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Abstract

We develop tests for detecting possibly episodic predictability induced by a persistent pre-

dictor. Our framework is that of a predictive regression model with threshold effects and our

goal is to develop operational and easily implementable inferences when one does not wish to

imposeà priori restrictions on the parameters of the model other than the slopes corresponding

to the persistent predictor. Differently put our tests for the null hypothesis of no predictability

against threshold predictability remain valid without the need to know whether the remain-

ing parameters of the model are characterised by threshold effects or not (e.g. shifting versus

non-shifting intercepts). One interesting feature of our setting is that our test statistics remain

unaffected by whether some nuisance parameters are identified or not. We subsequently ap-

ply our methodology to the predictability of aggregate stock returns with valuation ratios and

document a robust countercyclicality in the ability of some valuation ratios to predict returns

in addition to highlighting a strong sensitivity of predictability based results to the time period

under consideration.
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1 Introduction

Predictive regressions are simple regression models in which a highly persistent variable is used as

a predictor of a noisier time series. The econometric difficulties that arise due to the combination

of a persistent regressor and possible endogeneity have generated an enormous literature aiming to

improve inferences in such settings. Common examples include the predictability of stock returns

with valuation ratios, the predictability of GDP growth with interest rates amongst numerous others

(see for instance Valkanov (2003), Lewellen (2004), Campbell and Yogo (2006), Jansson and

Moreira (2006), Rossi (2007), Bandi and Perron (2008), Ang and Bekaert (2008), Wei and Wright

(2013) and more recently Kostakis, Magdalinos and Stamatogiannis (2015, KMS2015 thereafter)).

In a recent paper Gonzalo and Pitarakis (2012) have extended the linear predictive regression

model into one that allows the strength of predictability to vary across economic episodes such as

expansions and recessions. This was achieved through the inclusion of threshold effects which al-

lowed the parameters of the model to switch across regimes driven by an external variable. Within

this piecewise linear setting the authors developed a series of tests designed to detect the presence

of threshold effects inall the parameters of the model by maintaining full linearity within the null

hypotheses (i.e. restricting both intercepts and slopes to be stable throughout the sample). Differ-

ently put this earlier work was geared towards uncovering regimes within a predictive regression

setting rather than determining the predictability of a particular predictor per se.

The goal of this paper is to develop a toolkit that will allow practitioners to test the null hypothe-

sis of no predictability induced by a persistent regressor explicitly without restricting the remaining

parameters of the model (e.g. intercepts may or may not exhibit threshold effects). Indeed, a re-

searcher may wish to assess the presence of predictability induced solely by some predictorxt

while remaining agnostic about the presence or absence of regimes in the remaining parameters.

Moreover, in applications involving return predictability with valuation ratios such as the dividend

yield and a threshold variable proxying the business cycle, rejection of the null of no predictability
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ACCEPTED MANUSCRIPT

on the basis of a null hypothesis that restricts all the parameters of the model as in Gonzalo and

Pitarakis (2012) may in fact be driven by the state of the business cycle rather than the regime

specific predictability induced by the dividend yield itself.

The type of inference we consider in this paper naturally raises important identification issues

which we address by exploring the feasibility of conducting inferences on the relevant slope pa-

rameters that are immune to any knowledge about the behaviour of the intercepts and in particular

to whether the latter are subject to regime shifts or not. Our null hypothesis of interest here allows

for the possibility of havingnuisanceparameters that may or may not switch across regimes. This

is fundamentally different from the setting considered in Gonzalo and Pitarakis (2012) where the

intercepts were also restricted to be equal under the null hypothesis of no predictability and the

only nuisance parameter was the unknown threshold parameter itself.

Our proposed inferences are based on a standard Wald type test statistic whose distribution

we derive under the null hypothesis of no predictability induced by a highly persistent regressor.

The limiting distribution of our test statistic evaluated at a particular location of the threshold

parameter is then shown to be immune to whether the remaining parameters of the model shift or

not. Since the limiting distribution in question depends on a series of nuisance parameters it is

not directly usable for inferences unless one wishes to impose an exogeneity assumption on the

predictor. Using an Instrumental Variable approach we subsequently introduce a modified Wald

statistic whose new distribution is shown to be standard and free of nuisance parameters under a

very general setting.

The plan of the paper is as follows. Section 2 presents our operating model and the underlying

probabilistic assumptions. Section 3 develops the large sample inferences. Section 4 illustrates

their properties and usefulness via a rich set of simulations. Section 5 applies our proposed methods

to the predictability of aggregate US equity returns using a wide range of valuation ratios and

threshold variables and Section 6 concludes.
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2 The Model and Assumptions

We operate within the same setting as in Gonzalo and Pitarakis (2012). Our predictive regression

model with threshold effects orPredictive Threshold Regression(PTR) is given by

yt+1 = (α1 + β1xt)I (qt ≤ γ) + (α2 + β2xt)I (qt > γ) + ut+1 (1)

where the highly persistent predictorxt is modelled as the nearly integrated process

xt = ρT xt−1 + vt, ρT = 1−
c
T

(2)

with c > 0 andqt = μq + uqt denoting the stationary threshold variable with distribution function

F(.). Before proceeding further it is useful to reformulate our specification in (1) in matrix form.

In doing so we make use of the propertyI (qt ≤ γ) ≡ I (F(qt) ≤ λ) ≡ I1t andI (qt > γ) ≡ I (F(qt) >

λ) ≡ I2t with λ ≡ F(γ) so that in what follows the threshold parameter can be referred to as as

eitherγ or λ interchangeably. We now rewrite (1) as

y = Qλα + Xλβ + u (3)

with Qλ = [I1 I2] and Xλ = [x1 x2] stacking the elements (I1t I2t) and (xtI1t xtI2t) respectively and

α = (α1 α2)′, β = (β1 β2)′. Given the assumptions that will be imposed onqt (e.g. strict stationarity

and ergodicity) it is useful to note thatE[I1t] = λ andE[I2t] = 1− λ ∀t and throughout the paper

it will be understood thatλ ∈ Λ = [λ, λ] with 0 < λ < λ < λ < 1. Note that (1) is the same

parameterisation as the one used in Gonzalo and Pitarakis (2012) but its key features are repeated

here for self containedness considerations. When relevant we will also refer to the true value of

the threshold parameter as eitherγ0 or λ0.

Our main goal is to focus on the sole predictive power ofxt without imposing any restrictions

on theα’s. Note for instance that a null hypothesis such asα1 = α2, β1 = β2 = 0 may be rejected
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solely due toα1 , α2 while continuing to be compatible with an environment in whichxt has

no predictive content. It is this aspect that we wish to address in the present paper whose goal

is to develop inferences about theβ’s without imposing any constraints on theα’s in the sense

that they may or may not be regime dependent within the underlying DGP. More specifically we

will be interested in exploring testing strategies for testing the null hypothesisH0 : β1 = β2 = 0

while allowing theα’s to be free in the background. This is an important departure from the

framework in Gonzalo and Pitarakis (2012) where we considered Sup overλ type tests of various

null hypotheses which were also restricting the intercepts themselves in addition toβ1 andβ2 (e.g.

α1 = α2, β1 = β2 = 0). More importantly in this paper our inferences will be based on a Wald

statistic evaluated at a particular estimator of the threshold parameter (as opposed to taking its

supremum overλ) which ensures that its limiting distribution underβ1 = β2 = 0 is unaffected by

whetherα1 = α2 or α1 , α2 and is nuisance parameter free.

We next outline our operating assumptions regarding the probabilistic properties ofut, vt, qt

and their joint interactions. Throughout this paper we let the random disturbancevt be described

by the linear processvt = Ψ(L)evt with the polynomialΨ(L) =
∑∞

j=0 Ψ jL j havingΨ(1) , 0,

Ψ0 = 1 and absolutely summable coefficients. We also letζt = (ut,evt)′ and introduce the filtration

Ft = σ(ζs,uqs|s≤ t).

ASSUMPTIONSA1: E[ζt|Ft−1] = 0, E[ζtζ
′
t |Ft−1] = Σ̃ > 0, supt Eζ4

it < ∞. A2: The sequence{uqt}

is strictly stationary, ergodic, strong mixing with mixing numbersαm such that
∑∞

m=1α
1
m−

1
r < ∞ for

some r> 2. A3: The probability density function fq(.) of qt is bounded away from zero and∞ over

each bounded set.

Assumption A1 requires the error process driving (1) to be a martingale difference sequence with

respect toFt hence ruling out serial correlation inut (but not in vt or qt) while also imposing

conditional homoskedasticity. Bothvt and qt are allowed to be sufficiently general dependent

processes. This setting mimics closely the standard framework used in the predictive regression
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literature (e.g. Campbell and Yogo (2006), Jansson and Moreira (2006)) and is in fact slightly

more general since we do allowvt to be serially correlated. At this stage it is also important to

clarify our stance regarding the joint interactions of our variables. Our assumptions about the

dependence structure of the random disturbances together with the finiteness of moments require-

ments imply that a Functional Central Limit Theorem holds forwt = (ut,utI1t−1, vt). More formally

T−
1
2
∑[Tr]

t=1 wt ⇒ (Bu(r), Bu(r, λ), Bv(r)′ = BM(Ω) with Ω =
∑∞

k=−∞ E[w0w′k]. Our analysis will im-

pose a particular structure onΩ which governs and restricts the joint interactions ofut, vt andqt.

More specifically we impose

Ω =




σ2
u λσ2

u σuvΨ(1)

λσ2
u λσ2

u λσuvΨ(1)

σuvΨ(1) λσuvΨ(1) σ2
eΨ(1)2




(4)

whereσ2
u = E[u2

t ], σ
2
e = E[e2

vt] and sinceE[utev,t− j] = 0 we also writeσuv = E[utvt] = E[utevt] =

σue. The chosen structure ofΩ is general enough to encompass the standard setting used in the

linear predictive regression literature that typically imposes{ut, vt} to be a martingale difference

sequence andut andvt solely contemporaneously correlated. Our assumptions allow us to operate

within a similar environment while also permitting the shocks to the threshold variable to be con-

temporaneously correlated withut and/or vt. As in Caner and Hansen (2001) and Pitarakis (2008),

Bu(r, λ) refers to a two-parameter Brownian Motion which is a zero mean Gaussian process with

covariance kernel (r1∧ r2)(λ1∧ λ2)σ2
u so that we implicitly also operate under the requirement that

E[u2
t |qt−1,qt−2, . . .] = σ2

u as well asE[utvt|qt−1] = E[utvt] ≡ σuv and E[utvt−k|qt−1,qt−2, . . .] = 0

∀k ≥ 1. Given our nearly integrated specification forxt and A1-A3 above it is also clear (see

Phillips (1988)) thatx[Tr]/
√

T ⇒ Jc(r) with Jc(r) = Bv(r) + c
∫ r

0
e(r−s)cBv(s)ds denoting a scalar

Ornstein-Uhlenbeck process. For later use we also define the demeaned versions ofJc(r) andBu(r)

asJ∗c(r) = Jc(r) −
∫

Jc(r) andB∗u(r) = Bu(r) −
∫

Bu(r).
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3 Large Sample Inference

Since within model (1) the null hypothesisH0 : β1 = β2 = 0 is compatible with eitherα1 = α2

or α1 , α2 in a first instance it will be important to establish the large sample properties of our

threshold parameter estimatorλ̂ (or γ̂) under the two alternative scenarios on the intercepts. As

our focus is on inferences aboutβ and mainly for notational convenience it will also be useful to

reparameterise (3) in its canonical form. More specifically, lettingMQ = I − Qλ(Q′λQλ)−1Qλ we

can equivalently express (3) as

y∗ = X∗λ β + u∗ (5)

with y∗ = MQy, X∗λ = MQXλ andu∗ = MQu.

3.1 Threshold Parameter Estimation

The threshold parameter estimator we consider throughout this paper is based on the least squares

principle and defined as

λ̂ = arg min
λ

ST(λ) (6)

with ST(λ) denoting the concentrated sum of squared errors function obtained from (3) or (5)

under the restrictionβ1 = β2 = 0 i.e. ST(λ) = y′MQy. Recall that throughout this paper we use

λ̂ andγ̂ = arg minγ ST(γ) interchangeably. Naturally, the behaviour ofλ̂ is expected to depend on

whether the underlying true model hasα1 , α2 (i.e. identified threshold parameter) orα1 = α2

in which caseλ vanishes from the true model. The following Proposition summarises the large

sample behaviour of̂λ under the two scenarios.

Proposition 1. Under Assumptions A1-A3, H0 : β1 = β2 = 0 and as T→ ∞ we have (i) T|λ̂−λ0| =

6
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Op(1) whenα1 , α2 and (ii) λ̂
d
→ λ∗ with λ∗ = arg maxλ∈Λ[Bu(λ)−λBu(1)]2/λ(1−λ) whenα1 = α2.

Whenβ1 = β2 = 0 is imposed on the fitted model andα1 , α2 we have a purely stationary

mean shift specification and the result in part (i) of Proposition 1 is intuitive and illustrates the

T-consistency of the least squares based threshold parameter estimator. This is in fact a well

known result in the literature which we report for greater coherence with our subsequent analysis

(see Hansen (2000) and Gonzalo and Pitarakis (2002)). The result in part (ii) of Proposition 1

is particularly interesting and highlights the fact that the threshold parameter estimator obtained

from a model that is linear and contains no threshold effects converges in distribution to a random

variable given by the maximum of a normalised squared Brownian Bridge process. Although the

maximum of a Brownian Bridge is well known to be a uniformly distributed random variable an

explicit expression or closed form density forλ∗ is to our knowledge not available in the literature.

We next concentrate on the limiting distribution of a Wald type test statistic for testingH0 :

β1 = β2 = 0 in (1).

3.2 TestingH0 : β1 = β2 = 0

Using the canonical representation in (5) and for a givenλ ∈ (0,1) we can write the standard OLS

based Wald statistic for testingH0 : β1 = β2 = 0 as

Wols
T (λ) = β̂(λ)′(X∗′λ X∗λ)β̂(λ)/σ̂2

u(λ) (7)

with β̂(λ) = (X∗′λ X∗λ)
−1X∗′λ y and σ̂2

u(λ) referring to the residual variance estimated from the un-

restricted specification. In what followsWols
T (λ̂) will denote the Wald statistic evaluated at the

estimated threshold parameterλ̂ as defined in (6) and its limiting behaviour is summarised in the

following Proposition.

Proposition 2 Under the null hypothesis H0 : β1 = β2 = 0, assumptions A1-A3 and as T→ ∞ we
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have

Wols
T (λ̂) ⇒

[∫
J∗c(r)dBu(r,1)

]2

σ2
u

∫
J∗c(r)2

+ χ2(1) (8)

regardless of whetherα1 = α2 or α1 , α2.

Proposition 2 highlights the usefulness of the Wald statistic for conducting inferences about the

β′swithout having to take a stand on whether theα′sare regime dependent or not. The interesting

point here is the fact that the limiting distribution of the Wald statistic evaluated atλ̂ is the same

regardless of whetherα1 = α2 or α1 , α2 in the underlying model. One shortcoming of our

expression in (8) is caused by the presence of the unknown noncentrality parameterc making it

difficult to tabulate in practice. Due to the allowed correlation betweenBu and Bv it is also the

case that the first component in the right hand side of (8) will depend onσuv. There is however an

instance under which the limiting distribution simplifies considerably as summarised in Proposition

3 below.

Proposition 3 Under the null hypothesis H0 : β1 = β2 = 0, assumptions A1-A3 together with the

requirement thatσuv = 0 in (4) and as T→ ∞ we have

Wols
T (λ̂) ⇒ χ2(2) (9)

regardless of whetherα1 = α2 or α1 , α2.

The above result highlights a unique scenario whereby the magnitude of the noncentrality param-

eter no longer enters the asymptotics of the Wald statistic despite a nearly integrated parameter-

isation in the DGP. See also Rossi (2005) for interesting similarities between our asymptotics in

Proposition 2 and distributions arising within a related structural break framework.

In order to address the limitations of our result in (8) we next introduce an Instrumental Vari-

able based Wald statistic designed in such a way that its limiting distribution remains a nuisance
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parameter freeχ2(2) random variable regardless of whetherσuv is zero or not. This is achieved

through an IV method developed in Phillips and Magdalinos (2009) in the context of the cointe-

gration literature and which we adapt to our current context (see also Breitung and Demetrescu

(2014)). The key idea is to instrumentxt with a slightly less persistent version of itself using its

own innovations (hence the IVX terminology). LettingφT = (1−cz/Tδ) for somecz > 0 (saycz = 1

as discussed in Phillips and Magdalinos (2009) and KMS2015) andδ ∈ (0,1) the IVX variable is

constructed as̃ht =
∑t

j=1 φ
t− j
T Δxj. Within our present context and fori = 1,2 we instrumentxtIit in

(1) with h̃t Iit . Letting h̃i denote the vector stacking theh̃t I ′it sandHλ = [h̃1 h̃2] the IVX estimator of

β in (5) can be formulated as

β̂ivx(λ) = (H∗′λ X∗λ)
−1H∗′λ y∗ (10)

with H∗λ = MQHλ. Noting that the projectionPQ = Qλ(Q′λQλ)−1Q′λ is effectively analogous to

applying aregime specific demeaningthe above formulation of the IVX estimator also helps high-

light its invariance to using eitherHλ or H∗λ as IVs sinceH∗′λ X∗λ = H′λX
∗
λ andH∗′λ y∗ = H′λy

∗. The IV

based Wald statistic for testingβ1 = β2 = 0 in (1) (or (5)) can now be formulated as

Wivx
T (λ) = β̂ivx

[
(H∗′λ X∗λ)

−1(H∗′λ H∗λ)(H
∗′
λ X∗λ)

−1
]−1

β̂ivx/σ̂2
u(λ) (11)

and its limiting distribution is summarised in Proposition 4 below.

Proposition 4 Under the null hypothesis H0 : β1 = β2 = 0, assumptions A1-A3 and as T→ ∞ we

have Wivx
T (λ̂)⇒ χ2(2) regardless of whetherα1 = α2 or α1 , α2.

The above result provides a convenient test statistic for testingH0 : β1 = β2 = 0 since inferences

can be based on a limiting distribution that does not depend onc or any endogeneity induced

parameter (as opposed to our formulation in (8)) and are immune to whether the intercepts shift

or not. The parameterδ used in the construction of the IVX variables controls the degree of

persistence of the instruments and plays a key role in ensuring that the Wald based asymptotics are

9
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free of the influence of the noncentrality parameterc. It is also important to highlight the fact that

althoughδ is a necessary user-input in the construction ofWivx
T (λ̂) it does not play any role in its

limiting distribution which is nuisance parameter free and valid for allδ ∈ (0,1). This of course

does not preclude the fact that particular choices ofδ may have important finite sample effects and

size/power tradeoffs when basing inferences onWivx
T (λ̂), an issue we explore and address below.

As shown in KMS2015 and Phillips and Magdalinos (2009) and as it is also the case for our

estimator in (10) the price to pay for the convenient mixed normal limit ofβ̂ivx which in turn leads

to theχ2 approximation of the associated Wald statistic is a rate of convergence that is slightly

lower thanT and given byO(T
1+δ
2 ), suggesting that a choice ofδ that is close to 1 may be the

most appropriate when constructing the IVX variables. This is an issue we document and explore

comprehensively in the simulations that follow but before doing so we wish to discuss in greater

detail the key factors that may influence the impact ofδ on the finite sample size and power prop-

erties ofWivx
T (λ̂) such as the strength of the correlation betweenut andvt and adapt the practical

recommendations of KMS2015 to our predictive threshold context.

Our Monte-Carlo simulations below robustly demonstrate that for moderate degrees of corre-

lation betweenut andvt our IVX based statistic displays excellent size control regardless of the

magnitude ofδ and a power that increases withδ albeit stabilising for magnitudes in the vicinity of

0.9. This naturally suggests that a choice ofδ in the range [0.85,0.95] should offer a good compro-

mise between finite sample size and power with only minor finite sample implications whether one

usesδ = 0.85 orδ = 0.95 or another magnitude of similar order. When the correlation betweenut

andvt is allowed to be close to 1 however as it may happen in numerous finance applications infer-

ences based onWivx
T (λ̂) are characterised by important size distortions that increase and deteriorate

with δ. These finite sample properties we observe within our setting mirrorexactlythe properties

of the IVX Wald statistic documented in the linear predictive regression setting of KMS2015 and

prompted the authors to introduce an intuitive finite sample correction to the formulation of their

IVX based Wald statistic which they show offers excellent size control even under strong degrees
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of endogenity combined with a power that grows asδ approaches 1. The proposed finite sample

correction does not alter the first order asymptotic approximation of the IVX based Wald statistic

hence allowing KMS2015 to argue that for practical purposes their proposed correction resolves

the issue of choosing a suitableδ. Size is perfectly controlled regardless of the magnitude ofδ

while power increases monotonically withδ and mirroring our earlier point above stabilises for

magnitudes in the vicinity of 0.85-0.95. This naturally leads us to adapt the finite sample cor-

rection of KMS2015 to our own specification with threshold effects. It is important to reiterate

however that the proposed correction aplied toWivx
T (λ̂) does not affect its first order limit theory

which remains as in Proposition 4.

The limitingχ2 result in (11) naturally originates in the mixed Gaussianity ofβ̂ivx in turn driven

by the normality of a suitably normalised version ofH∗′λ u∗ ≡ H′λu
∗ = H′λu− H′λQλ(Q′λQλ)−1Q′λu in

(10) with the second componentH′λQλ(Q′λQλ)−1Q′λu arising due to the presence of fitted intercepts

(recall thatQλ = [I1 I2]) and which vanishes asymptotically. The first order asymptotic behaviour

of H′λu
∗ is driven by the asymptotic normality of a normalised version ofH′λu. Although the second

componentH′λQ(Q′Q)−1Q′u vanishes asymptotically its presence can cause significant finite sam-

ple distortions compared to a setting with no fitted intercepts, distortions that are further amplified

when the degree of correlation betweenut andvt is large. KMS2015’s correction which we adapt

here is motivated by the need to neutralise this finite sample impact induced by the fitted intercepts

and in proportion to how strongly correlatedut andvt are. The finite sample correctedWivx
T (λ̂)

adapted to our present context can be formulated as

Wivxc
T (λ) = β̂ivx′(λ)

[
(H∗′λ X∗λ)

−1Gλ(H
∗′
λ X∗λ)

−1
]−1

β̂ivx(λ) (12)

with

Gλ = σ̂2
u(λ)

(
H∗′λ H∗λ + ρ̂

2
uvH

′
λQλ(Q

′
λQλ)

−1Q′λHλ

)
(13)
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and where ˆρ2
uv = ω̂2

uv/σ̂
2
uω̂

2
v. Hereω̂uv denotes an estimator of the long run covariance betweenut

andvt andω̂2
v an estimator of the long run variance of thev′t s (see (4)). Note for instance that the

correction in (13) will have little impact for small magnitudes ofρuv while playing an important fi-

nite sample adjustment role when the correlation betweenut andvt is large, effectively neutralising

the finite sample distortions resulting from the fitted intercepts. It is also useful to point out that

when suitable normalisations are applied toWivxc
T (λ̂) defined above, the correction term adjacent

to ρ̂2
uv will vanish asymptotically. Both ˆωuv andω̂2

v can be estimated in a straightforward manner

using Newey-West type estimators. For this purpose we proceed as in KMS2015 introducing a

bandwidth parameterKT such thatKT → ∞ andKT/
√

T → 0 asT → ∞ and using

ω̂2
v =

1
T

T∑

t=1

v̂2
t +

2
T

KT∑

`=1

(

1−
`

KT + 1

) T∑

t=`+1

v̂tv̂t−`

ω̂uv =
1
T

T∑

t=1

ûtv̂t +
1
T

KT∑

`=1

(

1−
`

KT + 1

) T∑

t=`+1

v̂tût−` (14)

in the construction ofWivxc
T (λ̂). Our next goal is to comprehensively evaluate the finite sample

properties of our IVX based test statistics with a particular emphasis on documenting the role

played byδ and how best to select its magnitude in applied work.

4 Finite Sample Evaluation

The goal of this section is twofold. First we wish to demonstrate the validity and finite sample

accuracy of our theoretical results presented in Propositions 2-4 through simulations. Second

we wish to use our simulations to comprehensively illustrate the potential influence ofδ on the

finite sample size/power tradeoffs of our test statistics with the aim of achieving clear and reliable

practical recommendations for the implementation of our IVX based statistics (e.g. for a broad

range of experiments we consider magnitudes ofδ ranging between 0.50 and 0.98 with increments

12
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of size 0.02). Due to space considerations we only present key outcomes while relegating a broad

range of additional and supportive simulations to an online appendix.

We initially concentrate on the size properties of our test statistics. Our chosen DGP is given by

(1) withβ1 = β2 = 0. For the parameterisation of the intercepts we consider two scenarios. Namely,

{α1, α2} = {1,1} and{α1, α2} = {1,3}. In the latter case we setγ0 = 0.25 with the threshold variable

taken to follow the AR(1) processqt = 0.5qt−1 + uqt while we setvt = 0.5vt−1 + evt for the shocks

associated with the nearly integrated variablext. Finally we take (ut,evt,uqt) to be a Gaussian

vector with covariance given byΣ = {(1, σuv, σuq), (σuv,1, σeq), (σuq, σeq,1)}. We initially focus on

a scenario characterised byσuv = 0 and subsequently consider the more general case that allows

contemporaneous correlations across all random disturbances. In this context we are particularly

interested in the potential role played by a very strong correlation betweenut andvt and how this

may in turn interact with alternative choices ofδ. For these reasons we conduct all our simulations

by consideringσuv ∈ {−0.9,−0.6,−0.3,0.0} and setting (σuv, σuq, σeq) = (σuv,0.2,0.2).

We are initially interested in illustrating our result in Proposition 3 stating that the limiting

distribution of the OLS based Wald statistic for testingH0 : β1 = β2 = 0 in (1) isχ2(2) regardless

of whetherα1 = α2 or α1 , α2 and regardless of the magnitude of the noncentrality parameterc

appearing in the DGP. Table 1 below displays the simulated finite sample critical values ofWols
T (λ̂)

together with those of theχ2(2) underc = 1 andc = 10. Overall we note an excellent match of

the simulated quantiles with their asymptotic counterparts. It is also clear that varyingc has little

impact on the quantiles as expected by our theoretical result. Perhaps more importantly we note the

robustness of the estimated quantiles to the two scenarios about theα′s. Even under moderately

small sample sizes such asT = 200 the cutoffs of the asymptotic distribution ofWols
T (λ̂) under

α1 = α2 andα1 , α2 remain extremely close as again confirmed by our theory.

We next, concentrate on our IVX based Wald statistics and evaluate their empirical size prop-

erties across alternative scenarios on theσuv’s andδ’s. As a benchmark scenario Table 2 initially
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reports empirical sizes for theσuv = 0 case which as expected corroborate our quantile based re-

sults of Table 1 while also highlighting the adequacy ofWivx
T (λ̂) andWivxc

T (λ̂) when neither would

have been truly needed here due to exogeneity. It is also important to note that size is very accu-

rately controlled regardless of the magnitude ofδ including magnitudes in the vicinity of 1.

Table 3 presents size estimates under a nonzero but weak correlation betweenut andvt. Wivx
T (λ̂)

continues to offer excellent size control across all scenarios on the intercepts and non-centrality

parameter and perhaps more importantly magnitudes ofδ. Underα1 = α2, c = 1 for instance

the average empirical size across the seven different magnitudes ofδ ranging between 0.70 and

0.94 was 4.64%. Given the weak degree of endogeneity considered here we also note very similar

outcomes characterising the OLS based Wald statisticWols
T (λ̂).

With σuv = −0.6 Table 4 focuses on a scenario with a stronger correlation betweenut and

vt. We can immediately note the important distortions characterising the OLS based Wald statistic

Wols
T (λ̂) which is clearly not suitable under endogeneity as also suggested by our theoretical result in

Proposition 2. HereWivx
T (λ̂) is seen to offer considerable improvements overWols

T (λ̂). The match of

empirical sizes to their nominal counterparts is good to excellent for moderate magnitudes ofδ and

although finite sample distortions start kicking in asδ approaches 1, overall the distortions appear

acceptable especially for larger sample sizes. Also noteworthy is the excellent match of empirical

sizes ofWivx
T (λ̂) based inferences to their nominal counterparts for slightly larger magnitudes of

the non centrality parameterc. Finally and equally importantly the corrected version of our Wald

statisticWivxc
T (λ̂) is seen to be characterised by excellent size properties across all magnitudes ofδ

including when the latter are very close to 1. Underδ = 0.94 andT = 400 for instance we note an

empirical size of 4.90% for a 5% nominal size.

Next, Table 5 treats the important case ofσuv = −0.9 which brings the DGP closer to the type

of endogeneity we encounter when dealing with financial returns and valuation ratios. Our results

highlight the remarkable robustness and usefulness ofWivxc
T (λ̂) under more extreme endogeneity
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scenarios combined with choices ofδ in the vicinity of unity. This modified IVX based Wald

statistic is seen to offer excellent size properties with empirical sizes in the region of 4.5%-5.1%

for a 5% nominal size. Also noteworthy is the robustness of this feature to alternative magnitudes

of c and to whether the intercepts are allowed to shift or not.

Regarding the uncorrected IVX based Wald statisticWivx
T (λ̂), although its size properties are

adequate for magnitudes ofδ around 0.70 it is clear that it will lead to too many spurious rejec-

tions of the null unless impractically large sample sizes become available. As discussed earlier

and in analogy with KMS2015 the root cause of this phenomenon originates in the estimation of

intercepts in the fitted specification. Important finite sample distortions appear to affect the term

H′λQλ(Q′λQλ)−1Q′λu in H∗′λ u∗ despite the fact that it vanishes asymptotically and is dominated by

H′λu.

In summary our size experiments have demonstrated the suitability and usefulness of an IVX

type of approach for conducting inferences about episodic predictability in small to moderate sam-

ples. Our IVX based Wald statisticWivx
T (λ̂) provides excellent size control under weak to moderate

correlations betweenut andvt regardless of the magnitude ofδ including values in the vicinity

of 1. For strong to extreme degrees of correlations betweenut andvt however the same statistic

can lead to serious size distortions for magnitudes ofδ in excess of 0.70 and its corrected version

Wivxc
T (λ̂) should be preferred given the excellent size control of the latter for any magnitude of the

pair {σuv, δ}.

We next focus on the ability ofWivxc
T (λ̂) to detect fixed departures from the null hypothesis

across a broad range of scenarios and parameterisations. Results are presented in Table 6 below.

More importantly we here address the issue of the impact ofδ on finite sample size power trade-

offs more thoroughly by considering fine increments ofδ ranging between 0.40 and 0.94 under

both the null and various alternatives, with the outcomes compiled within Figures 1-2 below.

Focusing on the results presented in Table 6 first we note a clear progression of empirical
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power towards 100% as the sample size increases, withWivxc
T (λ̂) achieving power close to 100%

under T=1000 and across all intercept, noncentrality parameter scenarios and any magnitude of

δ. Concentrating on the caseσuv = −0.9 we can also observe that empirical power is steadily

increasing withδ with a spread in empirical power of about 10% betweenδ = 0.70 andδ = 0.82

albeit with a clear stabilisation for magnitudes ofδ in the vicinity of the 0.85-0.95 range. Under

{α1 = α2, c = 1,T = 200} for instance an empirical power of 83.8% whenδ = 0.82 can be

compared with 86.4% whenδ = 0.90 and 86.6% whenδ = 0.94, a pattern that carries through

across most parameterisations.

The analysis presented in Figures 1-2 below is also highly informative when it comes to assess-

ing the influence ofδ and for providing practical guidelines on its choice. We note that theWivxc
T (λ̂)

statistic displays excellent size control as judged by the horizontal line across 5% while its power is

seen to increase withδ, typically stabilising for magnitudes in the vicinity of or greater than 0.85.

This suggests that selecting aδ that is close to 0.9 should provide reliable finite sample inferences

with only marginal differences if it is slightly above or below 0.9. This is also supported by our

application below where our test statistics are seen to have very similar pvalues for any magnitude

of δ between 0.80 and 0.95.

5 Valuation Ratio Based Return Predictability

Due to its ability to let the data determine the presence or absence of regime specific behaviour in

predictive regressions, our threshold setting is particularly suited for exploring the presence of time

varying return predictability when time variation is driven by economic episodes such as recessions

and expansions rather than calendar time per se. The new inference theory developed in this paper

is an important complement to the two test statistics proposed in Gonzalo and Pitarakis (2012)

allowing us to distinguish between regime specific predictability truly induced by a particular
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predictor such as the dividend yield and regime specific behaviour that may arise solely due to

the variable used for generating the regimes (e.g. average returns varying across business cycle

regimes).

Despite a large literature geared towards testing for the linear predictability of stock returns

with valuation ratios such as the dividend yield it is only recently that empirical work has recog-

nised the possibility that predictability may be kicking in occasionally depending on the state of

the economy. In Gonzalo and Pitarakis (2012) for instance, using aggregate US data over the 1950-

2007 period we established a strong countercyclical property to dividend yield based predictability

of stock returns with anR2 as high as 17% in the weak or negative growth regime, dropping to 0%

during expansions (see also Henkel, Martin and Nardari (2011) who reached similar conclusions

using a different statistical framework). More recently Gargano (2013) also reached similar conclu-

sions using the dividend to Price ratio as a predictor while also proposing a theoretical framework

that embeds this recessionary period based predictability of stock returns within a consumption

based asset pricing model. Earlier research that highlighted the importance of a changing environ-

ment on predictability include Pesaran and Timmermann (1995), Paye and Timmermann (2006)

amongst numerous others.

We here consider the question of episodic predictability of aggregate US market returns using

four fundamental valuation ratios given by the dividend yield (DY), the book-to-market ratio (BM),

the dividend to Price ratio (DP) and the earnings yield (EP). Although they serve a different purpose

we also contrast inferences based on ourWivxc
T (λ̂) statistic developed here with inferences based

on theS upBivx statistic developed in Gonzalo and Pitarakis (2012) and which was designed to test

H0 : α1 = α2, β1 = β2 = 0. As the latter null hypothesis could be rejected due to unequal intercepts

we are here able to infer whether episodic predictability is directly induced by the valuation ratios

under consideration.

The potential influence of economic conditions on predictability is captured by the threshold
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variableqt for which we consider three alternative choices proxying business cycle conditions. In

addition to the monthly growth rate in Industrial Production (IPGR) we considered in Gonzalo

and Pitarakis (2012) (data item INDPRO retrieved from the Fred database) we also implement our

analysis using a selection of composite indicators of real economic activity commonly tracked by

policy makers. Namely the 3 month moving average of the Chicago Fed’s National Activity index

(CFNAIMA, 1967:05-2013:12) and the Aruoba-Diebold-Scotti business conditions index (ADS,

1960:04-2013:12) with the shortcoming that these two series are available from the 60s onwards

whereas IPGR can cover the full sample period for which returns and valuation ratios are available.

As the ADS index (see Aruoba, Diebold and Scotti (2009)) is designed to track the economy inreal

time it is constructed as a daily index which we transformed into a monthly series by selecting its

end of the month values. Given our operating assumptions we verified the stationarity properties

of the above three threshold variables through a standard ADF test which led to strong rejections

of the unit root null for all cases.

Compared to our analysis in Gonzalo and Pitarakis (2012) where we had focused solely on

DY over 1950-2007 we also extend our sample to cover the 1927-2013 period using the recently

extended Goyal and Welch data set (see Goyal and Welch (2014) and Welch and Goyal (2008)).

The specific return series we are considering is the recently revised excess returns series referred

to asMkt − RF in Kenneth French’s data library withMkt referring to the value weighted returns

of all CRSP firms listed on the NYSE, AMEX or NASDAQ andRF the one month T-Bill return.

Table 7 below presents our empirical results across various values ofδ for the Wivxc
T (λ̂) and

S upBivx statistics. Note that in analogy to the correction we applied to our IVX based Wald statistic

we also implemented the same correction to theS upBivx statistic of Gonzalo and Pitarakis (2012)

and referred to asS upBivxc hereafter (see Remark A1 in the appendix). Although not reported

here inferences based onS upBivx led to outcomes identical to those based onS upBivxc across all

magnitudes ofδ. Outcomes of theS upAstatistic designed to test the null of linearityH0 : α1 =

α2, β1 = β2 rather than predictability per se are also included for reference. The underlying theory
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for this test was developed in Gonzalo and Pitarakis (2012).

Focusing first on the DY series with threshold effects driven by the full history of the growth

rate in industrial production (IPGR 1927-2013) we note that on the basis of theWivxc
T (λ̂) statistic

and all magnitudes ofδ the null of no episodic predictability induced by DY is rejected with a

pvalue of 0.06 underδ = 0.86 and a pvalue of 0.10 underδ = 0.94. This further corroborates and

strengthens our findings in Gonzalo and Pitarakis (2012) where we had documented the counter-

cyclical predictability of DY over the 1950-2007 period on the basis of theS upBivx statistic. Our

new test statistic leads to rejections of the null hypothesisH0 : β1 = β2 = 0 as doesS upBivxc which

testsH0 : α1 = α2, β1 = β2 = 0, suggesting that predictability over the full sample is truly driven

by the DY predictor rather than unequal intercepts arising from our business cycle proxy.

Looking at the IPGR based subperiods we note thatS upBivxc based inferences continue to

consistently reject across all scenarios whileWivxc
T (λ̂) based inferences attribute a more ambiguous

role to the dividend yield as predictor when restricting the sample to the post 50s period. This

suggests that over this particular subperiod,S upAand S upBivxc may in fact be rejecting their

respective null hypothesesH0 : α1 = α2, β1 = β2 and H0 : α1 = α2, β1 = β2 = 0 mainly due

to unequal intercepts i.e. the regime specific nature of return predictability may in fact be driven

by our business cycle proxy rather than the DY predictor playing a distinct role across expansions

versus recessions. This is in line with a recent branch of the predictability literature which argues

that DY based predictability has declined due to greater dividend smoothing. Operating within a

purely linear setting, KMS2015 documented a very weak return predictability using the dividend

yield over the full sample and no evidence of predictability in the post 50s period. In our current

context it is also important to point out that as we switch from the post 50s to the post 60s sample

theWivxc
T (λ̂) appears to revert and corroborate more strongly the earlier inferences based on the full

IPGR sample.

Our use of alternative drivers of episodic predictability beyond IPGR is here helpful for ex-
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ploring further the post-war period and assessing the robustness of our IPGR based results. Using

both the ADS and CFNAIMA series as threshold variables we note strong rejections of the null

hypothesis on the basis of ourWivxc
T (λ̂) statistic across all magnitudes ofδ. Combined with our

clear-cut results based on IPGR (1927-2013) we view our results as providing strong empirical

evidence in support of countercyclical predictability of stock returns using DY. This finding also

highlights the crucial importance that needs to be given to the time varying nature of predictability

when evaluating the predictive power of any variable for future stock returns. It is also interesting

to point out that our use of CFNAIMA3 as a threshold variable led to an estimate of the threshold

parameter given by ˆγ = −0.662 which corresponds very precisely to the Chicago Fed guidelines

of interpreting a CFNAIMA3 below -0.7 as signalling an increased likelihood that a recession has

begun. Similarly, we obtained ˆγ = −0.012 for the cutoff associated with IPGR (1927-2013) ef-

fectively splitting the sample into periods of positive and negative Industrial Production growth.

The ADS index led to ˆγ = −0.99, a negative magnitude also interpreted as signalling deteriorating

economic conditions.

Our BM based inferences lead to more ambiguous outcomes and display greater sensitivity to

both the choice of the threshold variable and periods of analysis. It is clear however that with the

exception of the full historical sample period under IPGR there is very little support for any robust

predictive power. An outcome that is also consistent with what has been documented in the linear

predictive regression literature.

For the DP series and regardless of the sample period considered we note a consistent and

strong rejection of the null hypotheses on the basis of theS upBivxc statistic, indicating strong

regime specific effects in the behaviour of stock returns. However in this instance and unlike the

DY series ourWivxc
T (λ̂) test statistic mostly fails to reject the null hypothesisH0 : β1 = β2 = 0.

This suggests that theS upBivxc based rejections were most likely driven by unequal intercepts and

highlights the importance of our new inferences. Finally, regarding the predictive power of the

earnings yield (EP) our results point to very little evidence of regime specific predictability. With
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the exception of the full sample period under IPGR, inferences based on bothWivxc
T (λ̂) andS upBivxc

are typically unable to reject their respective null hypotheses at reasonable significance levels.

6 Conclusions

We developed a toolkit for assessing the predictability induced by a single persistent predictor in

an environment that allows predictability to kick in during particular economic episodes and affect

all or only some parameters of the model. Our threshold based framework and testing methodol-

ogy can be used to explore the possibility that the predictive power of highly persistent predictors

such as interest rates, valuation ratios and numerous other economic and financial variables may be

varying across time in an economically meaningful way with alternating periods of strong versus

weak or no predictability. More importantly the core contribution of this paper was to provide a

setting that allows us to distinguish predictability induced by a specific predictor from predictabil-

ity that may be solely driven by economic episodes (e.g. stock returns differing across recessions

and expansions). Our empirical results have highlighted the misleading or at best incomplete con-

clusions one may reach if such regime specific effects are ignored when assessing predictability.

Although our operating assumptions were closely aligned to the those commonly considered in

the linear predictive regression literature and allowed for a rich interaction between the random dis-

turbances driving our predictive threshold specification it is important to recognise the limitations

of our conditional homoskedasticity restriction imposed onut. In the context of our application,

a standard LM test for ARCH effects (up to order 12) in the residuals of our predictive threshold

specifications under CFNAIMA3 and ADS did not reject the null hypothesis of no such effects at

reasonable significance levels and similarly for IPGR within the post 50s sample but strong ARCH

effects were supported by the data when considering the full sample period under IPGR (i.e. IPGR

(1927-2013)).
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In KMS2015 (Theorem 1) the authors showed that allowing for GARCH(p,q) errors within

their linear predictive regression setting had no influence on the asymptotics of their IVX based

Wald statistic. The key driver of this important and unusual result was the near integratedness of the

predictor with the robustness to GARCH of the Wald statistic shown to fail under purely stationary

predictors. Allowing for GARCH type effects in our setting can be particularly challenging when it

comes to establishing the limiting properties of objects such as
∑

utI (qt−d ≤ γ) and
∑

utxt−1I (qt−d ≤

γ) under very general dependence structures linkingu′t sandq′t swhile also allowing for ARCH type

dependence in theu′t s but it is an obvious extension we will consider in follow up work. Our on-

line appendix provides a broad range of size simulations under GARCH effects and suggests very

little impact on inferences based onWivxc
T (λ̂), supporting the conjecture that KMS2015s result may

also hold within our setting.
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APPENDIX

PROOF OF PROPOSITION 1: Since underH0 : β1 = β2 = 0 the threshold model is given byyt = α1I1t−1+α2I2t−1+ut,

all assumptions of Gonzalo and Pitarakis (2002) are satisfied implying the statement in (i). The result in Part (ii) follows

by first noting that the minimiser ofST(λ) is numerically identical to the maximiser of the Wald statisticWT(λ) for

testingH0 : α1 = α2 in the above restricted specification. This Wald statistic is given by

WT(λ) =

(∑
utI1t−1∑
I1t−1

−
∑

utI2t−1∑
I2t−1

)2 ∑
I1t−1

∑
I2t−1

Tσ̂2
u(λ)

(15)

with σ̂2
u(λ) denoting the residual variance obtained from the above mean shift specification. UnderH0 : α1 = α2

and A1-A3 a suitable Law of Large Numbers (see White (2000, p.58)) ensures that ˆσ2
u(λ)

p
→ σ2

u. From Caner and

Hansen (2001) we have
∑T

t=1 utI1t−1/
√

T ⇒ Bu(λ). The strict stationarity and ergodicity of theI ′it s further ensures that
∑

I1t−1/T
p
→ λ and

∑
I2t−1/T

p
→ (1− λ). It now follows from the Continuous Mapping Theorem that

WT(λ) ⇒
[Bu(λ) − λBu(1)]2

σ2
uλ(1− λ)

. (16)

The desired result then follows from the continuity of the argmax functional and the fact that the limit process has a

unique maximum inΛ with probability 1 (see Theorem 2.7 in Kim and Pollard (1990)).�

Before proceeding with the limiting properties ofWols
T (λ̂) we briefly set out the notation associated with each of its

components under our DGP in (1) also applying suitable normalisations. Defining

git (λ) ≡
∑

Iit−1

T

∑
ytxt−1Iit−1

T
−

∑
ytIit−1
√

T

∑
xtIit−1

T
√

T

Δit (λ) ≡

∑
x2

t−1Iit−1

T2

∑
Iit−1

T
−

(∑
xt−1Iit−1

T
√

T

)2

(17)

for i = 1,2, standard algebra leads to

X∗′λ y∗

T
=




g1t(λ)
∑

I1t−1/T

g2t(λ)
∑

I2t−1/T




(18)
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and

(
X∗′λ X∗λ

T2

)−1

=




∑
I1t−1/T
Δ1t(λ)

0

0
∑

I2t−1/T
Δ2t(λ)



. (19)

Given our null hypothesis of interest it is also useful to specialise (18) across the two scenarios on the intercepts,

namelyyt = α + ut whenα1 = α2 andyt = α1I0
1t−1 + α2I0

2t−1 + ut whenα1 , α2. In this latter caseI0
it−1 refers to the

indicator function evaluated at the true threshold parameterλ0. We write

[
X∗′λ y∗

T

]

α1=α2

=




g1t(λ)|α1=α2∑
I1t−1/T

g2t(λ)|α1=α2∑
I2t−1/T




(20)

and

[
X∗′λ y∗

T

]

α1,α2

=




g1t(λ)|α1,α2∑
I1t−1/T

g2t(λ)|α1,α2∑
I2t−1/T




(21)

with

git (λ)|α1=α2 =

∑
Iit−1

T

∑
utxt−1Iit−1

T
−

∑
utIit−1
√

T

∑
xt−1Iit−1

T
√

T
(22)

git (λ)|α1,α2 =

∑
Iit−1

T


α1

∑
xt−1Iit−1I0

1t−1

T
+ α2

∑
xt−1Iit−1I0

2t−1

T
+

∑
utxt−1Iit−1

T




−
∑

xt−1Iit−1

T


α1

∑
Iit−1I0

1t−1

T
+ α2

∑
Iit−1I0

2t−1

T
+

∑
utIit−1

T


 (23)

Before proceeding with the proof of Proposition 2 we introduce the following auxiliary Lemma that is used for

establishing the asymptotic properties of the sample moments in (23).
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LEMMA A1. Under Assumptions A1-A3,T |λ̂ − λ0| = Op(1) and lettingUt ≡ F(qt), asT → ∞ we have

1
√

T

∑
I (Ut−1 ≤ λ̂)I (Ut−1 ≤ λ0) −

1
√

T

∑
I (Ut−1 ≤ λ0)

p
→ 0 (24)

PROOF of LEMMA A1: We need to establish that for everyε > 0 andδ > 0

lim
T→∞

P




∣∣∣∣∣∣∣

1
√

T

T∑

t=1

[
I
(
qt < λ̂

)
− I (qt < λ)

]
I (qt < λ)

∣∣∣∣∣∣∣
> ε


 < δ.

Given that
∣∣∣∣∣∣∣

1
√

T

T∑

t=1

[
I
(
qt < λ̂

)
− I (qt < λ)

]
I (qt < λ)

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣

1
√

T

T∑

t=1

[
I
(
λ −

∣∣∣∣̂λ − λ
∣∣∣∣ < qt < λ +

∣∣∣∣̂λ − λ
∣∣∣∣
)]
∣∣∣∣∣∣∣

≤
1
√

T

T∑

t=1

At

(
λ, λ̂ − λ

)

with At (λ, d) = I (λ − |d| < qt < λ + |d|) , it will be enough to prove that

lim
T→∞

P




1
√

T

T∑

t=1

At

(
λ, λ̂ − λ

)
> ε


 < δ

for everyε > 0 y δ > 0. Sinceλ̂ is such thatT |λ̂ − λ0| = Op(1), therefore for everyδ > 0, ∃Δδ < ∞ and an integer

Tδ ≥ 1 such that

P

[∣∣∣∣̂λ − λ
∣∣∣∣ >

Δδ

T

]

< δ for ∀T > Tδ,

and also

P




1
√

T

T∑

t=1

At

(
λ, λ̂ − λ

)
> ε


 = P








1
√

T

T∑

t=1

At

(
λ, λ̂ − λ

)
> ε




∩

{∣∣∣∣̂λ − λ
∣∣∣∣ ≤

Δδ

T

}+

+ P








1
√

T

T∑

t=1

At

(
λ, λ̂ − λ

)
> ε




∩

{∣∣∣∣̂λ − λ
∣∣∣∣ >

Δδ

T

}

≤ P




1
√

T

T∑

t=1

At

(

λ,
Δδ

T

)

> ε


 + P

[∣∣∣∣̂λ − λ
∣∣∣∣ >

Δδ

T

]

.

Using Markov’s inequality

P




1
√

T

T∑

t=1

At

(

λ,
Δδ

T

)

> ε


 ≤

∥∥∥∥ 1√
T

∑T
t=1 At

(
λ, ΔδT

)∥∥∥∥
1

ε
≤

1√
T

∑T
t=1

∥∥∥∥At

(
λ, ΔδT

)∥∥∥∥
1

ε
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and under our assumption on the boundedness of the pdf ofqt away from 0 and∞ over each bounded set

∥∥∥∥∥∥At

(

λ,
Δδ

T

)∥∥∥∥∥∥
1

=

∥∥∥∥∥∥I

(

λ −
Δδ

T
< qt < λ +

Δδ

T

)∥∥∥∥∥∥
1

≤ M
Δδ

T

therefore

P




1
√

T

T∑

t=1

At

(

λ,
Δδ

T

)

> ε


 ≤

1√
T

∑T
t=1

∥∥∥∥At

(
λ, ΔδT

)∥∥∥∥
1

ε

≤

√
T MΔδ

T

ε
≤

MΔδ

ε
√

T
.

Putting together these results we have that for everyε > 0 andδ > 0 ∃Tεδ < ∞ such that for everyT > Tεδ

P

[∣∣∣∣̂λ − λ
∣∣∣∣ >

Δδ

T

]

< δ

P




1
√

T

T∑

t=1

At

(

λ,
Δδ

T

)

> ε


 < δ

and then

lim
T→∞

P




1
√

T

T∑

t=1

At

(
λ, λ̂ − λ

)
> ε


 ≤ lim

T→∞
P




1
√

T

T∑

t=1

At

(

λ,
Δδ

T

)

> ε


 + lim

T→∞
P

[∣∣∣∣̂λ − λ
∣∣∣∣ >

Δδ

T

]

< 2δ.

leading to the desired result.�

PROOF OF PROPOSITION 2. We initially consider the caseα1 , α2. Given the T-consistency ofλ̂ for λ0, T |λ̂−λ0| =

Op(1), and our result in Lemma A1 we have

git (λ̂)|α1,α2 =

∑
I0
it−1

T

∑
xt−1utI0

it−1

T
−

∑
utI0

it−1√
T

∑
xt−1I0

it−1

T
√

T
+ op(1), (25)

Δit (λ̂) =

∑
I0
it−1

T

∑
x2

t−1I0
it−1

T2
−




∑
xt−1I0

it−1

T
√

T




2

+ op(1). (26)

Using Lemma 1 in Gonzalo and Pitarakis (2012), Theorem 1 in Caner and Hansen (2001) together with the continuous

mapping theorem we have

g1t(λ̂)|α1,α2 ⇒ λ0

(∫
Jc(r)dBu(r, λ0) − Bu(λ0)

∫
Jc(r)

)

,

g2t(λ̂)|α1,α2 ⇒ (1− λ0)

(∫
Jc(r)(dBu(r) − dBu(r, λ0)) − (Bu(1)− Bu(λ0))

∫
Jc(r)

)

,

Δ1t(λ̂) ⇒ λ2
0

∫
J∗c(r)2,

Δ2t(λ̂) ⇒ (1− λ0)2
∫

J∗c(r)2. (27)
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Next, using (27) in (20)-(21) and rearranging gives

X∗′
λ̂

X∗
λ̂

T2
⇒

∫
J∗c(r)2



λ0 0

0 (1− λ0)


 (28)

and

X∗′
λ̂

y∗

T
⇒




∫
Jc(r)dBu(r, λ0) − Bu(λ0)

∫
Jc(r)

∫
Jc(r)(dBu(r) − dBu(r, λ0)) − (Bu(1)− Bu(λ0))

∫
Jc(r)




. (29)

Combining (28)-(29) into (7) and using ˆσ2(λ̂)
p
→ σ2

u leads to

Wols
T (λ̂) ⇒

[
∫

JcdBu(r, λ0) − Bu(λ0)
∫

Jc(r)]2

σ2
uλ0

∫
J∗c(r)2

+

[
∫

Jc(dBu(r) − dBu(r, λ0)) − (Bu(1)− Bu(λ0))
∫

Jc(r)]2

σ2
u(1− λ0)

∫
J∗c(r)2

≡
[
∫

J∗c(r)dGu(r, λ0)]2

σ2
uλ0(1− λ0)

∫
J∗c(r)2

+
[
∫

J∗c(r)dBu(r)]2

σ2
u

∫
J∗c(r)2

≡
[Bu(λ0) − λ0Bu(1)]2

σ2
uλ0(1− λ0)

+
[
∫

J∗c(r)dBu(r)]2

σ2
u

∫
J∗c(r)2

(30)

with Gu(r, λ0) = Bu(r, λ0) − λ0Bu(r,1) denoting a Kiefer Process with covariance functionσ2
u(r1 ∧ r2)λ0(1− λ0). The

result in Proposition 2 then follows by noting thatJc(r) andGu(r, λ0) are uncorrelated and hence independent due

to their Gaussianity so that
∫

J∗c(r)dGu(r, λ) ≡ N(0, σ2
uλ0(1 − λ0)

∫
J∗c(r)2) conditionally on the realisation ofJc(r).

Thus normalising byσ2
uλ0(1 − λ0)

∫
J∗c(r)2 gives theχ2(1) limit which is also the unconditional distribution since

not dependent on the realisation ofJc(r). The caseα1 = α2 can be treated in a similar fashion withλ0 replaced

by the random variableλ∗ in (30) as in Theorem 5 of Caner and Hansen (2001) with the nuance that our random

maximiserλ∗ does not depend on any nuisance parameters. The main result for this case then follows by noting

that the first component in the right hand side of (30) evaluated atλ∗ is aχ2(1) random variable. This latter point is a

consequence of the independence ofλ∗ and [
∫

J∗c(r)dG̃u(r, λ)]2/
∫

J∗c(r)2 or equivalently of
∫

dG̃u(r, λ) (whichλ∗ is the

maximiser of) and [
∫

J∗c(r)dG̃u(r, λ)]2/
∫

J∗c(r)2 where we let̃Gu(r, λ) ≡ Gu(r, λ)/
√
λ(1− λ). Indeed, letting̃BBu(λ) ≡

[Bu(λ) − λBu(1)]2/λ(1− λ) then given thatP[B̃Bu(λ∗) ≤ x|λ∗ = λ] = CHIS Q(x) for any givenλ, independence here

implies that the unconditional distribution of̃BBu(λ∗) must also beχ2(1). To note the independence of
∫

dG̃u(r, λ) ≡ ζ

say, and [
∫

J∗c(r)dG̃u(r, λ)]/
√∫

J∗c(r)2 ≡ M which isN(0,1) as shown above, it is useful to point out thatM is of the
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form μ′ζ/
√
μ′μ and the two quantities have joint characteristic functionψ(ζ,M) = E[eitζ+isM] = E[E[eitζ+isM|μ]]. It is

now straightforward to note thatψ(ζ,M) = E[eitζ ]E[eisM] asG̃u(r, λ) is independent ofBv(r) and hence ofJ∗c(r) (see

Gonzalo and Pitarakis (2012, p. 232) and Gonzalo and Pitarakis (2012, Supplementary Appendix Section 2.2).

PROOF OF PROPOSITION 3. The result follows directly from the independence ofBu(r, λ) andBv(r) underσuv = 0

also implying the independence ofJ∗c(r) and Bu(r, λ) and from which mixed normality follows. Noting also the

independence of the two components in the right hand side of (30) established in Gonzalo and Pitarakis (2012).�

Before proceeding with the proof of Proposition 4 it will be convenient to reformulate the components of (11) in an

explicit and suitably normalised form. Defining

mit (λ) ≡
∑

Iit−1

T







∑
Iit−1

T

∑
h̃2

t−1Iit−1

T1+δ


 −

1
T1−δ

(∑
h̃t−1Iit−1

T
1
2+δ

)2

πit (λ) ≡

(∑
Iit−1

T

∑
h̃t−1xt−1Iit−1

T1+δ
−

∑
h̃t−1Iit−1

T
1
2+δ

∑
xt−1Iit−1

T
√

T

)2

nit (λ) ≡
∑

Iit−1

T

∑
yth̃t−1Iit−1

T
1
2+

δ
2

−
1

T
1
2−

δ
2

(∑
h̃t−1Iit−1

T
1
2+δ

∑
ytIit−1
√

T

)

(31)

for i = 1,2 we can write

1
T1+δ

H∗′λ X∗λ(H
∗′
λ H∗λ)

−1H∗′λ X∗λ =




π1t(λ)
m1t(λ)

0

0
π2t(λ)
m2t(λ)




(32)

and

T
1+δ
2 β̂ivx(λ) =




n1t(λ)
√
π1t(λ)

n2t(λ)
√
π2t(λ)




(33)

PROOF OF PROPOSITION 4. We concentrate on the caseα1 , α2 with the underlying T-consistency ofλ̂ for λ0. We

also recall that̃ht =
∑t

j=1 φ
t− j
T Δxj and letht =

∑t
j=1 φ

t− j
T vj . It now follows directly from (31) and Lemma 3.1 in Phillips

and Magdalinos (2009) that

mit (λ̂) =




∑
I0
it−1

T




2 ∑
h2

t−1I0
it−1

T1+δ
+ op(1)

πit (λ̂) =




∑
ht−1I0

it−1

T
1
2+δ

∑
xt−1I0

it−1

T
√

T
−

∑
I0
it−1

T

∑
ht−1xt−1I0

it−1

T1+δ




2

+ op(1). (34)
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Under our assumptions A1-A3 the following deduce directly from Phillips and Magdalinos (2009, eq. (14))

m1t(λ̂) ⇒ λ3
0

ω2
v

2

m2t(λ̂) ⇒ (1− λ0)3 ω
2
v

2
(35)

since
∑

h2
t−1(I0

1t−1 − λ0)/T1+δ p
→ 0. It also follows that

π1t(λ̂) ⇒ λ4
0

[

ω2
v +

∫
J∗c(r)dJc(r)

]2

π2t(λ̂) ⇒ (1− λ0)4

[

ω2
v +

∫
J∗c(r)dJc(r)

]2

(36)

so that

1
T1+δ

H∗′
λ̂

X∗
λ̂
(H∗′

λ̂
H∗
λ̂
)−1H∗′

λ̂
X∗
λ̂
⇒

[ω2
v +

∫
J∗c(r)dJc(r)]2

ω2
v/2



λ0 0

0 1− λ0


 (37)

Next, we also have

nit (λ̂) =

∑
I0
it−1

T

∑
utht−1I0

it−1

T
1
2+

δ
2

+ op(1) (38)

and Lemma 3.2 in Phillips and Magdalinos (2009) together with (35) ensure the following holds

1

T
1
2+

δ
2

∑
ht−1utI

0
1t−1 ⇒ N(0, λ0σ

2
u
ω2

v

2
)

1

T
1
2+

δ
2

∑
ht−1utI

0
2t−1 ⇒ N(0, (1− λ0)σ2

u
ω2

v

2
) (39)

which when rearranged with (37) and using the continuous mapping theorem withinWivx
T (λ̂) leads to the desired

result. The caseα1 = α2 can be treated in a similar fashion withλ0 replaced by the random variableλ∗ as formulated

in Proposition 1.�

REMARK A1. The S upBivx statistic developed in Gonzalo and Pitarakis (2012) was formulated asS upBivx ≡

supλ WA
T (λ) + Wivx

T (β = 0) with WA
T (λ) referring to the Wald statistic for testingH0 : α1 = α2, β1 = β2 in (1) and

Wivx
T (β = 0) was the simple IVX based Wald statistic for testingH0 : β = 0 in yt = α + βxt−1 + ut i.e. exactly
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analogous to the Wald statistic developed in KMS2015. The finite sample corrected version ofS upBivx considered

in our application above simply replacesWivx
T (β = 0) with its formulation in KMS2015 (pp. 1514-1515, equations

(19)-(21)).
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Figure 1: Size and Power ofWivxc
T (λ̂) acrossδ (5% Nominal Size)

34
ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
So

ut
ha

m
pt

on
] 

at
 1

3:
28

 0
3 

A
pr

il 
20

16
 



ACCEPTED MANUSCRIPT

0.4 0.6 0.8 1
0

0.5

1

S
iz

e/
P

ow
er

W
T
IVXc(

1
=

2
=0)

W
T
IVXc(

1
=0,

2
=0.025)

W
T
IVXc(

1
=0,

2
=0.05)

0.4 0.6 0.8 1
0

0.5

1

S
iz

e/
P

ow
er

W
T
IVXc(

1
=

2
=0)

W
T
IVXc(

1
=0,

2
=0.025)

W
T
IVXc(

1
=0,

2
=0.05)

0.4 0.6 0.8 1
0

0.5

1

S
iz

e/
P

ow
er

W
T
IVXc(

1
=

2
=0)

W
T
IVXc(

1
=0,

2
=0.025)

W
T
IVXc(

1
=0,

2
=0.05)

0.4 0.6 0.8 1
0

0.5

1

S
iz

e/
P

ow
er

W
T
IVXc(

1
=

2
=0)

W
T
IVXc(

1
=0,

2
=0.025)

W
T
IVXc(

1
=0,

2
=0.05)

Figure 2: Size and Power ofWivxc
T (λ̂) acrossδ (5% Nominal Size)
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Table 1:Simulated Quantiles ofWols
T (λ̂) versusχ2(2) under σuv = 0

10.0% 5.0% 2.5% 10.0% 5.0%2.5%
χ2

2 4.610 5.990 7.380 4.610 5.9907.380
α1 = α2, c = 1 α1 , α2, c = 1

T=200 4.508 5.795 7.167 4.521 5.880 7.354
T=400 4.708 6.089 7.433 4.779 6.341 8.159
T=1000 4.692 5.981 7.418 4.592 5.7236.948

α1 = α2, c = 10 α1 , α2, c = 10
T=200 4.481 6.056 7.841 4.494 5.959 7.381
T=400 4.561 6.094 7.638 4.619 5.845 7.287
T=1000 4.668 6.027 7.439 4.400 6.027 7.228
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Table 2:Empirical Size of Wivx
T (λ̂), Wivxc

T (λ̂) and Wols
T (λ̂) (5% Nominal), σuv = 0.0

δ δ
δ 0.70 0.74 0.78 0.82 0.86 0.90 0.94 0.70 0.74 0.78 0.82 0.86 0.900.94

Wivx
T (λ̂) α1 = α2, c = 1 α1 , α2, c = 1

T=200 4.35 4.55 4.60 4.60 4.60 4.80 4.80 4.40 4.50 4.85 4.50 4.85 5.00 5.00
T=400 4.70 4.40 4.55 4.70 4.90 5.05 5.00 5.15 5.10 5.25 5.40 5.70 6.05 6.40
T=1000 5.40 5.25 5.45 5.20 5.40 5.45 5.70 4.20 4.50 4.60 5.05 4.95 4.754.75
Wivxc

T (λ̂) α1 = α2, c = 1 α1 , α2, c = 1
T=200 4.35 4.50 4.55 4.55 4.55 4.65 4.75 4.35 4.40 4.60 4.40 4.70 4.60 4.75
T=400 4.65 4.30 4.55 4.70 4.85 5.05 4.90 5.15 5.10 5.25 5.35 5.65 6.05 6.35
T=1000 5.40 5.25 5.45 5.10 5.40 5.35 5.65 4.15 4.45 4.50 5.00 4.95 4.704.60
Wols

T (λ̂) α1 = α2, c = 1 α1 , α2, c = 1
T=200 4.65 4.65 4.65 4.65 4.65 4.65 4.65 4.75 4.75 4.75 4.75 4.75 4.75 4.75
T=400 5.35 5.35 5.35 5.35 5.35 5.35 5.35 6.25 6.25 6.25 6.25 6.25 6.25 6.25
T=1000 4.90 4.90 4.90 4.90 4.90 4.90 4.90 4.45 4.45 4.45 4.45 4.45 4.454.45

Wivx
T (λ̂) α1 = α2, c = 10 α1 , α2, c = 10

T=200 5.75 5.90 5.70 5.50 5.55 5.45 5.70 5.30 5.45 5.40 5.25 5.50 5.15 5.25
T=400 5.60 5.60 5.90 5.65 5.75 5.70 5.65 4.90 4.80 5.00 4.85 4.65 4.75 4.70
T=1000 5.15 5.40 5.35 5.50 5.30 5.35 5.10 4.20 4.45 4.45 4.40 4.35 4.654.60
Wivxc

T (λ̂) α1 = α2, c = 10 α1 , α2, c = 10
T=200 5.75 5.85 5.65 5.50 5.55 5.45 5.60 5.30 5.45 5.40 5.25 5.40 5.15 5.25
T=400 5.60 5.60 5.90 5.65 5.70 5.60 5.60 4.90 4.80 5.00 4.85 4.65 4.75 4.70
T=1000 5.15 5.40 5.35 5.50 5.30 5.35 5.10 4.20 4.45 4.45 4.40 4.35 4.654.60
Wols

T (λ̂) α1 = α2, c = 10 α1 , α2, c = 10
T=200 5.10 5.10 5.10 5.10 5.10 5.10 5.10 4.85 4.85 4.85 4.85 4.85 4.85 4.85
T=400 5.55 5.55 5.55 5.55 5.55 5.55 5.55 4.40 4.40 4.40 4.40 4.40 4.40 4.40
T=1000 5.15 5.15 5.15 5.15 5.15 5.15 5.15 5.10 5.10 5.10 5.10 5.10 5.10 5.10
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Table 3:Empirical Size of Wivx
T (λ̂), Wivxc

T (λ̂) and Wols
T (λ̂) (5% Nominal), σuv = −0.3

δ δ
0.70 0.74 0.78 0.82 0.86 0.90 0.94 0.70 0.74 0.78 0.82 0.86 0.900.94

Wivx
T (λ̂) α1 = α2, c = 1 α1 , α2, c = 1

T=200 4.25 4.75 4.85 4.95 5.30 5.15 5.25 5.00 5.55 5.90 6.20 6.30 6.05 6.15
T=400 3.95 4.05 4.50 4.60 4.85 5.20 5.35 5.60 5.80 6.05 6.50 6.75 7.25 7.15
T=1000 5.80 6.20 5.85 6.10 6.15 6.50 6.45 6.30 6.35 6.65 6.35 6.30 6.406.50
Wivxc

T (λ̂) α1 = α2, c = 1 α1 , α2, c = 1
T=200 4.15 4.45 4.50 4.80 4.70 4.60 4.65 4.75 5.25 5.30 5.55 5.25 5.30 5.00
T=400 3.85 3.70 4.05 4.20 4.45 4.70 4.90 5.40 5.20 5.50 5.75 5.90 6.00 5.95
T=1000 5.70 6.00 5.70 5.70 5.75 6.05 5.90 6.10 6.15 6.25 5.60 5.45 5.455.70
Wols

T (λ̂) α1 = α2, c = 1 α1 , α2, c = 1
T=200 5.80 5.80 5.80 5.80 5.80 5.80 5.80 6.60 6.60 6.60 6.60 6.60 6.60 6.60
T=400 6.20 6.20 6.20 6.20 6.20 6.20 6.20 6.15 6.15 6.15 6.15 6.15 6.15 6.15
T=1000 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.65 6.65 6.65 6.65 6.65 6.656.65

Wivx
T (λ̂) α1 = α2, c = 10 α1 , α2, c = 10

T=200 6.10 5.95 5.85 6.10 6.15 6.15 6.15 5.40 5.20 5.25 5.40 5.60 5.55 5.65
T=400 5.25 5.20 5.30 5.10 5.15 5.20 5.35 5.00 5.30 5.35 5.70 5.60 5.75 5.70
T=1000 4.95 5.45 5.30 5.40 5.45 5.35 5.60 5.40 5.40 5.40 5.75 5.55 5.505.65
Wivxc

T (λ̂) α1 = α2, c = 10 α1 , α2, c = 10
T=200 5.95 5.80 5.80 6.05 6.05 5.95 6.00 5.40 5.10 5.20 5.40 5.60 5.55 5.55
T=400 5.20 5.15 5.25 5.10 5.10 5.15 5.20 5.00 5.30 5.35 5.60 5.55 5.75 5.45
T=1000 4.95 5.30 5.25 5.35 5.40 5.30 5.45 5.40 5.30 5.40 5.70 5.50 5.405.65
Wols

T (λ̂) α1 = α2, c = 10 α1 , α2, c = 10
T=200 5.40 5.40 5.40 5.40 5.40 5.40 5.40 5.60 5.60 5.60 5.60 5.60 5.60 5.60
T=400 5.25 5.25 5.25 5.25 5.25 5.25 5.25 4.90 4.90 4.90 4.90 4.90 4.90 4.90
T=1000 5.30 5.30 5.30 5.30 5.30 5.30 5.30 5.35 5.35 5.35 5.35 5.35 5.35 5.35
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Table 4:Empirical Size of Wivx
T (λ̂), Wivxc

T (λ̂) and Wols
T (λ̂) (5% Nominal), σuv = −0.6

δ δ
0.70 0.74 0.78 0.82 0.86 0.90 0.94 0.70 0.74 0.78 0.82 0.86 0.900.94

Wivx
T (λ̂) α1 = α2, c = 1 α1 , α2, c = 1

T=200 5.95 6.15 6.55 6.80 7.70 8.35 8.65 6.75 7.25 7.70 8.05 8.40 8.80 9.15
T=400 5.75 6.25 6.45 6.80 6.90 7.15 7.55 6.00 6.45 6.75 6.95 7.30 7.20 7.15
T=1000 5.60 6.05 6.30 6.05 6.65 6.90 7.15 4.80 4.95 5.45 5.70 5.40 5.956.65
Wivxc

T (λ̂) α1 = α2, c = 1 α1 , α2, c = 1
T=200 5.05 5.25 5.25 5.30 5.50 5.65 5.90 5.60 5.90 5.85 5.65 5.65 5.10 5.25
T=400 5.20 5.20 5.05 5.15 5.05 4.80 4.90 5.20 5.25 5.40 5.25 5.20 4.95 4.80
T=1000 4.95 5.00 4.95 4.75 4.75 4.45 4.60 4.05 4.05 4.10 4.00 3.80 3.904.20
Wols

T (λ̂) α1 = α2, c = 1 α1 , α2, c = 1
T=200 10.25 10.25 10.25 10.25 10.25 10.25 10.25 10.35 10.35 10.35 10.35 10.35 10.35 10.35
T=400 10.75 10.75 10.75 10.75 10.75 10.75 10.75 9.85 9.85 9.85 9.85 9.85 9.85 9.85
T=1000 9.80 9.80 9.80 9.80 9.80 9.80 9.80 10.05 10.05 10.05 10.05 10.05 10.0510.05

Wivx
T (λ̂) α1 = α2, c = 10 α1 , α2, c = 10

T=200 4.85 4.80 5.10 5.00 5.15 5.15 5.00 5.55 5.65 5.80 5.80 5.95 6.15 6.30
T=400 6.00 5.75 5.40 5.60 5.75 6.00 5.95 4.55 4.95 5.20 5.40 5.65 6.00 6.10
T=1000 5.20 5.60 5.50 5.30 5.20 5.30 5.10 4.85 5.20 5.15 5.00 5.00 4.955.30
Wivxc

T (λ̂) α1 = α2, c = 10 α1 , α2, c = 10
T=200 4.45 4.55 4.75 4.85 4.85 4.70 4.55 5.50 5.50 5.55 5.40 5.65 5.75 5.95
T=400 5.85 5.55 5.30 5.30 5.35 5.45 5.35 4.30 4.85 5.00 5.25 5.40 5.70 5.65
T=1000 5.15 5.50 5.35 5.15 4.90 4.95 4.70 4.70 5.05 5.05 4.75 4.75 4.654.70
Wols

T (λ̂) α1 = α2, c = 10 α1 , α2, c = 10
T=200 5.10 5.10 5.10 5.10 5.10 5.10 5.10 6.50 6.50 6.50 6.50 6.50 6.50 6.50
T=400 6.30 6.30 6.30 6.30 6.30 6.30 6.30 5.90 5.90 5.90 5.90 5.90 5.90 5.90
T=1000 5.20 5.20 5.20 5.20 5.20 5.20 5.20 6.00 6.00 6.00 6.00 6.00 6.00 6.00
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Table 5:Empirical Size of Wivx
T (λ̂), Wivxc

T (λ̂) and Wols
T (λ̂) (5% Nominal), σuv = −0.9

δ δ
0.70 0.74 0.78 0.82 0.86 0.90 0.94 0.70 0.74 0.78 0.82 0.86 0.900.94

Wivx
T (λ̂) α1 = α2, c = 1 α1 , α2, c = 1

T=200 7.85 8.45 9.10 9.75 10.60 11.00 11.60 7.85 8.45 9.25 9.55 10.15 10.60 11.30
T=400 7.85 8.25 9.15 9.90 10.40 11.15 11.95 6.95 7.35 7.60 7.85 9.30 10.35 10.65
T=1000 6.65 7.20 8.00 8.25 9.40 10.65 11.20 7.15 8.05 8.40 9.05 10.00 11.2012.00
Wivxc

T (λ̂) α1 = α2, c = 1 α1 , α2, c = 1
T=200 5.30 5.10 5.20 4.95 4.65 4.55 4.25 5.05 4.75 4.75 4.35 4.35 4.15 4.25
T=400 5.60 5.40 5.25 5.00 4.55 4.50 4.40 5.15 5.25 4.90 4.60 4.70 4.60 4.55
T=1000 5.10 4.90 4.75 4.80 4.40 4.50 4.30 5.20 5.25 5.05 4.80 4.45 4.404.20
Wols

T (λ̂) α1 = α2, c = 1 α1 , α2, c = 1
T=200 15.05 15.05 15.05 15.05 15.05 15.05 15.05 15.15 15.15 15.15 15.15 15.15 15.15 15.15
T=400 14.55 14.55 14.55 14.55 14.55 14.55 14.55 14.85 14.85 14.85 14.85 14.85 14.85 14.85
T=1000 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.50 15.50 15.50 15.50 15.50 15.5015.50
Wivx

T (λ̂) α1 = α2, c = 10 α1 , α2, c = 10
T=200 6.05 5.95 5.85 5.90 6.15 6.45 6.75 5.25 5.50 5.50 5.70 5.80 5.75 6.05
T=400 5.75 5.85 6.05 6.00 6.15 6.20 6.20 6.05 5.80 5.95 6.25 6.40 6.45 6.40
T=1000 6.20 6.35 6.65 6.50 6.65 6.95 6.85 5.70 5.95 6.05 6.10 6.50 6.756.80
Wivxc

T (λ̂) α1 = α2, c = 10 α1 , α2, c = 10
T=200 5.40 5.20 5.10 5.15 5.05 5.10 5.35 4.85 4.85 4.85 4.95 4.95 4.80 5.00
T=400 5.55 5.40 5.30 5.10 4.95 4.85 4.85 5.45 5.55 5.45 5.45 5.35 5.30 5.10
T=1000 6.00 6.05 6.05 5.95 5.85 5.75 5.70 5.50 5.70 5.50 5.75 5.85 6.055.90
Wols

T (λ̂) α1 = α2, c = 10 α1 , α2, c = 10
T=200 7.25 7.25 7.25 7.25 7.25 7.25 7.25 6.40 6.40 6.40 6.40 6.40 6.40 6.40
T=400 6.85 6.85 6.85 6.85 6.85 6.85 6.85 7.55 7.55 7.55 7.55 7.55 7.55 7.55
T=1000 7.55 7.55 7.55 7.55 7.55 7.55 7.55 7.45 7.45 7.45 7.45 7.45 7.45 7.45
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ACCEPTED MANUSCRIPT

Table 6:Empirical Power of Wivxc
T (λ̂) (5% Nominal Size)

δ δ
β1 = 0 0.70 0.74 0.78 0.82 0.86 0.90 0.94 0.70 0.74 0.78 0.82 0.86 0.900.94
β2 = 0.025 α1 = α2, c = 1,σuv = −0.6 α1 , α2, c = 1,σuv = −0.6
T=200 24.3 26.9 29.5 31.6 33.5 34.6 35.3 31.4 34.6 37.1 39.5 41.4 42.9 43.7
T=400 66.2 70.7 75.4 78.7 81.6 83.2 84.9 72.2 77.5 81.0 83.6 85.7 87.3 88.6
T=1000 96.5 97.5 98.3 99.2 99.6 100.0 100.0 96.8 97.5 98.4 99.0 99.5 99.899.9
β2 = 0.05
T=200 66.7 69.6 73.4 76.7 79.7 80.7 82.0 72.8 76.6 79.4 81.1 83.3 84.4 85.5
T=400 95.9 97.1 98.0 98.8 99.3 99.5 99.7 95.5 96.5 97.7 98.6 99.3 99.5 99.7
T=1000 98.9 99.2 99.5 99.7 100.0 100.0 100.0 98.7 99.3 99.7 100.0 100.0 100.0100.0
β2 = 0.025 α1 = α2, c = 10,σuv = −0.6 α1 , α2, c = 10,σuv = −0.6
T=200 11.6 11.9 12.1 12.6 13.3 14.0 14.1 15.8 16.5 17.1 17.9 18.3 19.1 19.4
T=400 33.3 35.6 38.2 40.5 41.9 43.3 44.2 49.4 52.6 55.3 57.4 59.2 60.8 61.8
T=1000 98.3 98.9 99.1 99.5 99.7 99.7 99.7 99.8 99.8 99.9 99.9 100.0 100.0100.0
β2 = 0.05
T=200 32.6 34.8 36.4 38.1 39.5 41.0 41.6 51.6 53.9 55.9 57.2 58.4 59.8 60.4
T=400 89.1 90.9 92.5 94.1 94.5 94.8 95.0 96.8 97.5 98.2 98.5 98.7 98.8 98.8
T=1000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0100.0
β2 = 0.025 α1 = α2, c = 1,σuv = −0.9 α1 , α2, c = 1,σuv = −0.9
T=200 24.3 26.7 28.9 30.2 31.3 32.2 32.6 32.7 36.1 38.2 40.0 41.5 43.2 43.8
T=400 72.0 77.3 80.9 83.8 85.9 87.2 88.0 80.1 84.0 86.9 89.2 90.7 92.3 92.7
T=1000 97.5 97.8 98.7 99.2 99.6 99.8 99.9 97.6 98.5 99.2 99.5 99.8 99.9100.0
β2 = 0.05
T=200 73.0 78.0 81.2 83.8 85.0 86.4 86.6 78.4 82.8 85.2 87.3 88.9 89.6 89.8
T=400 96.9 97.6 98.4 98.8 99.2 99.5 99.7 96.3 97.7 98.2 98.9 99.1 99.4 99.6
T=1000 99.2 99.5 99.7 99.8 99.9 100.0 100.0 98.8 99.1 99.5 99.8 100.0 100.0100.0
β2 = 0.025 α1 = α2, c = 10,σuv = −0.9 α1 , α2, c = 10,σuv = −0.9
T=200 12.2 13.0 13.8 14.4 14.6 15.1 15.7 15.9 16.9 17.5 18.1 18.7 18.9 18.8
T=400 36.1 38.6 40.7 42.9 44.8 46.2 47.5 52.1 56.5 59.2 61.9 63.8 65.8 67.3
T=1000 99.8 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0100.0
β2 = 0.05
T=200 35.7 38.7 40.5 41.8 43.1 44.4 45.5 51.7 54.6 57.3 60.0 61.8 62.9 63.9
T=400 94.3 95.7 96.6 97.4 98.0 98.3 98.4 99.2 99.5 99.7 99.7 99.9 99.9 100.0
T=1000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
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ACCEPTED MANUSCRIPT

Table 7:Episodic Predictability of Stock Returns with Valuation Ratios
Wivxc

T (λ̂) S upBivxc S upA
δ 0.70 0.78 0.86 0.94 0.70 0.78 0.86 0.94

IPGR (1927-2013)
DY 6.69 [0.04] 6.51 [0.04] 5.59 [0.06] 4.61 [0.10] 33.26*** 33.66*** 33.28*** 32.64*** 27.54 [0.00]
BM 6.20 [0.05] 6.27 [0.04] 6.23 [0.04] 6.24 [0.04] 41.17*** 41.7*** 41.83*** 41.81*** 34.72 [0.00]
DP 4.53 [0.10] 4.68 [0.10] 4.13 [0.13] 3.42 [0.18] 22.32*** 22.93*** 22.9*** 22.57*** 19.19 [0.00]
EP 3.86 [0.15] 4.55 [0.10] 4.88 [0.09] 4.90 [0.09] 15.92*** 16.61*** 16.99*** 17.13*** 12.22 [0.05]

IPGR (1940-2013)
DY 4.32 [0.12] 5.61 [0.06] 6.02 [0.05] 5.80 [0.06] 24.11*** 24.93*** 25.03*** 24.69*** 20.02 [0.00]
BM 0.94 [0.63] 1.48 [0.48] 1.89 [0.39] 2.09 [0.35] 12.59 * 13.02 * 13.27 * 13.36 * 11.46 [0.07]
DP 3.00 [0.22] 4.20 [0.12] 4.66 [0.10] 4.55 [0.10] 22.29*** 23.09*** 23.25*** 23.01*** 19.37 [0.00]
EP 1.56 [0.46] 2.39 [0.30] 3.05 [0.22] 3.44 [0.18] 4.13 5.02 5.69 6.05 2.51 [0.98]

IPGR (1950-2013)
DY 2.41 [0.30] 2.76 [0.25] 2.63 [0.27] 2.17 [0.34] 23.52*** 24.01*** 24.09*** 23.83*** 21.53 [0.00]
BM 2.24 [0.33] 1.62 [0.44] 1.34 [0.51] 1.22 [0.54] 12.25 ** 12.39 ** 12.56 ** 12.66 ** 12.10 [0.05]
DP 1.63 [0.44] 2.05 [0.36] 2.03 [0.36] 1.70 [0.43] 21.54 ** 22.04*** 22.19*** 22.04*** 20.23 [0.00]
EP 0.67 [0.72] 0.84 [0.66] 1.29 [0.53] 1.61 [0.45] 3.53 3.81 4.30 4.75 3.39 [0.89]

IPGR (1960-2013)
DY 3.11 [0.21] 3.48 [0.18] 3.91 [0.14] 4.28 [0.12] 21.72*** 21.62*** 21.50*** 21.43*** 19.60 [0.00]
BM 0.37 [0.83] 0.10 [0.95] 0.21 [0.90] 0.44 [0.80] 10.92 10.92 10.93 10.94 10.88 [0.08]
DP 1.74 [0.42] 2.08 [0.35] 2.48 [0.29] 2.80 [0.25] 19.56*** 19.64*** 19.61*** 19.56*** 18.23 [0.00]
EP 3.22 [0.20] 1.92 [0.38] 1.31 [0.52] 1.12 [0.57] 3.18 3.20 3.27 3.36 2.65[0.97]

ADS (1960-2013)
DY 4.68 [0.10] 4.98 [0.08] 5.26 [0.07] 5.45 [0.07] 17.19*** 17.17*** 17.05*** 16.91*** 14.99 [0.01]
BM 0.48 [0.79] 0.60 [0.74] 0.94 [0.63] 1.28 [0.53] 11.03 11.04 11.05 11.07 10.98 [0.08]
DP 2.96 [0.23] 3.27 [0.20] 3.60 [0.17] 3.84 [0.15] 14.73 ** 14.85 ** 14.82 ** 14.74 ** 13.38 [0.03]
EP 1.20 [0.55] 1.02 [0.60] 1.06 [0.59] 1.19 [0.55] 7.97 ** 7.99 ** 8.06 ** 8.15 ** 7.44[0.30]

CFNAIMA3 (1967-2013)
DY 7.72 [0.02] 6.87 [0.03] 6.16 [0.05] 5.67 [0.06] 14.52 ** 14.50 ** 14.45 ** 14.42 ** 13.12 [0.03]
BM 5.74 [0.06] 5.08 [0.08] 4.47 [0.11] 4.06 [0.13] 12.51 * 12.51 * 12.52 * 12.52 * 12.50 [0.04]
DP 6.90 [0.03] 6.16 [0.05] 5.54 [0.06] 5.11 [0.08] 12.82 * 12.90 * 12.88 * 12.85 * 11.87 [0.06]
EP 4.62 [0.10] 4.54 [0.10] 4.30 [0.12] 4.09 [0.13] 9.52 9.51 9.56 9.63 9.07 [0.17]
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