The University of Southampton
University of Southampton Institutional Repository

Convergence analysis for distributional robust optimization and equilibrium problems

Convergence analysis for distributional robust optimization and equilibrium problems
Convergence analysis for distributional robust optimization and equilibrium problems
In this paper, we study distributionally robust optimization approaches for a one-stage stochastic minimization problem, where the true distribution of the underlying random variables is unknown but it is possible to construct a set of probability distributions, which contains the true distribution and optimal decision is taken on the basis of the worst-possible distribution from that set. We consider the case when the distributional set (which is also known as the ambiguity set) varies and its impact on the optimal value and the optimal solutions. A typical example is when the ambiguity set is constructed through samples and we need to look into the impact of increasing the sample size. The analysis provides a unified framework for convergence of some problems where the ambiguity set is approximated in a process with increasing information on uncertainty and extends the classical convergence analysis in stochastic programming. The discussion is extended briefly to a stochastic Nash equilibrium problem where each player takes a robust action on the basis of the worst subjective expected objective values.
0364-765X
377-401
Sun, Hailin
eee2e5fb-018b-45d4-b599-08209509663c
Xu, Huifu
d3200e0b-ad1d-4cf7-81aa-48f07fb1f8f5
Sun, Hailin
eee2e5fb-018b-45d4-b599-08209509663c
Xu, Huifu
d3200e0b-ad1d-4cf7-81aa-48f07fb1f8f5

Sun, Hailin and Xu, Huifu (2016) Convergence analysis for distributional robust optimization and equilibrium problems. Mathematics of Operations Research, 41 (2), 377-401. (doi:10.1287/moor.2015.0732).

Record type: Article

Abstract

In this paper, we study distributionally robust optimization approaches for a one-stage stochastic minimization problem, where the true distribution of the underlying random variables is unknown but it is possible to construct a set of probability distributions, which contains the true distribution and optimal decision is taken on the basis of the worst-possible distribution from that set. We consider the case when the distributional set (which is also known as the ambiguity set) varies and its impact on the optimal value and the optimal solutions. A typical example is when the ambiguity set is constructed through samples and we need to look into the impact of increasing the sample size. The analysis provides a unified framework for convergence of some problems where the ambiguity set is approximated in a process with increasing information on uncertainty and extends the classical convergence analysis in stochastic programming. The discussion is extended briefly to a stochastic Nash equilibrium problem where each player takes a robust action on the basis of the worst subjective expected objective values.

This record has no associated files available for download.

More information

e-pub ahead of print date: 17 July 2015
Published date: 1 May 2016
Organisations: Operational Research

Identifiers

Local EPrints ID: 390735
URI: http://eprints.soton.ac.uk/id/eprint/390735
ISSN: 0364-765X
PURE UUID: 3bffcd06-6497-47cb-a1f6-1d7308cc283e
ORCID for Huifu Xu: ORCID iD orcid.org/0000-0001-8307-2920

Catalogue record

Date deposited: 06 Apr 2016 15:02
Last modified: 15 Mar 2024 03:15

Export record

Altmetrics

Contributors

Author: Hailin Sun
Author: Huifu Xu ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×