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ABSTRACT 

This paper presents a step towards the design of a novel test for simultaneous identification of all the 

stiffness components of orthotropic composite materials. A simulator was adopted to numerically 

simulate the whole identification process. Synthetic images were generated and then processed by Digital 

Image Correlation (DIC) to calculate the strain fields. The Virtual Fields Method (VFM) was used to 

identify the material stiffness parameters and error functions were finally defined to evaluate the 

identification error. Two steps of optimization were applied to obtain the best design variables of different 

specimens and the optimal DIC processing parameters. Four types of test configuration were simulated 

including short off-axis tensile test, short off-axis open-hole tensile test, off-axis Brazilian disc and off-

axis unnotched Iosipescu test and the most promising configuration was identified.  

Keywords: Digital image correlation, Virtual fields method, Simulated experiments, Test optimization   

1. Introduction and state of the art 

Composite materials are currently widely used in many sectors of industry thanks to their good 

performance to weight properties. The design of composite structures requires knowledge of the 

parameters driving their mechanical behaviour, among which their elastic stiffness components. In many 

cases, such as for unidirectional or cross-ply/woven laminates, their elastic behaviour can be assumed 

orthotropic and in a given plane (1-2), the stiffness behaviour depends on four independent parameters: 

E11 and E22, the Young’s moduli in the two orthotropy directions, ν12, major Poisson’s ratio and G12, the 

shear modulus.  

The identification of these stiffness components generally relies on the use of simple uniaxial tests for 

which there is an a priori knowledge of the stress field (statically determinate tests). For instance, E11 

and ν12 can be obtained from a uniaxial tensile test along the fibre direction and E22 from a uniaxial tensile 

test perpendicular to the fibre direction, according to ASTM standard D3039 for instance [1]. For the 

shear modulus, several standard techniques are available, like the tensile test on a [45/-45]nS specimen 
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(ASTM D3518, [2]), the double V-notch shear test (ASTM D5379, [3]), the rail shear test (ASTM D4255, 

[4]) or the off-axis tensile test [5], with oblique tabs for shallow angles [6]. These techniques are well 

established and based on robust deformation measurements from strain gauges or extensometers. 

However, they suffer from a number of shortcomings. First, they rely on stringent assumptions on 

geometry and boundary conditions to ensure the validity of the stress solution. This can cause spurious 

effects leading to biased stiffness identification [7]. Another issue is that the material has to be in a form 

that enables easy cutting of such test specimens. This is not so easy when testing in the through-thickness 

plane [8] for instance. Finally, this procedure is not very efficient as three tests are required to obtain four 

parameters. This leads to costly test campaigns and to the fact that spatial variations of properties are 

difficult to address because of the significant amount of test material that is required to perform the three 

tests. 

With the development of full-field deformation measurements like Digital Image Correlation (DIC) 

for instance [9], new routes for composite stiffness identification have been proposed. The underpinning 

idea is to exploit the rich field information to conduct more complex tests and use an inverse 

identification tool to determine the required parameters. Research efforts towards this goal started in the 

late eighties [10] for plate bending but the bulk of the work targeted at in-plane loading tests dates back 

to the early 2000. Different types of full-field measurements have been used for this purpose: DIC [11], 

speckle interferometry [12], moiré interferometry [13] and grid method [14], among the most popular. 

Displacement or strain fields are then processed using an inverse identification technique to extract the 

stiffness parameters from the measured field data. Several techniques can be used for this purpose as 

reported in [15]. Finite element model updating (FEMU) consists in building up a finite element model 

of the test and constructing a cost function as the difference between measured and computed quantities 

[11, 13]. An alternative is the Virtual Fields Method (VFM) which uses the measured strain field to 

directly extract the stiffness parameters from a specific use of the principle of virtual work [14, 16]. Both 

techniques are nominally equivalent in elasticity, as shown in [17], the VFM being more computationally 

efficient as no iterative finite element computations are required. 

One of the difficulties in using the approach described above is the choice of the test configuration. 

Sometimes, the test geometry is conditioned by the manufacturing process of the test piece [11, 18] but 

for generic testing of thin plates, the design space for both test geometry and loading is quite wide. 

Sometimes, the test configurations used with the above methodology have been recycled from existing 

tests like the open-hole tensile test [13], the Arcan test [19], or slightly adapted as for the unnotched 
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Iosipescu test [12, 20]. There have been attempts to design specific tests, for instance a T-shaped 

specimen loaded in tension/bending [21] but only recently have research efforts been targeted at more 

systematic specimen optimization. Muhammad et al. [22] attempted to optimize the load configuration 

of a rectangular composite plate in bending and validated the results experimentally. Their approach was 

based on the use of the sensitivity to noise coefficients provided by the optimized VFM [23]. The same 

procedure has been used for in-plane orthotropic stiffness components in the unnotched Iosipescu test 

[12] and the modified Arcan test [19].  

If such procedures are ever going to be used as new standard tests to replace existing ones, it is 

paramount that the uncertainty of the identified parameters be realistically evaluated. For this, the simple 

model of uncorrelated strain noise on which the test optimizations cited above have been performed is 

not sufficiently realistic. First, strain noise is correlated since all components derive from the measured 

displacement components and even these are not uncorrelated as they derive from the same subset in 

DIC, for instance. In reality, the main source of noise is the variation of grey level at each pixel caused 

mainly by the sensor of the camera. This was considered in [11] in a DIC/FEMU procedure to produce 

random error maps. However, the random error generated by camera noise is not the only one. A 

systematic error is also produced from the limited spatial resolution of full-field measurements. Indeed, 

the data are collected at a certain number of discrete points (subset of pixels in DIC, lines for the grid 

method) and therefore, high strain gradients are likely to be underestimated by such measurements, all 

the more since in the elastic regime, extra regularization needs to be included to make the identification 

noise-robust. This is illustrated in Fig. 16 in [24] for instance.  

Because of the complexity of the combined measurement and identification chain, such uncertainty 

quantification can only be addressed by numerical simulations. Such a simulator was first proposed by 

Rossi and Pierron [25] using the grid method and recently extended to DIC [24]. Its application to 

orthotropic PVC foam stiffness identification has enabled both test configuration optimization and 

realistic confidence interval predictions [26]. 

The objective of the present paper is to use this simulator to approach in a rational way the design of 

a potential new test standard to identify the complete set of orthotropic stiffness components in a plane 

from a single test. Several configurations are explored and related to test parameters, like dimensions or 

orthotropy axis direction. A sum of the systematic and random errors is calculated as the total 

identification error. The error arising from the load measurement has been neglected here as it is generally 

much lower than that arising from the imaged-based strain measurements when the load cell is of 
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appropriate capacity compared to the measured load. Other sources of error such as camera misalignment, 

lens distortion, non-uniform lighting are not considered in this paper either and will be included in further 

studies. Detailed simulations are presented in this article to reach a conclusion about the suitability of 

each of the explored test configurations. Confidence intervals on each stiffness component are also 

provided. Finally, considerations like ease of specimen preparation or robustness of loading conditions 

are added to make the final choice of the most promising candidate. This will be the base of future 

experimental validation before such a test can be proposed to the testing community. 

2. Simulation of the experiments 

In order to compare different experimental configurations, the whole identification chain has been 

numerically simulated following the procedures reported in [24, 25]. The flow chart of the simulator is 

shown in Figure 1.  

 
Figure 1 - Flow chart of the identification simulator 

Firstly, a finite element model is built up to simulate the displacement fields of a loaded specimen, 

with the input of material properties, geometry and boundary conditions of the real test. Then, the 

deformed image is obtained by imposing the displacement fields calculated by finite element on the 

reference image. This uses a subsampling to reduce the interpolation errors, details can be found in [24]. 

Grey level white noise can be added to both generated images to simulate a realistic image capture. 

Digital Image Correlation (DIC) is then applied to calculate the strain fields, in the same way as in the 

real experimental procedure. With the strain fields and applied force, stiffness parameters can finally be 

identified using the VFM. The identification error can be calculated by comparing the identified stiffness 

parameters with the reference values used as input in the finite element model. The following provides 

information about the different steps in this procedure. 

2.1 Test configurations 

The objective of this article is to compare a few potential tests for robust and accurate simultaneous 

identification of orthotropic stiffness components, with a view to defining a new standard. As a 

consequence, this ideal test candidate should not only lead to accurate results but should also involve a 

specimen which is relatively easy to manufacture and to load. The design space is nearly infinite and to 

start exploring it rationally, the first attempt presented here focuses on a few configurations arising from 

the second author’s past experience. The other criterion used to refine the design space is that the design 
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variables should be limited so as not to render the optimization procedure too computationally intensive 

at this stage. This will be explored in future work. 

Four types of test configuration have been considered here, including the short off-axis tensile test 

(SOAT), short off-axis open-hole tensile test (SOAHT), off-axis Brazilian disc (OABD) and off-axis 

unnotched Iosipescu test (OAUIT). The complete sets of design variables of each test are reported in 

Table 1. The FE models of the four types of test are shown in Figure 2. 

 Design variable(s) 

SOAT H (25 mm – 60 mm, by increments of 5 mm) 
θ (10° – 80° by increments of 10°) 

SOAHT D (4 mm – 16 mm by increments of 2 mm) 
θ (10° – 80° by increments of 10°) 

OABD θ (10° – 80° by increments of 10°) 

OAUIT L (10 mm – 50 mm, by increments of 10 mm) 
θ (10° – 80° by increments of 10°) 

 
Table 1 - Design variables and the value ranges for all the simulated tests 

 

Figure 2 - FE models of the four types of test: (a) Short off-axis tensile test (SOAT); (b) Short off-

axis open-hole tensile test (SOAHT); (c) Off-axis Brazilian disc (OABD); (d) Off-axis unnotched 

Iosipescu test (OAUIT) 

 

The first test is inspired from a recent study on orthotropic PVC foams [19, 26] where it was found 

that a short specimen loaded in off-axis tension was the most appropriate over other configurations 

involving tension/shear and different off-axis angles. This has led to the so-called ‘short off-axis tensile’ 

test, or SOAT. The idea here is to use the shear-tension coupling to an advantage to create a fully 

heterogeneous stress state. The design variables are the aspect ratio L/H and the off-axis angle (see Figure 

2(a)). The extreme angles 0° and 90° were omitted as for certain configurations like the SOAT or the 

OABD, they would not allow complete identification of the stiffness components. As for the others, they 

would not provide interesting configurations as already shown in [24, 25] for the OAUIT. 

The second test (SOAHT) combines the SOAT geometry with features from open-hole tensile tests 

used in [13]. The heterogeneity arises both from the shear-tension coupling and the presence of the hole, 

which should give more flexibility than the first test provides. To keep the problem simple, only the off-

axis angle and the hole diameter are considered as design variable (see Figure 2(b)). The aspect ratio L/H 

is set to 1.2 which is the aspect ratio of the CCD sensor of the camera considered in the present 
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simulations as it has been found previously [12, 24, 25] that this was a strong constraint. The result from 

the first test should confirm this finding.  

The third test (OABD) considered here is the off-axis Brazilian disc test [27]. This test is mainly used 

to study the tensile fracture of brittle materials but has also been used in experimental mechanics as a 

benchmark as there is an analytical solution to this problem for isotropic materials. It produces a naturally 

heterogeneous stress state, which will be enhanced here by the adjustment of the off-axis angle, which is 

the sole design variable for this test (see Figure 2(c)). 

The final test considered here is the off-axis unnotched Iosipescu test (OAUIT). This has been the 

object of many studies in the past [12, 20, 24, 25, 28, 29]. This will serve as a reference to compare the 

other tests against. The two design variables are the free length L and the off-axis angle θ, see Figure 

2(d). The heterogeneity arises from the combined bending and shear stresses in the active central part of 

the specimen (controlled by L), enhanced by the possibility to adjust the off-axis angle. 

 
Table 2 shows the a priori advantages and drawbacks of the selected configurations. The next section 

presents the finite element models developed for these four tests. 

Test type Advantages Drawbacks 

Short off-axis 

tensile 

• Specimen easy to prepare 
• Use of standard test machine 

• Requires excellent gripping to ensure 
heterogeneity 

Short open-hole 

off-axis tensile 

• Specimen relatively easy to 
prepare 

• Use of standard test machine 

• Needs a hole (potential drilling damage 
which may cause premature softening 
at the hole) 

Off-axis Brazilian 

disc 

• Easy to load (compressive 
platens) 

• Specimen difficult to prepare (water jet 
cutting), defects may cause premature 
crushing under compression 

• Difficulty to ensure 2D loading 
Unnotched 

Iosipecu 

• Specimen easy to prepare • Fixture elaborate and expensive [30] 
• Issues with through-thickness strain 

distributions [7] 
 

Table 2 - Advantages and drawbacks of the different test configurations considered here 

2.2 Finite element (FE) models and normalization   

The four tests were simulated in this paper. All the FE models were built up using 2D quadratic 

elements (CPS4) with Abaqus version 6.10. In order to ensure that convergent FE models were used for 

the simulations, a convergence study of the mesh size was performed by comparing the average 

identification error of all the stiffness parameters. A mesh size of 0.2 mm was chosen and fixed for all 

the simulations. As illustrated in Figure 2, the specimen coordinate system is (X, Y) and the material 

coordinate system is (1, 2), with 1 as the direction of the fibre (larger stiffness). In order to compare the 
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different test configurations under various loading conditions, a normalization procedure was performed 

during the computation of the displacement field. Since the models are linear elastic, any magnitude of 

load will result in scaled up or scaled down displacements. However, the random part of the identification 

error caused by camera noise is sensitive to the level of displacements (signal to noise ratio depends on 

the signal magnitude for a given noise magnitude). In other words, one should perform the identification 

with the maximum possible load applied to the test specimen to maximize the signal to noise ratio. 

Therefore, comparing the results for say the same load magnitude will lead to biased results as the 

specimens have different overall stiffnesses. In practice however, this is limited by the domain of linear 

elastic behaviour of the material. In order to be able to realistically compare the different test 

configurations, a deformation normalization procedure has been introduced as described in [24, 25]. For 

each test, the loading force is scaled up or down so that the stress levels in the specimens do not go above 

certain stress thresholds. In the fibre direction, 𝜎𝜎11 should be less than the related strengths in tension, 

S+1 or compression, S-1. Similarly, in the transverse direction, 𝜎𝜎22 should be less than S+2 in tension and 

S-2 in compression. In shear, because of the non-linear behaviour, a linearity threshold is used to limit the 

magnitude of 𝜎𝜎12 (which is denoted 𝜎𝜎6 in following sections). The values used in this study are typical 

of a carbon/epoxy unidirectional and provided in Table 3. In practice, the limiting factors are always S-2 

(transverse tension) and S6 (shear). 

Reference stiffness (GPa) Maximum stress (MPa) 

Q11 125.30 S+1 1500 

Q22 8.26 S-1 1200 

Q12 2.64 S+2 50 

Q66 4.00 S-2 250 
  S6 70 

 

𝑄𝑄11 =
𝐸𝐸11

1 − 𝜈𝜈122 ∗ 𝐸𝐸22/𝐸𝐸11
 

𝑄𝑄22 =
𝐸𝐸22

1 − 𝜈𝜈122 ∗ 𝐸𝐸22/𝐸𝐸11
 

𝑄𝑄12 =
𝐸𝐸22 ∗ 𝜈𝜈12

1 − 𝜈𝜈122 ∗ 𝐸𝐸22/𝐸𝐸11
 

𝑄𝑄66 = 𝐺𝐺12 

 

Table 3 - Reference stiffness components and maximum stress values (from [25]), together with the 

relationships between the stiffness parameters (Qij) and the engineering constant (E11, E22, G12 and ν12). 

7 
 



It is worth noticing that in the simulation of the OABD specimen, because of the point contact between 

the specimen and the indenter, serious stress concentrations occur in that area. Applying the scaling on 

the maximal stress would strongly penalize this test even though in practice, the load would be spread 

over a certain contact area and the real stress concentration would be much less critical.  In an attempt to 

address this issue, two rows of elements at both the top and bottom contact points of the specimen were 

deleted to mitigate this effect. It should be pointed out that this is done only for the normalization process, 

the identification does take all the data into account. 

2.3 Image deformation and Digital Image Correlation (DIC) 

The image deformation procedure is the same as that described in [24] and is a refinement of a 

previous version initially developed for large strains [31]. The refinement concerns a subsampling 

procedure that mitigates interpolation errors. This has been evaluated in detail in [24] and will not be 

recalled here. 

The reference image is generated by a National Physical Laboratory (NPL) synthetic image generator 

by simulating white spots sprayed over a uniform black background (see Figure 3). The resolution of the 

reference image is 2400×2000 pixel2, the same as the CCD size of the simulated camera. The simulated 

speckle size is 4 pixels with 8 bit depth. The grey histogram of the reference image is given in Figure 4. 

 
 

Figure 3 - Reference speckle pattern, with a detail 

 
Figure 4 – Grey histogram of the reference image 

To evaluate the random part of the error, noise has been added to the grey level images. The noise 

model used here is Gaussian white noise with a standard deviation of 1% of the dynamic range of the 

camera, hence 2.56 grey levels for the 8-bit CCD camera considered here. This is based on the authors’ 

experience over a range of uncooled cameras, where noise typically ranges between 0.5 and 1% of the 

dynamic range, regardless of the latter as noise seems to scale up with bit-depth. The exact value of the 

noise in that range is of little consequence, as illustrated in Fig. 22 in [24]. It should be noted that real 

noise somewhat departs from the ideal zero mean Gaussian distribution as shown for instance in [32]. 

However, this has proved to have only a small influence on the error [33] and the Gaussian distribution 

was used for the sake of convenience. 
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2D Digital Image Correlation is now a relatively mature technique and it was considered unnecessary 

to recall its principle here, all details can be found in [9]. The MatchID package was used here 

(www.matchidmbc.com). The required information will be provided along with the results from the 

simulations (see Table 5). 

2.4 The Virtual Fields Method (VFM) 

The VFM is an inverse technique using full-field measurements to identify constitutive material 

parameters. Its main feature is that, compared to Finite Element Model Updating (FEMU, see [15]), it 

does not require iterative forward computations and is therefore very computationally efficient. It is 

beyond the scope of the paper to recall the VFM theory for anisotropic linear elasticity which is now well 

established. The interested reader can find all the details in [16]. Here, piecewise optimized virtual fields 

have been used as in [19]. The size of the virtual mesh which defines the virtual displacement field in the 

reference coordinate system is 4 by 4 elements (total of 16 virtual elements). The boundary conditions 

for all test configurations are listed in Table 4. The distribution of force along the loading boundary is 

unknown, only the resultant vertical load is known as it is measured by the load cell of the test machine. 

Therefore, by selecting a virtual displacement field that has a constant virtual vertical displacement along 

this boundary (see Table 4), the unknown distribution is filtered out and only the measured resultant 

appears in the final equation. Also, by zeroing the horizontal component of the virtual displacement along 

the same boundary, the unknown horizontal reaction forces arising from the specimen gripping are 

cancelled out from the final equations. This illustrates the filtering capabilities of the principle of virtual 

work. In this case, the virtual fields are not kinematically admissible but VFM-admissible (ie, no 

unknown remains in the VFM equations). 

 SOAT SOAHT OABD OAUIT 

Virtual mesh size 4×4 elements 

Boundary conditions 

At the bottom boundary: 
uX∗ = uY∗ = 0. 
At the top boundary: 
uX∗ = 0, uY∗ = constant. 

At the left boundary: 
uX∗ = uY∗ = 0. 
At the right boundary: 
uX∗ = 0, uY∗ = constant. 

 
Table 4 - Virtual mesh size and boundary conditions for all test configurations, uX∗  and uY∗  are the 

virtual displacements along the horizontal and vertical directions, respectively 

2.5 Error functions 

To compare the different configurations, error functions are introduced as in [34].  
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𝐶𝐶1 = 0.25���
𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑄𝑄𝑖𝑖𝑖𝑖

𝑟𝑟𝑟𝑟𝑟𝑟

𝑄𝑄𝑖𝑖𝑖𝑖
𝑟𝑟𝑟𝑟𝑟𝑟 ��

𝑖𝑖𝑖𝑖

 , 𝑖𝑖𝑖𝑖 = [11,22,12,66] (1) 

where 𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  are the identified stiffness parameters, and 𝑄𝑄𝑖𝑖𝑖𝑖
𝑟𝑟𝑟𝑟𝑟𝑟   are the reference values. ij represents the 

indices of the non-zero elements in the stiffness matrix of the orthotropic material. This represents the 

systematic error (or bias) when no noise is introduced.  

The random error was simulated by adding grey level white noise to the synthetic images. Error 

function C2 was defined as the average value of the ratios of the standard deviations to the reference 

stiffness parameters (coefficients of variation). 

𝐶𝐶2 = 0.25��
𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑄𝑄𝑖𝑖𝑖𝑖
𝑟𝑟𝑟𝑟𝑟𝑟�

𝑖𝑖𝑖𝑖

, 𝑖𝑖𝑖𝑖 = [11,22,12,66] (2) 

where 𝑄𝑄𝑖𝑖𝑖𝑖
𝑟𝑟𝑟𝑟𝑟𝑟 are the reference values, and 𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 the standard deviations of the identified parameters over 30 

repetitions.  

The total error function C3 includes both the systematic and random errors as: 

𝐶𝐶3 = 0.25���
𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑄𝑄𝑖𝑖𝑖𝑖

𝑟𝑟𝑟𝑟𝑟𝑟

𝑄𝑄𝑖𝑖𝑖𝑖
𝑟𝑟𝑟𝑟𝑟𝑟 � +

2𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑄𝑄𝑖𝑖𝑖𝑖
𝑟𝑟𝑟𝑟𝑟𝑟�

𝑖𝑖𝑖𝑖

, 𝑖𝑖𝑖𝑖 = [11,22,12,66] (3) 

This corresponds to the maximal error within a 95% confidence interval. 

3. Optimization of the test configuration 

Ideally, the optimization should address all parameters from the identification chain: the test 

configuration (see design variables in Table 1), the DIC and VFM parameters (subset and step sizes, 

number of virtual elements etc.). However, this is a very complex non-linear optimization problem with 

many parameters and as it has been performed in [26], the problem will be decomposed in two steps. 

First, the test configurations will be optimized while keeping DIC and VFM parameters fixed. Then, for 

each optimal configuration of each test type, DIC and VFM parameters will be optimized. This will then 

lead to the ranking of the different test types, from the most to the less promising, which is the objective 

of the present paper. In the future, the full optimization problem will be tackled and the present results 

will serve as benchmark to understand this complex optimization. 

3.1 Optimization of the design variables of the simulated experiments 

3.1.1  Systematic error for the SOAT specimen  

The systematic error is first considered. For this, no noise has been added to the synthetic images. By 

using the simulator mentioned in the previous section, the reference and deformed images were processed 

by the DIC software to calculate the displacement fields. The DIC parameters were kept constant during 

the processing and listed in Table 5. 
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Subset size 31 

Step size 15 

Shape function Affine 

Interpolation function Bicubic spline interpolation 

Correlation criterion Approximated normalized sum of squared 
difference 

Pre-smoothing Gaussian kernel size 5 

Strain calculation Least-square fit of a bilinear function over 
the N by N strain window 

Strain window size N = 5 

Camera resolution 2400×2000 pixel2 

Speckle size 4×4 pixel2 
 

Table 5 - DIC processing parameters using in the first step of the optimization 

The C1 error function for SOAT is plotted as a contour map in Figure 5. The two axes of the graphs 

represent the two design variables (specimen height H and off-axis angle θ), respectively (the length of 

the specimen L was fixed at 48 mm). As can be seen on this plot, some configurations lead to relatively 

large errors when the off-axis angle is close to 0° or 90°. Interestingly, the optimal specimen height is 

40 mm; this corresponds to the aspect ratio of the camera used for the simulation (48/40 = 2400/2000). 

This was also the conclusion from [24, 25], it corresponds to the best use of the spatial resolution of the 

camera. As for the angle, there is a rather wide range of values leading to low systematic errors, between 

20° and 70°.  

 
Figure 5 - C1 error function for SOAT (systematic error) 

It is also interesting to look at the contribution of each stiffness component to the error. Figure 6 

illustrates the error contribution of each identified stiffness parameter (Q11, Q22, Q12 and Q66) separately. 

It is clear that the identification errors of parameters Q11, Q22 and Q66 mainly depends on the off-axis 

angle of the specimen. As expected, shallow angles lead to better identification of Q22 and larger angles, 

of Q11 (with the convention in Figure 2 where small angles refer to horizontal fibre orientation). For the 

shear modulus, larger angles are better as shallow angles lead to concentrated strains near the grip which 

cause high spatial resolution related bias. As for Q12, it contributes the most to the systematic error as 

expected and therefore, its error map strongly influences that of the total error. This parameter is only 

well identified if both Q11 and Q22 are accurately known, which leads to a compromise for the off-axis 

angle of about 30°, which can also be seen on the total error map. 
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Figure 6 - Systematic error contribution to C1 of each identified stiffness parameter for the SOAT 

configuration 

3.1.2  Random error for the SOAT specimen  

To evaluate the random error, 30 repeats of simulations with different copies of the grey level white 

noise were run. Error function C2 is considered here and the results are shown on Figure 7. It is clear that 

again, the off-axis angle has the largest influence and the patterns are very similar to that of Figure 6. 

The main difference concerns Q12 for which the minimum has shifted to larger angles. This is a 

consequence of the normalization procedure described earlier as the random error is highly influenced 

by the actual strain levels in the specimen which depend on the maximum applied load which in turn 

depends on the relative stress to strength values. 

 
Figure 7 - Coefficients of variation (error function C2) of each identified stiffness parameter for the 

SOAT configuration 

By combining the systematic and random errors together in error function C3, an estimate of the 

minimal identification error can be reached and shown in Figure 8. 

 
Figure 8 - Total error function C3 for the SOAT configuration 

According to Figure 8, optimal identification is obtained when the height of the specimen is close to 

40 mm and the off-axis angle is about 40°. The optimal configuration leads to an average error of about 

3.5%, three times lower than a bad configuration, like (25 mm, 10°). But this average error hides large 

differences between stiffness components, as shown in Figure 9. Since Q12  has both the largest systematic 

and random errors, the overall optimal configuration exists in the area around the best identification of 

Q12, which comes from a compromise between Q11 and Q22 with moderate off-axis angles. As for Q66, 

the total error is also relatively low in the optimal identification area of Q12.  

 
Figure 9 – Total error function C3 of each identified stiffness parameter for the SOAT configuration 

A comparison of strain components between the optimal test configuration (40 mm, 40°) and a bad 

one (30 mm, 80°) is given in Figure 10. For the bad configuration, the 𝜀𝜀22 component is very small 

compared to the others and the shear strain is low over a large part of the specimen. For the optimal 

configuration, the strain components are more balanced and the gradients less steep.  
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Figure 10 - Simulated DIC strain maps (with noise) for (a) the optimal SOAT configuration (40 mm, 

40°) and (b) a bad one (30 mm, 80°) 

Figure 11 shows the strain fields for the optimal SOAT configuration obtained from the FE model and 

simulated DIC without and with noise. During actual measurements, the low-pass spatial filtering effect 

of DIC smooths out the high gradients of strain and the random noise covers the whole field of view. By 

considering these effects, the simulated DIC with noise generates more realistic strain fields than the FE 

simulation and simulated DIC without noise. 

 

 

Figure 11 - Strain fields for the optimal SOAT configuration (40 mm, 40°), obtained from the FE 

model, the simulated DIC without and with noise. 

3.1.3  SOAHT specimen  

The same routine was applied to the SOAHT specimen with the two design variables for this 

configuration: the diameter D of the open hole and the off-axis angle θ. The length L and the height H of 

the specimen were fixed at 48 mm and 40 mm respectively, to reproduce the aspect ratio of the camera 

simulated here (see comments in the previous section and in [24, 25]). All error function plots are 

provided in Figure 12. The best identification is obtained for D = 10 mm and θ = 40°. For the individual 

parameters, the results are very similar to that of the SOAT specimen for the off-axis angle.  

 
Figure 12 - (a) C1 (bias), (b) C2 (random) and  (c) C3 (total) error funtions  for the SOAHT 

configuration 

3.1.4  OABD specimen  

The OABD has only one design variable, the off-axis angle θ. The diameter D of the disk was fixed 

at 100 mm and will only depend on the camera chip size and lens magnification in a practical experiment. 

The results are plotted in Figure 13. In both C1 and C2, Q66  is the parameter with the lowest systematic 

and random erros, while Q12 has the largest. As expected, the best identifications of Q11 and Q22 were 

obtained when the related direction was aligned with the loading. Figure 13(c) shows that the optimal 

identification occurs when θ is 40°. 

 
Figure 13 - (a) Individual C1 (bias), (b) Individual C2 (random) and global C3 (total) error funtions 

for the OABD configuration 
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3.1.5  OAUIT specimen  

The same routine applied to the SOAT and SOAHT configurations was used for the OAUIT specimen 

with the two design variables: free length L and the off-axis angle θ. The height of the specimen was 

fixed at 20 mm. All error functions are plotted in Figure 14. It demonstrates that the total error worsens 

when the off-axis angle exceeds 60°. Also the aspect ratio of the specimen plays an important role as it 

did in the SOAT configuration. The best identification is obtained for L = 30 mm and θ = 50°.  

 
Figure 14 - (a) C1 (bias), (b) C2 (random) and C3 (total) error funtions  for the OAUIT configuration 

3.1.6  Comparison between the test configurations after the first stage  

After the first step, the optimal design variables for each test configuration were recorded and listed 

in Table 6 with the corresponding errors. It is interesting to note the difference between the SOAT and 

SOAHT configurations. The first one has a low systematic error but a large random error whereas it is 

the other way around for the second one. The presence of the hole increases the systematic error because 

of the strain gradients near the hole, but the strain contents is richer leading to lower random errors. The 

OABD has the largest total error which is not surprising, since strains mainly concentrate near the contact 

points at both top and bottom of the disc. As to the OAUIT, both the systematic and random errors are 

relatively low. This confirms that this test is a good candidate as this was validated experimentally in the 

past [12,20,36,37], however, the fixture is expensive and prone to through-thickness strain 

heterogeneities [7]. 

This illustrates the importance of the image deformation simulation in the test design procedure in 

understanding the benefits of each test configuration. 

 SOAT SOAHT OABD OAUIT 

Optimal values 
of the design 

variables 

L = 40 mm 
θ = 40° 

D = 10 mm 
θ = 40° θ = 40° L = 30 mm 

θ = 40° 

C1 0.0055 0.0136 0.0155 0.0085 

C2 0.0142 0.0059 0.0166 0.0083 

C3 0.0339 0.0254 0.0487 0.0251 

 
Table 6 - Optimal values of the design variables and the corresponding errors of the four simulated 

tests 

 

3.2 Optimization of the DIC processing parameters 
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Now that optimal configurations have been identified with a particular set of DIC parameters, it is 

important to optimize these parameters to check if the total error can be reduced further.  

In this section, the design variables studied in the previous section are fixed at the optimal values. The 

DIC subset size and strain window size (smoothing parameter) are considered as the new design variables 

for each test. The subset size was varied from 21 to 51 with an increment of 10, and the strain window 

size was varied from 3 to 25 by increments of 2. The step size was fixed at 50% of the subset size. All 

other DIC parameters from Table 5 are kept the same. 

The systematic and random errors (twice the coefficient of variation) for the SOAT specimen are 

plotted in Figure 15. The systematic error increases with strain window size, as expected as larger strain 

windows reduce local strain gradients more. It also increases with subset size, for the same reason. The 

random error behaves in an opposite way.  

 
Figure 15 – C1 and twice C2 for the SOAT specimen, with different subset and strain window sizes 

The error decreases with strain window and subset size. When both contributions are added together 

(Figure 16(a)), a minimum can be identified for each subset size, and then between strain window sizes. 

The best set of parameters is a subset size of 41 with a strain window of 9 data points.  

 
Figure 16 – C3 for (a) SOAT; (b) SOAHT; (c) OABD; (d) OAUIT, with different subset and strain 

window sizes 

The same procedure was applied to the SOAHT, OABD and OAUIT specimens. Figure 16 (b-d) 

shows the total error for the three tests. The general trend is similar to that of the SOAT specimen.  

The optimal combinations of the two design variables for each test configuration are listed in Table 7 

together with the total error before and after DIC parameter optimization. It shows that the SOAHT gives 

the best overall identification result when the subset is 41 pixels and the strain window size is 11 data 

points. The OAUIT specimen provides a close enough value to that of the SOAHT one and could be a 

suitable candidate too. However, the complexity of its loading fixture and the potential through-thickness 

strain heterogeneities (as reported in [7]) somewhat disqualifies it. The SOAT comes next but since 

drilling a hole in a composite specimen does not really constitute a problem, it is thought that the SOAHT 

specimen is more appropriate. Finally, the OABD has the largest identification error among all four tests 

and is discarded. This is not so surprising since the strains are concentrated at the contact points and 

suffer both from a large systematic error and a smaller load allowance because of local stress 

concentrations. 
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 SOAT SOAHT OABD OAUIT 

Subset size/ Strain window 
size 

41 / 9 41 / 11 31 / 13 31 / 11 

Total error before DIC 
parameter optimization 

0.0339 0.0254 0.0487 0.0251 

Total error after DIC 
parameter optimization 

0.0267 0.0211 0.0371 0.0235 

 
Table 7 - Optimization results for the DIC parameters for the four tests 

Other DIC parameters that have not been studied so far come into play however. Since the SOAHT 

specimen exhibits the best identification result after the first two steps, the effects of different step sizes 

and shape functions were further analysed on this configuration. In the results plotted in Figure 16, the 

step size was fixed at 50% of the subset size and the affine shape function was used. A larger overlap of 

80% subset size was simulated and the results are given in Figure 17(a). Consistently with the results 

provided in [24], the identification error is lower than that for the 50% overlap. 

Then the quadratic shape function was applied with all the other parameters unchanged. In [31], it was 

concluded that homogeneous displacement fields are better described with an affine subset shape 

function, whereas a quadratic transformation yields the highest accuracy for the heterogeneous regions. 

It is shown in Figure 17(b) that the total error is lower for all subset sizes when using quadratic shape 

functions as opposed to affine ones, confirming the statement from [31]. Shape functions and step size 

are very rarely considered in DIC literature. The present study underlines their importance and the fact 

that they should be part of the test optimization process. 

The optimal DIC parameters for the SOAHT specimen are listed in Table 8. It shows the DIC 

parameter optimization has reduced the error from 0.0254 to 0.0173. 

 

Figure 17 – C3 for the SOAHT specimen: (a) with step as 80% overlap of the subset, affine shape 

function; (b) with step as 80% overlap of the subset, quadratic shape function  

Test type Subset Step Strain window Shape function 

SOAHT 41 8 11 Quadratic 

C3 After dimension and off-axis angle optimization: 0.0254 

 After subset and strain window optimization: 0.0211 

 After step and shape function optimization:0.0173 

   
Table 8 – Optimized DIC processing parameters and C3 at each optimization step of SOAHT  
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3.3 Optimization of the number of virtual elements 

The influence of different virtual mesh sizes on the identification result is studied in this section. The 

optimal SOAHT configuration obtained in the previous section is used here. The virtual mesh was N×

N and N was varied from 3 to 11. Error functions C1, C2 and C3 are plotted in Figure 19. It can be seen 

that the systematic error is large when the mesh size is too small. And extra noise is introduced when N 

is larger than 8. The random error remains stable between mesh size 5 and 8 and then worsens with the 

increase of N. The total error is at its minimum when N = 5.  

 
Figure 17 - C1, C2 and C3 error functions for the optimal SOAHT configuration with different virtual 

mesh sizes 

4. Conclusion 

An optimization procedure to compare several potential candidates for the simultaneous identification 

of the four orthotropic stiffness components of a carbon/epoxy composite has been presented in this paper. 

A simulator was used to numerically simulate the complete identification chain (from images to inverse 

computation) for the four test candidates (SOAT, SOAHT, OABD and OAUIT). DIC and VFM were 

applied to respectively produce the strain fields and identify the stiffness parameters. Error functions 

were used to evaluate the different test configurations. A two-step procedure was introduced. The first 

step was to fix the DIC parameters and find the optimal design variables for each test configuration. Then 

the DIC parameters of each optimized test configuration were analysed to try and reduce the total error 

further.  

The following conclusions can be made: 

• After two steps optimization, the SOAHT specimen showed the best identification results. It 

was retained as the best potential candidate for a new design. 

• The effect of some significant DIC parameters (subset size, strain window size, step size and 

shape function) on the identification results for the SOAHT specimen has been studied. The 

results indicate that increasing the subset size and the strain window size exerted opposite 

effects on the systematic and random errors. It is important to balance out the two errors 

when choosing the optimal DIC processing parameters. The increase of the DIC sampling 

through a small step size can reduce the total error. And higher order shape functions 

(quadratic here) can also improve the identification results. This suggests that an adaptive 
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approach as the one proposed in [35] and relying on p-adaptive refinement could be of 

particular interest. This will need to be studied in the future.  

This work is a step towards a new standard test based on full-field measurement and inverse 

identification to obtain composite stiffness components from a single test. The idea has been out for quite 

a while but the different tools (DIC and VFM) have now reached enough maturity to approach the final 

design stages. The simulator used here is a powerful tool to address the problem of test design and 

uncertainty quantification. However, some important steps are still missing. 

• When calculating the random part of the identification error, only the noise caused by the 

sensor of the camera is taken into account. The error arising from the load measurement has 

been neglected here as this is generally much lower than the errors arising from the imaged-

based strain measurements when the load cell is of appropriate capacity compared to the 

measured load. Other sources of error such as camera misalignment, lens distortion, non-

uniform lighting are not considered in this paper and will be included in further studies. In a 

recent study [38], it was shown for instance that the illumination provides an additional 

identification error. 

• It is clear that all the design parameters (test geometry and loading, imaging hardware, DIC 

and VFM parameters) are intricately involved and the simple step-wise approach used here 

is a significant simplification. The next step is now to address the complete optimization 

problem. Since this mixes continuous and discrete design variables, specialized optimization 

tools will have to be used. This will be addressed in the near future. 

• The other important outstanding issue is the experimental validation. This will be tested soon. 

Initial results on orthotropic foam characterization [26] has confirmed the relevance of the 

simulator with experimental results matching expectations in terms of systematic and random 

errors.  

• Finally, the optimal configuration will need to be drafted into a detailed test procedure to be 

transferred to the composites testing community. This needs to include some difficult issues 

like the control of the speckle pattern for instance. When stabilized, this procedure may be a 

good candidate for a future ISO standard. 
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Figure 1 - Flow chart of the identification simulator 
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Figure 2 - FE models of the four types of tests: (a) Short off-axis tensile test (SOAT); (b) Short off-
axis open-hole tensile test (SOAHT); (c) Off-axis Brazilian disc (OABD); (d) Off-axis unnotched 

Iosipescu test (OAUIT) 

 

 

                           
Figure 3 - Reference speckle pattern, with a detail 

 

 

 

 

 

Figure 4 – Grey histogram of the reference image 
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Figure 5 - C1 error function for SOAT (systematic error) 

 

 

 

  

  
 

Figure 6 - Systematic error contribution to C1 of each identified stiffness parameter for the SOAT 
configuration 
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Figure 7 - Coefficients of variation (error function C2) of each identified stiffness parameter for the 
SOAT configuration 

 

 
Figure 8 - Total error function C3 for the SOAT configuration 
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Figure 9 – Total error function C3 of each identified stiffness parameter for the SOAT configuration 

 

 

 

 

 

 

(a) 

(b) 

Figure 10 - Simulated DIC strain maps (with noise) for (a) the optimal SOAT configuration (40 mm, 
40°) and (b) a bad one (30 mm, 80°) 
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Figure 11 - Strain fields for the optimal SOAT configuration (40 mm, 40°), obtained from the FE 

model, the simulated DIC without and with noise. 

 

 

  

 

 

 

(a)                                                      (b)                                                     (c) 

Figure 12 - (a) C1 (bias), (b) C2 (random) and (c) C3 (total) error funtions for the SOAHT 
configuration 

 

(a)                                                 (b)                                                         (c) 

Figure 13 - (a) Individual C1 (bias), (b) Individual C2 (random) and (c) global C3 (total) error 
funtions for the OABD configuration 
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(a) 

(b) 

 
(c) 

Figure 14 - (a) C1 (bias), (b) C2 (random) and (c) C3 (total) error funtions for the OAUIT 
configuration 

 

 
Figure 15 - C1 and twice C2 for the SOAT specimen, with different subset sizes and strain window 

sizes 
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Figure 16 – C3 of (a) SOAT; (b) SOAHT; (c) OABD; (d) OAUIT, with different subset sizes and strain 
window sizes 
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Figure 17- C3 for the SOAHT specimen: (a) with step as 80% overlap of the subset, affine shape 
function; (b) with step as 80% overlap of the subset, quadratic shape function 
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