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Abstract In this paper, a coupled meshfree-mesh based fluid solver is employed for flow induced
vibration problems. Fluid domain comprises of a hybrid grid which is formed by generating a body
conformal meshfree nodal cloud around the solid object and a static Cartesian grid which surrounds
the meshfree cloud in the far field. The meshfree nodal cloud provides flexibility in dealing with solid
motion by moving and morphing along with the solid boundary without necessitating re-meshing.
The Cartesian grid, on the other hand, provides improved performance by allowing the use of com-
putationally efficient mesh based method. Flow equations, in Arbitrary Lagrangian-Eulerian (ALE)
formulation, are solved by local Radial Basis Function in Finite Difference mode (RBF-FD) on moving
meshfree nodes. Conventional finite differencing is used over static Cartesian grid for flow equations in
Eulerian formulation. The equations for solid motion are solved using classical Runge Kutta method.
Closed coupling is introduced between fluid and structural solvers by using a sub-iterative prediction-
correction algorithm. In order to reduce computational overhead due to sub-iterations, only near field
flow (in meshfree zone) is solved during inner iterations. The full fluid domain is solved during outer
(time step) iterations only when the convergence at solid-fluid interface has already been reached. In
meshfree zone, adaptive sizing of influence domain is introduced to maintain suitable number of neigh-
bouring particles. The use of hybrid grid has been found to be useful in improving the computational
performance by faster computing over Cartesian grid as well as by reducing the number of compu-
tations in the fluid domain during fluid-solid coupling. The solution scheme was tested for problems
relating to flow induced cylindrical and airfoil vibration with one and two degrees of freedom. The
results are found to be in good agreement with previous work and experimental results.

Keywords Fluid Structure Interaction · Meshfree Methods · Hybrid grid · RBF-FD · Partitioned
FSI · Aeroelasticity

1 Introduction1

Meshfree methods refer to the class of computational techniques in which, at least, the structure of2

mesh is eliminated and the solution is approximated over a set of arbitrarily distributed data points3

(or nodes). In the absence of pre-specified grid connectivity constraint, computational nodes can be4

moved, added or removed more flexibly, from computational domain, during the simulation. Owing5

to these features, meshfree methods are considered to be better suited for problems involving large6

deformation, moving boundaries and complex geometries [6]. However, meshfree methods developed7

so far, are in general, computationally more expensive than conventional mesh based methods.8

Radial Basis Functions (RBF) are primarily used for multivariate data interpolation over scattered9

data points. They are ’truly’ meshfree in nature and can be also be used for solution of differential10
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equations. In this regard, pioneering work was carried out by Kansa [33] who proposed the use of11

multiquadric RBFs for solution of flow equations over randomly distributed data points. Since then,12

use of RBFs for various flow problems has widely been investigated [4,58,38,59,40,25]. Initially, global13

RBFs were used for flow problems which used global domain for interpolation at a particular data point14

(or node). They are spectrally accurate. However, one of the difficulties faced while using global RBFs15

is that the problem tends to become ill-conditioned by increasing the number of data points within the16

interpolation region. As a result, maximum number of nodes and their distribution within the domain17

is limited by ill-conditioning effect. The limitation was later overcome by the use of local RBFs which18

compromise on spectral accuracy in bargain of better conditioned problems with improved accuracy19

[3,55,48,41]. This is done by localizing the influence domain around each particle. As a result, sparse20

and well conditioned coefficient matrices are generated irrespective of total number of data points21

and their density within the domain. RBF in Finite Difference mode [55,48,41,60] and RBF based22

differential quadrature methods [3] are the two famous local RBF techniques which are used for the23

solution of Navier Stokes equations in meshfree domain. However, like other meshfree methods, RBF24

based methods also suffer from high computational cost.25

Grid generation methods for flow around moving bodies can be classified into boundary fitted and26

non-boundary fitted methods. The computational nodes of boundary fitted fluid grid exactly coincide27

with the fluid-solid interface [5,54,6,22]. The boundary conditions can therefore, directly be applied28

to the grid points and motion of the solid is explicitly tracked by the movement of grid points. On the29

contrary, non-boundary fitted methods employ a background mesh with solid boundary embedded on30

it. The background mesh can either be standard Cartesian, as used by [9] and [13] for inviscid flows, or31

unstructured grid, such as those used by [26,57] and [44] in the so-called immersed boundary methods.32

Non-boundary fitted methods greatly simplify the grid generation process and do not suffer from33

grid distortion around complex shapes. Moreover, re-meshing is not required to accommodate moving34

boundaries. However, the solid boundary may cut the background mesh in an arbitrary manner which35

may adversely affect the accuracy. Moreover, the precise control of grid resolution in the boundary36

layer region may not be possible.37

Composite grids and domain decomposition techniques are often used for boundary fitted mesh-38

based methods to overcome the difficulty posed by complex geometries [43,27,8]. Hinatsu [27] proposed39

a multigrid method for geometrically complex flow problems. Perng and Street [43] used a domain40

decomposition technique for flow in regions with complex geometries. They solved flow momentum41

equation in each sub domain separately. However, pressure field was computed simultaneously in the42

entire domain. Recently multigrid methods have been proposed for hybrid meshfree and mesh-based43

grids, by [6,17] and [30], to minimize the computational overheads caused by the use of meshfree44

methods. These techniques introduce composite meshes comprising of meshfree and meshed zones45

in different parts of fluid domains. The aim is to optimize the performance by limiting the use of46

computationally expensive meshfree method only to the regions where it can actually outclasses mesh-47

based method in dealing with moving boundaries or complex geometries. Ding et al. [17] proposed48

a hybrid grid consisting of body conformal meshfree cloud embedded over a background Cartesian49

grid for static problems. In that, a coupled solution scheme, employing moving least square finite50

difference (MLSFD) on meshfree cloud and central differencing on Cartesian grid, was used. Chew et51

al. [6] extended similar approach to the moving objects. They used generalized finite difference (GFD)52

approximation in weighted least square (WLS) form over meshfree zone.53

Flow induced solid vibration is a subject of fluid structure interaction (FSI). Such problems can be54

modelled either with monolithic or partitioned approach. In monolithic schemes, fluid and structural55

equations are reformulated, combined and then solved simultaneously using single time integration56

method [32]. The method sounds appealing as it provides single set of equations for mathematical57

analysis and does not pose inaccuracies at fluid-structure interface [20]. However, difference in math-58

ematical properties of fluid and solid subsystems, issues related to software modularities and loss of59

generalization for usability of solution scheme strictly limit their widespread application [20]. On the60

contrary, partitioned procedures, employing separate time integration schemes for fluid and structure61

subsystems, are used more often for FSI problems and particularly for non-linear aero-elasticity [42,62

20,19,12,18,29,45,32]. Partitioned procedures provide flexibility of choosing different solvers for fluid63

and structure subsystems. However, the coupling errors, at fluid-solid interface, are often advocated as64

limitation to this approach. Such inveteracies are more pronounced in loosely coupled systems where65

solutions from fluid and structural subsystems are not necessarily converged at the interface boundary66
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Fig. 1 Hybrid grid configuration in fluid domain

before marching on to the next time step [12]. This deficiency of partitioned methods is overcome67

by the use of closely coupled systems, in which several inner or sub-iterations of fluid and structure68

solvers are run, within a single time step, to reach convergence at the interface before moving on to the69

next time step [14,20,12]. In fact, closely coupled systems attempt to improve accuracy and numerical70

stability in exchange of increased computational cost caused by higher number of computations in each71

time step.72

Another requirement for flow induced vibration problems is to deal with moving boundaries. Tra-73

ditional mesh based methods (like Finite Element, Finite Volume and Finite Difference), show an74

inherent limitation in this respect. These methods make use of computational grids which have some75

sort of pre-defined connectivity amongst the grid nodes. This constraint strongly inhibits the capability76

of mesh based methods to effectively deal with the moving boundaries. Therefore, use of traditional77

mesh based methods for FSI problems brings in the cumbersome tasks of extensive re-meshing and78

data interpolations.79

In this paper, a hybrid fluid grid is used to deal with moving solid boundaries encountered in FSI80

problems in general and flow induced vibration problems in particular. For this purpose, fluid domain81

is divided into two zones. A boundary fitted meshfree nodal cloud is generated around the solid object.82

This meshfree cloud moves and morphs with the solid object during its motion. On the outer side,83

the meshfree cloud is surrounded and partially overlapped by a static Cartesian grid. Schematic of the84

hybrid fluid grid is shown in Fig. 1. In meshfree zone, space splitting of flow equation is carried out85

by multiquadric (MQ) Radial Basis Function in Finite Difference mode (RBF-FD). Adaptive shape86

parameters are used for RBFs, as suggested by [31], to ensure well conditioning coefficient matrices over87

a grid with variable nodal density. The movement of meshfree nodes is accounted for with Arbitrary-88

Langrangian-Eulerian (ALE) formulation of N-S equations [28]. This formulation provides an elegant89

way of solving flow equations over moving data points. A conventional five point differencing is used90

for spatial derivatives of flow equation in Cartesian zone. Flow equations are solved in their Eulerian91

form over static Cartesian grid. Elastically supported solid objects are assumed to be rigid with one or92

two degrees of freedom. The solution scheme provides flexibility to deal with arbitrarily shaped moving93

objects with the use of meshfree method. Moreover, use of computationally efficient conventional finite94

differencing helps improve the performance by reducing computation time for each time step.95

A closely coupled algorithm is used for interaction between fluid and structural solvers. This has96

been achieved by performing a sub-iterative predictor-corrector scheme, within each time step, until97

mutual convergence is reached at fluid-structure interface. In order to reduce the computational over-98

heads during closed coupling procedure, only near field flow domain is used during the sub-iteration99
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Fig. 2 ALE mapping of reference configuration Ω0 over current configuration Ωt

process. Moreover, the novel concept of adaptive sizing of influence domain for RBFs has also been in-100

troduced. The concept has been implemented in conjunction with adaptive shape parameters for RBF101

as suggested by [31]. The aim is to avoid inaccuracies or ill-conditioning effect due to inappropriate102

number of neighbouring particles or inappropriate value of shape parameter.103

This paper is organized as follows: Section 2 outlines the governing fluid and solid equations. It104

also includes a brief introduction about Radial Basis Functions in Finite Difference Mode (RBF-FD)105

and space and time splitting for N-S equations. Formulation of the problem including treatment of106

hybrid fluid grid in fluid domain, adaptive sizing influence domain and FSI coupling algorithm has107

been described in Section 3. Detail of numerical tests is included in Section 4. Finally, conclusions are108

drawn in Section 5.109

2 Governing equations110

2.1 Flow equations111

In present work, flow equations, over non-stationary meshfree grid, are dealt with Arbitrary Lagrangian112

Eulerian (ALE) to account for the nodal movement. The computational domain at initial time t0 is113

taken as reference configuration Ω0 as shown in Fig. 2. At any arbitrary time t reference configuration114

Ω0 can be mapped over current configuration Ωt, as [28]:115

At : Ω0 → Ωt (1)

X→ x(X, t) = At(X) (2)

ALE velocity is calculated as v = ∂At/∂t. Non-dimensionalized pressure-velocity (P,u) form of116

time varying, incompressible, viscous flow equations in ALE formulation is given by [53]:117

∂tu = −∇P − (u− v)).(∇u) + (1/Re)∇2u (3)
118

∇.u = 0 (4)

At each node, ALE velocity is set equal to the velocity of node. For static grid, the nodal velocity119

v becomes zero and the momentum Eq. (3) transforms to its corresponding Eulerain form. Time120

discretization of flow equations is carried out using pressure projection method by [7]. This results121

in an intermediate momentum equation without pressure term. Convective term of this intermediate122

momentum equation is dealt with Adam-Bashforth scheme while viscous term is treated with Crank-123

Nicholson scheme as used by [35]. Resulting form of decoupled momentum equation is expressed as:124

u∗ − un

∆t
= −1

2

[
3 (un − vn) .∇un −

(
un−1 − vn−1

)
.∇un−1

]
+

1

2Re

[
∇2 (un + u∗)

]
(5)

un+1 − u∗

∆t
= −∇Pn+1 (6)
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Fig. 3 Support domain of a reference node

In general, the intermediate velocity field u∗ does not satisfy continuity. Therefore, divergence free125

condition is enforced in projecting step by applying continuity condition from Eq. (4) over velocity126

field at un+1 resulting in a pressure Poisson equation given by:127

∇2Pn+1 = (1/∆t)∇.u∗ (7)

At every time step, intermediate velocity field u∗ is calculated by implicitly solving Eq. (5) subject128

to following condition on boundary τ (as shown in Fig. 2):129

u∗|τ = uτ +∆t∇Pn (8)

Intermediate velocity field is used to calculate pressure by solving Poisson equation (7). At bound-130

aries τ , Neumann boundary condition is used for pressure as:131

n.∇Pn+1|τ =
1

∆t

[
n.(u∗ − un+1)τ

]
(9)

Where n is the vector towards outward normal to boundary τ . Finally, velocity field at the end of132

time step un+1 is calculated using Eq. (6) with the following velocity boundary conditions:133

at inlet boundary τD : un+1|τD = U

at solid boundary τWt : u|τWt
= vτWt

at outlet boundary τo :
µ

ρ

(
∂u

∂n

)
τo

= Pn+1 − Pref

Spatial derivatives appearing in the flow Eqs. (5) - (9) are treated differently at meshfree and134

Cartesian nodes. For meshfree nodes, RBF-FD method is used to calculate spatial derivatives over135

arbitrary data points. The method has been discussed in Section 2.2 in detail. Classical 5-point finite136

difference stencil is used to approximate spatial derivatives over Cartesian grid. RBF-FD, as well as137

5-point central difference scheme yield sparse matrix equations which are solved using Generalized138

Minimum Residual (GMRES) method [47].139

2.2 RBF-FD for flow equations140

As mentioned earlier, spatial derivatives appearing in flow equations are treated with local RBFs in141

finite difference mode (RBF-FD) in meshfree zone. RBF-FD is the generalization of classical finite142

difference method over set of scattered data points [41]. The idea is to write spatial derivative L of any143

field variable u at any point (or node) in the computational domain, say x1, using the values of same144

variables at the surrounding nodes as shown in Fig. 3. Using classical finite differencing, this spatial145

derivative L can be written as:146
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Lu(x1) =

N∑
j=1

W
(L)
1,j u(xj) (10)

where N is the number of nodes in the support domain of node x1, u(xj) is the value of parameter147

u at node xj and W
(L)
1,j is the weight of corresponding differential operator L at node xj for node x1.148

Using standard RBF interpolation, the approximation s(x) to a real valued function u(x), over a149

set of distinct points xjεR
d, j = 1, 2, ...N is given by [60]:150

u(x) ≈ s(x) =

N∑
j=1

λjφ(‖x− xj‖) + β (11)

where φ (‖x− xi‖) is a radial basis function, ‖.‖ is a standard Euclidean norm and λi and β are151

the expansion coefficients. Multiquadric (MQ) function (φ(r) =
√
r2 + σ2 , where σ is RBF shape152

parameter) has been used for current solution scheme. Equation (11) can be written in Lagrange form153

as:154

s̄(x) =

N∑
j=1

X (‖x− xj‖) u (xj) (12)

where X (‖x− xj‖) satisfies the cardinal conditions as155

X (‖xk − xj‖) =

{
1, if k = j
0, if k 6= j

k = 1, 2, ...N (13)

Applying the differential operator L on Eq. (12) at node x1 we have:156

Lu (x1) ≈ Ls̄ (x1) =

N∑
j=1

LX (‖x1 − xj‖) u (xj) (14)

Comparing Eqs. (10) and (14), RBF-FD weights W
(L)
1,j can be written as:157

W
(L)
1,j = LX (‖x1 − xj‖) (15)

In practice, these weights are computed by solving the following linear system [41]:158 [
Φ e
eT 0

] [
W
µ

]
=

[
Lφ1
0

]
(16)

where Φi,j = φ (‖xj − xi‖) , i, j = 1, 2, . . . , N , ei = 1, 2, . . . , N , Lφ1 represents the column vector159

Lφ1 = [Lφ‖x− x1‖Lφ‖x− x2‖ . . .Lφ‖x− xN‖]T evaluated at node x1 and µ is a scalar parameter160

which enforces the condition:161

N∑
j=1

W
(L)
1,j = 0 (17)

RBF-FD problem is set up at each meshfree node x1 to obtain a separate matrix Eq. (16) for each162

spatial derivative. Evaluation of these equations gives RBF-FD weights WL
1,j for all the nodes in the163

support domain of x1. These weights are then used to calculate the derivatives L of any field variable164

u at x1 using Eq. (10).165
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2.3 Solid equations166

The current solution scheme has been applied for problems relating to flow around spring mounted167

airfoil and cylindrical objects which are able to vibrate due to fluid forces. Cylindrical objects can168

perform translatory motion along horizontal and vertical directions as shown in Fig. 4(a). The airfoil is169

able to vibrate vertically as well as rotate about its elastic axis as depicted in Fig. 4(b). The equations170

of motion along translational axes (x, y) as well as rotational direction α are as follows:171

mẍ+ dxẋ+ kxx = D(t) (18)

mÿ + dy ẏ + kyy = L(t) (19)

Iαα̈+ dαα̇+ kαα = M(t) (20)

Here m and Iα represent mass and second moment of inertia of the solid respectively. dx and dy172

are the damping constants and kx, ky are spring stiffness values along x and y directions respectively.173

dα is the rotational damper and kα is the rotational spring stiffness. L(t), D(t) and M(t) are time174

dependant lift, drag and moment values.175

External forces and moment appearing in Eqs. (18) - (20) can be evaluated by integrating fluid176

stresses (τij) and their corresponding moments about elastic axis over the entire solid surface S. For177

unit thickness of solid, the fluid forces on solid objects can be expressed as [51]:178

Drag = D =

∫
ΓWt

(
2∑
j=1

τ1jnj

)
dS (21)

Lift = L =

∫
ΓWt

(
2∑
j=1

τ2jnj

)
dS (22)

Here, ni is the component along xi, of unit vector n̂ towards outward normal to the surface ∂Ωt on179

ΓWt . For airfoil, the moment around its elastic axis is calculated as under:180

Moment = M =

∫
ΓWt

(
2∑

i,j=1

τijnjri

)
dS (23)

Moment arm of force defined as ri = −(Xi − XEOi
), where Xi is the coordinate of point on surface181

and XEOi
is the coordinate of elastic axis. Differential equations for motion of solid are solved using182

explicit RK-4 method to get displacements at next time step.183

3 Problem formulation184

3.1 Hybrid fluid grid arrangement185

As mentioned before, the fluid domain is represented by a hybrid grid comprising of meshfree nodal186

cloud and Cartesian mesh. Schematic of hybrid fluid grid around solid is shown in Fig. 1. The near field187

flow region, around the solid, is represented by a body conformal meshfree nodal cloud. These meshfree188

nodes follow the movement of solid boundary during the simulation. In the far field, static Cartesian189

grid is used which surrounds the meshfree nodal cloud. Moreover, some parts of meshfree cloud are190

overlapped by surrounding Cartesian mesh. The fluid grid can therefore be divided into following three191

zones:192

1. Cartesian zone: This comprises of Cartesian mesh. Conventional finite difference scheme is here193

used for spatial discretization of flow equations194

2. Active meshfree zone: This zone consists of meshfree nodes which are not overlapped by Cartesian195

mesh. RBF-FD scheme is used here for evaluation of spatial derivatives.196
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(a) Spring mounted cylinder with two degrees of
freedom

(b) Airfoil with two degrees of freedom

Fig. 4 Solid objects in fluid

Fig. 5 Hybrid grid around NACA0012 airfoil. Meshfree nodal cloud is surrounded and partially overlapped
by Cartesian grid

3. Shadowed (or inactive) meshfree zone: This zone represents the meshfree nodes which are overlapped197

by Cartesian mesh. This zone is treated as inactive and solution is not computed on nodes falling198

in this zone.199

Different zones of typical hybrid grid generated around NACA0012 airfoil are shown in Fig. 5. The200

computational nodes falling in meshfree and Cartesian zones are treated differently. Therefore, in order201

to apply respective spatial treatment in meshfree and Cartesian zones, the computational nodes are202
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classified in 5 different categories according to the regions they fall in. This classification of nodes is203

depicted in Fig. 6. Detail of nodes falling in each category is given below:204

– Category-I nodes: These are the nodes which lie on Cartesian stencil and are sufficiently away205

from meshfree zone as shown in Fig. 6. These nodes are stationary and spatial derivatives at these206

are calculated using five point central difference scheme.207

– Category-II nodes: These nodes also lie on Cartesian stencil and are treated with central dif-208

ference scheme. However, they are located close to the meshfree zone and can directly influence209

the results on neighbouring meshfree nodes. Category-II nodes can therefore fall in the influence210

domain of nearby meshfree nodes. These nodes are also included in the neighbourhood particle211

search for meshfree nodes.212

– Category-III nodes: These nodes fall exactly at the boundary of meshfree-Cartesian zones.213

Category-III nodes are stationary and aligned with Cartesian stencil. However, these are part214

of active meshfree zone and are treated with RBF-FD method. Although these are meshfree nodes215

but they also act as boundary nodes for Cartesian grid. During solution over Cartesian zone, the216

values of field variables (pressure and velocity values) at category-III nodes are taken as boundary217

condition.218

– Category-IV nodes: These nodes fall in active meshfree zone. These nodes are part of moving219

grid which are treated with RBF-FD method and ALE formulation of N-S equations.220

– Category-V nodes: These are the nodes which fall in inactive meshfree zone. These are part221

of meshfree grid but are overshadowed by superimposing Cartesian grid. The nodes are therefore222

treated as inactive and do not participate in current time step computations.223

A summary of different categories of nodes and their computational treatment is given in Table224

1. During the simulation, the two way exchange of data between Cartesian and meshfree zones takes225

place in the following manner:226

– Information from meshfree to Cartesian grid is transferred through Category-III nodes. These nodes227

are treated with RBF-FD method. However, they are static and fall exactly on Cartesian stencil.228

Therefore, these nodes can act as boundary nodes for Cartesian grid. During simulation process,229

the most updated values of field parameters (pressure and velocity values) at Category-III nodes230

are taken as Dirichlet boundary conditions for surrounding Cartesian nodes.231

– Transfer of data from Cartesian to meshfree zone takes place through Category-II nodes. These232

nodes fall in the influence domain of neighbouring meshfree nodes. Therefore, the flow parameters233

at Category-II nodes affect the derivative approximations at respective meshfree nodes through234

corresponding RBF weights. As a result, flow parameters values at meshfree nodes are influenced235

by the results at Category-II nodes.236

During simulation, the movement of solid is accommodated, in fluid, by allowing Category-IV and237

V nodes to follow the motion of solid boundary. During this process, Category-I, II and III nodes238

remain stationary. Fig. 7 shows the movement of meshfree grid surrounded by static Cartesian grid239

between time instance t0 to t1. In this case, meshfree cloud is rotating in counter-clockwise direction.240

As meshfree zone is rotated, some inactive (category-V) nodes may come out of the shadowed region241

and appear in the active meshfree zone. Some of these nodes are shown as group-A in Fig. 7. As242

these category-V nodes reach the active meshfree zone, their category is changed and these are put in243

category-IV. This means that these nodes will participate in future computations. However, in order to244

set these newly activated nodes for next time step calculations, field parameter (pressure and velocity)245

values are assigned by interpolating the data from surrounding nodes. For this purpose, an RBF type246

interpolation is set up at each newly activated node. Values of field parameters are interpolated at247

these nodes using corresponding values from surrounding nodes. During this movement of meshfree248

grid, some category-IV nodes will also be pushed behind the Cartesian grid (for example group-B nodes249

shown in Fig. 7). These nodes are recategorized as Category-V nodes and therefore, do not participate250

in further calculations unless they reappear in the active meshfree zone later.251

The above mentioned treatment of moving boundary needs only meshfree grid to move and accom-252

modate the motion of solid. As a result, the number and location of nodes in Cartesian zone do not253

change during the simulation. This has a computational advantage as the matrices for solving Eqs.254

(5) and (6), in Cartesian zone, remain unchanged. These matrices are required to be formulated only255

once at the start of iteration process. Therefore, during the simulation, matrix equations for solving256
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Eqs. (5) and (6), are needed to be updated in meshfree zone only as the number and location of active257

meshfree nodes changes continuously.258

Fig. 6 Classification of computational nodes in hybrid fluid grid

Table 1 Categorization of computational nodes in hybrid grid

Category Zone Method Stationary / Moving Remarks

Cat-I Cartesian FD Stationary
Cat-II Cartesian FD Stationary Fall in the influence domain of

neighbouring mesfhree particles
Cat-III Meshfree RBF-FD Stationary Act as boundary particles for

Cartesian grid
Cat-IV Meshfree RBF-FD Moving Active meshfree nodes
Cat-V Meshfree RBF-FD Moving Inactive meshfree nodes

3.2 Adaptive sizing of influence domain for RBF259

Accuracy of RBF based schemes largely depends on the well conditioning of interpolation matrix [33].260

In fact, condition number of interpolation matrix for RBFs grows with increasing the number of com-261

putational nodes participating in derivative approximation at a certain point [49]. Larger number of262

particles, participating in RBF interpolation, will also require more number of arithmetic operations263
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Fig. 7 Activation and deactivation of meshfree nodes during movement of meshfree grid

for single derivative approximation. Therefore in local RBF, the solution process tends to be computa-264

tionally intensive with more number of neighbouring particles taking part in derivative approximation265

at point of interest. At the same time, requirement of sufficient number of collocation data points266

in the influence domain to ensure accurate derivative approximation using local RBF [12] cannot be267

subdued. It is therefore important to keep suitable number of particles in the influence domain of every268

computational node. In practice, this is achieved by specifying size of the influence domain. However,269

for the set of problems considered here, the grid resolution changes significantly to accurately capture270

flow parameters near the airfoil surface. Therefore, a constant domain size, for all the nodes, will either271

place too many neighbouring particles in the influence domains of nodes closer to the airfoil or there272

will be too less neighbouring particles around nodes in low nodal density region. In order to overcome273

this problem, adaptive sizing of influence domain has been introduced. For this purpose, the size of274

influence (or neighbourhood) domain for each node is decided based on the nodal density around it.275

An iterative algorithm is used to calculate the radius of influence domain around every node which276

ensures 25 to 35 neighbouring particles. The aim is to make sure that every node has enough number of277

neighbouring particles to calculate spatial derivatives using local RBF and at the same time influence278

domain is not too dense to render the interpolation matrix ill-conditioned or the process inefficient.279

Adaptive domain sizing applied to a typical grid around NACA0012 airfoil is shown in Fig. 8. The280

domain size progressively becomes larger as we go away from the airfoil to accommodate required281

number of neighbouring particles in coarser grid zones.282

Fig. 9(a) shows variation in number of neighbouring particles for fixed and adaptive domain sizes.283

Improvement in condition number of coefficient matrices with adaptive sizing can be seen in Fig. 9(b)284

which plots condition number of RBF matrices, against coordinate location x, for both fixed and285

adaptive domain sizing applied to 1-dimensional, non-uniform particle distribution. With increasing286

nodal density, total number of neighbouring particles increases for fixed domain sizing. This results287

in enormously high condition number in refined grid region. On the contrary, adaptive domain sizing288



12

Fig. 8 Adaptive sizing of influence domain applied to grid around NACA0012 airfoil

ensures only the required number of neighbouring particles thus maintaining well conditioned matrices289

all over the domain.290

(a) Variation in number of neighbouring particles (b) Variation of Condition Number

Fig. 9 Fixed and Adaptive sizing applied to 1-dimensional non-uniform particle distribution
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Fig. 10 Flow chart of solution scheme at a single time step

3.3 FSI coupling algorithm291

A closely coupled model has been used to transfer data between fluid and structural solvers. Close292

coupling has been achieved by iteratively running fluid and structural solvers at a single time step.293

During this process, exchange of fluid and structural data (fluid forces and structural deformations)294

takes place at solid boundary. The sub-iteration process continues until convergence is reached between295

results of fluid and structural solver. Closely coupled FSI models are often criticized for their complexity296

and inefficiency [21] caused by increased number of computations during sub-iterations. The high297

computational cost is primarily caused by repeated flow solutions at a single time step. It is however298

understood that the very purpose of obtaining these repeated solutions is to get fluid forces at fluid-299

structure interface which could then be used to calculate structural deformations. Flow parameters at300

far field show minimal variation when the results are being fine tuned at solid boundary during sub-301

iterations. It is therefore logical to include only near field fluid for iterative refinement of fluid forces302

at solid boundary. In view of this, only meshfree zone is included in sub-iteration calculations of fluid303

solver. In fact, Cartesian grid zone is included in computation only during outer (time step) iteration304

marching of fluid domain. During sub iterations, the results are updated only over the meshfree zone305

to get fluid forces as shown in the flow chart of solution scheme at a single time step in Fig. 10. The306

coupling algorithm of the two field solution during FSI marching is shown in Fig. 11 and is carried out307

in following manner:308

1. Structural displacement Wn+1 is predicted at time tn+1 using velocity and acceleration of previous309

time step tn.310

2. Predicted structural displacement is mapped over the fluid grid.311



14

Fig. 11 Coupling algorithm of two field solution (Pn and Wn represent fluid forces and solid deformation
respectively, at nth iteration)

3. Mesfhree fluid grid is displaced according to predicted structure displacement and fluid equations312

are solved only in meshfree zone. The fluid forces Pn+1∗ are thus calculated, at solid surface, using313

flow parameters.314

4. An average of fluid forces Pn+1∗ and Pn is mapped over structural grid to get applied loads.315

5. Solid equations are solved using averaged fluid forces to get the corrected structural deflection316

Wn+1. At this stage, corrected structural deflections are compared with previously obtained values.317

6. Process from step 2 to 5 is repeated until the resultant structural deflection values achieve desired318

convergence level. Outer iteration is then run in which both Cartesian and meshfree fluid zones319

participate to march to next time step tn+1 and get Pn+1.320

It is understood that exclusion of Cartesian grid for inner iterations may cause some inaccuracies.321

However, the effect of using reduced fluid domain for inner iterations was found to be minimal during322

numerical tests. It is also pertinent to highlight that suggested closed coupling scheme is anyway more323

accurate than corresponding loose coupling which do not attempt to converge the two field solution324

before marching to next time step.325

4 Numerical tests326

4.1 Order of convergence over 2-D Domain327

This section deals with convergence and accuracy tests for 2-D incompressible N-S equations (Eqs. (3)328

and (4)) over rectangular domain with hybrid grid. Spatial and temporal accuracy of fluid solver is329

studied, over hybrid grid, by simulating decaying vortex case. The analytical expression of flow velocity330

and pressure are known for this problem. Therefore, the test is often used to validate numerical solution331

schemes [6,35,34]. Followings are the theoretical expressions for time varying pressure and velocity332

fields (p(x, y, t), u(x, y, t), v(x, y, t)) :333

u(x, y, t) = − cos (πx) sin (πy) exp
[
−(π2t)/Re

]
(24)

v(x, y, t) = sin (πx) cos (πy) exp
[
−(π2t)/Re

]
(25)

p(x, t) = −1

4
[cos (2πx) + sin (2πy)] exp

[
−4(π2t)/Re

]
(26)

Flow Reynolds number is defined as Re = UL/ν, where ν is the kinematic viscosity of fluid, U is334

the maximum initial velocity and L is the vortex length. Rectangular domain is used with dimensions335
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−0.5 ≤ x ≤ 0.5 and −0.5 ≤ y ≤ 0.5. Central region, spanning −0.1 ≤ x ≤ 0.1 and −0.1 ≤ y ≤ 0.1, is336

set as meshfree zone and remaining region is meshed with Cartesian grid. Tests are run for both static337

and moving meshfree nodes at Re = 10. Static tests are run for uniform as well as random meshfree338

grid. Randomness is introduced in mesfhree nodes by disturbing their position from corresponding339

locations on a uniform lattice using a random function of the order of 0.4dx. Fig. 12 shows the hybrid340

mesh with space step dx = 0.1 and randomized meshfree nodes.341

Fig. 12 Hybrid grid in rectangular domain with randomized meshfree particles

For each test case, initial and boundary conditions are introduced using pressure and velocity342

values obtained from Eqs. (24) - (26) at given time and spatial coordinates (t, x, y). For uniform-static343

meshfree grid, a separate case is run in which Neumann boundary conditions are used for pressure.344

For this purpose, pressure values are obtained, at boundary, from velocity field using Eq. (9).345

In order to study spatial order of convergence, static test cases are run for time step value of 10−5346

and for varying grid sizes. Time step value has been kept small to minimize temporal errors. The347

solutions at t = 0.5 are compared with true solutions (using (Eqs 24) - (26)) to get RMS (root mean348

square) and maximum error values over the entire domain. Logarithmic values of error (Log10(e)) are349

plotted against logarithms of space step (Log10(dx)) in Fig. 13(a). Similarly, temporal convergence350

is studied by keeping grid size constant at dx = 0.005 and changing the time step values. Plots of351

Log10(e) versus Log10(dt) are shown in Fig. 13(b). Order of convergence is defined as the slope of352

linear curve obtained by least square fit on RMS error data. Values of order of convergence for all cases353

are summarized in Table 2. It can be observed that spatial order of convergence for both velocity and354

pressure remains close to 2.5. Order of convergence in time is found to be around 1.0 for both pressure355

and velocity field with known pressure boundary conditions. Use of Neumann boundary conditions356

however tends to increase the convergence rate especially for the pressure field.357

Moving grid cases are run by making the mesfhree grid rotate about its centre with a variable358

angular velocity. Angular orientation (Θ(t)) of meshfree grid is defined as Θ(t) = A[1 − cos(πt/2)].359

Value of parameter A is set to control angular speed and total grid rotation in a given time. Grid360

configuration at initial time t0 and at later time t1 = 0.5 are shown in Fig. 14 for A = 0.3π. Moving361

grid tests are run for different values of A to get different nodal velocities. Space step is set as 0.005362

and time step is kept as 10−4. Error values are obtained at t = 0.5 by comparing the solutions with363

true values. Logarithmic (log10) values of RMS and maximum error are plotted against the changing364

grid speeds in Fig. 15. On the plot, the point at A = 0 corresponds to static grid case. For moving365

grid, the error values tend to increase with increasing grid speeds and are higher compared with static366
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Table 2 Spatial order of convergence for static tests

Distribution of Pressure Spatial Order of convergence
mesfhree nodes boundary conditions / Time u-velocity pressure

Uniform known (using Eq. (26)) Spatial 2.56 2.7
Uniform Neumann Spatial 2.59 2.49
Random known (using Eq. (26)) Spatial 2.66 2.58
Uniform known (using Eq. (26)) Time 0.99 0.9135
Uniform Neumann Time 1.22 1.8

grid. However, slope of the error curve reduces at higher speeds making error to stabilize and not to367

increase with further increase in grid velocities.368

During motion of mesfhree cloud, grid update calculations are required to be carried out continu-369

ously during the simulation. Grid update includes re-categorization of meshfree nodes according to their370

current location (in active or inactive zone), reallocation of neighbouring particles and recalculation of371

RBF weights. Grid update is particularly important for nodes located close to meshfree-Cartesian zone372

interface. However, this process requires extensive computational resources (in terms of computer mem-373

ory and time) and is not considered viable after every iteration. Instead grid update can be performed374

after the grid has been displaced by a certain distance ∆dupdate. Grid movement can be monitored by375

motion of a reference node to find out when grid update is necessary. For current test cases, the node at376

bottom left corner of meshfree zone is considered as reference node. During simulation, displacement of377

a this node is continuously monitored and grid update calculations are performed when the reference378

node has been displaced by distance ∆dupdate. In order to determine the effect of grid update distance379

on accuracy of solution, moving grid case with A = 0.3π is run for two different values of grid update380

distance. First case is run for ∆dupdate = 0.5dx and second test is run for ∆dupdate = 0.05dx, where381

dx is the space step. Time profiles of RMS error for pressure values are shown in Fig. 16. A reference382

case is also run in which grid was updated after every iteration. RMS error profile for reference is also383

co-plotted as dotted line. For ∆dupdate = 0.05dx and ∆dupdate = 0.5dx, each grid update is followed384

by a spike in the error profile. These spikes are caused by variation in RBF weights for calculating385

spatial derivatives. The spikes are more pronounced for larger grid update distance. When the grid386

is updated less frequently during simulation (as in case of larger grid update distance), RBF weight387

values experience larger variation after update and resulting spikes are more pronounced. A reasonable388

value of grid update distance is therefore necessary as very high spike can even lead to instabilities.389

However, as long as grid update distance is kept within reasonable range, changing its value is not390

found to significantly affect time averaged error values.391

4.2 Flow around cylinders392

The solution scheme has been used for flow around cylindrical objects. Three different cases have been393

considered based on degree of freedom for solid motion. These include flow around stationary solids,394

flow around solid with one degree of freedom and flow around solid with two degrees of freedom. Flow395

Reynolds number is defined as Re = ρUD/µ, Where ρ is the fluid density, U is the free stream velocity,396

D is the diameter of the cylinder and µ is the dynamic viscosity of the fluid. Reynolds number is kept397

below 200 in all the cases involving flow around cylinder. The detail of each case is described below.398

4.2.1 Flow around static cylinder399

The purpose of running static cylinder cases is to establish the accuracy of presented solution scheme400

before moving on to flow induced vibration cases. Incompressible flow problem around stationary401

cylinder is studied at a range of Reynolds numbers. For these problems, flow remains steady at low402

Reynolds numbers (Re < 49). However, the flow becomes unsteady due to generation of an oscillating403

vortex street (known as Kamran Vortex) which appears behind the cylinder at Reynolds numbers404

from 49 to 200. The problem has extensively been studied previously and sufficient reliable data is405

available in literature [23,2,24,56,6,17] to compare and validate the presented scheme. For present406

work, a rectangular fluid domain is chosen with dimensions 38D × 12D. Center of the cylinder is407
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(a) Spatial convergence

(b) Temporal convergence

Fig. 13 Error Plots for static test case at t=0.5 ( *-RMS error, o-Max error)

located at a distance of 8D from inlet and 6D from each of the side walls. This ensures that the408

flow remains unaffected by any non-physical disturbances at domain boundary. Meshfree cloud spans409

3D × 3D around the cylinder. Remaining fluid domain is meshed with a Cartesian grid. Therefore,410

meshfree zone constitutes only 1.35 percent of the total domain area. Boundary conditions are applied411

as mentioned in Section 2.1.412

In meshfree zone, nodes are arranged radially around the cylinder. A total of 140 nodes are placed413

at solid boundary. In order to implement Neumann pressure boundary conditions at solid surface,414
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Fig. 14 Grid configuration at initial time t0 = 0 and at time t1 = 0.5 for Θ = 0.3π[1− cos(πt/2)]

Fig. 15 Error Plots at different angular speed moving meshfree grid at t=0.5 ( *-RMS error, o-Max error)

orthogonal nodal arrangement is ensured at least in two nodal layers immediately after the solid415

boundary. For the static case, meshfree zone will remain stationary during simulation. Therefore,416

overlapping meshfree zone is not required here (though presence of overlapped inactive meshfree nodes417

will not make any difference). There are total of 4122 meshfree nodes and 21500 Cartesian nodes418

in the hybrid grid. Fig. 17(a) shows part of grid close to solid boundary indicating arrangement of419

meshfree nodes around cylinder. Time step is kept as 5× 10−3 sec. Lift and drag forces (FL and FD)420

are calculated by integrating vertical and horizontal components of normal and shear stresses at the421

solid boundary using Eq. (21). The lift and drag coefficients (CD and CL) are then evaluated using422

following expressions:423
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Fig. 16 Time profiles of RMS error for pressure values at different grid update distance ∆dupdate

(a) Ordered arrangement (b) Random arrangement

Fig. 17 Arrangement of meshfree nodes around circular solid

Lift coefficient = CL =
FL

ρU2D
(27)

424

Drag coefficient = CD =
FD
ρU2D

(28)

The solutions are obtained at Re = 10, 20, 40, 100 and 200. At Re = 10, 20 and 40, the flow425

remains steady behind the cylinder. Resultant value drag coefficient CD, separation angle (θsep) and426

length of recirculation region (Lsep) are shown in Table 3 along with the results from previous researches427

[16,52,56] at each Reynolds number. Results from present work show good agreement with previous428

solutions.429
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Table 3 Solution parameters (separation angle θsep, length of recirculation region Lsep and drag coefficient
CD) for steady flow around static cylinder at Re =10, 20 and 40

Re 10 20 40
Source θsep Lsep CD θsep Lsep CD θsep Lsep CD

Dennis[16] 29.6 0.265 2.85 43.7 0.94 2.05 53.8 2.35 1.52
Takami[52] 29.3 0.249 2.80 43.7 0.935 2.01 53.6 2.32 1.54
Tuann[56] 29.7 0.25 3.18 44.1 0.9 2.25 54.8 2.10 1.68
Present case 28.6 0.280 3.09 44.1 0.95 2.19 53.13 2.18 1.63

Table 4 Solution parameters (lift coefficient CL, drag coefficient CD and Strouhal number St ) for unsteady
flow around static cylinder at Re =100 and 200

Re 100 200
Source CL CD St CL CD St

Braza[2] ±0.25 1.364±0.015 0.16 ±0.75 1.40±0.05 0.2
Ding[17] ±0.28 1.32±0.008 0.164 ±0.60 1.327±0.045 0.196
Liu[37] ±0.34 1.35±0.012 0.164 ±0.69 1.31±0.049 0.192
Present case ±0.32 1.314±0.009 0.164 ±0.62 1.302±0.039 0.194

(a) Cylinder at mean posi-
tion

(b) Cylinder below the
mean position

Fig. 18 Meshfree cloud movement around vertically vibrating cylinder

Unsteady flow cases are run at Re = 100 and 200. Oscillating flow vortices at these flow conditions430

result in time varying profiles of lift and drag forces at constant frequencies. Lift and drag coefficients as431

well as Strouhal number (St = fD/U , where f is vortex shedding frequency) of flow at these Reynolds432

numbers are shown in Table 4.433

4.2.2 Vortex induced vibration of cylinder with 1-DoF434

Vortex induced vibration of an elastically mounted cylinder is studied here. The cylinder has one435

degree of freedom in cross flow direction. This basic test case of fluid-structure interface is amongst436

the most revealing problems pertaining to bluff bodies. Simple geometry and well established results437

available in literature make it an attractive choice to test current FSI solution scheme. Schematic of438

the problem is the same as Fig. 4(a) except that horizontal degree of freedom is removed. For present439

work, dimensions of fluid domain are the same as for static case. The dimensions of meshfree zone440
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are however increased in vertical direction and are set as 3D × 9D. Dimensions of active meshfree441

zone are 3D× 6D. Vertical dimension of meshfree zone is elongated to allow cross-flow vibration. The442

solutions are sought on ordered as well as randomized meshfree nodal arrangement. Randomization is443

obtained by randomly disturbing the position of meshfree nodes from their corresponding location on444

the ordered grid. For this purpose, a random function of the order of 0.4∆r (∆r is the radial spacing445

of nodes) is used. Fig. 17(b) shows a randomized nodal arrangement around the cylinder.446

During the simulation, solid cylinder vibrates in cross flow direction due to oscillating fluid forces.447

The meshfree nodal cloud follows the motion of cylinder. In this process, meshfree nodes near top448

and bottom sides of cloud appear and disappear behind overlapping Cartesian zone. For example, the449

states of meshfree cloud at two different vertical positions are compared in Fig. 18. As the cylinder450

goes down, most of the overlapping zone is exposed at the top side and reverse happens at the lower451

side. Therefore, the activation status of these nodes is continuously updated during the simulation.452

The solutions are obtained at flow Re=100. At this Reynolds number, oscillating flow vortices453

behind the cylinder will produce time varying lift profile. The cylinder is thus able to vibrate vertically454

under the influence of these forces. Flow induced cylindrical vibrations in cross flow are termed as self-455

limiting phenomenon by [39]. This means that the vibration amplitudes retain their constant value456

after initial settling down period. Vibration of solid causes reduction in lift force and renders some457

additional frequency components in fluid force profiles which tend to limit the vibrating amplitudes to458

specific level [46]. A parameter called effective elasticity k∗eff is often used to characterize the system459

response for such problems. Effective elasticity combines the effect of system mass m, stiffness k and460

reduced vortex shedding frequency f∗ = fU/D through the following expression [50]:461

k∗eff = k − 4π2mf∗2 (29)

Effective elasticity therefore offers an inclusive representation of system parameters. Mass of the462

cylinder is set as 3. The solutions are obtained by changing the values of spring stiffness k. Time step463

value is set as 5 × 10−3. For every test case, k∗eff is calculated using spring stiffness k and resulting464

reduced frequency of vortex shedding f∗. Corresponding values of non-dimensionalized vibration am-465

plitudes (Ymax/D), maximum lift coefficient (CLmax) and reduced frequency (f∗) are plotted in Fig. 19.466

The results are comparable to those obtained by Sheils et al. [50]. Moreover, the results from ordered467

as well as randomized meshfree nodal distribution match very closely with each other. This indicates468

that the solutions are not affected by randomization of meshfree nodes. Plots in Fig. 19(a) indicate a469

high amplitude region between 0 ≤ k∗eff ≤ 4. The lift and drag values are also higher in this range as470

shown in Figures 19(c) and 19(d). This high amplitude zone is called ’lock-in’ zone. In that, the vortex471

shedding frequency deviates from its original value and equalizes with natural frequency of vibrating472

system creating resonance. This synchronization of fluid forces with vibrating system results in higher473

amplitudes. Fig. 19(b) clearly indicates deviation of vortex frequency in ’lock-in’ zone. Beyond ’lock-in’474

zone, a sharp decline in vibration amplitudes is observed. Fig. 20 shows the difference in flow patterns475

around the cylinder for ’locked-in’ and ’un-locked’ configurations. Due to high vibration amplitudes in476

’lock-in’ zone, vortices are stretched and two distinct rows of vortices are formed behind the cylinder.477

In ’un-locked’ zone, the vortex street resumes its conventional form. However, the vortices are being478

shed in 2S mode in both configurations and 2P mode of vortex shedding is not observed with change479

in k∗eff . This observation is in line with what was obtained by Placzek et al. [46]. Placzek [46] argues480

that mode switch from 2S to 2P is only experienced at high Reynolds number which is not the case481

here.482

Above calculations are carried out using closely coupled FSI with reduced fluid domain as men-483

tioned in Section 3.3. In order to compare the accuracy, time profiles of displacement, lift and drag484

from solution obtained with loosely coupled FSI and closely coupled FSI with reduced as well as full485

fluid domain are plotted together in Fig. 21. Solutions are obtained on ordered meshfree nodes and486

correspond to the case with k∗eff = 0.623. Here, we consider that the closely coupled FSI with full fluid487

domain can give the most solutions and therefore, its results can be taken as standard for comparison488

with other two methods. With this assumption, it can be observed that profile curves of closely coupled489

FSI with reduced fluid domain case closely follow the standard curves. However, the curves for loosely490

coupled FSI are relatively off. Root mean square (rms) values of cross flow amplitudes ((y/D)rms),491

rms values of coefficients of lift (CLrms
) and mean values of coefficients of drag (C̄D) for different FSI492

algorithms are compared in Table 5. It can be observed that the results for closely coupled FSI with493

reduced and full fluid domain are very close to each other. However, the values for loose coupling case494
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(a) Crossflow amplitudes (b) Normalized vortex frequency

(c) Maximum lift coefficient (d) rms of drag coefficient

Fig. 19 1-DoF cylindrical vibration at Re=100: Variation of parameters with effective elasticity (k∗eff ) (
—•—Shiels et al. [50], O Present work (Ordered grid), 4 Present work (Randomized grid)

(a) Vorticity at k∗eff = 1.57

(b) Vorticity at k∗eff = −1.89

Fig. 20 Comparison of vorticity plots for ’lock-in’ and ’un-locked’ configurations

are relatively off. Table 5 also shows computation time per time-step iteration on Intel R©Core-i5, 3.1495

GHz processor for each case. It can be observed that the computational time is for reduced fluid domain496

case is only 26% higher than that for loosely coupled case but significantly less than full fluid domain497



23

(a) yc (b) CL (c) CD

Fig. 21 1-DoF cylindrical vibration at Re=100: Comparison of time profiles of displacement, lift and drag for
i) loosely coupled (—•—), ii) closely coupled with reduced fluid domain (—*—) and iii) closely coupled with
full fluid domain (—o—) FSI cases. k∗eff = 0.623

Table 5 Comparison of rms values of cross flow amplitudes ((y/D)rms), rms values of coefficients of lift
(CLrms), mean values of coefficients of drag (C̄D) and computational time for different FSI algorithms (cylin-
drical vibration case with 1-DoF)

Parameter Loosely coupled FSI Closely coupled FSI Closely coupled FSI
(Reduced fluid domain) (Full fluid domain)

(y/D)rms 0.3802 0.3841 0.3840
CLrms 0.3426 0.3338 0.3331
C̄D 1.9526 1.9723 1.9718
Compute time (per iteration) 123 m sec 156 m sec 236 m sec

Table 6 Norm-2 of error of cross flow amplitudes (‖(y/D)− (y/D)ref‖2), coefficients of lift (‖CL −CLref‖2)
and coefficients of drag (‖CD −CDref‖2) for different FSI algorithms (cylindrical vibration case with 1-DoF).
Results for closely coupled FSI with full fluid domain are used as reference values for calculating the error

Parameter Loosely coupled FSI Closely coupled FSI
(Reduced fluid domain)

‖(y/D)− (y/D)ref‖2 0.0121 0.0033
‖CL − CLref‖2 0.0156 0.0060
‖CD − CDref‖2 0.0381 0.0125

case. Table 6 shows Norm-2 of error of cross flow amplitudes (‖(y/D)− (y/D)ref‖2), coefficients of lift498

(‖CL−CLref‖2) and coefficients of drag (‖CD−CDref‖2) for loosely coupled FSI and closely coupled499

FSI with reduced fluid domain. For the purpose of calculating errors, results from closely coupled FSI500

with full fluid domain are used as reference values. Results show significantly lower errors for closely501

coupled case with reduced fluid domain. Comparing error values and computation time, it can be seen502

that closely coupled FSI case with reduced fluid domain calculations offer an efficient computation of503

FSI problems without much loss in accuracy.504

4.2.3 Vortex induced vibration of cylinder with 2-DoF505

Vortex induced vibration (VIV) of cylinder with two degrees of freedom is of practical importance in506

many engineering applications including offshore cylindrical structures, underwater flexibly mounted507

pipelines and large electrical cables. For flexibly mounted cylindrical objects, incoming flow can initiate508

modes of vibration both along the flow as well as in cross-flow directions. The problem is therefore509

often studied at 2-DoF VIV [11,10] and system vibrational response is studied with changing reduced510

velocity (vr = U/(fND), where U is free stream velocity, D is cylindrical diameter and fN is natural511

frequency of vibration). The in-flow vibration of cylinder has been found to show significantly higher512

amplitudes when ratio of in-line to transverse natural frequencies ( fNx/fNy) is set around 2.0 due to513

dual resonant response [10]. For other frequency ratios, cylindrical vibration is predominantly cross-flow514

and very low amplitudes of in-flow vibrations are observed.515
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Fig. 22 Grid around cylinder vibrating with 2 degrees of freedom

(a) Crossflow amplitudes (b) Inflow amplitudes

(c) Lift coefficient (d) Drag coefficient

Fig. 23 Variation of parameters with reduced velocity (vr) for cylindrical vibration with 2-DoF (Mass ratio=
m∗ = 2.0, frequency ratio= fNx/fNy = 2.0, Re = 150), —o —present results (ordered meshfree nodes),
—4 —present results (randomized meshfree nodes), ∗ results from [11] (at = m∗ = 2.0, = fNx/fNy = 2.0,
Re = 150), � Experimental results from [10] (at = m∗ = 5.7, = fNx/fNy = 1.9, Re = 15000− 60000)

The numerical simulations are carried out for flow, at Reynolds number 150, around a cylinder516

which has degree of freedom along X (in-flow) as well as Y (cross-flow) direction. Size of active517

meshfree zone around the cylinder is set as 3D × 3D for this case. Beyond active zone, an overlapped518

meshfree zone extends by a length of 1.5D, along all four directions, to cater for solid motion as519

shown in Fig. 22. Numerical tests are carried out to study the effects of changing reduced velocity520

(vr), frequency ratio ( fNx/fNy) and mass ratio (m∗ is the ratio mass of cylinder to the displaced fluid521

mass). Validation test case is run for mass ratio m∗ = 2.0 and frequency ratio fNx/fNy = 2.0. Reduced522

velocity (vr) is calculated according to transverse natural frequency (fNy) and tests are conducted for523

vr = 1− 12. Damping is set as zero. Solutions are obtained for both ordered and randomized meshfree524

nodal arrangements. Resultant amplitudes of cross-flow and in-flow vibration, root mean square (rms)525

values of lift coefficient and mean values drag coefficient are shown in Fig. 23 along with numerical526
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Fig. 24 Cylindrical trajectories for 2-DoF problems. (Mass ratio= m∗ = 5.0, frequency ratio= fNx/fNy = 2.0,
Re = 150)

solutions obtained by Dai [11] and experimental results from Dahl et al. [10]. It can be observed that527

the results do not change significantly with randomization of meshfree nodes. Vibration amplitudes528

and lift and drag coefficients tend to increase dramatically as the resonance conditions are approached529

near vr = 6. However, in-flow vibration amplitudes are almost zero away from vr = 6. Even cross-flow530

amplitudes are also very low outside the resonance range. These observations are in agreement with531

the results of Dahl et al. [10] and Dai [11]. XY trajectories of cylinder at different reduced velocities532

are plotted in Fig. 24. Maximum in-flow amplitude occurs at vr = 5.0. The value of Xmax/D is 0.267.533

Cross-flow amplitudes achieve their maximum value (Ymax/D = 0.908) at vr = 6.0. These results are534

similar to those in [10] and [11]. Maximum (rms and mean) values of lift and drag coefficients are also535

consistent with the solutions of Dai [11].536

The effect of changing frequency ratio on system response (amplitudes of aerodynamic forces537

and solid motion) along in-flow and cross-flow directions is investigated by running the test cases538

at fNx/fNy = 1.0, 1.5 and 2.0. Mass ratio is set as 1.25. Fig. 25 shows response curves at various539

reduced velocities vr and frequency ratios. High vibrational amplitudes (both cross-flow and in-flow540

directions) are observed for range of reduced velocities 4 ≤ vr ≤ 9 indicating the presence of resonance541

zone in both directions. Although this resonance zone is present at all tested values of frequency ratio,542

the vibration amplitudes dramatically increase typically at = fNx/fNy = 2.0. This increase is more543

pronounced for in-flow amplitudes where maximum vibrational amplitude soared by 3.4 times when544

frequency ratio was increased from 1.5 to 2.0. An increase of 1.25 times was observed in maximum545
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(a) Crossflow amplitudes (b) Inflow amplitudes

(c) RMS of Lift coefficient (d) Mean Drag coefficient

Fig. 25 Variation in system response with changing frequency ratio (fNx/fNy) for cylindrical vibration with
2-DoF at = m∗ = 1.25 and Re = 150. −o− fNx/fNy = 2.0, − ∗ − fNx/fNy = 1.5, − � − fNx/fNy = 1.0

cross-flow amplitude for same variation of frequency ratio. Moreover, reduced velocity correspond-546

ing to maximum vibrational amplitude tends to shift to higher value with increasing frequency ratio.547

However, bounds of resonant zone remain unaffected during this change.548

Fig. 25(c) indicate that lift coefficient largely remains unaffected by variation of frequency ratio549

except at = fNx/fNy = 2.0. At this value, significant reduction in the maximum value of CL is550

observed. On the contrary, coefficient of drag coefficient depicts an increase in its maximum value at551

same frequency ratio.552

The effect of changing mass ratio on system response has been investigated at fNx/fNy = 2.0.553

At these settings, the solution parameters are obtained for different values of mass ratio and for554

changing reduced velocities. The results are summarized in the plots shown in Fig. 26. The most555

prominent effect of changing mass ratio is that the resonance zone tends to shrink with increasing556

mass ratios. Though the peak values appear at same location (i.e same value of vr), the lower and557

upper limits of high amplitude regime tend to squeeze inward with increasing mass ratio. The maximum558

vibration amplitudes remains largely unchanged until m∗ = 2.0. However, they start to decline later559

and relatively lower amplitudes (both in-flow and cross-flow) are observed at m∗ = 7.5. Mass ratio560

seems to have significant effect on lift coefficient. The maximum value of lift coefficient keeps increasing561

from m∗ = 0.75 to m∗ = 2.0. However, dramatic decline in lift coefficient is observed at m∗ = 7.5.562

Moreover, the value of reduced velocity, corresponding to highest value of CL, also shifts from 4.0 to563

5.0. Beyond the resonance zone (vr ≥ 10), RMS value of CL depicts a steadily increasing trend with564

increasing mass ratio whereas cross-flow amplitudes decrease during same range of vr.565
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(a) Crossflow amplitudes (b) Inflow amplitudes

(c) RMS of Lift coefficient (d) Mean Drag coefficient

Fig. 26 Variation in system response with changing mass ratio for cylindrical vibration with 2-DoF at
fNx/fNy = 2.0 and Re = 150. −o− m∗ = 0.75, − ∗ − m∗ = 1.25, − � − m∗ = 2.0, −t̄ − m∗ = 7.5

Fig. 27 Influence domain truncated as per visibility criterion near trailing edge of airfoil

4.3 Flow around airfoil566

4.3.1 Flow around airfoil in pitch and heave motion567

The coupled meshfree-mesh based solver is now used for flow around NACA0015 airfoil which is568

undergoing simultaneous pitching and heaving motion. Pitch and heave motions of the airfoil are569

defined by the following equations:570

θ(t) = θ0 sin(ωt) (30)

h(t) = H0 sin(ωt+ Φ) (31)

where θ0 and H0 are maximum pitch and heave amplitudes and Φ is the phase difference between pitch571

and heave motion. Heave amplitude is fixed at H0/c = 1.0 and phase difference Φ = −π/2 is used.572
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(a) Pitch and heave displacement (b) Aerodynamic forces

Fig. 28 Variation of displacement and aerodynamic force coefficients around NACA0015 at Re = 1100, θ0 =
76.33o, ω = 0.28π

The tests are conducted at Re = 1100 (Re = ρUc/µ where, c is the airfoil chord length and U is the573

free stream velocity). The flow is predominantly laminar at this Reynolds number. Similar tests were574

conducted by Kinsey and Dumas [36].575

Grid configuration is the same as in Fig. 5 while closer view of meshfree nodal arrangement near576

the airfoil surface is shown in Fig. 8. The Airfoil is placed at a distance of 4c from inlet and 12c577

from outlet. Width of fluid domain is set as 10c. Dimensions of active meshfree zone around airfoil578

are set as 1.35c × 1.6c. The boundary conditions are applied as mentioned in Section 2.1. At airfoil579

surface, the flow velocity, at next time step (un+1), is set equal to the velocity of moving boundary580

node. Intermediate velocity field is then calculated using Eq. (8). Finally, the pressure values at the581

boundary is obtained using Eq. (9). In order to apply Neumann boundary condition for pressure, at582

airfoil surface, orthogonal arrangement of nodes is used for the first two layers of meshfree nodes next583

to the airfoil surface.584

An important aspect to be considered here is the treatment of influence domain for meshfree585

nodes near trailing edge of the airfoil which acts as a non-convex boundary. The influence domains586

for such nodes are modified according to visibility method suggested by Belytschko et al. [1]. For this587

purpose, the influence domain of any meshfree node xi is truncated in such a manner that only those588

neighbouring nodes fall in the influence domain which can be linked with xi through a straight line589

without intersecting the boundary. The truncated influence domain near convex boundary is shown in590

Fig. 27.591

The problem is set up in a way that heave reference frame is attached with the airfoil. In this592

manner, the airfoil performs pitching motion in a heaving reference frame. The heaving displacement593

is therefore, not imparted to the moving mesh. The movement of mesh is accomplished by displacing594

the grid nodes (of meshfree zone) only according to prescribed pitching motion. However, heave velocity595

does contribute in the vertical component of ALE velocity when formulating momentum equation (Eq.596

(5)) in ALE formulation. Similar strategy was used by Kinsey and Dumas [36] in their work. Numerical597

simulations are carried out at θ0 = 76.33o and ω = 0.28π. Time step is set as ∆t = 10−3 sec.598

Variation of heave and pitch displacements in a single oscillation period of airfoil, for θ0 = 76.33o, ω =599

0.28π case, is shown in Fig. 28(a). Variation of aerodynamic forces (CL and CD) during same period600

is plotted in Fig. 28(b). Vorticity profiles around the airfoil at different stages of periodic motion are601

shown in Fig. 29. As the pitch angle is increased in the initial phase of oscillation, the lift achieves its602

maximum value. The flow remains largely attached with airfoil top surface for t < T/8 as shown in603

Fig. 29(a). The first peak in lift profile appears at around t = T/8. Increasing lift also causes increase604

in pressure drag and therefore, drag coefficient also increases. This initial rise in lift is followed by605

flow separation close to leading edge as shown in Fig. 29(b) and causes reduction in lift. Subsequently,606

the detached leading edge vortex re-attaches with the airfoil close to its trailing edge (Fig. 29(c)) at607

about t = 3T/8 causing a second peak in the lift profile. However, as the leading edge vortex leaves608

the airfoil from trailing edge and moves further downstream, a sharp decline in lift is observed be-609

tween T3T/8 < t < 5T/∗. The lift coefficient reduce to zero and then shows similar profile in negative610

direction. These results are in good agreement with the reference values from [36].611
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(a) t = T/8 (b) t = T/4 (c) t = 3T/8 (d) t = T/2

(e) t = 5T/8 (f) t = 3T/4 (g) t = 7T/8 (h) t = T

Fig. 29 Instantaneous vorticity profiles around NACA0015 at Re = 1100, θ0 = 76.33o, ω = 0.28π

Table 7 Comparison of maximum values of coefficients of lift (CLmax), mean values of coefficients of drag
(C̄D) and maximum values of coefficients of lift (CMmax) for pitching-motion-activated-flapping NACA0015
airfoil

Mechanical Parameters Source Re CLmax C̄D CMmax

θ0 = 15o, f∗ = 0.2, Wu et al. [61] 1100 0.704 0.179 -
d∗ = 2π, k∗ = 10, m∗ = 1 Present work 1100 0.69 0.17 -
θ0 = 30o, f∗ = 0.1, Wu et al. [61] 1100 0.905 0.345 -
d∗ = π, k∗ = 0, m∗ = 1 Present work 1100 0.885 0.334 -
θ0 = 75o, f∗ = 0.12, Deng et al. [15] 1000 2.0 - 0.33
d∗ = π, k∗ = 0, m∗ = 0.1022 Present work 1000 2.017 - 0.31
θ0 = 75o, f∗ = 0.22, Deng et al. [15] 1000 2.8 - 0.6
d∗ = π, k∗ = 0, m∗ = 0.1022 Present work 1000 2.55 - 0.56

4.3.2 Pitching-motion-activated-flapping airfoil612

Semi-activated flapping airfoil system is studied here. In this case, the airfoil is subjected to a prescribed613

pitching motion about its elastic axis and is allowed move freely along heave axis due to fluid forces.614

Airfoil is mounted on a translational spring-damper system. When, airfoil is subjected to periodic pitch615

oscillation, it causes corresponding variation of fluid forces over time. These time varying fluid forces616

induce heaving motion. Such mechanisms have recently gained focus for their potential application in617

tidal and wind energy extraction systems [61,15]. Pitch displacement (θ(t)) for the airfoil is defined618

by Eq. (30). Resulting heave displacement is calculated using Eq. (19). Solid equations are solved in619

non-dimensionalized form. The non-dimensionalized mass (m∗), damping (d∗) and spring stiffness (k∗)620

are defined as:621

m∗ =
m

1
2ρc

2
, d∗ =

d
1
2ρUc

, k∗ =
k

1
2ρU

2

where ρ, U and c are flow density, free stream velocity and airfoil chord length respectively. The test622

cases are run for flow around NACA0015 airfoil. with its elastic axis located at a distance c/3 from623

leading edge. Results are obtained at Re = 1100 and Re = 1000. Laminar flow equations can safely624

be used at this Reynolds number. Simulations are run at four different sets of mechanical parameters625

(θ0, f
∗, d∗ k∗, m∗) and resultant values are summarized in Table 7. The results are compared with the626

solutions from Wu et al. [61] and Deng et al. [15] respectively and are found to be in good agreement627

with the previous studies. Variation of CL during a single pitch oscillation period is compared, in Fig.628

30, for both test cases conducted at Re = 1000. It can be observed that the peak value of lift coefficient629

increases at higher frequency (f∗). Similar behaviour was observed by Wu et al. [61] in their work.630
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Fig. 30 Variation of coefficient of lift CL around pitching-motion-activated flapping NACA0015 airfoil during
a single oscillation period (Re = 1000, θ0 = 75o, k∗ = 0, d∗ = π,m∗ = 0.1022)

Above calculations are carried out using closely coupled FSI with partial fluid domain. Calculation631

for simulation time of 0.1 sec were performed in 295 sec on Intel R©2.4 GHz processor. On the contrary,632

similar calculations for full fluid domain were carried out in 840 sec on same machine. Therefore, the633

computation time was reduced by 65 percent by reducing the fluid domain for inner FSI iterations.634

5 Conclusion635

This paper presents a coupled meshfree-mesh based solution scheme on hybrid grid for dealing with636

flow around moving solid objects. Fluid-solid interaction has been implemented using partitioned637

approach. Flow equations, in ALE formulation are solved by local RBF-FD on moving meshfree nodes,638

and conventional finite differencing on static Cartesian grid is used for flow equations in Eulerian639

formulation. The equations for solid motion are solved using Runge-Kutta method.640

In current work, a modular approach has been employed for solution of momentum as well as641

pressure Poisson equations in different fluid zones. The governing equations, for both velocity and642

pressure, are iteratively solved in meshfree and Cartesian zones. In this regard, another approach is643

to set up a single pressure problem in the entire fluid domain. The pressure Poisson equation can644

then be solved, for both (meshfree and Cartesian) zones, simultaneously. An improved accuracy may645

be achieved by using this approach. However, simultaneous solution for pressure will compromise the646

modular characteristics of the solution scheme. Currently, the meshfree and mesh based solvers run647

independent to each other exchanging data at the interface nodes. Simultaneous solution of pressure648

equations over the entire domain would require the derivation of a separate pressure equation applicable649

to all the zones. Further work can however be conducted to further explore this aspect.650

Various techniques have been employed during current solution scheme to improve the performance651

and accuracy. Adaptive sizing of influence domain, for meshfree nodes, has allowed to vary nodal density652

without affecting the well conditioning of RBF coefficient matrices. Use of partial fluid domain made it653

possible to improve the cohesiveness of fluid and structural solver at interface boundary with relatively654

smaller computational cost. The scheme was successfully applied to problems with rigid solids with655

one and two degrees of freedom. Coupling of meshfree and mesh based solver over hybrid fluid grid656

has been found to be an efficient way of optimizing the inherent strengths of both methods. Future657

work in this regard may focus on the use of stabilization techniques for high Reynolds number flows,658

turbulent modelling and flexible structures.659
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