OPTICAL FIBRES

1. Introduction

The structure of optical fibre transmission lines takes the
very simple [Suematsu & Iga 1982] form of a cylindrical glass core
of refractive index nj surrounded by a cladding glass of
refractive index nj where
ny < nj. Normally most of the propagating energy is contained in
the core but there is always a radially-decaying evanescent field
in the cladding, which may extend over several wavelengths in the
case of single-mode fibres. Both core and cladding materials must

therefore have very low absorption and scattering losses.

As with waveguides, when the transverse dimensions of the
guiding structure, in this case the core, are comparable with a
wavelength then only a single mode can be supported, whereas for
larger core diameters multimode operation prevails. Normally the
wavelength of operation is in the region of 1lum, corresponding to
a frequency of 300,000GHz, so that single-mode fibres have a core
diameter of 1 to 10um while multimode fibres have standardised
core diameters of between 50 and 60um. For practical convenience
the outer diameter of telecommunication fibres is made 125uym in
both cases. In step-index fibres the refractive indices are
constant in both core and cladding, whereas in (ideal) graded-
index fibres the refractive index is a maximum nj at the core
centre but falls monotonically to that of the cladding nj at the
core boundary. With fibres designed for long-distance
transmission (nj-nj3) < n; = 1.5 and the relative refractive-index

A = (ni1-ng)/n; is about 1%.

At this point it is convenient to provide definitions of a
few other basic quantities. Firstly, the maximum angle 4y to the
axis that light can enter a fibre at the input end from a medium
of refractive index ny is defined in terms of the numerical

aperture NA as

ng sin 6p = NA = (nlz - n22)0.5 ~ n1(2A)0°5 (1)



If the medium is air, for which ng = 1, and o = 0.01 then
fm = 12°. The core radius a is usually normalised to the free-

space wavelength of operation A through
vV = (21ra/)\)(n12._n22)0.5 =~ (Zﬂanl/)\)(zA)o.5 (2)

V is called the normalised frequency although it could equally
well be referred to as the normalised core diameter or normalised

wavelength.

Why, one might ask, and under what circumstances, are optical
fibres preferred to other forms of transmission line? Some of
their merits and drawbacks are discussed in the following pages

but may be summarised as follows.
Advantages

1. Extremely low transmission loss (down to 0.15dB/km) giving
distances between repeaters in a trunk network, or in
underwater cables, of 100 to 200km and more, compared with

2km for coaxial cables.
2, Extremely large bandwidths of up to 1GHzkm for graded-index
multimode fibres and 100 GHzkm for single-mode fibres,

~20MHzkm for coaxial cable.

3. Small size, low weight and high degree of flexibility.

4. Freedom from electromagnetic interference and earth-loop
problems.
5. Fabricated from relatively abundant materials (silica,

phosphorus, germanium, boron).

6. Zero cross-talk between closely-spaced lines.



7. Larger Young’s modulus and resistance to crushing than

copper.
Disadvantages
1. Glass is brittle and therefore breaks when the elastic limit

is exceeded.

2. Long-term (20 years) mechanical stability under strain is
unknown.

3. Demountable connectors and other, similar, components are
expensive.

The properties of the principal types of optical fibre

waveguide are summarised in Table 1.

Optical fibres can have a wide variety of applications and
can be made from a range of optically "transparent" materials.
However, the most important fibres at the present time are those
used in telecommunications and most attention, in the first part
of this chapter, will therefore be devoted to them, although the
general principles apply to all types of fibre. The principal
component of such fibres is silica, which can be produced in very

pure form (only a few parts of impurity in 109 parts of silica).

The glassy form [Rawson 1967] of pure SiOp has an extremely
low transmission loss in the optical and near-infra-red regions of
the spectrum and can be drawn into long lengths with a high degree
of precision. Silica, unfortunately, has the low refractive index
of 1.45 and, when used as the core of a fibre, there are
comparatively few compatible materials which have a sufficiently
low refractive index to act as cladding. Possibilities are silica
admixed with a small proportion of boron or fluorine and certain
plastics such as silicone rubber. Conversely the index of silica
can be raised by adding such oxides as P30g, GeOp or TiOj3.



Telecommunication fibres are generally prepared from a
preform which is drawn down into a fibre which can be many (10-20)
kilometres in length. The preform may contain three regions:

a central core of fibre core material (e.g. germanosilicate
glass); a surrounding layer of cladding glass (e.g. phospho-
silicate glass); and an outer layer, or substrate, of commercial
silica tubing. In the resulting fibre only the core and cladding
contribute to optical propagation and they must be of extremely
high purity. There are several different methods of preform
fabrication which are based on various forms of chemical vapour

deposition [Gambling, Hartog & Ragdale 1981].

2. Transmission Loss of Optical Fibres

The factors contributing to loss in an optical fibre
transmission line include absorption, scattering due to
inhomogeneities in the core refractive index (Rayleigh
scattering), scattering due to irregularities at the boundary
between core and cladding, bending loss, loss at joints and

connectors and the coupling losses at the input and output.

Remarkable progress has been made in reducing the
transmission loss, which is about two orders of magnitude lower
than that of coaxial cables having a similar transmission
bandwidth. The absorption loss at some wavelengths is almost
negligible and below about 0.8um scattering is the dominant

factor.

The main cause of absorption is the presence of transition
metals such as Fe, Cu (especially in multicomponent glasses),
water in the form of OH- ions and the intrinsic absorption of the
pure glass itself. 1In order to reduce the absorption to an
acceptable level, it is necessary to prevent a metal concentration
of more than 1 in 109, and an OH radical concentration of more

than 1 in 107, from occurring.



Another purely material effect is the scattering due to
inhomogeneities in the refractive index. These fluctuations are
on a scale which is smaller than the wavelength and the resulting
Rayleigh scattering is inversely proportional to the fourth power
of the wavelength (A'4), so that it becomes rapidly smaller at

longer wavelengths.

The transmission of a single-mode fibre is shown in Figure 1
and exhibits the characteristic features of fibres made by the
modified CVD process. In this particular case the core diameter
is 10.5um, the relative refractive-index difference is A = 0.17%
and the cut-off wavelength of the second set of modes (TMgpi1, TEQ)
and HE57) is 1.2um. At short wavelengths the attenuation is
inversely proportional to the fourth power of the wavelength and

therefore confirms Rayleigh scattering.

The rise in attenuation beyond 1.7um is attributed to the
intrinsic infra-red absorption of the glass. The effect of OH™
impurities can be clearly seen but are at a much lower level than
is normally observed. The fundamental vibration is at x = 2.8um

in silica and there are overtones at 1.39%9um and 1.24um.

The transmission loss at 1.3um is below 0.4dB/km and is
0.16dB/km at 1.55um. See also [Miya et al 1979].

A mode conversion loss, and a loss due to radiation, occur if
the fibre has small irregularities at the boundary between the
core and cladding. However, this interface scattering, which is
referred to as "microbending", can be reduced by increasing both
the core radius and the index gradient in the core in order to

minimise the light intensity at the core/cladding boundary.

Bends can also cause mode conversion to occur in addition to
the energy loss due to radiation.



3. Propagation in Single-Mode Fibres

The analysis of optical fibres follows the same procedure as
that for any other transmission line which guides electromagnetic
waves. Thus solutions of Maxwell’s equations and the
corresponding wave equation are sought in terms of the appropriate
boundary equations, using well-established techniques. For each
of the propagating modes it is possible to deduce the spatial
distribution of the electric and magnetic fields, the propagation
constant, phase and group velocities, and so on, in the normal
way. Optical fibres differ in degree only, and not in principle,
from, say, hollow metal waveguides, in that they are designed for
operation at frequencies higher by a factor of 104 and the guiding
structure is fabricated entirely from dielectric materials since

metals are very lossy at optical frequencies.
3.1 Basic Concepts

A dielectric waveguide supports a finite number of guided
modes and an infinite number of radiation modes which together
form a complete orthogonal set. Only guided modes are considered

here.

To simplify the analysis of fibre waveguides the cladding may
be assumed to be of infinite extent. In practice this simply
means that the cladding diameter must be large enough for the
field to decay to a negligible level at its outer edge. 1In
single-mode fibres a significant proportion of the power is
carried in the cladding which must have a diameter roughly seven

times that of the core, say 30um.

An exact description of the modal fields is complicated, but
the analysis can be simplified by making use of the fact that, in
practice, (ny - n3) < nj, the well-known "weakly-guiding
approximation". The approximate mode solutions derived in this
way are very nearly linearly-polarised [Snyder 1969A] [Gloge 1971]
and are denoted by LP,, where v and u denote the zeros of the
field in the azimuthal, and radial, directions, respectively.



These linearly-polarised modes correspond to a superposition of
the two modes HE,4;,, and EH,_3,, of the exact solution to
Maxwell’s equations. The exact modes are nearly degenerate and as

nyg - ni their propagation constants become identical.

Maxwell’s equations with the weakly-guiding approximation

give the scalar wave equation as:

2 2
g_f + &1 a%y [n2(r)k2 - B21p =0 (3)

dr2 r dr ;2 de?

where ¢ is the field (E or H), k = 2x/x is the free-space wave
number, n(r) is the radial variation of the refractive index and
r, ¢ are the cylindrical co-ordinates. The propagation constant B
of a guided mode obviously lies between the limits nyk < B < njk.
The fibre is circular in cross-section and the solutions of the

wave equation are separable, having the form:
¥ = E(r) cos vo exp [j(wt-Bz)] (4)

For simplicity the factor exp[j(wt-Bz)] will be omitted from later

equations.

In single-mode fibres only the fundamental LPg; mode
propagates and it has no azimuthal dependence, i.e. v = 0. It
corresponds to the HEj] mode derived from the exact analysis. For

this fundamental mode equation (3) reduces to

d2E 1 dE
—— 4+ _ 4 [n2(n)k - B2]E = 0 (5)
dr2 r dr

In a step-index fibre, i.e. one with a constant refractive index
nj in the core, equation (5) is Bessel'’s differential equation and
the solutions are cylinder functions. The field must be finite at
r = 0 and therefore in the core region the solution is a Bessel
function J,. Similarly the field must vanish as r + « so that the

solution in the cladding is a modified Bessel function K,. For



the fundamental LP(; mode polarised in either the x or y direction
the field is therefore [Snyder 1969A]

E(r) = AJ(UR) R<1 (core)

Ko (WR)
= AJg(U) — . R>1 (cladding) (6)
Ko (W)

where R = r/a is the normalised radial coordinate and A is the
amplitude coefficient. U and W are the eigenvalues in the core,

and cladding, respectively, and are defined by

U2 = a2(n12k2 - B2) (7)
therefore

Related to these parameters is the normalised propagation constant
b, defined as [Gloge 1971]

u2
v2

o
I

[(B/k)2 - ny2)/2n72a = 1 - (8)

where

Since, for a guided mode, the limits of B are ngk and njk then b

must lie between 0 and 1.



The field expressions in equation (6) are normalised so as to
have the same value at r = a. In addition the tangential electric
field components must be continuous at this point, leading to the
following eigenvalue equation for the LPgp; mode:

UJ31(U)  WKj(W)
+ (9)
Jo(U) Ko (W)

It should be noted that it is only because of the weak-guidance
approximation that the boundary conditions of the magnetic field

components are also satisfied by this condition.

By solving equations (7) and (9) the eigenvalue U, and hence
B, can be calculated as a function of the normalised frequency V.
Therefore the dependence of the propagation characteristics of the

mode on the wavelength and fibre parameters can be determined.

At the lower limit of B = njk the mode phase velocity equals
the velocity of light in the cladding and the wave is no longer
guided, the mode is cut off and the eigenvalue W = 0 (equation
(7)). As B increases, less power is carried in the cladding and
at B = n1k all the power is confined to the core.

The limit of single-mode operation is determined by the
wavelength at which the propagation constant of the second LPjj,
mode equals ngk. For a step-index fibre this cut-off condition is

given by
Jo(Ve) = 0
where Vo denotes the cut-off value of V which, for the LP;; mode,

is equal to 2.405. The fundamental mode has no cut-off, hence

single-mode operation is possible for 0 <V < 2.4.



4. Dispersion in Single-Mode Fibres

The bandwidth of optical fibres is limited by broadening of
the propagating light pulse which has a finite spectral width due
to (i) the spectral width of the source, and (ii) the modulation
sidebands of the signal. If, therefore, the fibre waveguide is
dispersive the different frequency components will travel at

different velocities resulting in pulse distortion.

The transit time for a light pulse propagating along a fibre
of length L is

L dB
T = e (10)
¢ dk

where c is the velocity of light.

If B varies non-linearly with wavelength the fibre will be

dispersive. From equation (8) we have
B2 = x2n72[1 - 2a(1 - b)] (11)

Thus B is a function of the refractive indices of the core
and cladding materials and of b. Equation (8) shows that b is a
function of V so that pulse dispersion arises from the variation
of b with the ratio a/A. In addition, the refractive index of the
fibre material varies non-linearly with wavelength and this also

gives rise to pulse dispersion.

The pulse spreading caused by dispersion is given by the
derivative of the group delay with respect to wavelength [Payne &
Gambling 1979]

2
=L 2r d9B (12)

c 22 dk2

sy 97

dx

pulse spread =

where §) is the spectral width of the source. Substituting
equation (11) into equation (12), and differentiating with respect



to k, gives the dependence of the pulse spreading on the material
properties and the mode parameter b. The dependence on the
refractive index is given in terms of the material dispersion
parameter -(A/c)(d?n/dx2) where n = n; or nj and the dependence on
b is given by the mode dispersion parameter defined as
V(dz(bV)/dVZ). In addition, a third term, which is proportional
to da/dx, arises from the differentiation in equation (12).

The preceding three effects are inter-related in a
complicated manner, but [Gambling, Matsumura & Ragdale 1979A]
show that the expression for pulse spreading can be separated into
three composite dispersion components in such a way that one of
the effects dominates each term. For example, a composite
material dispersion term can be defined which has a dependence on
both b and d2n/dx2, however it becomes zero when d2n/dr2 is zero.

In multimode fibres the majority of the modes are far from
cut off and most of the power is carried in the core. In this
case the composite dispersion components simplify to terms which
depend on either material or mode dispersion, and the two effects
can be separated. In addition, in step-index multimode fibres the
effect of da/dx can be neglected.

Material and mode dispersion also have a dominant effect in
single-mode fibres but the effect of da/dx can no longer be
neglected [Gambling, Matsumura & Ragdale 1979A].

In the absence of material dispersion the pulse spreading is
controlled by the mode parameter de(bV)dV2 which is shown in
ot Figure 2(a) as a function of V for the LPp; mode. In the single-
mode regime, i.e. V < 2.4, the mode dispersion is always positive
and reaches a maximum at V = 1.15. It is seen that a change in
any of the waveguide parameters, e.g. core radius or wavelength,
changes V and hence the mode dispersion.

The material dispersion parameter, (A/c)(d2n/dA2) is plotted

o a8 @ function of wavelength in Figure 2(b) for a germanophospho-

’ silicate glass fibre with NA = 0.2. At most wavelengths the



material dispersion exceeds mode dispersion, but at 1.29um the
material dispersion is zero [Payne & Gambling 1975]

(i.e. dr/dx = 0). Thus at wavelengths near this wvalue the
bandwidth is limited by mode dispersion.

The total dispersion of a single-mode fibre arises from the
combined effects of material dispersion, mode dispersion and da/dAx
s terms. As shown in Figure 2(b) the material dispersion function
changes sign at a wavelength of approximately 1.29um, whereas mode
dispersion always has the same sign in the single-mode regime.
Therefore the effects of material dispersion, da/dx and mode
dispersion can be balanced to give zero first-order dispersion at
a given wavelength [Gambling, Matsumura & Ragdale 1979A]. Hence
extremely large bandwidths can, in theory and practice, be

achieved in single-mode fibres.

Since the dispersive properties of the fibre depend on both
the fibre core dimensions and the fibre materials the total
dispersion can be altered by changing either of these parameters.
The wavelength Ao at which the first-order dispersion is zero can
therefore be tuned by appropriate choice of the core diameter or

o of NA. The total dispersion is plotted in Figure 3 as a function
of wavelength for different core diameters and a fixed NA of 0.23.

The range of wavelengths over which Ao can be tuned is
limited. The maximum value depends on the usable value of NA,
while the minimum value is approximately the wavelength at which

material dispersion is zero (~1.3um).

If a fibre is designed to operate with zero first-order
dispersion the limitations imposed on the bandwidth by secondary
effects must be considered. For example, birefringence arising
from ellipticity or stress in the core causes the two
orthogonally-polarised modes of the "single-mode fibres" to become
distinguishable, i.e. they are no longer degenerate as in the
scalar approximation [Adams et al 1979] [Love et al 1979]. The
modes have different propagation constants which results in pulse

dispersion. The dispersion caused by a difference between the



major and minor axes of about 5% is less than 2 ps/km and can
therefore be neglected [Adams et al 1979]. On the other hand the
pulse dispersion arising from stress birefringence may be as high
as 40ps/km if the expansion coefficients between the fibre core
and cladding materials are not matched [Norman et al 1979].

Figure 4 shows the bandwidth of a single-mode fibre designed
for Ao = 1.3um. In the absence of second-order effects the
bandwidth is usually limited by the spectral width of the source.
Thus the solid line shows the available bandwidth with a source of
linewidth 1nm. On the other hand if stress birefringence
introduces a pulse dispersion of 10ps/km the bandwidth in the
vicinity of Ay is considerably reduced (dotted curve). In the
absence of polarisation dispersion the bandwidth near )o would be

determined by higher-order effects.

Measurements with a narrow-linewidth laser source over a 20km
length have revealed a pulse dispersion of less than 4ps/km in a

typical fibre.

5. Spot Size

The spot size of the fundamental mode is one of the most
important parameters in single-mode fibre design since it largely
determines the launching efficiency, jointing loss and bending
loss. Usually the spot size wg is defined as the width to 1l/e
intensity of the LPy; mode or, alternatively, in terms of the spot
size of an incident Gaussian beam which gives maximum launching
efficiency. The latter definition arises from the fact that the

LPpj; mode has almost a Gaussian distribution.

The spot size is a function of both V and NA, although the
dependence on V is only slight [Gambling & Matsumura 1977]
(vo changes by only 2% over the range V = 1.8 to 2.4). The
numerical aperture, on the other hand, has a strong effect since a
large NA increases the guidance effect and more of the power in
the LPp] mode is confined to the core, so that the spot size

decreases.



6. Launching Efficiency

The ratio of power accepted by the fibre to the power in an
incident beam is defined as the launching efficiency and can be
calculated by integrating the product of the incident and
propagating modes over the fibre cross-section [Snyder 1969B].

Thus launching efficiency

'.3|i—'
—

A A A
| I Einc-E dA |2 J E2;ncdA J E2 dA (13)

where Ejpc is the electric field distribution of the incident

mode.

Maximum power is launched into the fibre when the spot size
of the LPp; mode is matched to the waist of the incident Gaussian
beam. In practice, however, the launching efficiency of the LPg3

mode decreases if the input beam is offset or tilted.

7. Joint Loss

The efficiency with which power can be coupled between two
fibres is determined by the extent to which the mode patterns of
the incoming and outgoing fibres can be matched. Therefore
angular or lateral misalignment can considerably increase the loss
at a joint. While longitudinal separation between the ends of the
fibres can also occur, its effect on loss in practical joints is

small enough to be neglected.

If it is assumed that the spot sizes of the modes of the two
fibres are the same then the joint loss can be derived simply in
terms of spot size. 1In the absence of angular misalignment the
loss caused by lateral offset is [Gambling, Matsumura & Ragdale
1978}

T1 = 2.17(D/wo)2dB (14)



where D is the offset. The offset loss is thus inversely
proportional to the square of the spot size, wg. On the other

hand the loss caused by an angular misalignment o is
T, = 2.17 (awonV/aNA)2 dB (15)

and hence angular misalignment loss is directly proportional to
the square of the spot size. Thus for a given loss there is a
trade-off between the spot size, and hence NA, required for low

offset loss and that required for low angular misalignment loss.

When angular and lateral misalignments occur together the
combined effect is complicated [Gambling, Matsumura & Ragdale
1978), but if the total loss is small it can be approximated by
the sum of equations (14) and (15).

8. Bending I.0Ss

Radiation at bends in single-mode fibres can significantly
increase the transmission loss [Petermann 1977] [Gambling,
Matsumura & Ragdale 1979B]. The bending loss can arise either
from curvature of the fibre axis or microbending, i.e. small
inhomogeneities in the fibre such as diameter variations, which

can arise during coating and cabling.

There are two different mechanisms giving rise to bend loss
in single-mode fibres, namely transition loss and pure-bend loss
[Gambling, Matsumura & Ragdale 1979B] [Gambling, Matsumura,
Ragdale & Sammut 1978). The transition loss is oscillatory and
arises because power is lost by coupling between the fundamental
mode and the radiation modes. In other words the power
distribution in the HEj; mode of the straight fibre is different
from that of the corresponding mode in the curved fibre and power
is lost at the interface between the two due to this mismatch.



The second mechanism, pure-bend loss, represents a loss of
energy from the pure mode of the curved fibre and can be explained
as follows. At a bend the phase fronts are no longer parallel and
at a sufficiently large distance from the centre of curvature the
increased distance between the phase fronts corresponds to a phase
velocity greater than c/nj. This part of the wave is no longer
guided and radiates away from the fibre. As the curvature is
increased the radius at which the phase velocity equals the
velocity of light decreases, hence more energy is lost. The
amount of power radiated depends on the spot size. If the spot
size is reduced the power is more tightly guided in the core and

the pure-bend loss decreases.

Both the transition loss and pure bend loss are strongly
dependent on the NA (and hence the spot size). It is therefore
possible to reduce bending loss to a negligible level by

increasing the numerical aperture of the fibre.

9. Arbitrary Profiles

In the discussions above only a stepped refractive-index
profile has been considered. In practice, however, the real
profiles of single-mode fibres have a dip in the centre and some
grading of the core/cladding boundary is caused by diffusion of
dopants during the fabrication process. In addition the
refractive index in the cladding is not usually constant. The
field distribution and propagation characteristics of the LPgj;
mode are thus different quantitatively, although not
qualitatively, from those in the step-index fibre. Hence all of
the properties discussed above will be different for fibres with

different profiles.

There are two ways of dealing with this problem. The first
is to use the measured refractive-index profile to produce a
numerical solution [Matsumura et al 1980] of the scalar wave
equation (equation (3)). The second method involves matching the
mode field of the real fibre to that of a fibre with equivalent
step-index distribution [Matsumura et al 1980] [Snyder & Sammut



1979]. This simplifies the problem since the analytical
expressions for a step-index fibre can be used; however, it is not
very accurate for fibre profiles which depart too far from a

stepped distribution.

10. Propagation in Multimode Fibres

10.1 Basic Concepts

Multimode fibres have larger core diameters and numerical
apertures than single-mode fibres and, as a result, can be coupled
more easily to optical sources. In particular, light-emitting
diodes, which are cheaper and more reliable than lasers, can be
used to drive multimode fibre links. Moreover jointing and
splicing losses are much lower than with single-mode fibres since
the dimensions are larger and hence the alignment tolerances are
much less stringent. Finally, multimode fibres are less
susceptible to microbending losses. However single-mode fibres
have far higher bandwidths than those offered by multimode fibres.

Typical multimode fibres have a core diameter of 50um, a
numerical aperture of 0.2 (i.e. a relative index difference A of
slightly less than 1%) and an outer diameter of 125um. At a
wavelength of 0.85um (the emission wavelength of GaAs devices) the
corresponding normalised frequency is V = 37 and the number of
guided modes (approximately V2/4 for graded-core fibres is
340).

~

In general, therefore, power is launched into a large number
of modes having different spatial field distributions, propagation
constants, chromatic dispersion and so on. In an ideal fibre,
having properties (e.g. core size, index difference, refractive-
index profile) which are independent of distance, then the power
launched into a given mode remains in that mode and travels
independently of the power launched into other modes. In addition
most of the modes are operated far from cut-off and their
properties are, therefore, relatively independent of wavelength.
This behaviour contrasts with single-mode operation where the mode



parameters, such as normalised propagation constant or power

confinement factor, vary rapidly with wavelength.

Since the majority of modes operate far from cut-off, and are
thus well confined, most of the power carried by multimode fibres
travels in the core region. The properties of the cladding
therefore only significantly affect those modes which are near
cut-off and whose electromagnetic fields extend appreciably beyond

the core.

11. Dispersion in Multimode Fibres

The existence of several hundred modes, each having its own
propagation constant, causes a form of pulse distortion which does
not exist in single-mode fibres, namely intermodal dispersion.
The energy of an impulse launched into a multimode fibre is
therefore spread over a time interval corresponding to the range
of propagation delays of the modes. The number of signal pulses
which may be transmitted in a given period, and hence the
information-carrying capacity of the fibre, is therefore reduced.
Since, in the absence of mode filtering or mode conversion, the
pulse spreading increases linearly with fibre length, the
bandwidth is inversely proportional to distance. The product of
bandwidth B and distance L is therefore a figure of merit for the
information capacity of an optical fibre. The BxL product for a
step-index fibre is typically 20MHz/km. As indicated in the
Introduction, a careful choice of the radial variation of the
refractive index enables the transit-times of the modes to be
almost equalised so that BxL products of 10-20GHz/km have been
predicted but cannot be achieved in practice. The power-law, or

a, class of refractive-index profiles, given by
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has been used extensively to model the grading function of
multimode fibres. The profile is optimised by a suitable choice
of a. It may be shown [Gloge & Marcatili 1973] [Olshanksy & Keck
1976] that, neglecting the dispersive properties of the glasses
forming the waveguide, the value of o which minimises the r.m.s.
pulse broadening is given by

12A
aopt = 2 - — (17)

and the r.m.s. output pulse width produced by a unit impulse at
the input is then

L ny

opt T —
Pt < 20/3

X (18)

The intermodal dispersion is, however, an extremely sensitive

function of the index-profile. Minute departures of refractive
index from the power law, or an incorrect design of the profile,
lead to a much lower bandwidth than is theoretically achievable.
For example, an error in o« of ~ 1% degrades the bandwidth by a

factor of two. The central dip caused by dopant evaporation in
the high-temperature collapse stage of the CVD process, and the
step-like structure caused by the deposition of individual glass
layers, have been shown to contribute significantly to the pulse

broadening.

11.1 Effect of the Wavelength Dependence of Refractive Index

The variation of refractive index with wavelength also causes
the transmitted pulses to broaden, as we have seen in the case of
single-mode fibres. With multimode fibres an additional, more
subtle, effect exists since the index dispersion dn/d) also alters
the relative transit-times of the modes and hence, the intermodal
dispersion [Olshansky & Keck 1976]. This is normally referred to
as "profile dispersion" and is a result of the difference which



exists between the group index N = n-i(dn/dx) (which determines

the pulse transit time) and the refractive index n.

Since dn/dx is, in general, a function of glass composition
it varies across the core of a graded-index fibre. Hence each
mode is affected differently by dispersion since the spatial
distribution of power is not the same for all modes. For example,
low-order modes travel, on average, in a medium of higher dopant
concentration than do higher-order modes. Thus a correction to

the optimum profile parameter is required.
11.2 Material Dispersion in Multimode Fibres

The power carried by multimode fibres travels almost entirely
in the core region. Because, in addition, most modes are operated
far from cut-off they are almost free of waveguide dispersion.

The pulse delay in multimode fibres is thus given, to first order,
by [Gloge 1971]

T=EN1=.I.'_ njg - 2 —_= (19)

where N7 is the group index of the core material. (For graded-
index fibres, Nj represents a value of group index averaged over

the core area).

Semiconductor sources used in optical communications systems
radiate over a finite range of wavelengths and, from equation
(19), each spectral component travels at a different group
velocity. The resulting pulse broadening oy is known as material

dispersion.

For a source of r.m.s. spectral width og and mean wavelength
Ags om May be evaluated by expanding equation (19) in a Taylor

series about )g:
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The first term normally dominates, particularly for sources
operating in the 0.8 to 0.9um wavelength region. Thus for the
material illustrated in Figure 2(b) the material dispersion
parameter M = (1/L) (dr/dx) is ~ 100ps nm~1 km-1 at 0.85um. For a
typical light-emitting diode having sg = 18nm and Ag = 850nm the
resulting pulse broadening is 1.8ns/km~! which limits the BxL
product to 100MHz/km. This level of dispersion is an order of
magnitude greater than the intermodal dispersion. Even with
semiconductor lasers (having spectral widths of, typically, 1lnm
r.m.s.) material dispersion sets an ultimate limit on the capacity

of multimode fibre systems.

Figure 2(b) shows that a wavelength region exists where the
material dispersion parameter is negligible. The wavelength iy of
zero material dispersion is found to vary according to the glass
composition [Payne & Hartog 1977], but for silica-based fibres, is
always in the vicinity of 1.3um. Operation in this wavelength
region substantially reduces the bandwidth limitations arising
from material dispersion and greater BxL products are available,
even with light-emitting diodes. It may be seen from Figure 1
that, for silica-based glasses, the fibre attenuation is also
extremely low (0.38dB/km-1).

As shown in Figure 5, the bandwidth available from multimode
fibres increases rapidly as the wavelength of operation is
increased from 0.85um (emission of GaAlAs devices) to the region
of negligible material dispersion (~ 1.3pm). Thus for a laser
having a spectral width of lnm r.m.s. (dashed curve), the
information-carrying capacity is limited in the region of 1.3umm,
by residual intermodal dispersion. For a numerical aperture of
0.2 the maximum available bandwidth is ~ 13GHz/km, providing the
refractive-index profile is correctly designed.
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Material dispersion does not completely vanish, however, even
at the wavelength where the first derivative of group delay dr/dA
is zero. According to equation (22) higher-order terms must then
be taken into account [Kapron 1977]. The pulse broadening
resulting from second-order material dispersion is proportional to
the square of the source linewidth, and for silica-based fibres is
of the order of 0.1ps/nm‘2km’1. With laser sources second-order

material dispersion is not a serious limitation.

The linewidth of light-emitting diodes increases as the
square of the operation wavelength [Gloge et al 1980] and, at
1.3um, values of 100nm f.w.h.m. (42nm r.m.s. spectral width) have
been reported. With such broad spectral widths, second-order
material dispersion limits the bandwidth [Adams et al 1978] to
about 2GHz/km~l, see Figure 5, solid curve. Although the
bandwidth of the best multimode fibres can, in principle, be
limited in this way, in practice a counteractive effect, namely
wavelength filtering, takes place. The latter effect results from
even minor variations in the loss/wavelength characteristic of the
fibre, which are enhanced by transmission over long distances
(e.g. 20-30km for typical 1.3um systems). Thus, the effective
wavelength spread is dictated more by the attenuation
characteristics of the fibre than by the spectral width of the
source. In addition the wavelength at which the received power is

a maximum may not coincide with the peak source wavelength.
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