regression literature.

For the DP series and regardless of the sample period considered we note a consistent and
strong rejection of the null hypotheses on the basis ofShgB*° statistic, indicating strong
regime specific £ects in the behaviour of stock returns. However in this instance and unlike the
DY series our\N"TVXC(i) test statistic mostly fails to reject the null hypothelis: 81 = 8, = 0.

This suggests that tfeupB*° based rejections were most likely driven by unequal intercepts and
highlights the importance of our new inferences. Finally, regarding the predictive power of the

earnings yield (EP) our results point to very little evidence of regime specific predictability. With
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the exception of the full sample period under IPGR, inferences based OM&@) andS upBx©

are typically unable to reject their respective null hypotheses at reasonable significance levels.

6 Conclusions

We developed a toolkit for assessing the predictability induced by a single persistent predictor in
an environment that allows predictability to kick in during particular economic episodedtact a

all or only some parameters of the model. Our threshold based framework and testing methodol-
ogy can be used to explore the possibility that the predictive power of highly persistent predictors
such as interest rates, valuation ratios and numerous other economic and financial variables may be
varying across time in an economically meaningful way with alternating periods of strong versus
weak or no predictability. More importantly the core contribution of this paper was to provide a
setting that allows us to distinguish predictability induced by a specific predictor from predictabil-

ity that may be solely driven by economic episodes (e.g. stock retufiiesidg across recessions

and expansions). Our empirical results have highlighted the misleading or at best incomplete con-

clusions one may reach if such regime specifie@s are ignored when assessing predictability.

Although our operating assumptions were closely aligned to the those commonly considered in
the linear predictive regression literature and allowed for a rich interaction between the random dis-
turbances driving our predictive threshold specification it is important to recognise the limitations
of our conditional homoskedasticity restriction imposedugnin the context of our application,

a standard LM test for ARCHfEects (up to order 12) in the residuals of our predictive threshold
specifications under CFNAIMA3 and ADS did not reject the null hypothesis of no dtietie at
reasonable significance levels and similarly for IPGR within the post 50s sample but strong ARCH
effects were supported by the data when considering the full sample period under IPGR (i.e. IPGR

(1927-2013)).
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In KMS2015 (Theorem 1) the authors showed that allowing for GARCH(p,q) errors within
their linear predictive regression setting had no influence on the asymptotics of their IVX based
Wald statistic. The key driver of this important and unusual result was the near integratedness of the
predictor with the robustness to GARCH of the Wald statistic shown to fail under purely stationary
predictors. Allowing for GARCH typeféects in our setting can be particularly challenging when it
comes to establishing the limiting properties of objects su¢h a$(q;_q < y) andy, uyx_11(G_qg <
v) under very general dependence structures linkjs@ndg; swhile also allowing for ARCH type
dependence in the s but it is an obvious extension we will consider in follow up work. Our on-
line appendix provides a broad range of size simulations under GARtektg and suggests very
little impact on inferences based Wif"xc(fl), supporting the conjecture that KMS2015s result may

also hold within our setting.
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APPENDIX

PROOF OF PROPOSITION 1: Since und#y : 81 = 82 = 0 the threshold model is given lyy = a1 l1t_1+ a2l + U,
all assumptions of Gonzalo and Pitarakis (2002) are satisfied implying the statementin (i). The resultin Part (ii) follows
by first noting that the minimiser ddy (1) is numerically identical to the maximiser of the Wald statistig(2) for

testingHp : a1 = a3 in the above restricted specification. This Wald statistic is given by

2l X ut|2t—1)2 PR ITE DI P (15)

Wrld) = (zm_l S ) | T

with 6-2(2) denoting the residual variance obtained from the above mean shift specification. Kinder; = a
and A1-A3 a suitable Law of Large Numbers (see White (2000, p.58)) ensurasﬁ'(blat—% o2. From Caner and
Hansen (2001) we ha\Ethl Uli_1/ VT = By(1). The strict stationarity and ergodicity of thes further ensures that

Sla/T 5 andy lx-1/T 5 (2 - 2). It now follows from the Continuous Mapping Theorem that

[Bu(4) — ABy(1)P

Wr() oZA(1-2)

(16)
The desired result then follows from the continuity of the argmax functional and the fact that the limit process has a
unique maximum im with probability 1 (see Theorem 2.7 in Kim and Pollard (199@)).

Before proceeding with the limiting properties ‘NT"S(/D we briefly set out the notation associated with each of its

components under our DGP in (1) also applying suitable normalisations. Defining

2 i1 ZyiX-ali-r X Wilie-1 X Xeli-a

(1) =
_ X1 Yl (2%l 2
s = i () ¢
fori = 1,2, standard algebra leads to
91t(2)
# 2 a1 /T
”Tw = (18)
gat(2)
2 laa/T
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and
2l a/T
X*IX* _l ﬁ 0
(frzi) = 1:)() Slay/T | (19)

Az (1)

Given our null hypothesis of interest it is also useful to specialise (18) across the two scenarios on the intercepts,
namelyy; = @ + g whenay = az andy; = aal?_; + a2l ; + U whenay # a». In this latter casé? , refers to the

indicator function evaluated at the true threshold paramitéie write

glt (l) |(l/1 =2

. lea/T
Xy P T
-
a1=a2 gzt(/l)|(l]_=(lz
2l 1/T
and
91t(Dlay a2
" lea/T
X: w] PR T
= (21)
[ T asser (Wl
2l 1/T
with
, 2l DUXealin X Ui X %-ali-1
g|t(/l)|a1:az T T \/T T \/T (22)
2 lie- > Xealig-al9 Sxealicaly ;3 ueeali-
Oit(Dloyza, = _Ilt ! (0.’1 1|_ -l + .II_ 21, . .trl =
> Xt:rllit—l (alz |it}1|?t_1 N a/zz Iit:rllgt—l N 2 U_trl it—l] 23)

Before proceeding with the proof of Proposition 2 we introduce the following auxiliary Lemma that is used for

establishing the asymptotic properties of the sample moments in (23).
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LEMMA A1. Under Assumptions A1-A3T |1 — Aq| = Op(1) and lettingU; = F(q), asT — co we have

% Z 1(Uier < D)I(Ups < o) - \/if Z [ (U-1 < o) 50 (24)

PROOF of LEMMA Al: We need to establish that for every 0 ands > 0

;
TliLnWPI%;[l(qmi)—l(th)p(qt<z) >8}<5.
Given that
%Z[I(qt<§)—l(qt</l)]l(qt</l) < %Z[I (A—Iﬁ—ﬁ’<qt<a+[ﬁ—a|)]
1 < _
sﬁ;At(/l,/l—/l)

with A (4,d) = 1 (1 —|d] < ¢ < 4 +d]), it will be enough to prove that

<9

. 1 « —
TI[nmP[\/—TZAt(/l,/l—/l)>s

t=1

for everye > 0y 6 > 0. SinceA is such thafl |4 — 1| = Op(1), therefore for everg > 0, JA; < oo and an integer

Ts > 1 such that
Plﬁ—/l‘>§ <d forvT > T
T 6?

and also
1 « — [
PI ZAt(/l,/l—/l)>s}= P {
Tt:l L
+P{

[ 1 ¢ As
< i —_-
_Pr = § At(/l,_l_)>a

=l

Using Markov's inequality

1

S]] < ErERAL L 2B
) )

=1 & &
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and under our assumption on the boundedness of the gglefay from 0 ando over each bounded set

=

therefore

As
<M=
- T

_ A5 A5
1_HI(/1 T < <A+ T)

1

1 < As %ZLH"*(L%)
P[ T;At(/l,?)>s}s .
_VTME A,
S — <

Putting together these results we have that for egery0 ands > 0 3T,s < oo such that for everyy’ > T

plfi-4> 5] <o
pl%jk(aé)m]d

t=1

1

=1

and then

T

. 1 —
lim P \/—_;At(/l,/l—/l)>e

1 « As
S_I!@wp[ﬁZA((/l,?)>8

t=1

. As
+T||_r)nmP[l’/T—/l| > ?] < 26.
leading to the desired resui.

PROOF OF PROPOSITION 2. We initially consider the case: a,. Given the T-consistency affor Ag, T|A— Ao| =

Op(1), and our result in Lemma Al we have

Z Ii(t)—l Z Xt—lutli?_]_ Z utli(t)—l Z Xt—lli(t)_l

git(/l)laﬁaz T T \/T T \/T + op(l)’ (25)
0 2 10 0 2
Ax(d) = 2 -||1t71 Xt-|_-12| = - (Z _);t_\}__llitl) +0p(1). (26)

Using Lemma 1 in Gonzalo and Pitarakis (2012), Theorem 1 in Caner and Hansen (2001) together with the continuous

mapping theorem we have

uWhser = o [ HOEB( 10 - Bulto) [ 300,
02 Vlosse; = (1—10)( [ 3rButr) - 8B o) - (1) - Bt [ Jc(r)),
) = 4 [ 302
2 = @102 [ 307 @7)
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Next, using (27) in (20)-(21) and rearranging gives

XE X 1 0
! *[p\2 0
727 me [ 0 (1—10)] (29)
and
3(r)dB(r. do) - By(lo) f 3(1)
" /
A?Y“ R . (29)

f Je(r)(dBy(r) — dBy(r, 40)) — (Bu(1) - Bu(0)) f Je(r)

Combining (28)-(29) into (7) and using?(1) > o2 leads to

[f JedBy(r, Ao) - Bu(/lo)f‘lc(r)]2 N
020 [ Ji(r)?
[ [ Je(dBy(r) — dBy(r, o)) — (Bu(1) - Bu(do)) [ Je(r)]?
o3(1- o) [ Ji(r)?

[ [ 3:(r)dGu(r, 20)1? .\ [[ J:(r)dBy(r)]?
o20(1 - o) [ Jx(r)? o3 [ Ji(r)?
[Bu(do) ~ 0By | [ Jz(rdBy(r)]?

30(1 - o) o2 [ Jz(r)?

W—?ls(;l)

(30)

with Gy(r, o) = By(r, o) — 10Bu(r, 1) denoting a Kiefer Process with covariance functigiir; A r)Ao(1 — o). The

result in Proposition 2 then follows by noting thai(r) and G,(r, 1¢) are uncorrelated and hence independent due
to their Gaussianity so thaft J;(r)dGu(r, 1) = N(0,0240(1 - Ao) [ J;(r)?) conditionally on the realisation af(r).

Thus normalising byr21(1 - /lo)fJg(r)2 gives they?(1) limit which is also the unconditional distribution since

not dependent on the realisation &{r). The casexr; = a, can be treated in a similar fashion wifly replaced

by the random variabl@* in (30) as in Theorem 5 of Caner and Hansen (2001) with the nuance that our random
maximiseri* does not depend on any nuisance parameters. The main result for this case then follows by noting
that the first component in the right hand side of (30) evaluatad istay?(1) random variable. This latter point is a
consequence of the independenca’adind [fJg(r)déu(r, /l)]z/fJé(r)2 or equivalently off dGy(r, 2) (which 2" is the
maximiser of) and [ J;()dGy(r, )]?/ [ J:(r)? where we leGy(r, 2) = Gy(r, 1)/ VAT - ). Indeed, letting3By(1) =

[Bu(1d) — ABu(1)]2/A(1 — A) then given thaP[BB,(1*) < X|A* = A] = CHIS Q(x) for any givend, independence here
implies that the unconditional distribution BB,(1*) must also ba2(1). To note the independenceﬁﬂéu(r, N=/(

say, ande;(r)dGu(r, D]/ fJC*(r)2 = M which isN(0, 1) as shown above, it is useful to point out tihatis of the
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form ' ¢/ Vi and the two quantities have joint characteristic functiggy M) = E[€¢*SM] = E[E[¢*SM|4]]. It is
now straightforward to note that(¢, M) = E[€¥]E[€5M] asGy(r, 1) is independent oB,(r) and hence ofi(r) (see

Gonzalo and Pitarakis (2012, p. 232) and Gonzalo and Pitarakis (2012, Supplementary Appendix Section 2.2).

PROOF OF PROPOSITION 3. The result follows directly from the independenBg(iofl) andB,(r) undero, = 0
also implying the independence df(r) and By(r, 1) and from which mixed normality follows. Noting also the

independence of the two components in the right hand side of (30) established in Gonzalo and Pitarakim (2012).

Before proceeding with the proof of Proposition 4 it will be convenient to reformulate the components of (11) in an

explicit and suitably normalised form. Defining

M) = 2 i1 [(Z li 1 2 F‘tz—llit_l) 1 (Z ﬁt_llit_l)z}

T T Ti+6 T 16 Ti+o
_ (Sl S heaxelics Shcalicn X xealier)’
ﬂlt(/l) = 140 - 1
T T+ T3+0 T \/T
2l X Veheealie- 1 (Z il X ytlit—l)
nig(1) = — 31
¢ T T3+ Ti-3\ T3 VT ey
fori = 1,2 we can write
m1t(2)
1 */ * */ *\— */ * /l
mHA Xy(HYHYD) lH/l X1 = M(4) mot(A) (32)
Mat(1)
and
Nyt(4)
1+5 ~ ﬂlt(/l)
T72 Bux(d) = (33)
Nt ()
V()

PROOF OF PROPOSITION 4. We concentrate on the aasea, with the underlying T-consistency dffor 1. We
also recall thal = X!_; ¢ /Ax; and leth, = X!, ¢} v;. It now follows directly from (31) and Lemma 3.1 in Phillips

and Magdalinos (2009) that

(z ') S0,

m() =[S S o)
. hy_112 10 19 Sheax al® Y
ﬂit(/l) — Z t-10it_1 Z Xt-1 it-1 Z it—-1 Z t-1M-10t_1 + Op(l) (34)
T%.H; T \/T T Tl+o
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Under our assumptions A1-A3 the following deduce directly from Phillips and Magdalinos (2009, eq. (14))

2
me() = /lg%
N a)z
M) = (1-10° % (35)

sincey h? (1%, — 20)/T** £ 0. It also follows that

2
i [ Jz(r)dac«)]

Tt (;1) = /lé

2
) = @-10fof+ [ J:;(r)dJc(r)] (36)

so that

L s Ly [wf+ [ XMdEOP (20 0
Toes M XA(HTHD THYX )2 0 1-1 (37)
Next, we also have
- 10 Suheal? )

i = 1 38
nlt(/l) T T%+% + Op( ) ( )
and Lemma 3.2 in Phillips and Magdalinos (2009) together with (35) ensure the following holds

1 0 2‘”3
T%"'% Z h[—lut I 1t—1 = N(O, AOO—U?
1 0 2‘”\2/
Ti+2 Z hitelz, = NO(1- /10)0'u7 (39)

which when rearranged with (37) and using the continuous mapping theorem Wﬁﬁ(ﬁ) leads to the desired
result. The case; = a; can be treated in a similar fashion with replaced by the random variablé as formulated

in Proposition 1m

REMARK Al. The SupB* statistic developed in Gonzalo and Pitarakis (2012) was formulate8lugsB* =
sup, WA(2) + W¥X(ﬂ = 0) with W2(2) referring to the Wald statistic for testinido : @1 = @2,81 = B2 in (1) and

W¥X(ﬂ = 0) was the simple IVX based Wald statistic for testidg : 8 = 0iny; = a + B%_1 + U; i.e. exactly
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analogous to the Wald statistic developed in KMS2015. The finite sample corrected verSiompBf considered
in our application above simply replackéér"x(ﬂ = 0) with its formulation in KMS2015 (pp. 1514-1515, equations
(19)-(21)).
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Figure 1: Size and Power ch(ﬁ) across) (5% Nominal Size)
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Figure 2: Size and Power ch(ﬁ) across) (5% Nominal Size)

ACCEPTED MANUSCRIPT
35




Downloaded by [University of Southampton] at 13:28 03 April 2016

ACCEPTED MANUSCRIPT

Table 1:Simulated Quantiles ofW}"s(fl) versusy?(2) under oy, = 0

. 0 . 0 . 0 . 0 . 0£. 0
)(% 4610 5.990 7.380 4.610 5.9907.380
a1 =az,Cc=1 ay #Faz,c=1

=200 4508 5.795 7.167 4521 5.880 7.354
T=400 4.708 6.089 7.433 4.779 6.341 8.159
T=1000 4.692 5.981 7.418 4592 5.728.948

a1 =ap, =10 ay # ap, =10
=200 4.481 6.056 7.841 4.494 5959 7.381
T=400 4.561 6.094 7.638 4.619 5.845 7.287
T=1000 4.668 6.027 7.439 4.400 6.027 7.228
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Table 2:Empirical Size of W*(1), Wi*°(2) and W2'(1) (5% Nominal), oy, = 0.0
0 0

WIVX(/l) ar=az,c=1 ay £ as,c=1

T=400 4.70 4.40 455 4.70 4.90 5.05 5.00 5.15 5.10 5.25 540 5.70 6.05 6.40
T=1000 5.40 5.25 545 520 540 545 570 4.20 450 4.60 5.05 4.95 475

WIVXC(/]') ar=ay,Cc=1 ar#az,c=1

T=400 4.65 4.30 455 4.70 4.85 5.05 4.90 5.15 510 525 5.35 5.65 6.05 6.35
T=1000 5.40 5.25 5.45 510 540 535 565 4.15 4.45 4.50 5.00 4.95 460

WOIS(/l) ar=az,c=1 ay #as,c=1

T=400 535 535 535 535 535 535 535 6.25 6.25 6.25 6.25 6.25 6.25 6.25
T=1000 4.90 4.90 4.90 4.90 4.90 4.90 4.90 4.45 4.45 4.45 4.45 4.45 445

WAYX(2) a; = a c=10 a1 % @, C= 10

T=400 5.60 560 590 565 5.75 570 565 4.90 4.80 5.00 4.85 4.65 4.75 4.70
T=1000 5.15 5.40 5.35 550 5.30 5.35 5.10 4.20 4.45 4.45 4.40 4.35 465

WiVXC(/l) @1 = az,c=10 a1 # az, c=10

T=400 5.60 5.60 5.90 5.65 570 5.60 560 4.90 4.80 5.00 4.85 4.65 4.75 4.70
T=1000 5.15 5.40 5.35 550 530 5.35 5.10 4.20 4.45 4.45 4.40 4.35 4.6

WOIS() a1=ay c=10 a1 # az, c=10

T=400 555 555 555 555 555 555 555 4.40 4.40 4.40 4.40 4.40 4.40 4.40
T=1000 5.15 5.15 5.15 5.15 5.15 5.15 5.15 5.10 5.10 5.10 5.10 5.10 5.10 5.10
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Table 3:Empirical Size of W*(1), Wi*°(2) and W2'(1) (5% Nominal), o, = —0.3

0 0

T=400 3.95 4.05 4.50 4.60 4.85 5.20 5.35 5.60 5.80 6.05 6.50 6.75 7.25 7.15
6.20 5.85 6.10 6.15 6.50 6.45 6.30 6.35 6.65 6.35 6.30 G

VVIVXC(/l) ar=az,c=1 a1 #as,c=1

70 4.05 4.20 4.45 4.70 4.90 5.40 5.20 550 5.75 5.90 6.00 5.95
00 570 570 5.75 6.05 5.90 6.10 6.15 6.25 5.60 5.45 5B

WOlS(/l) ar=az,c=1 a1 #ap,c=1

6.20 6.20 6.20 6.20 6.20 6.15 6.15 6.15 6.15 6.15 6.15 6.15

.20
.85 6.85 6.85 6.85 6.85 6.85 6.65 6.65 6.65 6.65 6.65 GED

a1 # ap, =10

VViVX(/l) a1 =ap,Cc=10
20 5.30 5.10 5.15 520 5.35 5.00 5.30 5.35 5.70 5.60 5.75 5.70

.20
45 5.30 5.40 5.45 5.35 5.60 5.40 5.40 5.40 5.75 5.55 LD

Wivxc(/l) a1 =az,c=10 a1 # ap, c=10

15 5.25 5.10 5.10 5.15 5.20 5.00 5.30 5.35 5.60 5.55 5.75 5.45
30 5.25 5.35 5.40 5.30 545 5.40 5.30 540 5.70 5.50 568

WOIS() a1 =ay c=10 a1 # az,c=10

—
=
o
S
S]
A 01
©
o
g
W

25 5.25 525 525 525 525 525 4.90 4.90 4.90 4.90 4.90 4.90 4.90
T=1000 5.30 5.30 5.30 5.30 5.30 5.30 5.30 5.35 5.35 5.35 5.35 5.35 5.35 5.35
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Table 4:Empirical Size of W*(1), Wi*°(2) and W2'S(1) (5% Nominal), o, = —0.6

WYX(Q) ar=ay,c=1 a1 #a,c=1

T-400 575 6.25 645 680 690 7.15 7.55 6.00 645 6.75 695 7.30 7.20 7.15
T=1000 560 6.05 6.30 6.05 6.65 6.90 7.15 4.80 4.95 545 570 540 5%

WIVXC(A) a1 =azC=1 a1 #as,c=1

T=400 520 520 505 515 505 480 490 520 525 540 525 520 4.95 4.80
T=1000 4.95 500 4.95 4.75 4.75 4.45 460 4.05 4.05 4.10 4.00 3.80 34%D

WOlS(/l) a1 =az,c=1 a1 #ap,c=1

T=400 10.75 10.75 10.75 10.75 10.75 10.75 10.75 9.85 9.85 9.85 985 9.85 9.85 9.85
T=1000 9.80 9.80 9.80 9.80 9.80 9.80 9.80 10.05 10.05 10.05 10.05 10.05 10.05

Wivx(/l) a1 =ap,c=10 a1 # ap, =10

T=400 6.00 575 540 560 575 600 595 455 495 520 540 565 6.00 6.10
T=1000 520 560 550 530 520 530 510 4.85 520 515 500 500 ZBE

WiVXC(/l) a1 =@y, c=10 a1 # ap, ¢=10

T=400 585 555 530 530 535 545 535 430 485 500 525 540 570 5.65
T=1000 5.15 550 535 515 490 495 470 470 505 505 4.75 475 M6E

WOIS() a1 =ay c=10 a1 # az,c=10

T-400 630 630 630 630 630 630 630 590 590 590 590 590 590 5.90
T=1000 520 520 520 520 520 520 520 6.00 600 600 600 600 600 6.00
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Table 5:Empirical Size of W¥*(1), Wi*%(2) and W2'S(2) (5% Nominal), oy, = —0.9

[ [

WIVX(2) a1 =az,c=1 a1 #az,c=1

. . . . . . . . . . . . . 11.30
T=400 7.85 825 9.15 990 1040 11.15 1195 695 735 7.60 7.85 9.30 10.35 10.65
T=1000 6.65 7.20 8.00 8.25 940 10.65 11.20 7.15 8.05 8.40 9.05 10.00 1RZWD

WIVXE( 1) a1 =az,c=1 a1 #az,c=1

= . . . . . . . . . . . . . 4.25
T=400 560 540 525 500 455 450 440 515 525 490 460 470 460 4.55
T=1000 5.10 490 475 480 440 450 430 520 525 505 480 445 44P0

WOIS(/l) ap=ap,Cc=1 a #ap,c=1

. . . . . . . 15.15 15.15 15.15 15.15 15.15 15.15 15.15
T=400 1455 1455 1455 1455 1455 1455 1455 14.85 14.85 14.85 14.85 14.85 14.85 14.85
T=1000 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.50 15.50 15.50 15.50 15.50 1HF5D

WIVX(2) a1 =az,c=10 a1 # a,c=10

T=400 575 585 605 600 615 620 620 605 580 595 625 640 645 640
T-1000 6.20 6.35 6.65 650 6.65 695 6.85 570 5095 6.05 6.10 6.50 66/80

WIVXE( 1) a1 =az,c=10 a1 # az,c=10

T=400 555 540 530 510 495 485 485 545 555 545 545 535 530 510
T-1000 6.00 6.05 6.05 595 585 575 570 550 570 550 575 5.85 6980

WOIS(/l) a1 =az,c=10 a1 # a,c=10

T-400 6.85 6.85 685 685 685 685 685 755 7.55 7.55 7.55 7.55 7.55 7.55
T-1000 7.55 7.55 7.55 7.55 7.55 7.55 7.55 7.45 7.45 7.45 7.45 7.45 7.45 7.45
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Table 6:Empirical Power of W'TVXC(fl) (5% Nominal Size)
) )

B2 =0.025 a1 =ap,c=1,04 =-06 a1 # ag,c= 1,04 =-06

. . . . . . . . . . . . 9 437
T=400 66.2 70.7 754 787 816 832 849 722 775 810 836 857 873 88.6
T=1000 96.5 975 983 99.2 99.6 100.0 100.0 96.8 975 984 99.0 99.5 9P

= . . . . . . . . . . . . . 85.5
T=400 959 971 980 988 993 995 99.7 955 96.5 97.7 986 993 995 99.7
T=1000 98.9 99.2 995 99.7 100.0 100.0 100.0 98.7 99.3 99.7 100.0 100.0 100D

B2 = 0.025 a1 = ap,C=10,04y = -0.6 @1 # @2, C= 10,04y = —0.6

. . . . . . . . . . . . . 19.4
T=400 333 356 382 405 419 433 442 494 526 553 574 59.2 608 61.8
T=1000 98.3 989 99.1 995 99.7 99.7 99.7 99.8 99.8 99.9 99.9 100.0 100000

. . . . . . . . . . . . . 60.4
T=400 89.1 909 925 941 945 948 950 968 975 982 985 98.7 98.8 98.8
T=1000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 IOW®M

B2 = 0.025 a1 =ap,c=1,04 =-09 a1 #ap,c=1,04 =-09

. . . . . . . . . . . . . 43.8
T=400 720 773 809 838 859 872 880 801 840 869 89.2 0907 923 927
T=1000 975 978 98.7 99.2 99.6 998 999 97.6 985 99.2 995 99.8 d990.0

= . . . . . . . . . . . . . 89.8
T=400 969 97.6 984 988 992 995 99.7 963 97.7 982 989 99.1 994 99.6
T=1000 99.2 995 99.7 99.8 99.9 100.0 100.0 98.8 99.1 99.5 99.8 100.0 1WD®

B2 = 0.025 a1 = ap, €= 10,04 = -0.9 a1 # ap, = 10,0y = -0.9

. . . . . . . . . . . . . 18.8
T=400 36.1 386 40.7 429 448 46.2 475 521 565 59.2 619 638 658 673
T=1000 99.8 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

. . . . . . . . . . . . . 63.9
T=400 943 957 96.6 974 98.0 983 984 99.2 995 99.7 99.7 99.9 99.9 100.0
T=1000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
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Table 7:Episodic Predictability of Stock Returns with Valuation Ratios

WIVXE( Q) SupB’x¢ SupA

[PGR (1927-2013)

DY 6.69[0.04] 6.51[0.04] 5.59[0.06] 4.61[0.10] 33.26%* 33.66** 33.28%* 32.64** 27.54[0.00]
BM 6.20[0.05] 6.27[0.04] 6.23[0.04] 6.24[0.04] 4L.17** 417** 41.83** 4181** 34.72[0.00]
DP 4.53[0.10] 4.68[0.10] 4.13[0.13] 3.42[0.18] 22.32%* 22.93%+ 229%+ 2257+ 19.19[0.00]
EP 3.86[0.15] 4.55[0.10] 4.88[0.09] 4.90[0.09] 15.92%* 16.61%** 16.99%* 17.13%* 12.22[0.05]
IPGR (1940-2013)
DY 4.32[0.12] 5.61[0.06] 6.02[0.05] 5.80[0.06] 24.11%* 24.93** 2503+ 24.69** 20.02 [0.00]
BM 0.94[0.63] 1.48[0.48] 1.89[0.39] 2.09[0.35] 1259 * 13.02 * 1327 * 13.36 * 11.46[0.07]
DP 3.00[0.22] 4.20[0.17] 4.66[0.10] 4.55[0.10] 22.29%* 23.09%* 2325%* 2301** 19.37 [0.00]
EP 156[0.46] 2.39[0.30] 3.05[0.22] 3.44[0.18] 4.13 5.02 5.69 6.05 2.51[0.98]
IPGR (1950-2013)
DY 241[0.30] 2.76[0.25] 2.63[0.27] 2.17[0.34] 23.52%* 24.01%* 24.09%* 23.83** 2153[0.00]
BM 224[0.33] 162[0.44] 1.34[0.51] 1.22[0.54] 12.25 * 12.39 ** 1256 * 12.66 ** 12.10[0.05]
DP 1.63[0.44] 2.05[0.36] 2.03[0.36] 1.70[0.43] 21.54 ** 22.04** 22.19%* 22.04** 20.23[0.00]
EP 067[0.72] 0.84[0.66] 1.29[0.53] 1.61[0.45] 353 3.81 430 475 3.39[0.89]
IPGR (1960-2013)
DY 3.11[0.21] 3.48[0.18] 3.91[0.14] 4.28[0.12] 21.72%* 21.62%* 2150%* 21.43** 19.60[0.00]
BM 0.37[0.83] 0.10[0.95] 0.21[0.90] 0.44[0.80] 10.92 10.92 10.93 10.94 10.88 [0.08]
DP 1.74[0.42] 2.08[0.35] 2.48[0.29] 2.80[0.25] 19.56%* 10.64** 19.61%* 19.56%* 18.23[0.00]
EP 3.22[0.20] 1.92[0.38] 1.31[0.52] 1.12[0.57] 3.18 3.20 3.27 3.36 PEF]

ADS (1960-2013)

10.98 [0108]

0.48[0.79] 0.60[0.74] 0.94[0.63] 1.28[0.53] 11.03 11.04 11.05  11.07
2.96[0.23] 3.27[0.20] 3.60[0.17] 3.84[0.15] 14.73* 14.85* 14.82* 14.74* 13.38[0.03]
1.20[0.55] 1.02[0.60] 1.06[0.59] 1.19[0.55] 7.97*  7.99* 8.06*  8.15*  7.i430]

CFNAIMAS (1967-2013)

5.74[0.06] 5.08[0.08] 4.47[0.11] 4.06[0.13] 1251 * 1251 * 1252 * 1252 * 12.50[0.04]
6.90[0.03] 6.16[0.05] 5.54[0.06] 5.11[0.08] 12.82 * 12.90 * 12.88 * 12.85 * 11.87[0.06]
462[0.10] 4.54[0.10] 4.30[0.12] 4.09[0.13 9.52 9.51 9.56 9.63 9.07[0.17]

ACCEPTED MANUSCRIPT
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