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ABSTRACT
Split intein circular ligation of peptides and proteins (SICLOPPS) is a genetically encoded method for the intracellular production of cyclic peptide libraries of around a hundred million (108) members that utilizes the Synechocystis sp PCC6803 (Ssp) DnaE split inteins. However, Ssp inteins are relatively slow splicing and intolerant of amino acid variation around the splice junction potentially limiting the utility and composition of SICLOPPS libraries. In contrast, Nostoc punctiforme (Npu) DnaE split inteins not only splice significantly faster, they are also much more tolerant of amino acid variation around their splice junctions. Here we report the use of engineered Npu inteins in SICLOPPS for the generation of cyclic peptide libraries and cyclic proteins. Despite their superior splicing characteristics however, we observed a high level of toxicity from the Npu SICLOPPS constructs in E. coli. The observed toxicity was overcome though incorporation of an SsrA tag to target the spliced Npu inteins to the ClpXP complex for degradation. The resulting traceless Npu SICLOPPS inteins showed no toxicity to E. coli, demonstrating their potential for the production of cyclic peptide libraries for use in a variety of high-throughput screens.


[bookmark: _GoBack]Cyclic peptides are a privileged class of bio-molecules that are increasingly utilized in early stage drug discovery, with a proven track record in the identification of protein-protein interaction inhibitors.1-8 As such cyclic peptide libraries are increasingly deployed in high-throughput screening in both academia and industry. Despite this, there are few methods available for the production of cyclic peptide libraries in cells,9-13 thereby enabling their use in genetic selection or phenotype screens. Split intein circular ligation of peptides and proteins (SICLOPPS),12 is a readily accessible method for the intracellular generation of cyclic peptide libraries of over a hundred million members13, 14 that uses Synechocystis sp PCC6803 (Ssp) DnaE split inteins.15 Each member of the library is expressed from a unique plasmid, generated using standard molecular biology techniques and a degenerate oligonucleotide. The C- and N-terminal intein fragments (IC and IN respectively) come together to form an active intein that splices to give a head-tail cyclized peptide (Figure 1A). The splice rate of Ssp inteins is relatively slow and sensitive to amino acids variation in the n+1 position, which is a significant limitation to SICLOPPS libraries. The intolerance to residue change is potentially a significant problem in library generation, as it suggests that a portion of a given SICLOPPS library do not splice. We therefore aimed to utilize inteins that splice faster and more efficiently, and are more tolerant to extein sequence variations. The Nostoc punctiforme (Npu) DnaE split inteins not only splice significantly faster, they are also much more tolerant of amino acid variation around their splice junctions, potentially making them potentially more suitable for library generation.16, 17 The splicing efficiency and sequence tolerance of these inteins has been further improved through the incorporation of site-specific mutations.18 We therefore sought to assess the potential for using these modified Npu inteins for the procustion of SICLOPPS cyclic peptide libraries.

RESULTS AND DISCUSSION
We began by building a plasmid encoding Npu split inteins in SICLOPPS format (IC-extein-IN), and using it as a template to construct a CX5 SICLOPPS library (where X= any amino acid). We initially assessed the splicing of the CX5 library by SDS-PAGE. The mechanism of SICLOPPS splicing (Figure 1A) involves formation of the active intein through association of IN and IC, followed by splicing to give the cyclic peptide product and the liberation of IN and IC as the by-products. It is not possible to accurately measure the quantity of cyclic peptide produced by SICLOPPS, but as detachment of IC is the last step prior to the formation of the cyclic peptide, the relative quantity of free IC serves as a good indication of the amount of spliced product.12, 13
Plasmids encoding a CX5 SICLOPPS library with either Ssp or Npu inteins were transformed into E. coli, and after recovery, expression of the library induced with arabinose. After 6 hours, each set of cells was lysed, and the SICLOPPS inteins isolated using the chitin-binding domain (CBD) present at the C-terminus of both Ssp and Npu IN. The isolated proteins were visualized by SDS-PAGE; a strong band was observed at the molecular mass associated with unspliced inteins for the Ssp library, as well as a band corresponding to IN (Figure 1B). The band associated with IC (and complete splicing) was however very weak, suggesting that a large portion of the Ssp CX5 library do not splice (Figure 1B). In contrast, the Npu CX5 library showed a weak band corresponding to the full length unspliced intein, with a strong band corresponding to IN and IC (Figure 1B). This suggests that in contrast to the Ssp inteins, a large majority of the Npu CX5 library splice to give the corresponding cyclic peptides. These observations are in line with previous studies that show Ssp inteins are not tolerant of amino acid change at the extein residues around the splice junction (a necessity for building libraries), whereas Npu inteins are highly tolerant of extein amino acid variation.17 
We next assessed the effect of the Ssp and Npu CX5 SICLOPPS library on the viability of their E. coli hosts. We transformed the electrocompetent DH5 cells with plasmids encoding either an Ssp or Npu CX5 SICLOPPS library and after recovery, plated 100 L of a 1:10000 fold dilution of this solution onto LB-agar plates containing 30 g/mL of chloramphenicol (marker for SICLOPPS plasmid), with or without arabinose (inducer of SICLOPPS). These plates were incubated overnight and the number of surviving colonies quantified. We typically see transformation efficiencies of 107–108 with SICLOPPS plasmids, and in line with this, we observed around 100 colonies on plates containing only chloramphenicol for both Ssp and Npu libraries. We reasoned that by comparing the number of surviving colonies on chloramphenicol plates with the number of colonies that survive on plates containing both chloramphenicol and arabinose, the portion of each library that affect the viability of the host could be quantified. We therefore carried out a series of experiments where a given SICLOPPS library was transformed into E. coli and the resulting recovery mixture plated on the above 2 sets of plates; library members affecting host viability would cause cell death and lead to a reduced number of surviving colonies on plates where SICLOPPS was induced (+ arabinose). We observed 86 ± 7 % of the number of colonies on plates that induced production of the Ssp SICLOPPS CX5 library (compared to non-induced plates), indicating that ~14 % of the library members affect host viability (Figure 1C). For the Npu inteins however, only 58 ± 4 % of the expected colonies were present on plates containing arabinose (compared to non-induced plates), indicating that ~42 % of the members of the Npu SICLOPPS CX5 library affect host viability (Figure 1C). While it is likely that a portion of the cyclic hexamers encoded by a CX5 library are inherently toxic to E. coli (e.g. through interference with a critical protein or pathway), both sets of inteins are encoding the same library in the above experiment, the high level of toxicity observed with the Npu inteins can only be attributed to the Npu inteins themselves. To further assess this observation on the single peptide level, we constructed Ssp and Npu SICLOPPS plasmids encoding cyclo-CLLFVY, a cyclic peptide inhibitor of HIF-1 heterodimerization that was discovered from an Ssp SICLOPPS CX5 library.7 The effect of the SICLOPPS construct that produces this peptide on E. coli viability was assessed by drop-spotting ten-fold serial dilutions onto plates containing 30 g/mL chloramphenicol with or without 1.3 M arabinose. Full growth of the bacterial host was observed with both plasmids when SICLOPPS has not been induced (Figure 1D, top plate), but significant toxicity was observed upon the induction of Npu SICLOPPS (as indicated by the absence of growth at higher dilutions), with no effect on viability from the Ssp SICLOPPS plasmid (Figure 1D, bottom plate).
The reason for the observed toxicity of Npu SICLOPPS inteins is unknown, but can only be due to the Npu inteins themselves, as this is the only variable between the two conditions in our experiments. The superior splicing and sequence tolerance of Npu inteins is well documented, but the above data suggests that they can not be used for SICLOPPS library generation, as a large portion of the library will not be present due to their toxicity to the host. For example, our results suggest that had Npu inteins been used in our HIF-1 screen, cyclo-CLLFVY would not have been identified, as cells expressing this peptide would not have survived.
We sought to overcome the observed toxicity of SICLOPPS Npu inteins by using a protein degradation tag to target the spliced inteins for intracellular degradation. We used the SsrA tag (AANDENYALAA) to for this purpose;19-21 addition of the SsrA sequence to the C-terminus of a protein has been demonstrated to direct the tagged protein to the ClpXP machinery for degradation, reducing the half-life of the tagged protein to ~5 minutes.22 The splice time of Npu intein has been extensively studies by others, and has been shown to be between 30–60 seconds.16, 18, 23 We therefore reasoned that the addition of an SsrA tag to the Npu inteins would not affect cyclic peptide production, as the Npu inteins should splice prior to their degradation, but would cause degradation of spliced IN and IC (Figure 2A). It should be noted that any unspliced SICLOPPS protein would also be degraded after ~5 minutes. We generated a construct encoding SICLOPPS Npu inteins with an SsrA tag on the C-terminus of IN (Npu-SsrA). E. coli were transformed with an Npu-SsrA SICLOPPS CX5 plasmid library and expression of the inteins induced with arabinose. After 6 hours, the cells were lysed, and SICLOPPS protein isolated and visualized by SDS-PAGE. In line with our hypothesis, a band was observed for the unspliced SICLOPPS protein, but bands corresponding to IN and IC were not observed, indicating their degradation (Figure 2B). A band corresponding to the unspliced protein was observed (Figure 2B); this is likely to represent the pool of newly expressed protein that is awaiting degradation.
We next assessed the effect of the SsrA tag on the toxicity of the Npu SICLOPPS CX5 library to its E coli host, using the same approach as detailed above (in Figure 1C) for the Ssp and Npu inteins. We observed the same number of surviving colonies (± 6 %) on plates containing only chloramphenicol as on plates containing chloramphenicol and arabinose (Figure 2C). This data demonstrates that the addition of the SsrA tag to the Npu SICLOPPS inteins eliminates their toxicity to E. coli. We next probed this on the single peptide level with cyclo-CLLFVY as before. We again monitored host viability by drop-spotting 10-fold serial dilutions of cells containing the above SICLOPPS plasmids onto plates containing 30 g/mL chloramphenicol, with or without 1.3 M arabinose. Both sets of cultures displayed full growth in the absence of arabinose, while only cells encoding cyclo-CLLFVY with the Npu-SsrA SICLOPPS plasmid survived the induction of SICLOPPS with 1.3 M arabinose (Figure 2D). Together, our data demonstrates that by using an SsrA tag to degrade excess and/or unspliced inteins, the effect of Npu SICLOPPS inteins on E. coli viability is eliminated.
Although the splicing speed, efficiency and tolerance to extein sequence variation of Npu inteins has been extensively documented, it is possible that the reduction in toxicity observed from introduction of the SsrA tag is not due to elimination of spliced IN and IC as hypothesized by us, but instead due to the degradation of unspliced SICLOPPS inteins. In this scenario, SICLOPPS Npu inteins are degraded before they splice, resulting in the absence of any cyclic peptides in the host. While it would be challenging to accurately quantify intracellular cyclic peptide levels produced by a SICLOPPS library, we can readily assess the presence of a given cyclic peptide using a phenotype assay for its function. Given the high toxicity observed when replacing Ssp inteins with Npu inteins for the production of our HIF-1 inhibitor cyclo-CLLFVY, and its subsequent reversal upon introduction of an SsrA tag, we utilized this peptide and the bacterial reverse two-hybrid system (RTHS) used for its identification to probe this hypothesis.7 The reverse two-hybrid system is based on the 434 and chimeric 434/P22 bacteriophage repressors, with the genes encoding target proteins (HIF-1 and HIF-1) integrated onto the chromosome of the host strain. HIF-1 is chromosomally expressed as an N-terminal fusion with a P22 bacteriophage repressor, and HIF-1 as an N-terminal fusions with the bacteriophage 434 repressor. In the absence of IPTG, the operator sites engineered onto the chromosome of the host are unoccupied, allowing expression of two chemically tunable and conditionally selective reporter genes (Figure 3A). The expression of HIS3 (imidazole glycerol phosphate dehydratase) and KanR (aminoglycoside 3’-phosphotransferase for kanamycin resistance) enables survival and growth of the host strain on selective media that lacks histidine and containing kanamycin.24-26 In the presence of 50 M IPTG the target protein pairs are expressed and their dimerization (HIF-1 with HIF-1 in this case) leads to the formation of a functional 434/P22 repressor that binds chimeric 434/P22 operators on the chromosome of the RTHS strain. The reconstituted repressor inhibits the expression of the downstream reporter genes and prevents survival of the host cell on selective media (Figure 3B). Upon addition of 1.3 M arabinose to the above system, expression of the SICLOPPS construct that produces cyclo-CLLFVY is induced; as this cyclic peptide inhibits the HIF-1/HIF-1 protein-protein interaction, the repressor complex is disrupted, allowing expression of the reporter genes and enabling host survival on selective media (Figure 3C). 
Importantly for this experiment, we have previously demonstrated that only spliced cyclo-CLLFVY disrupts HIF-1 dimerization in this system;7 a non-splicing variant of the parent intein formed via mutation of two residues in the C-intein (H24A, F26A)27 resulted in loss of activity in the HIF-1 RTHS.7 Unspliced full length, or partially spliced inteins encoding cyclo-CLLFVY are therefore unable to disrupt the HIF-1/HIF-1 protein-protein interaction, with only the spliced cyclic peptide able to restore growth of the HIF-1 RTHS. We used this system to assess whether the effect from the SsrA tag is a result of Npu intein degradation prior or post splicing. The HIF-1 RTHS was transformed with one of three plasmids encoding cyclo-CLLFVY using Ssp, Npu, or Npu-SsrA SICLOPPS inteins. The effect of each plasmid on host survival and growth was monitored by drop spotting on selective media lacking histidine and containing kanamycin. In the absence of IPTG (no repressor proteins) and arabinose (no SICLOPPS) the non-induced plasmids did not affected growth of the host RTHS (Figure 3A). Repression of growth was observed for all plasmids on plates containing 50 M IPTG and no arabinose (Figure 3B) demonstrating that the non-induced SICLOPPS plasmids have no effect on the formation of a functional repressor. However, a difference was observed between the 3 plasmids upon induction of SICLOPPS on plates containing 1.3 M arabinose and 50 M IPTG (production of cyclo-CLLFVY in the presence of the HIF-1 repressor complex). The toxicity of the Npu SICLOPPS inteins observed in our earlier experiments was mirrored here, with the host cell unable to grow on selective media, despite induction of the construct encoding the HIF-1 inhibitor (Figure 3C, top row). In contrast, cyclic peptide expressed from either the Npu-SsrA or the Ssp plasmids enabled the survival and growth of the HIF-1 RTHS on selective media. This phenotypic assay demonstrates that the Npu-SsrA SICLOPPS inteins splice to yield cyclo-CLLFVY prior to their degradation by ClpXP.
We next sought to probe whether the effects observed above are limited to the production of cyclic peptides with Npu inteins, or also applicable to the production of cyclic proteins with SICLOPPS. We chose green fluorescent protein (GFP) for this purpose, as this protein has previously been cyclized with artificially split inteins.28 Two SICLOPPS constructs encoding IC-GFP-IN with Npu and Npu-SsrA inteins were generated and cloned into a pET28a backbone. We assessed the effect of expressing each construct on the viability of the E. coli host by monitoring the optical density of the culture at 600 nm (OD600). As previously observed for cyclic peptide production, induction of the Npu IC-GFP-IN protein with IPTG had a marked effect on host viability, with a ~50 % reduction in growth rate compared to the non-induced culture (Figure 4A). In contrast, E. coli expressing Npu-SsrA IC-GFP-IN grew at the same rate as the equivalent non-induced culture (Figure 4B). As discussed previously, it is possible that the observed effects are due to the SsrA tag degrading the IC-GFP-IN protein prior to splicing; in this scenario no plasmid product (GFP) or partially spliced product would be present in the cell. We used western immunoblotting to probe for GFP in cells expressing Npu-SsrA IC-GFP-IN. A strong band corrsponding to spliced GFP was observed, with significantly weaker bands for the unspliced and partially-spliced products, indicating that the Npu inteins splice prior to SsrA-mediated degradation (Figure 4C). Western immunoblot analysis of non-induced cells showed the absence of any bands corresponding to GFP (Supplementary Figure 1), and similar analysis of the cells expressing cyclic GFP via Npu intein demonstrated the presence of a band corresponding to cyclic GFP as expected (Supplementary Figure 1). This data was in line with our observations for cyclic peptide production with Npu-SsrA inteins in the above phenotype-based experiments.
Taken together, our data demonstrates that engineered Npu inteins may be adapted for the production of SICLOPPS cyclic peptide libraries. But despite their rapid rate of splicing and tolerance to variation in extein sequence, a large portion (42 %) of an Npu SICLOPPS library was found to be toxic to their E. coli host, significantly reducing their utility. This limitation was overcome through the use of an SsrA tag to target the spliced inteins to the ClpXP machinery for degradation. There was no effect on host viability from the resulting Npu-SsrA SICLOPPS inteins when employed for cyclic peptide library, or cyclic protein production. In this study we have utilized three different E. coli strains (DH5, BW27786 and BL21); the observed effects from Npu inteins are therefore unlikely to be strain specific. However, it should be noted that prior studies overexpressing Npu inteins in E. coli ER2566 do not mention observed toxicity.17 We are currently using these second generation, traceless SICLOPPS inteins for the identification of cyclic peptide inhibitors of a variety of protein-protein interactions.

METHODS
All molecular biology reagents were purchased from Fisher Scientific, New England Biolabs or Promega and used in accordance with the manufacturers instructions. All genes were synthesized de novo by Integrated DNA Technologies. For reference, the protein sequence of the Npu-SsrA SICLOPPS inteins encoding cyclo-CAAAAA (underlined) is given below. Insert your extein of choice in this region with a C or S in position 1 (necessary for intein splicing). HHHHHHGENLYFKLQAMGMIKIATRKYLGKQNVYDIGVERYHNFALKNGFIASNCAAAAACLSYDTEILTVEYGILPIGKIVEKRIECTVYSVDNNGNIYTQPVAQWHDRGEQEVFEYCLEDGCLIRATKDHKFMTVDGQMMPIDEIFERELDLMRVDNLPNGTAANDENYALAA
In line with Research Councils UK’s data sharing policy, the raw data for these experiments is available upon request from the University of Southampton’s data repository.

Analysis of SICLOPPS library splicing by SDS-PAGE
SICLOPPS CX5 libraries were constructed in pARCBD backbone as previously detailed13 and transformed into electrocompetent DH5 as ligation mixtures. After 1 hour of incubation at 37 oC with shaking, 1 L of the recovery mixture was removed for analysis of transformation efficiency as previously detailed,13 and the remainder of the recovery mixture was diluted to 10 mL with additional LB, and incubated at 37 oC with shaking until an OD600 of 0.6. Protein expression was then induced, and the cultures incubated with shaking for a further 6h. Inteins were isolated via their affinity tag and visualized by SDS-PAGE as previously detailed.13

[bookmark: _Toc304711601]Assessing the toxicity of SICLOPPS Library members
A SICLOPPS CX5 library was constructed as a ligation mixture13 and transformed into electrocompetent DH5 as above. Recovery mixtures were diluted with LB broth and plated at 10-4 and 10-6 dilutions onto LB agar plates containing chloramphenicol (30 g/mL) with and without arabinose (1.3 M). Plates were incubated overnight and the colonies on each set of plates were counted. 10 plates were counted per condition, per set of experiments, and each experiment was repeated 3 times.

Drop spotting
Electrocompetent DH5 were transformed with a SICLOPPS plasmid encoding cyclo-CLLFVY. After recovery, plating onto LB agar containing 30 g/mL chloramphenicol and overnight incubation, a single colony was used to inoculate a liquid culture containing the 30 g/mL chloramphenicol. After overnight incubation at 37 oC with shaking, the OD600 of each culture was measured, and all cultures were found to be of a similar optical density. Ten-fold serial dilutions of each overnight culture was prepared and drop spotted (2.5 L per spot) onto LB agar plates containing either 30 g/mL chloramphenicol or, 30 g/mL chloramphenicol and 1.3 M arabinose. Plates were incubated overnight at 37 oC. 
For experiments using HIF-1 RTHS cells instead of DH5, the above protocol was repeated, but minimal media selection plates (as previously detailed)7 were used instead of LB agar.

Cyclic-GFP Growth assays
Constructs encoding cyclic GFP with SICLOPPS inteins28 were synthesized and cloned into pET28a vectors using standard protocols. The resulting plasmids were verified by DNA sequencing. Each plasmid was transformed into chemically competent BL21 cells, and a single colony used to inoculate an overnight culture, which was in turn used to inoculate (1 %) 200 mL of LB. The resulting mixture was incubated at 37 oC with shaking until an OD600 of 0.6 was reached. The sample was divided into two equal portions. One was allowed to grow without induction, while the expression of the SICLOPPS construct was induced in the second sample with IPTG (1 mM). OD600 measurements were taken at 0, 0.5, 1, 2, 3, 4, 5 and 6 hours after induction. Each set of experiments was repeated 3 times.

Western immunoblotting
Cyclic-GFP production was induced in E. coli as detailed above. Cells were incubated with shaking at 37 oC for 3 hours after induction of expression. Cells were pelleted after this time by centrifugation (3100 rpm, 15 minutes, 4 oC). The pellets were lysed by sonication and cell debris separated by centrifugation (8000 rpm, 40 minutes, 4 oC). Crude cell lysate was separated by 15 % SDS-PAGE and transferred onto nitrocellulose transfer membranes (Protran, Whatman) at 250 mA for two hours. The membranes were blocked in 5 % milk in phosphate buffer saline (PBS) and Tween (0.1 % v/v PBS/Tween) at room temperature for one hour. This was incubated with a mouse anti-GFP primary antibody (Abcam) at 4 oC for 16 hours at a 1:2,000 ratio in 5 % milk in PBS with 0.05 % Tween-20 followed by incubation with anti-mouse secondary antibody at a 1:50,000 dilution for one hour at room temperature. The secondary antibody was detected using an enhanced chemilluminescence (ECL) reagent.

ACKNOWLEDGEMENTS
The authors would like to thank Wessex Medical Research for funding this work via an Institute for Life Sciences PhD studentship to J.E.T. 

Supporting Information Available: This material is available free of charge via the Internet.

REFERENCES
1. Bashiruddin, N. K., and Suga, H. (2015) Construction and screening of vast libraries of natural product-like macrocyclic peptides using in vitro display technologies, Curr Opin Chem Biol 24, 131–138.
2. Birts, C. N., Nijjar, S. K., Mardle, C. A., Hoakwie, F., Duriez, P. J., Blaydes, J. P., and Tavassoli, A. (2013) A cyclic peptide inhibitor of C-terminal binding protein dimerization links metabolism with mitotic fidelity in breast cancer cells, Chemical Science 4, 3046–3057.
3. Cardote, T. A., and Ciulli, A. (2015) Cyclic and Macrocyclic Peptides as Chemical Tools To Recognise Protein Surfaces and Probe Protein-Protein Interactions, ChemMedChem.
4. Foster, A. D., Ingram, J. D., Leitch, E. K., Lennard, K. R., Osher, E. L., and Tavassoli, A. (2015) Methods for the creation of cyclic Peptide libraries for use in lead discovery, J Biomol Screen 20, 563–576.
5. Frost, J. R., Smith, J. M., and Fasan, R. (2013) Design, synthesis, and diversification of ribosomally derived peptide macrocycles, Curr Opin Struct Biol 23, 571–580.
6. Lennard, K. R., and Tavassoli, A. (2014) Peptides come round: using SICLOPPS libraries for early stage drug discovery, Chemistry 20, 10608–10614.
7. Miranda, E., Nordgren, I. K., Male, A. L., Lawrence, C. E., Hoakwie, F., Cuda, F., Court, W., Fox, K. R., Townsend, P. A., Packham, G. K., Eccles, S. A., and Tavassoli, A. (2013) A cyclic peptide inhibitor of HIF-1 heterodimerization that inhibits hypoxia signaling in cancer cells, J Am Chem Soc 135, 10418–10425.
8. Nevola, L., and Giralt, E. (2015) Modulating protein-protein interactions: the potential of peptides, Chem Commun (Camb) 51, 3302–3315.
9. Bionda, N., Cryan, A. L., and Fasan, R. (2014) Bioinspired strategy for the ribosomal synthesis of thioether-bridged macrocyclic peptides in bacteria, ACS Chem Biol 9, 2008–2013.
10. Bionda, N., and Fasan, R. (2015) Ribosomal Synthesis of Natural-Product-Like Bicyclic Peptides in Escherichia coli, Chembiochem 16, 2011–2016.
11. Frost, J. R., Jacob, N. T., Papa, L. J., Owens, A. E., and Fasan, R. (2015) Ribosomal Synthesis of Macrocyclic Peptides in Vitro and in Vivo Mediated by Genetically Encoded Aminothiol Unnatural Amino Acids, ACS Chem Biol 10, 1805–1816.
12. Scott, C. P., Abel-Santos, E., Wall, M., Wahnon, D. C., and Benkovic, S. J. (1999) Production of cyclic peptides and proteins in vivo, Proc Natl Acad Sci U S A 96, 13638–13643.
13. Tavassoli, A., and Benkovic, S. J. (2007) Split-intein mediated circular ligation used in the synthesis of cyclic peptide libraries in E. coli, Nat Protoc 2, 1126–1133.
14. Scott, C. P., Abel-Santos, E., Jones, A. D., and Benkovic, S. J. (2001) Structural requirements for the biosynthesis of backbone cyclic peptide libraries, Chem Biol 8, 801–815.
15. Wu, H., Hu, Z., and Liu, X. Q. (1998) Protein trans-splicing by a split intein encoded in a split DnaE gene of Synechocystis sp. PCC6803, Proc Natl Acad Sci U S A 95, 9226–9231.
16. Cheriyan, M., Pedamallu, C. S., Tori, K., and Perler, F. (2013) Faster protein splicing with the Nostoc punctiforme DnaE intein using non-native extein residues, J Biol Chem 288, 6202–6211.
17. Iwai, H., Zuger, S., Jin, J., and Tam, P. H. (2006) Highly efficient protein trans-splicing by a naturally split DnaE intein from Nostoc punctiforme, FEBS Lett 580, 1853–1858.
18. Lockless, S. W., and Muir, T. W. (2009) Traceless protein splicing utilizing evolved split inteins, Proc Natl Acad Sci U S A 106, 10999–11004.
19. Farrell, C. M., Grossman, A. D., and Sauer, R. T. (2005) Cytoplasmic degradation of ssrA-tagged proteins, Mol Microbiol 57, 1750–1761.
20. Karzai, A. W., Roche, E. D., and Sauer, R. T. (2000) The SsrA-SmpB system for protein tagging, directed degradation and ribosome rescue, Nat Struct Biol 7, 449–455.
21. Keiler, K. C., Waller, P. R., and Sauer, R. T. (1996) Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA, Science 271, 990–993.
22. Baker, T. A., and Sauer, R. T. (2012) ClpXP, an ATP-powered unfolding and protein-degradation machine, Biochim Biophys Acta 1823, 15–28.
23. Zettler, J., Schutz, V., and Mootz, H. D. (2009) The naturally split Npu DnaE intein exhibits an extraordinarily high rate in the protein trans-splicing reaction, FEBS Lett 583, 909–914.
24. Horswill, A. R., Savinov, S. N., and Benkovic, S. J. (2004) A systematic method for identifying small-molecule modulators of protein-protein interactions, Proc Natl Acad Sci U S A 101, 15591–15596.
25. Miranda, E., Forafonov, F., and Tavassoli, A. (2011) Deciphering interactions used by the influenza virus NS1 protein to silence the host antiviral sensor protein RIG-I using a bacterial reverse two-hybrid system, Mol Biosyst 7, 1042–1045.
26. Tavassoli, A., and Benkovic, S. J. (2005) Genetically selected cyclic-peptide inhibitors of AICAR transformylase homodimerization, Angew Chem Int Ed Engl 44, 2760–2763.
27. Ding, Y., Xu, M. Q., Ghosh, I., Chen, X., Ferrandon, S., Lesage, G., and Rao, Z. (2003) Crystal structure of a mini-intein reveals a conserved catalytic module involved in side chain cyclization of asparagine during protein splicing, J Biol Chem 278, 39133–39142.
28. Iwai, H., Lingel, A., and Pluckthun, A. (2001) Cyclic green fluorescent protein produced in vivo using an artificially split PI-PfuI intein from Pyrococcus furiosus, J Biol Chem 276, 16548–16554.



Figure Legends

Figure 1. Comparison of SICLOPPS cyclic peptide formation with Ssp and Npu inteins. A) The mechanism of SICLOPPS. IN and IC interact to form an active intein that splices to cyclize the extein placed in between. In this case a cyclic hexa-peptide library is produced, where X=any proteinogenic amino acid. B) Probing splicing efficiency of a CX5 library by SDS-PAGE. Presence of the IC is indicative of splicing; as can be seen, the majority of the library made with Ssp inteins do not splice, where as the Npu library splices significantly more efficiently (green arrow). C) Toxicity of Npu and Ssp SICLOPPS libraries. Around 14 % of E. coli transformed with a CX5 SICLOPPS library are not viable upon induction of SICLOPPS, whereas ~42 % of the induced transformants are not viable when using Npu inteins with SICLOPPS D) Assessing the effect of Ssp and Npu inteins on E. coli expressing cyclo-CLLFVY by drop-spotting serial dilutions (2.5 L of ~10n cells/mL). The effect of Npu inteins on E. coli viability is demonstrated by the loss of growth at lower dilutions upon the addition of arabinose (red arrow).

Figure 2. Reducing the toxicity of Npu SICLOPPS inteins using an SsrA tag. A) An SsrA tag is added to the C-terminus of the Npu IN, resulting in the intracellular degradation of unspliced and spliced inteins. B) Probing splicing efficiency of a CX5 Npu-SsrA library by SDS-PAGE. Please note the absence of IN and IC. C) Toxicity of Npu and Npu-SsrA SICLOPPS libraries. Around 42 % of E. coli transformed with an Npu CX5 SICLOPPS library are not viable upon induction of SICLOPPS, whereas the addition of an SsrA tag to the Npu inteins eliminates the toxicity from SICLOPPS library members to the E. coli host. D) Assessing the effect of Npu and Npu-SsrA inteins on E. coli expressing cyclo-CLLFVY by drop-spotting serial dilutions (2.5 L of ~10n cells/mL). The loss of viability from Npu inteins is reversed upon addition of an SsrA tag as demonstrated by maintenance of full growth upon the addition of arabinose.

Figure 3. Assessing the effect of the Npu-SsrA SICLOPPS inteins on the viability of cells expressing cyclo-CLLFVY by drop-spotting serial dilutions (2.5 L of ~10n cells/mL). A) In the absence of IPTG and arabinose expression of neither the repressors nor SICLOPPS is induced, therefore full growth is observed for all three plasmids. B) In the presence of 50 M IPTG, the repressors are expressed and come together (due to the interaction of the HIF-1 subunits) to form a functional repressor, which shuts down expression of the reporter construct. Cells fail to fully grow on selective media under these conditions, with no effect from the SICLOPPS plasmids. C) In the presence of 50 M IPTG and 1.3 M arabinose, both the functional repressor and cyclo-CLLFVY are produced; this cyclic peptide disrupts the interaction of HIF-1 and HIF-1, hence prevents formation of a functional repressor, which is expected to enable cell survival. However, only cells producing this cyclic peptide using Ssp inteins or Npu-SsrA inteins survive and grow on selective media.

Figure 4. The effect of the SsrA tag on the viability of cells expressing cyclic GFP with SICLOPPS Npu inteins. A) Induction of the expression of the Npu intein-GFP construct with IPTG reduces the viability of the E. coli host by ~50 % over 300 minutes. B) The observed affect on cell viability upon induction of protein expression with IPTG is significantly reduced when using Npu-SsrA SICLOPPS inteins C) Probing for GFP by western blot in E. coli expressing cyclic GFP with Npu-SsrA SICLOPPS inteins.
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