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Abstract

This paper develops an iterative learning control law that exploits recent results in the area of
predictive repetitive control where a priori information about the characteristics of the reference
signal is embedded in the control law using the internal model principle. The control law is based
on receding horizon control and Laguerre functions can be used to parameterize the future control
trajectory if required. Error convergence of the resulting controlled system is analyzed. To evaluate
the performance of the design, including comparative aspects, simulation results from a chemical
process control problem and supporting experimental results from application to a robot with two
inputs and two outputs are given.
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1. Introduction

Many systems complete the same finite duration task over and over again. The sequence is that
the task is completed, the system resets to the starting location, the next one is completed and so
on. In this paper each execution is termed a trial and the duration is termed the trial length. Once
each trial is complete, the system resets to the original location and the next trial can begin, either
immediately after the resetting is complete or after a stoppage time has elapsed.

Such systems arise in many industrial applications, where a generic example is a gantry robot
undertaking a pick and place task and the sequence of operations is:: i) collect the object from a
fixed location, ii) transfer it over a finite duration, iii) place it at a static location or on a moving
conveyor, iv) return to the starting location and v) repeat the previous four steps for as many times
as required or until a halt is needed for maintenance or other reasons. Similar operations exist in the
field of chemical process control such as the operation of batch chemical reactors, see, for example,
((Lee et al., 1996), (Lee et al., 2000), (Lee et al., 2001), (Chin et al., 2004), (Liu et al., 2010)), where
the output of the reactor is required to follow a given trajectory over a finite time interval.

Once a trial is complete all information generated during its production is available for use in
computing the control signal to be applied on the next trial. Iterative Learning Control (ILC), where
the first work is widely credited to (Arimoto et al., 1984), uses information generated on the previous
trial, or a finite number thereof, in the computation of the input to be applied on the next trial. The
survey papers (Bristow et al., 2006),(Ahn et al., 2007) are a starting point for the literature.

One extensively studied class of ILC laws is based on the minimization of an objective function
constructed from the addition of two sums of squares terms and the result summed over the trials,
such as Amann et al. (1996), (Lee et al., 2000). The first of these is formed from the current trial
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error, that is, the difference between the supplied reference signal and the current trial output, and
the second from the difference between the control signals used on successive trials, or the current
trial signal alone. This class of algorithms is termed, norm optimal, and experimental verification
of its performance has also been reported (Ratcliffe et al., 2006; Rogers et al., 2010; Barton and
Alleyene , 2011).

This paper develops a predictive ILC design that uses a similar cost function to the one in norm
optimal ILC, but embeds the reference signal/disturbance model in the controller and employs the
receding horizon control principle. The idea of embedding the reference signal information in the
controller has been successfully used in model predictive control, for example, (Wang , 2009) and
in other ILC related research (Moore and El-Sharif , 2009). The design allows for the practically
motivated case where the reference signal has dominant frequencies and it is decided to only include
these in control design as opposed to all frequencies. Also it is assumed that the system dynamics
can be adequately modeled, at least for initial control related studies, as linear and time-invariant.

The duration of each trial in ILC is finite and the trial-to-trial error sequence can converge as
the number of trials increases even if the system has unstable along the trial dynamics, since over a
finite duration only bounded dynamics can be produced. The control design in this paper stabilizes
the dynamics on each trial and allows for the rate of convergence to be controlled.

Simulation results from a chemical process control example and supporting experimental data
from application of the new results to a two-input two-output robot complete the paper. The next
section gives the required background.

2. Background

The design in this paper is based on a frequency domain decomposition of the supplied reference
signal or vector in the single-input single-output (SISO) and multiple-input multiple-output (MIMO)
cases respectively. Once these are selected they are embedded in the process state-space model in
accordance with the internal model principle as described next.

Consider the SISO case for simplicity with an obvious generalization to the MIMO case, and
suppose that the frequency components of the reference signal to be included in the design have
been selected, for details see (Wang et al., 2012),(Wang et al., 2013). This results in the annihilator
polynomial

D(z) = (1− z−1)Πl
i=1(1− 2cos(iω)z−1 + z−2)

= 1 + d1z
−1 + d2z

−2 + d3z
−3 + . . .+ dγz

−γ .

(1)

Here 0 and iω, i = 1, 2, . . . , l, for some chosen positive integer l, denote the frequencies to be included.
The control law is to be designed to track the reference signal and hence, by the internal model

principle (Francis and Wonham , 1975), the corresponding D(z), that is, a particular case of (1) must
be included in the denominator of the z transfer-function description of the controller dynamics. In
this paper, the method used is to add a vector term (µ(p) in the state-space model (2) below) to the
state dynamics in the plant state-space model as described next, but alternatives exist.

Remark 1. To put this particular design in context, the basic premise is that in many cases the
reference signal will have a finite number of dominant frequencies and it suffices to enforce tracking
of these frequencies instead of the complete frequency spectrum. This can be viewed as selecting
a number of basis functions to approximate the reference signal and there has been other work on
such ideas for ILC, see, for example, Sugie and Sakai (2007); van de Wijdeven, and Bosgra (2010);
Hamamoto and Sugie (2001). In van de Wijdeven, and Bosgra (2010) the problem considered is that
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the learned command signal is optimal for the specific fixed task only and, in general, extrapolation
of the learned command signal to other tasks leads to a significant performance deterioration. Basis
functions are used to enhance the extrapolation to a class of reference signals. The approach in Sugie
and Sakai (2007); Hamamoto and Sugie (2001) is to restrict the input/output space to an appropriate
finite dimensional space spanned by basis functions derived from the reference signal. These are valid
alternatives and the question of which one to chose for a given application is discussed again in the
last section of this paper.

Suppose that the plant to be controlled has mu inputs and my outputs and consider the following
state-space model at sampling instant p,

xm(p+ 1) = Amxm(p) +Bmu(p) + µ(p)

y(p) = Cmxm(p) (2)

where xm(p) is an n1 × 1 state vector, u(p) is an mu × 1 input vector and y(p) is an my × 1 output
vector of the plant. Also each entry in the n1 × 1 vector µ(p) is the inverse z-transform of 1

D(z) and

let q−1 denote the backward shift operator and D(q−1) the shift operator interpretation of D(z).
Then applying D(q−1) to xm(p) and u(p) gives

xs(p) = D(q−1)xm(p), us(p) = D(q−1)u(p).

Also D(q−1)µ(p) = 0 (since D(z) contains all frequencies in µ(p)) and from (2)

xs(p+ 1) = Amx
s(p) +Bmu

s(p)

D(q−1)y(p+ 1) = CmAmx
s(p) + CmBmu

s(p).

(3)

Introducing the state vector

x(p) =
[

(xs)T (p) yT (p) . . . yT (p− γ + 1)
]T

gives the following augmented state-space model for design

x(p+ 1) = Ax(p) +Bus(p)

y(p) = Cx(p). (4)

where

A =

[
Am 0

Ĉ Ad

]
, Ĉ =

[
CmAm

0

]

Ad =


−d1I −d2I . . . −dγ−1I −dγI
I 0 0 . . . 0
0 I 0 . . . 0
...

. . .
. . .

. . .
...

0 0 . . . I 0


and 0 and I denote the zero and identity matrices, respectively, of compatible dimensions (γmy ×
γmy). In addition

B =
[
BT
m (CmBm)T 0 . . . 0 0

]T
,

C =
[

0 I 0 . . . 0 0
]
.

The poles of (4) are the union of those of the system model and those arising from the structure of
µ(p).
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3. Prediction-based ILC Design

In the ILC setting k ≥ 0, is used to denote the trial number and the notation for variables is of
the form yk(p) where y is the scalar or vector valued variable under consideration and p <∞ is the
number of samples along the trial. The plant dynamics are again described by a state-space model
triple. Let r(p) be the supplied reference vector that does not vary from trial-to-trial. Then

ek(p) = yk(p)− r(p) (5)

is the error on trial k and the basic ILC problem is to force the sequence {ek} to converge in k.
Suppose that the frequency domain decomposition given in the previous section is applied to r(p)

and D(z) of (1), where the latter polynomial is constructed from the frequencies to be included.
Then the ILC problem can be formulated by following identical steps to those used to obtain (4),
resulting in a state-space model for design of the form

xk(p+ 1) = Axk(p) +Busk(p)

yk(p) = Cxk(p) (6)

where
xk(p) =

[
(xs)Tk (p) eTk (p) eTk (p− 1) . . . eTk (p− γ)

]T
(7)

and (xs)Tk (p) and usk(p) are formed using D(z) on trial k as per their counterparts xs(p) and us(p)
in (4). The matrices have identical structures to their counterparts in (4) and by the structure of C
the output vector in this state-space model is the current trial error. If it is assumed that the process
has reached the steady-state before a trial commences, the state initial vector on each trial can be
assumed to be zero.

On trial k+1 and sampling instant p, the future state vector at sample p+m, written xk+1(p+m |
p) for the model (6), is predicted as

xk+1(p+m | p) = Amxk+1(p) +

m−1∑
i=0

Am−i−1Busk+1(i) (8)

where m > 0 is a future sampling instant, and this prediction is performed along each trial. In designs
that require modeling of the future control trajectory, one approach is to embed an integrator in
the design and the incremental control trajectory is then directly computed within an optimization
window. For the ILC design considered in this paper, the signal to be optimized is the filtered control
vector and the design can be undertaken by modeling this signal using pulse functions. The main
drawback is the requirement to optimize a large number of parameters if fast sampling is required
and/or the system has a relatively complex dynamic response.

Fast sampling is typically required for mechanical and electro-mechanical systems because the
time constants arising in the various sub-components can vary in duration and a smaller sampling
interval is required to capture the effects of the smaller of these. One approach to reduce the number
of parameters requiring optimization on-line is to parameterize the future trajectory of the filtered
control signal using a set of Laguerre functions, where a scaling factor is used to reflect the time scale
of the predictive control system.

Laguerre functions have a long standing role in system identification, see, for example, Wahlberg
(1991); Heuberger et al. (1995) and their use in model predictive control is detailed in, for exam-
ple, (Wang , 2004). Within the design developed in this paper, they should only be used in ap-
plications where the number of parameters to be optimized is required to be reduced to efficiently
construct the control law. This paper considers direct digital control but for cases where the design
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is completed in the continuous-time domain they, or equivalents, must be used to parameterize the
trajectories. The following is a summary relevant to the new results in this paper, given for the SISO
case with natural MIMO extension noted where required. Also the ILC notation, that is, the trial
number subscript, is dropped for ease of presentation.

The basis of the design is the use of a set of discrete orthonormal functions to describe the filtered
future control signal us(m) within a moving horizon window, 0 ≤ m ≤ Np. Assume that N is the
number of terms in the expansion and let li(m), 1 ≤ i ≤ N, be a set of Laguerre functions, which
are orthonormal. Then

us(m) ≈
N∑
h=1

chlh(m). (9)

In this application, the z transfer-function of the hth Laguerre function is given by

Γh(z) =

√
1− a2

1− az−1

(
z−1 − a
1− az−1

)h−1
(10)

where 0 ≤ a < 1 is the scaling factor. Also the network structure of the z transfer-function for this
system can be exploited to show that the set of discrete Laguerre functions satisfies the difference
equation

L(m+ 1) = ALL(m) (11)

where L(m) =
[
l1(m) l2(m) lN (m)

]T
and

AL =



a 0 . . . . . . 0

β a
. . .

... 0

−aβ β
. . . 0 0

...
...

. . .
. . . 0

−aN−2β aN−3β . . . β a


(12)

β = (1− a2) and

L(0) =
√
β
[

1 −a a2 −a3 . . . (−1)N−1aN−1
]T
.

Setting ah = 0 and δi(m) = δ(i), where δ(i) is the Dirac delta function, recovers the standard
formulation of model predictive control. The extension to the MIMO case follows immediately on
considering each input channel and the corresponding column of the state-space model input matrix.

The basic idea in Laguerre function based design is to represent each input by a set of Laguerre
functions together with their unknown coefficients. This is illustrated in the SISO case by

us(i) = LT (i)η (13)

where the Laguerre function vector L(i) =
[
l1(i) l2(i) . . . lN (i)

]T
and the Laguerre coefficient

vector η =
[
c1 c2 . . . cN

]T
. Moreover, N is the dimension of the Laguerre function vector and

is also the number of terms used in the approximation. The Laguerre functions are pre-determined
in the design once the scaling factor 0 ≤ a < 1 and the number of terms N are chosen. In the MIMO
case, this procedure is repeated for each input. Moreover, the number of terms and the scaling factor
used in this last construction can be chosen independently for each input.

With the control trajectory represented by a Laguerre polynomial, the predicted state vector (8)
in the ILC case can be expressed as

xk+1(p+m | p) = Amxk+1(p) + φT (m)ηk+1 (14)
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where φT (m) =
m−1∑
i=0

Am−i−1BLT (m), and this term is invariant from trial-to-trial.

The ILC design is to find the sequence of current trial inputs that minimize the cost function

J =

Np∑
m=1

xk+1(p+m | p)TQxk+1(p+m | p)

+

Np∑
m=0

(usk+1(m)− usk(m))TR(usk+1(m)− usk(m)).

(15)

where Q and R are symmetric positive definite matrices and also the difference between the control
signals on the current and previous trials is penalized. The motivation for this last choice is to achieve
trial-to-trial error reduction without unduly large changes in the amplitudes of the control signals
required.

The previous trial filtered input vector is also parameterized in the form detailed above with a
long prediction horizon Np and hence

Np∑
m=0

usk(m)TRusk(m) = (ηk)TRLη
k, (16)

Np∑
m=0

usk+1(m)TRusk(m) = (ηk+1)
TRLηk, (17)

Np∑
m=0

usk+1(m)TRusk+1(m) = (ηk+1)
TRLηk+1 (18)

where the orthonormal property of the Laguerre functions has been used, that is,

Np∑
m=0

L(m)TL(m) =

I, and RL is an N ×N diagonal matrix.
Substituting (14) and (16)–(18) into (15) gives

J = (ηk+1)
TΩηk+1 + 2(ηk+1)

TΨxk+1(p)

− 2(ηk+1)
TRLηk + (ηk)

TRLηk (19)

where

Ω =

Np∑
m=1

φ(m)QφT (m) +RL, Ψ =

Np∑
m=1

φ(m)QAm.

The minimum value of this cost function occurs when

ηk+1 = −Ω−1(Ψxk+1(p)−RLηk). (20)

Under receding horizon control, only the first sample of the optimal control trajectory is imple-
mented, which is constructed in the SISO case with an obvious generalization to MIMO examples,
as the filtered control signal on trial k + 1 at sample p

usk+1(p) = LT (0)ηk+1. (21)
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By combining (20) and (21), the predictive ILC law can be written as

usk+1(p) = −LT (0)Ω−1Ψxk+1(p) + LT (0)Ω−1RLηk. (22)

The control law (22) is the linear sum of terms in the current trial state vector xk+1(p) and
the previous trial term ηk. Here the first term introduces state feedback along the trial k + 1, with
constant gain matrix Kmpc, defined as

Kmpc = LT (0)Ω−1Ψ (23)

and the second term introduces feedforward information from the previous trial. The prediction of
the future state at time τ, that is, x(p+ τ |p) can be written as

x(p+ τ | p) = Aτx(p) + φ(τ)η (24)

where
η =

[
ηT1 ηT2 . . . ηTmu

]T
and if Bi denotes the ith column of the state-space model input matrix

φ(τ) =
τ−1∑
j=0

Aτ−j−1
[
B1L

T
1 (j) . . . BmuL

T
mu

(j)
]
.

Also the ith input is given by LTi ηi. where Li is generated by applying (11) for this input. Moreover,
the number of terms and the scaling factor used in this last construction can be chosen independently
for each input.

In many applications, some entries in the state vector xk(p) given by (20) will not be measurable
and in such cases an observer is required. The state vector xk(p) of (7) is formed from xsk(p) and
the feedback errors ek(p), ek(p − 1), . . . , ek(p − γ), where the latter are measurable and hence it
is effective to design a reduced order observer to estimate the plant state dynamics only. Let x̂sk(p)
denote the estimated state vector at trial k, then the observer dynamics are described by

x̂sk(p+ 1) = Amx̂
s
k(p) +Bmu

s
k(p) +Kob(y

s
k(p)− Cmx̂sk(p)) (25)

where ysk(p) is the filtered output on trial k and sampling instant p, defined by ysk(p) = D(q−1)yk(p).
The observer gain matrix Kob is selected such that the closed-loop observer system state matrix
Am −KobCm has all eigenvalues strictly inside the unit circle of the complex plane. After obtaining
x̂sk(p), the state vector for the ILC law, xk(p), is constructed using the estimated filtered state vector
and the feedback errors as

x̂k(p) =
[

(x̂s)Tk (p) eTk (p) eTk (p− 1) . . . eTk (p− γ)
]T
.

Finally, a fundamental difference between the proposed control action and that of norm optimal
ILC (Amann et al., 1996) is that the latter does not have the reference vector embedding (the
polynomial D(z)) in the model for design and hence there is no equivalence even as the Laguerre
parameter N →∞.

4. Controlled System Analysis

In ILC, the trial length is finite and hence trial-to-trial error convergence (that is, in k) can occur
even if the system dynamics are unstable, that is, all eigenvalues of the state matrix do not have
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modulus strictly less than unity. This property is therefore present for ILC dynamics described by (6)
and (7) and also for the controlled system under current trial state feedback, as is the case with the
design in this paper. The reason for this is that over a finite interval even an unstable linear system
can only produce a bounded output.

Unstable dynamics will result in unacceptable along the trial (that is, in p) dynamics and for
lifted model based ILC design, the solution is to first design a stabilizing feedback control law and
then apply ILC to the resulting controlled dynamics. Examples of such design can again be found in,
for example, the relevant references in the survey papers (Ahn et al., 2007), (Barton and Alleyene ,
2011). The analysis below shows that the design of this paper stabilizes the along the trial dynamics
and also gives performance information.

As the Laguerre parameter N and the prediction on p increases, it can be shown, see, for exam-
ple, (Wang , 2009), that control signal (22) can be computed from the solution to the infinite-time
discrete quadratic regular problem for the state-space model triple {A,B,C} of (7) with symmetric
positive definite state and input weighting matrices Q and R, respectively. Hence

Kmpc = (R+BTP∞B)−1BTP∞A (26)

where P∞ is the solution of the algebraic Riccati equation

ATP∞A−ATP∞B(R+BTP∞B)−1BTP∞A+Q− P∞ = 0. (27)

Moreover, by discrete quadratic regulator theory, all eigenvalues of A − BKmpc lie inside the open
unit circle in the complex plane.

This last fact, in turn, guarantees that for any matrix norm || · || there exist real numbers M > 0
and 0 < λ < 1 such that ||(A−BKmpc)

p|| ≤Mλp, p > 0. Also, for the first trial, with the assumption
that η−1 is a zero vector, the filtered control signal is

us1(p) = −Kmpcx1(p) (28)

and with the control law applied

x1(p+ 1) = (A−BKmpc)x1(p) = Aclx1(p) (29)

where Acl = A−BKmpc. For a given x1(0), (29) gives

x1(p) = (A−BKmpc)
px1(0) = Apclx1(0) (30)

and also
||x1(p)|| ≤Mλp||x1(0)||. (31)

On the second trial, the filtered control signal is

us2(p) = −Kmpcx2(p)−K1x1(p) (32)

where K1 = L(0)TΩ−1RLΩ−1Ψ, and

x2(p+ 1) = (A−BKmpc)x2(p)−BK1x1(p) (33)

or, using (30),
x2(p+ 1) = (A−BKmpc)x2(p)−BK1(A−BKmpc)

px1(0) (34)
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or, for given x2(0),

x2(p) = (A−BKmpc)
px2(0)

−
p−1∑
i=0

(A−BKmpc)
p−i−1BK1(A−BKmpc)

ix1(0)

and

||x2(p)|| ≤ Mλp||x2(0)||+
p−1∑
i=0

Mλp−i−1||BK1||Mλi||x1(0)||

= Mλp||x2(0)||+M2pλp−1||BK1||||x1(0)||

By an inductive argument, for trial k

||xk(p)|| ≤ Mλp||xk(0)||+M2pλp−1||BK1||||xk−1(0)||
+ M2pλp−1||BK2||||xk−2(0)||+ . . .+M2pλp−1||BKk−1||||x1(0)||

(35)

where the gain matrices K1, K2, . . . , Kk−1 are bounded from the predictive ILC design. It is seen
that the dynamics along each trial are influenced by the state initial vector on this and all previous
trials.

In (35) the contributions from the previous trial state initial vectors are critical and their influence
decreases as λ decreases. One design approach to select a value for λ, and to place the eigenvalues
of A − BKmpc inside a circle with this radius. Such a design also regulates the transient dynamics
along the trial by regulating the maximum magnitude that can arise in the response (that is, in p)
produced along any trial. The choice of λ is application specific, depending on the form of along the
trial dynamics that is required or can be tolerated.

One way to complete this design exercise for the case where the eigenvalues are to be inside a
circle of radius λ is the following procedure (Wang , 2009).

1. For the selected 0 < λ < 1, solve the following modified version of the Riccati equation (27) for
given symmetric positive definite weighting matrices Q and R

AT

λ
P∞

A

λ
− AT

λ
P∞

B

λ
(R+

BT

λ
P∞

B

λ
)−1

BT

λ
P∞

A

λ
+Q− P∞ = 0. (36)

2. Select α > 1 such that the matrix α−1A has all eigenvalues inside the unit circle in the complex
plane and compute

γ =
λ

α
, Qα = γ2Q+ (1− γ2)P∞, Rα = γ2R. (37)

3. For the selected α from the last step, replace the state-space model matrices A and B by α−1A
and α−1B, respectively. Then complete the design with the cost function

J =

Np∑
m=1

xk+1(p+m | p)TQαxk+1(p+m | p)

+

Np∑
m=0

(usk+1(m)− usk(m))TRα(usk+1(m)− usk(m)) (38)

using the Qα and Rα of the previous step and a sufficiently large Np.
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5. A Simulation Case Study

Consider the continuous-time system with transfer-function

Gp(s) =
0.8

(5s+ 1)(3s+ 1)

but suppose that the predictive iterative learning controller is designed based on the nominal continuous-
time model

Gm(s) =
1.2

(6s+ 1)(3s+ 1)

where both plant and model are sampled by a zero-order hold with sampling interval ∆t = 0.25
(sec). The system is also subject to a disturbance, which is a filtered square wave signal corrupted
with zero-mean normally distributed white noise with variance 0.005 as shown in Figure 1(a). The
reference signal is a combination of ramp signals and constants as shown in Figure 1(b).
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Figure 1: The disturbance (left plot) and reference (right plot) signals used in the simulation.

The z-transform of the constant component in the reference signal has the form R1
1−z−1 whilst the

ramp signal component has the z-transform R2z−1

(1−z−1)2
where R1 and R2 are constants. Moreover, the

z-transform of the ramp contribution to the reference signal has two poles at z = 1. Hence if the
predictive iterative learning controller is designed to follow a ramp signal, it will automatically follow
a constant signal. Therefore, the polynomial D(z) is chosen to be

D(z−1) = (1− z−1)2

which is embedded into the model for the design of the prediction-based ILC. The filtered square
waved disturbance is assumed to be unknown but its frequency content is known to be concentrated
in the low frequency region. Therefore, the selection of D(z−1) effectively leads to an ILC design
that rejects this unknown disturbance.

After sampling, the augmented discrete-time state-space model (state, input and output respec-
tively) matrices of (7) are

A =


1.8417 −0.8465 0 0

1 0 0 0
0.0082 −0.0025 2 −1

0 0 1 0

 ; B =


1
0

0.003
0

 ;C =
[

0 0 1 0
]
.

In the exemplar design considered, the Laguerre scaling factor a = 0.35 and the number of terms
N = 10 were used. Also the weighting matrices in the cost function were Q = CTC and R = 1
and the eigenvalues of A−BKmpc are required to lie inside the circle of radius λ = 0.4. The design
of the corresponding Kmpc was undertaken using the Riccati equation based procedure given in the
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previous section. Also the performance measure used in the simulations given next is the sum of the
squared errors along each trial, i.e., Ek =

∑
p(r(p)− yk(p))2.

Different random seeds were used to generate the noise. A seed of 0 resulted in E1 = 0.1526,
E2 = 0.1186 and En = 0.1191, k ≥ 3. For the random seed chosen as 6, E1 = 0.147, E2 = 0.1155 and
Ek = 0.1159, k ≥ 3. Many random simulation runs with different seeds to generate the disturbance
also resulted in convergence after the third trial. Figure 2 compares the output and reference signals
(top plot) and the error (bottom plot) for one case and Figure 3 the corresponding control signal.
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Figure 2: The output (yk) and error (ek) produced by the controlled system for trial k = 1.
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Figure 3: The control signal required by the controlled system.

To examine the effects of the choice of D(z) on performance, a comparative study has been
undertaken with the case when D(z) = 1− z−1, i.e., a single integrator is embedded into the design.
In this case E1 = 0.953, E2 = 0.8965 and Ek = 0.8967, k ≥ 3. Figure 4 shows the output and
corresponding error after the third trial and Figure 5 the control signal required. In this case there
is a small steady-state error in the tracking of the ramp signal, leading to much larger errors.

Figure 6 compares the errors for the alternative designs. It is seen that the algorithm converges
after the second trial for both cases. However, for the ILC design with a single integrator embedded,
the measure Ek is 7.5 times larger (in magnitude) than the case when a double integrator is embedded.

This example was also considered in (Lee et al., 2000) where a Q filter ILC design that implicitly
embedded an integrator into the design was given. Hence a detailed comparative aspect should
provide much useful information of the relative merits of these two designs given that there is no
theoretical answer to which one is better than the other. This also applies to the alternative designs
listed under Remark 1 in this paper.
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Figure 4: The output (yk) and error (ek) produced by the controlled system for trial k = 1 with D(z) = 1− z−1.
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Figure 5: The control signal required by the controlled system with D(z) = 1− z−1.

6. An Experimental Case Study

Figure 7 shows an anthropomorphic robot arm undertaking a ‘pick and place’ task in a horizontal
plane using two joints. The robot end-effector travels from the ‘pick’ to the ‘place’ location in a
straight line using joint reference trajectories that minimize the end-effector acceleration. During the
movement, the arm stops at two intermediate points which are chosen such that there is a change
in the direction of travel along the path after reaching each of them. Having reached the ‘place’
location, the robot repeats the movement in reverse, arriving back at the ‘pick’ location. Positional
and velocity control loops have been implemented around each joint to provide baseline performance
and the control scheme operates at 20Hz (∆t = 0.05 sec).

The input and output joint angles have components ui and yi, i = 1, 2, respectively, so that
mu = my = 2. The dynamics are modelled by the 2× 2 transfer-function matrix[

y1(s)
y2(s)

]
=

[
G11(s) G12(s)
G21(s) G22(s)

] [
u1(s)
u2(s)

]
, (39)

where

G11(s) =
0.16s9 + 14.51s8 + 578.2s7 + 1.392e4s6 + 2.26e5s5 + 2.58e6s4 + 2.09e7s3 + 1.17e8s2 + 4.21e8s + 7.6e8

5.25e − 5s12 + 0.01463s11 + 0.91s10 + 31.2s9 + 714.1s8 + 1.19e4s7 + 1.45e5s6 + 1.4e6s5 + 1.01e7s4 + 5.7e7s3 + 2.3e8s2 + 5.9e8s + 7.6e8
,

G12(s) =
−0.022s7 − 3.24s6 − 88.3s5 − 1347s4 − 1.06e4s3 − 4.52e4s2

5.25e − 5s10 + 0.014s9 + 0.72s8 + 20s7 + 363s6 + 4645s5 + 4.3e4s4 + 2.9e005s3 + 1.4e6s2 + 4.18e6s + 6.323e6
,

G21(s) =
−0.16s7 − 8.7s6 − 194s5 − 2498s4 − 1.78e4s3 − 6.64e4s2

5.25e − 5s10 + 0.014s9 + 0.67s8 + 17.9s7 + 316s6 + 3963s5 + 3.6e4s4 + 2.42e5s3 + 1.1e6s2 + 3.5e6s + 5.3e6
,
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Figure 6: Plot of Ek =
∑

p(r(p)− yk(p))
2 against the trial number k.

Figure 7: Picture of the robot arm showing the pick and place locations.

G22(s) =
0.027s9 + 4.95s8 + 264s7 + 7394s6 + 1.3e5s5 + 1.69e6s4 + 1.5e7s3 + 9.4e7s2 + 3.8e8s + 7.6e8

5.25e − 5s12 + 0.014s11 + 0.9s10 + 31s9 + 714.1s8 + 1.19e4s7 + 1.48e5s6 + 1.4e6s5 + 1.04e7s4 + 5.7e7s3 + 2.3e8s2 + 5.9e8s + 7.6e8
.

Further details of the robotic system appear in (Wang et al., 2012). Following discretisation, these
are expressed by the state-space triple {Am, Bm, Cm} to produce the required form (2). The task
performed by the robot is represented in joint space by the r1 and r2 reference signals shown in
Figure 8. The parameters for the control design are given in Table 1 and the Riccati equation based
procedure of Section 4 was used with λ = 0.7 to place all poles of A − BKmpc inside a circle of
radius 0.7. The state observer required for implementation has again been designed as detailed in
the previous section with a gain of 100.

Figure 8 shows the reference signals and the output signals for trials k = 1, 2, 5 and confirms that
the controlled outputs closely track their reference signals for all three trials. The control signals
for the three trials are shown in Figure 9 and the sum of the squared errors for the first five trials
also confirms close tracking of the reference signals for each trial as shown in Figure 10. Given the
existence of measurement noise in the system and the magnitudes of the errors in Figure 10, it is fair
to say that the controlled performance is close to optimal for each trial.

Figure 11 shows the reference signals and output signals for the case where Laguerre term N1

(= N2) is reduced to 6. It can be seen that this increases output oscillation of both y1 and y2, leading
to the increased error norms shown in Figure 12.

To examine the effect of increasing the weight on the difference between successive control signals
in (15), weighting matrix R is modified to 10 × I. The Laguerre term N1 (= N2) is returned to
its original value of 8. Figure 13 shows the reference signals and output signals, and indicates that
oscillations on outputs y1 and y2 are reduced compared with those of Figure 8. This improvement
in performance is reflected by the reduced error norms shown in Figure 14.

Finally, R is returned to I and the predictive horizon is increased to Np = 400. Figure 15 shows
the reference signals and output signals and shows that again oscillations on both outputs are reduced
when compared with Figure 8. The corresponding error norms are shown in Figure 16 and confirm
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Laguerre pole a1 (= a2) 0.6

Laguerre term N1 (= N2) 8

Prediction horizon for each output Np 100

Weighting matrix Q CTC

Weighting matrix R I

α 1.1

λ 0.7

Table 1: Design parameters.
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Figure 8: Reference, output and error signals for k = 1, 2, 5.

a slight reduction in tracking error. This hence illustrates that a longer prediction horizon embeds
higher levels of robustness.

It is also of interest to compare the performance of the new design in this paper with the norm
optimal control of, for example, (Amann et al., 1996), where the cost function comprises the addition
of two sums of squares terms on each trial and then summed over the trials. The first term is defined
by the trial error with symmetric positive definite weighting matrix Q, that is, xTk+1(p)Qxk+1(p) and
the second by the difference between the control inputs on two successive trials, that is, (ek+1(p) −
ek(p))

TR(ek+1(p)− ek(p)), where R is a symmetric positive definite matrix.
Figures 17–20 show the experimental results obtained when Q and R correspond to those used

in the initial predictive ILC test (i.e., R = I, Q = CTC). The norm optimal trial-to-trial error
convergence is much slower and there are significant disturbances on the output and input.

Finally, the norm optimal weight is adjusted to Q = 100× CTC in order to provide comparison
with a robust inversion based design. Figures 21- 24 show results for this case. It is clear that
error norm convergence speed has increased, but is still far lower than the predictive ILC approach
proposed in this paper. Tests with alternative Q gains have also been performed and show no
increase in convergence speed, confirming that modelling error and disturbance degrade the nominal
performance properties of inversion based approaches. Hence these results demonstrate that the new
design of this paper has the potential to outperform the norm optimal design.

To provide a comparison against a tuning based design, a phase-lead ILC design has been exper-
imentally tested, i.e., the input for each channel on trial k + 1 is constructed as

uk+1(p) = uk(p) + βek(p+ λ) (40)
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Figure 11: Reference, output and error signals for k = 1, 2, 5 using N1 = N2 = 6.
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Figure 12: Ek for k = 1, 2, 3, 4, 5 using N1 = N2 = 6.

where β is the gain and λ > 0 is the phase-lead. A series of experiments with different phase- leads
was undertaken and the choice of λ = 3 gave the best results, see Figure 25. Overall, these results
show that: (1) the lowest possible error norm for any gain or phase-lead value is 1.72 and (2) faster
convergence is not possible as instability occurs earlier for the higher gain (i.e., β) required. These
results are to be expected given the relatively simple control law structure and the dynamics of this
system.

7. Conclusions

This paper has developed a new method for predictive iterative learning control design by embed-
ding a prior knowledge about the reference and disturbance signals into the model used for design. It
has been verified through simulations and experimental studies that use of this information can re-
sult in fast convergence of the error and better performance from the controlled system. The control
design is based on the receding horizon principle and a natural area for further research is to impose
hard constraints on, for example, the inputs and outputs. Also there is the need for in depth compar-
ative studies to benchmark this design against alternatives with supporting experimental evidence.
An obvious goal of such studies would be to compare this design method against, in particular, the
others listed under Remark 1. Given that there will be no universal best choice for all applications
another aim would be to develop guidelines as to which method gives the best results for a given
application.

16



0 10 20 30 40 50 60 70 80
−0.5

0

0.5

1

1.5

Time (sec)

 

 
y1, k = 1

y1, k = 2

y1, k = 5
r1

0 10 20 30 40 50 60 70 80
−0.4

−0.2

0

0.2

0.4

Time (sec)

 

 
e1, k = 1

e1, k = 2

e1, k = 5

0 10 20 30 40 50 60 70 80

−0.5

0

0.5

1

1.5

2

2.5

Time (sec)

 

 
y2, k = 1

y2, k = 2

y2, k = 5
r2

0 10 20 30 40 50 60 70 80

−0.5

0

0.5

Time (sec)

 

 
e2, k = 1

e2, k = 2

e2, k = 5

Figure 13: Reference, output and error signals for k = 1, 2, 5 using N1 = N2 = 8 and R = 10× I.

1 2 3 4 5

2.6

2.8

3

3.2

3.4

3.6

3.8

Trials, k

E
rr

or
 n

or
m

Figure 14: Sum of squared error signals of k = 1, 2, 3, 4, 5 using N1 = N2 = 8 and R = 10× I.
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Figure 17: Sum of squared error for the norm optimal design with R = I and Q = CTC.
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Figure 18: Control input signals for the norm optimal design with R = I and Q = CTC.
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Figure 19: Reference, output and error signals for output y1 in the norm optimal design with R = I and Q = CTC.
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Figure 20: Reference, output and error signals for output y2 in the norm optimal design with R = I and Q = CTC.

Figure 21: Sum of squared error for the norm optimal design with R = I and Q = 100× CTC.
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Figure 22: Control input signals for the norm optimal design with R = I and Q = 100× CTC.
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Figure 23: Reference, output and error signals for output y1 in the norm optimal design with R = I and Q = 100×CTC.
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Figure 24: Reference, output and error signals for output y2 in the norm optimal design with R = I and Q = 100×CTC.

1 2 3 4 5
0

20

40

60

80

Trials, k

E
rr

or
 n

or
m

 

 
β = 0.3

β = 0.8

β = 1.3

β = 1.8

Figure 25: Sum of squared error for the phase-lead ILC design (40) with λ = 3 and various β gains.
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