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environment
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ABSTRACT
The aim of this article is to investigate and test the influence of oil
spill volume and time gap (number of days between oil spill
events and image acquisition date) on normalized difference vege-
tation index (NDVI) and normalized difference water index (NDWI).
This was carried out to determine the effect of these factors on
vegetation condition affected by the oil spill. Based on regression
analysis, it was shown that increase in the volume of oil spill
resulted in increased deterioration of vegetation condition (esti-
mated using NDVI and NDWI) in the study site. The study also
tested how the length of time gap between the oil spill and image
acquisition date influences the detectability of impacts of oil spill
on vegetation. The results showed that the length of time
between image acquisition and oil spill influenced the detectabil-
ity of impacts of oil spill on vegetation condition. The longer the
time between the date of image acquisition and the oil spill event,
the lower the detectability of impacts of oil spill on vegetation
condition. The NDVI seemed to produce better results than the
NDWI. In conclusion, time and volume of oil spill can be important
factors influencing the detection of pollution using vegetation
indices (VIs) in an oil-polluted environment.
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1. Introduction

Oil has become a vital commodity for the government as a source of revenue and
national economic growth (Bridge 2008). It also serves as a source of energy for the
maintenance of industrial civilization, which has become a critical concern for many
countries (Smil 2010). Globally, energy consumption in almost all regions of the world
has increased from 1965 to 2010 and likewise the crude oil production (IEA 2011; BP
2011). The increase in oil production has undoubtedly continued to add pressure on the
natural and human environment. The consequences for oil production and pollution
from the oil operation have been documented around the world. Oil spills occurring
during the exploration, production, and distribution/transportation of crude oil can have
a disastrous impact on the environment. When oil spill occurs, it degrades the air quality

CONTACT Bashir Adamu ba108@le.ac.uk Department of Geography, University of Leicester, Leicester, UK

INTERNATIONAL JOURNAL OF REMOTE SENSING, 2016
VOL. 37, NO. 10, 2166–2185
http://dx.doi.org/10.1080/01431161.2016.1176271

© 2016 The Author(s). Published by Taylor & Francis.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/
licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
So

ut
ha

m
pt

on
] 

at
 0

6:
30

 0
4 

M
ay

 2
01

6 

http://www.tandfonline.com


due to emission, and leads to loss of vegetation and soil productivity (Obire and
Nwaubeta 2002). Frequent incidences of oil spills have had wide-ranging impacts,
including the contamination of streams and rivers, forest destruction, and loss of
biodiversity. There have been several incidents of oil spills in places such as the Gulf
of Mexico in 2010, Canadian marine waters (Serra-Sogas et al. 2008) and Prince Williams
Sound, off the coast of Alaska in March 1989. According to Exxon Mobil the total volume
of hydrocarbons spilled on soil and water was 9,100 barrels (bbl) in 2014 from different
incidences. In another incident, in 1989 the Exxon Valdez reported by Exxon Mobil in
2003 that a super-tanker ran aground at Alaska’s Prince William Sound and discharged
more than 250,000 bbl of oil into the environment (Short 2003). The European Economic
Community (EEA) also reported in 2007 that primary pollutants such as heavy metals
and mineral oil caused 37.3% and 33.7% soil contamination, respectively. In other parts
of the world, for instance, Nigeria, Colombia, Peru, Ecuador, and Bolivia, substantial oil
operations are located in the rain forest. As such, oil extraction and transportation can
be destructive to the natural environment. Oil spills from burst pipelines and toxic
drilling by-products may be dumped directly into local channels and rivers (CIA 2005).
Oil spills in water may severely affect the marine environment, causing a decline in
phytoplankton and other aquatic organisms (Jha, Levy, and Gao 2008). The multiplier
effect of this environmental destruction will result in the deterioration of the environ-
ment through the depletion of resources such as air, water, vegetation and soils, the loss
of ecosystems, and the extinction of wildlife. Oil spill site characterization traditionally
requires extensive field sampling and laboratory analysis (Slonecker et al. 2010). Field
data collection is expensive and time-consuming, making this approach unsustainable.
Remote sensing offers an efficient, time-saving, cost-effective, and non-destructive
method of characterizing oil spills and their impacts on the environment.

Remote sensing has an advantage of covering large oil-polluted areas and can access
information on environmental variables affected by pollution through their spatial and
spectral characteristics. Furthermore, remote sensing offers the capacity to acquire data
in remote areas that are difficult to access. The use of remote sensing for oil or
hydrocarbon pollution monitoring dates back to the 1970s, where aerial photographs
were used for the first time (Casciello et al. 2007). There are a number of studies that
demonstrate the use of remote sensing for the detection of oil pipelines and vegetation
stress from oil pollution, quantification of pollution/stress level, and monitoring after
remediation (van der Werff et al. 2008). Remote-sensing sensors that record information
in the ultraviolet (UV), thermal infrared, and microwave sections of the electromagnetic
spectrum have been used to detect oil spills (Brekke and Solberg 2005; Zhao and Li
2007). Studies have shown that hyperspectral sensors, e.g. Airborne Visible/Infrared
Imaging Spectrometer (AVARIS) and Airborne Imaging Spectrometer for Application
(AISA), have capabilities to detect oil spill (Jha, Levy, and Gao 2008; Landgrebe 2005).
Data from active sensors that collect data in radio wavelength have also been used to
detect the presence of oil in offshores areas mainly through the reduction of ocean
reflectance (Brown and Fingas 2003). Microwave sensors have been used to detect oil
spill and their thickness (Jha, Levy, and Gao 2008), whereas laser-acoustic oil thickness
sensors have been used to detect oil mechanical properties instead of its optical and
electromagnetic properties (Goodman 1994). Onshore oil pollution monitoring in
forested areas using remote-sensing data has been limited, especially in developing
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countries such as Nigeria, mainly due to the lack of readily available data. The recent
release of all Landsat archive of images has made it possible to explore the use of these
images to monitor the impacts of onshore oil spills on vegetation condition in devel-
oping countries such as Nigeria.

Monitoring the impacts of oil spills on vegetation using remote-sensing data requires
an understanding of the spectral reflectance characteristics of vegetation. Vegetation
has a unique spectral signature that enables it to be distinguishable from other types of
land cover in an optical/near-infrared (NIR) image. Vegetation has reflectance in both
blue and red regions of the spectrum because of the absorption of chlorophyll for
photosynthesis and the relatively high reflectance at the green region (Sims 2002).
Furthermore, in the NIR region, vegetation has a high reflectance mostly due to the
cellular structure in the leaves (Purkis and Klemas 2011). Therefore, vegetation and its
condition can be characterized using reflectance information form the NIR and the
visible bands. The common approach of carrying this out is to calculate the band ratios
often referred to as vegetation indices (VIs) and monitor their dynamics. Healthy plants
have diagnostic high reflectance in the NIR region and low reflectance in the visible
bands and hence the high values of VIs indicate healthy vegetation and vice versa. It has
been suggested that the presence of hydrocarbons seems to produce a change in the
internal structure of the plant that results in low reflectance values and oil pollution may
also lead to low density of vegetation in the affected areas (Oliveira, Crosta, and
Goncalves 1997). In addition, vegetation growing near leaking gas pipelines has been
shown to have changes in their geobotany and reflectance (van der Meer et al. 2002;
Arellano et al. 2015). The geobotanical anomalies were associated with the effects of oil
spills and pollution on the growth of the vegetation (Noomen et al. 2008). Furthermore,
changes in the colour of leaves, stems, and trunks are an extremely good indication of
plants’ response to stress from oil pollution (Guyot, Baret, and Jacquemoud 1992). All
these changes due to oil spills and pollution manifest themselves in the VIs; hence, the
impacts of oil pollution on vegetation condition can be assessed using VIs. VIs (e.g.
normalized difference vegetation index, NDVI) have shown a great potential for detect-
ing the impacts of oil pollution on vegetation in oil-polluted environments (Zhu et al.
2013; Adamu, Tansey, and Ogutu 2015). In an earlier study, Adamu, Tansey, and Ogutu
(2015) showed that oil spills resulted in the reduction of values of VIs (especially the
NDVI and the normalized difference water index, NDWI), implying these indices can be
used to detect the impacts of oil pollution on vegetation condition. However, in that
study, factors that influence the detectability of impacts of oil pollution on vegetation
using the spectral indices (e.g. volume of oil spill and time difference between spill and
image acquisition) were not investigated.

A number of factors can influence the detectability of impacts of oil spill on vegeta-
tion condition. One such factor is the toxicity of the oil spilled, i.e. the higher the toxicity,
the higher the impacts on vegetation (Reed et al. 1999; Lehr 2001; Mendelssohn et al.
2012). A second factor that influences the impacts of oil spill on vegetation is the volume
of oil spill. Noomen et al. (2012) suggested that high volumes of oil spill in vegetated
areas might result in shortage of oxygen supply to plants and consequently retard their
growth. Furthermore, Pezeshki et al. (2000) demonstrated how a large volume of oil
spills can impact vegetation more than the small spills. Therefore, it is expected that
high-volume spills would lead to higher impacts on the vegetation condition as it will
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take time for larger-volume spills to degrade and evaporate (Mendelssohn et al. 2012).
Finally, the length of time between the spill event and the image acquisition may affect
the detectability of oils spills from remote-sensing data. As mentioned previously, oil
spills degrade and evaporate with time and hence if the imagery is acquired at a longer
length of time from the spill date, the vegetation in the area may already have
recovered, making it difficult to detect the impacts of the oil spill. A study by Yim
et al. (2011) showed that samples of oil residue collected 90–120 days after pollution
already had the molecular weight of their alkanes depleted or biodegraded. Duke et al.
(2000) observed that obvious signs of stress of mangrove plants were noticed within the
first two weeks of oil spill, causing chlorosis to defoliation to death of the affected plants.
This study aims to investigate the influence of volume and time of image acquisition in
the detectability of oil spill impacts of vegetation in the Niger Delta, Nigeria, using two
indices (i.e. the NDVI and NDWI). The indices (NDVI and NDWI) used in the study are
products derived from atmospherically corrected and temporarily processed Landsat
images to further reduce noise. In brief the NDWI uses infrared channels (NIR and MIR)
centred approximately at 0.86 and 1.24 µm, and primarily sensitive to the liquid content
of vegetation from space (Gao 1996). NDVI uses a formula based on the fact that
chlorophyll absorbs RED, whereas the mesophyll leaf structure scatters NIR (Myneni
et al. 2002).

2. Study area

2.1. Physical environment

The study area is located in the Niger Delta region of southern Nigeria shown in
Figure 1 in green colour within the map of Nigeria. The area extent is within
Longitude 5.05°E and 7.35°E and Latitude 4.15°N and 6.01°N, and it covers approxi-
mately 1294 km2 (Figure 2) in a red box. The study area in the red box fitted in a
single Landsat 5 and 7 data frame from Path 188 Row 57. The study site contains a
wide variety of trees and plants including mangrove trees of all kinds, grasses, herbs,
and climbers. The Rhizophora racemosa, also known as red mangrove, occupies more
than 90% of the saline swamps and dominates the main vegetation of the mangrove
swamps in the region. The region is characterized by rain-fed deltaic vegetation in
places, with high elevation, and the majority of the region is dominated by low-lying
landforms (Avbovbo 1978). The area is formed of both fluvial and marine sediments
built up over the past 50 million years (since the upper Cretaceous period) (Short and
Stauble 1967; Burke, Dessauvagie, and Whiteman 1971). These sediments form a
shallow marine and deltaic characterized mainly by River Niger and its tributaries.
The Niger delta coastal mangroves ecosystem is supported by saline soil with a pH
value of between 0 and 4 for the freshly deposited soft silt low tides and 7 for
transitional swamps at high tides. An intermediate soil type such as peat clay is about
90% of the soil formation in the ecosystem (Fagbami, Udo, and Odu 1988). The oil
spill sites identified were all located in the mangrove swamp areas (Figure 2), where
there is the presence of both underground and surface water. The hydrological
characteristics of the area could influence the detection of oil pollution. The region
is also drained by the river systems, which are mostly associated with channels and
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Figure 1. The Niger Delta is shown in green colour within the map of Nigeria.

Figure 2. Landsat data in false colour composite (bands 4, 3, and 2) showing oil spill points and
pipelines in the study area.
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streams. The surface water, freshwater, and deltaic estuaries (an area of interaction
between freshwater and seawater) cover approximately 2,370 km2 and stagnant
swamp 8600 km2 spanning an area of 1900 km2, and other sources of inflow during
the rainy season, which is also influenced by tidal variations. The width and velocity
of freshwater channels increase downstream to meandering or braided channels in
the delta.

2.2. Climate

Nigeria’s climate is tropical, characterized by high temperatures and humidity as well as
marked wet and dry seasons, although there are variations from South to North. The
total rainfall decreases from the coast northwards (Oguntunde, Abiodun, and Lischeid
2011). The long wet season starts in March and lasts to the end of July, with a peak
period in June over most parts of Niger Delta similar to other parts of southern Nigeria. It
is a period of thick clouds and is excessively wet particularly in the Niger Delta and the
coastal lowlands. The long dry season period starts from late October and lasts to early
March with peak dry conditions between early December and late February (Adejuwon
2012). The annual temperature in the Niger Delta ranges between 26oC and 34oC, with
the highest during the dry season (November–March) and the lowest between 24.5oC
and 26.9oC in June, July, and August. The topography of the Niger Delta or Nigerian
coastal areas is generally low-lying at about 2–4 m above the sea level (Allen 1965; Ajao,
Oyewo, and Unyimadu 1996), which is also a factor that could influence the flow
direction of the oil spilt in the study.

2.3. Land use and land cover

The coast of Nigeria’s Niger Delta region where the study area is located is characterized
by a high concentration of oil exploration and local farming activities. This has led to
continuous changes in both land-cover and land-use patterns of the region. It has also
been shown that expansion in the oil exploration and exploitation activities had
increased pressure with heavy impact on the natural ecosystems as a result of oil spill
incidences (Abbas 2012). Records have shown that most of the oil pollution from oil
operations in the regions has remained in the environment for many years without
clean-up and yet to recover the lost natural vegetation (UNEP 2011).

3. Data analysis

The oil spill events for 56 oil spill sites were recorded in 1985, 1986, 1998, 1999, 2000,
2004, 2006, and 2007 with the volume of oil spill ranging between 3 and 3500 bbl
(Table 1). The 56 sample spill sites analysed in the study were all located within the same
vegetation type (swamp mangrove forest) to ensure that there are no significant varia-
tions in the vegetation spectral reflectance. Note in this study, the volume of oil spill is
quantified in bbl and interpreted using SI units as 1 bbl approximately 160 litres (l).

The ancillary data used include oil pipeline maps, spill records from 1985 to 2006
containing information on the date of events, vegetation land-cover type, causes of spill,
and GPS locations of spill points (showing where the oil spill events occurred) obtained
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from Shell Nigeria through the Department of Petroleum Resources, Nigeria (DPRN,
Nigeria’s oil and gas regulatory agency).

3.1. Data preprocessing

In this article Landsat TM and ETM data obtained as digital number (DN) were converted
to comparable measures of radiance and reflectance as a starting point for data
processing. Thus, the images were processed by converting top-of-atmosphere radiance
values to surface reflectance following a method proposed by Chander, Markham, and
Helder (2009). The Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes
(FLAASH) routine available on the Exelis Environment Visual Information (ENVI) software
was used to change the radiance values into surface reflectance. Atmospheric correction
was then performed on the reflectance values derived using the FLAASH routine. The
input file was converted to radiance image in a band-interleaved-by-line (BIL) format
with a scale factor of 1.0 (μW cm–2 sr–1 nm–1) before applying the FLAASH module. The
FLAASH module input information (such as flight date and time, sensor altitude, and
sensor location) needed for the processing of these images was contained in the
Landsat image metadata file downloaded from the USGS archive. Sensor altitude (km)
is automatically set according to sensor type and the average study area elevation
(0.4 km) was used as an input for ground elevation. Some multispectral sensors such
as Landsat data do not have appropriate bands to perform water retrieval; hence, this
was not undertaken in this work. Figure 3 shows the preprocessed Landsat 5 and 7
images used for the analysis.

3.2. Method of analysis

From the database, the range of volume of oil spill that occurred in the study is from a
minimum of 3 to a maximum of 3500 bbl and the number of days computed between
the oil spill event and image acquisition date ranges from 2 to 844 days. The relationship
between oil spill volume and the level of impact on the vegetation health has been
demonstrated in Mackay and Matsugu (1973) and Mackay and Mohtadi (1975) in
Canada. Hypothetically, a small volume of oil spill over land may occupy little space in
a pixel of 30 m resolution. In contrast, the large volume of oil spill could occupy a large
space in a 30 m pixel over land. Thus, it is expected that a smaller volume of oil spill may
have little impact on vegetation, thereby limiting the detectability of these effects using

Table 1. Year of oil spills, sample points, and available image data.
Year of Spill Sample Points Acquisition Date

1985 2 17 January 1986
1986 9 19 December 1986
1998 7 21 February 1987
1999 11 29 November 1999
2000 10 17 December 2000
2002 6 8 January 2003
2004 4 26 November 2004
2006 5 19 January 2007
2007 1 19 January 2007
Total 56
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a 30 m spatial resolution sensor such as Landsat. Factors such as land-cover types (where
the spill occurred), volume of oil spill, and time of image acquisition were taken into
consideration in this study. To determine whether the volume of oil spill and the
number of days between oil spill events and image acquisition date can affect the
detection of oil spill over vegetated areas using NDVI and NDWI, a number of assump-
tions were made. We assumed that index (NDVI and NDWI) values could drop as the
volume oil spill increases and they may remain relatively unchanged or go up at the
affected sites as the volume of oil spill decreases. Similarly, it is also assumed that as the
number of days increases between the oil spill event and the image date, there are high
chances of vegetation recovery and that NDVI and NDWI values will go up. Statistical
regression was used to determine which volume of oil spill could lead to detectable
impacts on vegetation through the use of two indices (NDVI and NDWI). This was done
by plotting all the 56 oil spill data at the first stage of analysis to see how a change in
volume of oil spill affects the two indices. The second stage of analysis involved
determining the minimum amount of oils spill that can effectively fill a 30 m by 30 m
pixel and hence would lead to detectable change in vegetation condition in a single
Landsat pixel.

Environmental conditions, e.g. water-saturated soil, increase the surface pool of oil spill
and limit the penetration of oil into the ground (Grimaz et al. 2008). When oil spill occurs on a
surface, the force balance between the downward pull of gravity caused by density and
internal tension of the liquid may allow the oil pool to form a final spill size. A pool is
considered to be a large drop of oil with a defined amount of oil held to a certain penetration
depth in a surface area (Grimaz et al. 2008; Simmons and Keller 2003). It also depends on the

Figure 3. Landsat-5 and -7 images in false colour composite (bands 4, 3, and 2) of the study area.
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property of the oil (in the case for this study, heavy oils are used as no specific oil type is
considered); the spilled oil will eventually stand a certain height or depth above the surface
(Simmons, Keller, and Hylden 2004). For example this model (Simmons, Keller, and Hylden
2004) presumed that the volume of oil-spilled partition over an area is given by

V ¼ Aδφþ Ah; (1)

where h is the height of liquid standing above the surface. Liquid below penetrated to a
certain depth, δ, in the substrate porosity, φ. Thus the height is given by

1� cosθð Þ � σ ¼ ρ� g� h2; (2)

where h = spill height (cm)
ρ = density (gm/ml)
g = gravity acceleration
σ = surface tension (dyne/cm)
θ = contact angle (angle between spill height of liquid and surface)
Oil spill height can be determined by surface tension divided by the weight density of

liquid for adhesion quantified by contact angle. In Simmons, Keller, and Hylden (2004)
the model used different types of oil liquid properties to produce different heights of oil
spill based on various scenarios ranging from 0.01 to 0.5 cm. Since the oil found in the
Niger Delta could be assumed to behave similar to the ones demonstrated, the height of
oil spill is presumed at 0.04 m for this study based on the calculation in Simmons, Keller,
and Hylden (2004). The following calculation was used to predict the expected volume
of oil spill to fill a 30 m pixel:

1m3 ¼ 1000 l
1 bbl of oil ¼ 160 l
Volumeof oil spill VSpill

� � ¼ l � bð Þ � h� 1000ð Þ=160 l
VSpill ¼ A� h� 1000ð Þ=160

where

Vspill ¼ volumeof oil expected to fill an area corresponding to one pixelA
Pixel areað Þ : Length ðlÞ ¼ 30 m; breadth bð Þ ¼ 30 m

A pixel areað Þ ¼ l � b;where l ¼ b ¼ 30 m
h ¼ Assumedheight of oil spill ¼ 0:04 m

Therefore:

VSpill bblð Þ ¼ l � bð Þ � h� 1000ð Þ=160 l

VSpill bblð Þ ¼ 30� 30ð Þ � 0:04� 1000ð Þ=160 l ¼ 225 bbl:

Consequently, in further analysis, 225 bbl was used as the minimum value where
impacts of oil pollution on vegetation can be detected.

In the second part of the analysis, the influence of the number of days between oil
spill and date of image acquisition on the detectability of pollution impacts on vegeta-
tion was determined. In the first stage of this analysis, all the date data was used to
derive the regression statistics between time and the VIs. Next, the data was divided into
two dates (i.e. 0–1 year and 1–2 years) to determine any variations in vegetation
response.
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4. Results

The data in Table 2 shows that some spill sites have high values of NDVI and NDWI
despite a large volume of spills; others appear to have a low volume of spill but with
high values of NDVI and NDWI.

4.1. Influence of volume of oil spill on NDVI and NDWI

The computed NDVI and NDWI from all the 56 sample sites in Table 2 were used to
determine the relationship between the indices and the volume of oil spill using all the
data in Table 2. All the oil spill data (volume of oil spill) were plotted against NDVI and
NDWI in Figure 4.

The relationship between the two indices and the volume of oil spill between 3 and
3500 bbl indicated was weak, with the coefficient of determination (R2 = 0.0001 and
R2 = 0.02) for NDVI and NDWI, respectively (Figures 4(a) and 4(b), respectively). The
reason for this analysis is to determine whether there is any relationship at all between
all the volume of oil spill data and the spectral indices without considering the influence
of the number of days between the oil spill events and the image acquisition date.
Generally, considering the regression analysis shows that the volume of oil spill indi-
cated a poor relationship with the NDVI and NDWI at this stage. The next stage of
analysis used a minimum volume of 225 bbl calculated in the methods section to

Table 2. Number of sample points, volume of oil spill, and time gap between oil spill and image
dates.
Sample
Points

Volume Of
oil (bbl) Time (Days) NDVI NDWI Sample Points Volume Time (Days) NDVI NDWI

SP1 558 2 0.27 0.02 SP29 346 135 0.2 0.44
SP2 813 3 0.25 0.19 SP30 62 144 0.32 0.34
SP3 150 5 0.17 0.42 SP31 1042 158 0.24 0.22
SP4 352 11 0.18 0.22 SP32 200 161 0.33 0.35
SP5 28 12 0.19 0.44 SP33 1720 163 0.18 0.07
SP6 50 14 −0.09 0.33 SP34 150 169 0.09 0.19
SP7 2761 20 0.26 0.1 SP35 97 184 0.45 0.39
SP8 2 32 0.18 0.24 SP36 3500 198 0.17 0.38
SP9 54 33 0.17 0.42 SP37 269 206 0.13 0.35
SP10 318 35 0.45 0.34 SP38 96 221 0.32 0.35
SP11 1069 37 0.2 0.4 SP39 2578 234 0.04 0.44
SP12 63 45 0.15 0.25 SP40 232 237 0.34 0.43
SP13 400 46 0.42 0.26 SP41 126 254 0.06 0.22
SP14 40 47 0.11 0.07 SP42 2573 270 0.13 0.36
SP15 117 48 0.03 0.36 SP43 75 281 0.31 0.28
SP16 180 52 0.12 1.03 SP44 625 300 0.13 0.44
SP17 39 69 0.2 0.08 SP45 128 306 0.35 0.17
SP18 155 70 0.17 0.19 SP46 10 363 0.06 0.20
SP19 75 75 0.51 0.38 SP47 507 370 0.47 0.39
SP20 10 80 0.06 0.43 SP48 27 378 0.42 0.43
SP21 500 89 0.35 0.17 SP49 20 378 0.32 0.25
SP22 5 96 0.22 −0.08 SP50 785 474 0.23 0.14
SP23 184 97 0.37 0.29 SP51 468 560 0.40 0.31
SP24 32 99 0.34 −0.05 SP52 500 650 0.37 0.34
SP25 63 116 0.27 0.36 SP53 1000 707 0.48 0.40
SP26 9 118 0.24 0.31 SP54 807 708 0.48 0.41
SP27 221 127 0.31 0.32 SP55 358 819 0.38 0.39
SP28 1734 134 0.2 0.22 SP56 1505 844 0.33 0.34
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determine whether there would be any improvement in the detection of the influence
of volume of oil spill on the VIs. This amount of oil spill was assumed capable of covering
a single Landsat pixel and hence would result in detectable changes in vegetation
condition.

Figure 5 shows the relationship between oil spill and the two VIs when the minimum
volume of 225 bbl is used. In this figure the relationship between the volume of oil spill
(> 225 bbl) and the two indices (NDVI and NDWI) was better than the one shown in
Figure 4. Figure 5 shows that as the volume increases, the VIs value decrease. This was
more pronounced in the NDVI than in the NDWI.

To further analyse the relationship between the oil spill volume and the VIs, the oil
spill volumes were divided into different categories (i.e. 225–400 bbl, 401–1000 bbl, and
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Figure 4. Relationship between NDVI and NDWI and all volumes of oil spill.
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Figure 5. Relationship between (a) NDVI and (b) NDWI and volume of oil spill where the volume was
greater than 225 bbl.
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>1001 bbl) and each category related to the VIs. The results from this analysis are shown
in Figure 6. The results from this analysis showed that the volume from 400 bbl to 1000
bbl [Figure 6(c) and 6(d)] seemed to result in the greatest detectable reduction in both
indices (R2 = 0.59 for NDVI and R2 = 0.21 for NDWI). This could be because this volume
range is not too small to adequately cover the pixels (hence result in response from
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Figure 6. Variation in relationship between NDVI and NDWI and volume of oil for different oil spill
volume ranges: 6(a) and 6(b), 225–400 bbl; 6(c) and 6(d), 401–1000 bbl; and 6(e) and 6(f), 1001 bbl
and above.
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plants) and not too large to contaminate the reflectance of vegetation recorded by
satellite sensor (which would reduce the sensitivity of the VIs).

4.2. Analysis of influence of time on NDVI and NDWI

From the analysis provided in section 4.1 the influence of volume appears to be clear in
the category between 400 and 1000 bbl. In this section, the results from the influence of
time gap (i.e. oil spill and image date) on the detection of changes in vegetation spectral
values at the polluted sites are presented. Table 2 shows the NDVI and NDWI values for
all oil spill volumes. In this table, the trend seems to be that the oil spill sites with less
number of days between the oil spill and imagery dates have low NDVI and NDWI
values, and those with a high number of days have high index values. However, to
obtain a clear picture of the influence of time on the effects of oil spill on vegetation,
only sites where the volume of oil spill was greater than 225 bbl are analysed further.
Table 3 lists the NDWI and NDVI for sites with oil spills greater than 225 bbl.

The relationship between the number of days and the VIs for all of the sites with oil
spill greater than 225 bbl is presented in Figure 7. This figure shows that as the number
of days increases, so do the values of the VIs. This implies that with time, vegetation
seems to recover from the effects of oil pollution. However, further analysis was
performed by splitting the length of time into categories (0–1 year) and (1–2) year to
determine whether initially the vegetation would get affected and then recover after a
specific time. Results from this analysis are presented in Figure 8.

Figure 8(a) shows that the NDVI decreased in the first year, which could be attributed
to the effects of oil spill, and started to increase in the second year (Figure 8(c), which

Table 3. Time gap between oil spill and image dates and NDVI and NDWI
for 25 spill sites with volume of oil spill volumes of more than > 225 bbl.
Sample Points Oil Spill Volume (bbl) Time Gap (Days) NDVI NDWI

SP1 558 2 0.27 0.02
SP2 813 3 0.25 0.19
SP3 352 11 0.18 0.22
SP5 2761 20 0.26 0.10
SP6 318 35 0.25 0.34
SP7 1069 37 0.2 0.40
SP8 400 46 0.22 0.26
SP9 500 89 0.35 0.17
SP11 1734 134 0.2 0.22
SP12 1042 158 0.24 0.22
SP15 1720 163 0.18 0.07
SP16 3500 198 0.17 0.38
SP17 269 206 0.13 0.35
SP18 2578 234 0.04 0.44
SP19 232 237 0.34 0.43
SP20 2573 270 0.13 0.36
SP21 625 300 0.13 0.44
SP22 507 370 0.47 0.39
SP28 785 474 0.43 0.24
SP23 468 560 0.4 0.31
SP24 1000 707 0.48 0.40
SP25 807 708 0.48 0.41
SP26 358 819 0.38 0.39
SP27 1505 844 0.33 0.34
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could be linked to the recovery of the vegetation in the study site. The NDWI does not
seem to respond to the effects of oils spill, as depicted by Figure 8(b) and 8(d).

5. Discussion

5.1. Influence of volume of oil spill on NDVI and NDWI

This study examined the relationship between the volume of oil spill and spill effects on
vegetation health using VIs. VIs have been shown to be good indicators of the effects of
oil pollution on vegetation (Zhu et al. 2013, Noomen et al. 2015,Adamu, Tansey, and
Ogutu 2015). First, we plotted and analysed all the oil spill data to determine at which
volume the impacts of oil spill on vegetation could be detectable using two indices (i.e.
NDVI and NDWI). From Figure 4 the regression analysis computed showed that all
volumes of oil spill at the first stage (where all the 56 spill data were plotted against
the indices) had poor or no relationship with NDVI (R2 = 0.0001) and with NDWI
(R2 = 0.02). This relationship suggests that there is less or no influence of the volume
of oil spill on vegetation. However, it is known that low-volume oil spills would not cover
the entire Landsat pixel (i.e. 30 m by 30 m) and hence the impact of oil spill on
vegetation cannot be detected through VIs. This result could have influenced the
strength of the relationship between the volume of oil and NDVI and NDWI in the
regression analysis in Figure 4. To make the analysis more realistic, a minimum volume
of oil, which would ideally cover a single Landsat pixel, was calculated and only oils spills
above this volume (225 bbl) were used in subsequent analysis. Using this minimum
volume, the negative relationship between the increase in the volume of oil spill and the
VIs improved (i.e. R2 = 0.2 for NDVI and R2 = 0.01 for NDWI) (Figure 5). To determine the
ideal volume where clear impacts of pollution on vegetation can be detected, this study
divided the volumes further into various categories (Figure 6). Results from these
categories showed that there was a strong negative relationship between the NDVI
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Figure 7. Relationship between time gap (number of days between oil spill and image date) and (a)
NDVI and (b) NDWI in polluted sites.
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(R2 = 0.59) and the oil spill category between 400 and 1000 bbl. The relationship
between NDWI and this volume category was also better than in the other categories
(R2 = 0.21). One possible explanation for this increased sensitivity could be that this
volume is probably not too small to adequately cover the pixels (hence result in impacts
on plants) and not too large to contaminate the reflectance of vegetation recorded by
satellite sensor (which would reduce the sensitivity of the VIs). Therefore, this category
seems to be the ideal volume where the impacts of oil spill on vegetation condition
could be detected. From this result, it can be stated that the volume of oil spill is an
important variable to consider when determining the impacts of oil spill on vegetation
condition from remote-sensing data. This result is supported by Wardrop et al. (1998)
that the degree of oil spill impact on vegetation and (Lewis Iii 1983) vegetation recovery
is correlated to the extent of the spill.

5.2. Influence of time factor on NDVI and NDWI

In Figures 7(a) and 7(b), the regression line indicates a relatively weak but positive
relationship between the number of days and the two VIs with R2 = 0.3322 and

(a) NDVI vs time between oil spill and image (b) NDWI vs time between oil spill and image

(c) NDVI vs time between oil spill and image (d) NDWI vs time between oil spill and image 
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Figure 8. The relationship between time [< 1 year 8(a) and 8(b) and 1–2 years 8(c) and 8(d)] and the
two vegetation indices (NDVI and NDWI).
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R2 = 0.2224 for both NDVI and NDWI, respectively. This suggests that the time of image
acquisition can be a factor that influences the detectability of impacts of oil spills on
vegetation. The VI values increase with increasing time between the image acquisition
and oil spill date, implying some form of vegetation recovery with time. To obtain a clear
picture of the impacts of time on the detectability of impacts of oil spill on vegetation,
the data was divided into two categories (i.e. 0–1 year and 1–2 years) (Figure 8). Results
from the NDVI showed that in the first year, there was a general decrease in its values
(Figure 8(a)), implying the impacts of oil pollution on vegetation. After the first year, the
NDVI values started to increase (Figure 8(c)), which implies that the impacted vegetation
started to recover. The NDWI results did not show a similar pattern. Other researchers
have shown that the impact of oil spills on vegetation can start to show within the first
two weeks of a spill event, and these can range from chlorosis to defoliation to tree
death (Duke and Burns 1999). However, these impacts can vary depending on the
vegetation type, persistence of the oil spill (level of degradability), and the physical
factors in the affected area (Hoff et al. 2002). A study in a mangrove reported that the
amount of oil reaching the mangroves and the length of time spilled oil remains near
the mangroves are key variables in determining the severity of effect (Garrity, Levings,
and Burns 1993; Burns et al. 2002). The results from the NDVI in the current study
showed that the impacts of oil spill on the mangrove forests were visible within the first
year and the forests started to recover after the first year. Thus, it can be stated that the
time of image acquisition is an important factor to consider when studying the impacts
of oil spills on vegetation using remote-sensing data.

6. Conclusion

The aim of this study was to test the influence of volume of oil spill and time gap
between the image acquisition dates on the detectability of changes in vegetation
status using VIs. First, all oil spills were used to test the influence of volume on the
detectability of pollution on vegetation condition using two VIs (i.e. NDVI and NDWI).
Results from this showed a weak negative relationship between an increase in volume
and impacts on vegetation condition (i.e. reduction in NDVI and NDWI values). A
minimum volume (225 bbl), which was considered adequate to cover a single Landsat
pixel, was calculated and used in subsequent analysis. The use of this minimum
volume improved the relationship between the VIs and oil spill volume. Further
analysis showed that the oil spill volume between 400 bbl and 1000 bbl resulted in
the most detectable influence of pollution on vegetation as shown by the strong
negative relationships between the VIs (especially NDVI) and this volume category.
The analysis on the influence of time on the detectability of impacts of oil pollution
on vegetation showed that, in general, the longer the time between image acquisi-
tion and oil spill, the lower the detectability of the impacts of pollution on the
vegetation (showed by the positive relationship between NDVI/NDWI and time).
However, further analysis showed that the NDVI was able to detect the effects on
vegetation condition (indicated by the reduction in NDVI values) within the first year
of oil spill. In addition, the NDVI showed that the vegetation began to recover
(increase in NDVI values) after the first year. Overall, as time increased between the
date of oil spill and image acquisition, the chances of detecting the impacts of oil
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pollution on vegetation seem to diminish. However, it is worth noting that these
relationships can be influenced by other factors such as the vegetation type, physical
condition in the area, sensor characteristics, and type and persistence (degradability)
of the oil (Pezeshki et al. 2000, Mendelssohn et al. 2012). The sensitivity of the indices
has also contributed in the detection of oil spill. In conclusion, this study showed that
both the volume of oil spill, and the time between image acquisition and spill date
are important factors to consider when using multispectral data to study the impacts
of oil pollution on vegetation.
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