
UN
CO

RR
EC

TE
D

PR
O

O
F

Journal Code: Article ID Dispatch: 22.09.15 CE: Palang, Olivia

S I M 6 7 4 1 No. of Pages: 13 ME:

Research Article

Received 8 August 2014, Accepted 27 August 2015 Published online in Wiley Online Library

(wileyonlinelibrary.com) DOI: 10.1002/sim.6741

A log-linear multidimensional Rasch
model for capture–recapture
E. Pelle,a*† D. J. Hessenb and P. G. M. van der Heijdenb,c

In this paper, a log-linear multidimensional Rasch model is proposed for capture–recapture analysis of registra-
tion data. In the model, heterogeneity of capture probabilities is taken into account, and registrations are viewed
as dichotomously scored indicators of one or more latent variables that can account for correlations among
registrations. It is shown how the probability of a generic capture profile is expressed under the log-linear multi-
dimensional Rasch model and how the parameters of the traditional log-linear model are derived from those of
the log-linear multidimensional Rasch model. Finally, an application of the model to neural tube defects data is
presented. Copyright © 2015 John Wiley & Sons, Ltd.
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1. Introduction

Capture–recapture methods are statistical procedures originally used to estimate the size of wildlife pop-
ulations [1]. Such procedures are based on a sequence of trapping experiments where individual trapping
histories are used to estimate the population size.

Capture–recapture methods have also been successfully applied to estimate the size of human pop-
ulations. In the case of a human population, the methods are also referred to as multiple-recapture,
multiple-records systems, and multiple-records systems methods [2]. In general, capture–recapture meth-
ods can be applied in any situation in which two or more incomplete but overlapping lists or registrations
are available. Each such registration is then regarded as a capture sample, and the data are usually
arranged in an incomplete 2s contingency table where the missing cell corresponds to the absence in all
s registrations. Subsequently, the contingency table is typically analyzed using a log-linear model [3].

Traditional capture–recapture methods assume that the probabilities of inclusion in the s registrations
are independent. If dependencies are allowed between registrations, then interaction terms should be
included in the log-linear model used [4].

Another assumption in traditional capture–recapture methods is the homogeneity of the capture
probability. However, differences of character or behavior between individuals may cause indirect
dependence between registrations. Models that were successfully applied to estimate the size of ani-
mal and human populations [5, 6] while accounting for unequal catchability are psychometric models,
such as the Rasch model.

The Rasch model is a well-known psychometric model for the analysis of dichotomously scored items.
In this model, the probability of a response of an individual to an item is modeled as a function of the
difficulty of the item and the underlying latent ability of the individual. The use of the dichotomous
Rasch model in a capture–recapture context where all registrations are of the same kind provides the
possibility to deal with a specific type of heterogeneity, that is, constant apparent dependence between
registrations [2, 5, 6].
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An extension of the dichotomous Rasch model is the multidimensional Rasch model, where one or
more latent abilities are underlying the responses to the items [7–9]. Bartolucci and Forcina [10] proposed
a Rasch-type model for the analysis of capture–recapture data allowing for conditional dependence and
multidimensionality; Bartolucci and Pennoni [11] proposed an extension of the latent class model for
behavior effects. In the present paper, however, a log-linear multidimensional Rasch model is proposed
for capture–recapture analysis of registration data. In the model, registrations are viewed as indicators of
a number of latent variables that account for the covariances among registrations. The model is a special
case of a log-linear multidimensional partial credit model [12], which was derived using an extension of
the Dutch Identity [13].

The paper is organized as follows. First, the log-linear multidimensional Rasch model is discussed in
the capture–recapture context. Next, it is shown how the probability of a generic capture profile can be
expressed in terms of the log-linear multidimensional Rasch model either with or without a stratifying
variable. Subsequently, the connection between the parameters of the log-linear multidimensional Rasch
model and those of the standard log-linear model is discussed. Then, the log-likelihood function and the
EM algorithm for parameter estimation are described. Finally, the use of the proposed model is illustrated
by an application to neural tube defects (NTDs) data.

2. Multidimensional Rasch model for capture–recapture

In this section, we describe the method we propose. First, we deal with the simple situation in which three
registrations are available; then, we treat the presence of a stratifying variable. At the end, the extension
to a more general situation is discussed.

2.1. Model with three registrations and two latent variables

Consider a situation of three registrations. Let I1, I2, I3 be random variables with respective realizations
i1, i2, i3, where is = 0 if a randomly selected individual is not in registration s and is = 1 if a randomly
selected individual is in registration s, for s = 1, 2, 3. Let ni1i2i3

denote the observed frequency of capture
profile 𝐢 = (i1, i2, i3)′, so that n100 denotes the frequency of individuals observed in registration 1 only,
n110 is the frequency of those observed in registrations 1 and 2 but not in registration 3, and so on. Note
that n000 is the frequency of individuals not in any registration and has to be estimated in order to estimate
the total unknown population size N. The data can be arranged in an incomplete 23 contingency table
where the missing cell corresponds to the absence in all three registrations (as shown in Table I).T1 To
obtain an estimate of n000, we first fit a log-linear model on the incomplete contingency table without the
missing cell; then, the parameter estimates of the fitted model are used to predict the value of that part of
the population that is missed by all registrations.

Suppose that there are two latent variables that explain the covariances between the registrations. Let
𝚯 = (Θ1,Θ2)′ denote the vector of latent variables, and let 𝜽 = (𝜃1, 𝜃2)′ denote a realization. If the
covariances between the random variables I1, I2, and I3 can be explained by 𝜃1 and 𝜃2, then I1, I2, and I3
are conditionally independent given the two latent variables. Assume, for example, that registrations 1
and 2 are indicators of the first latent variable and that registrations 2 and 3 are indicators of the second
latent variable. Then, a visual presentation of this situation can be given by the path diagramF1 in Figure 1.

In Figure 1, the single-headed arrows from the latent variables to the registrations indicate that there
is a direct effect of the latent variables on these registrations, while the curved line between the two

Table I. Contingency table for three lists.

i3

1 0

i2 i2

i1 1 0 1 0

1 n111 n101 n110 n100

0 n011 n001 n010 0∗

∗The missing cell is treated as a structurally
zero cell.
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Figure 1. Three registrations and two latent variables.

latent variables indicates that there is a covariance between the two latent variables. On the other hand,
as there are no double-headed arrows between pairs of registrations, the registrations are conditionally
independent given the latent variables.

It is assumed that the probability of inclusion in registration s given the vector of latent variables equals

𝜋1s|𝜽 = e𝐮
′
s𝜽−𝛿s

1 + e𝐮
′
s𝜽−𝛿s

, (1)

where 𝛿s is the parameter for registration s and 𝐮′s is the sth row vector of the (3 × 2) full column rank
matrix 𝐔 =

[
usr

]
of preassigned weights, where

usr =
{

1, if registration s is assumed to be an indicator of latent variable r,
0, otherwise.

Note that the probability in Equation (1) is identical to the probability of a positive or correct item score
as a function of two latent variables in the multidimensional random effects Rasch model [14], where the
latent variables are considered random. For the preceding example, the matrix 𝐔 is then given by

𝐔 =
⎡⎢⎢⎣

u11 u12
u21 u22
u31 u32

⎤⎥⎥⎦ =
⎡⎢⎢⎣

1 0
1 1
0 1

⎤⎥⎥⎦ .
According to standard probability theory, the probability of a generic capture profile may be written as

𝜋i1i2i3
= ∫ · · ·∫ 𝜋i1i2i3|𝜽f (𝜽) d𝜽, (2)

where 𝜋i1i2i3|𝜽 is the probability of a generic capture-profile conditional on 𝜽 and f (𝜽) is the multivariate
density of 𝜽 in the population of individuals. In the proposed approach, f (𝜽) can be left unspecified, as
will become clear in what follows. From conditional independence, that is, 𝜋i1i2i3|𝜽 =

∏3
s=1 𝜋is|𝜽, where

𝜋is|𝜽 = (𝜋1s|𝜽)is(1 − 𝜋1s|𝜽)1−is , it now follows that

𝜋i1i2i3
= ∫ · · ·∫

{
3∏

s=1

eis(𝐮′s𝜽−𝛿s)

1 + e𝐮
′
s𝜽−𝛿s

}
f (𝜽) d𝜽. (3)

As 𝜋000|𝜽 = 1∕
{∏3

s=1

(
1 + e𝐮

′
s𝜽−𝛿s

)}
and according to Bayes’s theorem, the posterior distribution of 𝜽

given the capture pattern (i1, i2, i3) = (0, 0, 0) equals g(𝜽 ∣0, 0, 0) = 𝜋000|𝜽f (𝜽)∕𝜋000, and it follows that

𝜋i1i2i3
= 𝜋000e−

∑
s is𝛿s ∫ · · ·∫ e𝐭

′𝜽g(𝜽|0, 0, 0) d𝜽, (4)

where 𝐭 = 𝐔′𝐢 and g(𝜽|0, 0, 0) is the multivariate density of 𝜽 in that part of the population that is not
observed in any registration.

Copyright © 2015 John Wiley & Sons, Ltd. Statist. Med. 2015
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Note that

M𝚯(𝐭) = ∫ · · ·∫ e𝐭
′𝜽g(𝜽|0, 0, 0) d𝜽

is the moment-generating function conditional on the capture pattern (i1, i2, i3) = (0, 0, 0). In order
to compute the probability in Equation (4), it is necessary to make an assumption about the posterior
distribution of the latent variables given capture pattern (i1, i2, i3) = (0, 0, 0) and thus to choose a moment-
generating function. Here, it is assumed that this posterior distribution follows a multivariate normal
distribution, so that

M𝚯(𝐭) = e
𝐭′𝝁+ 1

2
𝐭′𝚪𝐭

, (5)

where 𝝁 is the mean vector of 𝜽 conditional on capture pattern (i1, i2, i3) = (0, 0, 0) and 𝚪 is the covariance
matrix of 𝜽 conditional on capture pattern (i1, i2, i3) = (0, 0, 0). Then, the probability of a generic capture
profile 𝜋i1i2i3

can be expressed as

𝜋i1i2i3
= 𝜋000 exp

(
3∑

s=1

is𝛿s + t1𝜇1 + t2𝜇2 +
1
2
t2
1𝛾11 +

1
2
t2
2𝛾22 + t1t2𝛾12

)

= 𝜋000 exp

(
3∑

s=1

is𝛿s + 𝐭′𝝁 + 1
2
𝐭′𝚪𝐭

)
,

(6)

where 𝐭 = (t1, t2)′ = 𝐢′𝐔,𝝁 = (𝜇1, 𝜇2)′, and 𝚪 =
[
𝛾ir

]
is symmetric.

Let n be the total number of individuals observed in at least one registration. Let A =
{(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)} be the set of capture profiles of individuals
observed in at least one registration. As the observed frequencies n100, n010, n001, n110, n101, n011, n111 have
a multinomial distribution with parameters n and 𝜋i1i2i3

∕
∑

A 𝜋i1i2i3
, for all (i1, i2, i3) ∈ A, we can express

the expected frequency of ni1i2i3
as

mi1i2i3
= n𝜋i1i2i3

∕
∑

A

𝜋i1i2i3
, for all

(
i1, i2, i3

)
∈ A. (7)

Substituting from Equation (6) into Equation (7) and taking the logarithm yields the log-linear represen-
tation

ln mi1i2i3
= 𝛿 +

3∑
s=1

is𝛿s + 𝐭′𝝁 + 1
2
𝐭′𝚪𝐭, (8)

where 𝛿 = ln
(
n𝜋000∕

∑
A 𝜋i1i2i3

)
= ln

{
n∕
∑

A exp
(∑3

s=1 is𝛿s + 𝐭′𝝁 + 1
2
𝐭′𝚪𝐭

)}
.

Note that the model in Equation (8) is not identified. Because of the specific choice of 𝐔, t1 = u11i1 +
u21i2 + u31i3 = i1 + i2 and t2 = u12i1 + u22i2 + u32i3 = i2 + i3, so that 𝐭′𝝁 = t1𝜇1 + t2𝜇2 = i1𝜇1 + i2(𝜇1 +
𝜇2)+ i3𝜇2. Consequently,

∑3
s=1 is𝛿s+ 𝐭′𝝁 in Equation (8) equals i1(𝛿1+𝜇1)+ i2(𝛿2+𝜇1+𝜇2)+ i3(𝛿3+𝜇2),

and 𝛿1, 𝛿2, and 𝛿3 cannot be separated from 𝜇1 and/or 𝜇2. To go around this problem, we arbitrarily fix 𝝁

to 𝟎. Then, the model can be rewritten as

ln mi1i2i3
= 𝛿 +

3∑
s=1

is𝛿s +
1
2
𝐭′𝚪𝐭

= 𝛿 + i1𝛿1 + i2𝛿2 + i3𝛿3 +
1
2
t2
1𝛾11 +

1
2
t2
2𝛾22 + t1t2𝛾12,

(9)

where 𝛿 is a common effect parameter, 𝛿s is the main-effect parameter for registration s, 𝛾11 is the variance
of the first latent variable given t1 and t2, 𝛾22 is the variance of the second latent variable given t1 and t2,
and 𝛾12 is the covariance between the two latent variables given t1 and t2. For convenience, the resulting
model will be denoted by i1 + i2 + i3 + t1 + t2. Note that there are 2(2 + 1)∕2 = 3 parameters to account
for the two latent variables 𝜃1 and 𝜃2.

4
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Let 𝐦 = (m100,m010,m001,m110,m101,m011,m111)′ be the vector of expected counts. In matrix terms,
the model in Equation (9) may be written as ln𝐦 = 𝐗𝜷, where 𝜷 = (𝛿, 𝛿1, 𝛿2, 𝛿3, 𝛾11, 𝛾22, 𝛾12)′ is the vector
of parameters to be estimated and 𝐗 is the design matrix with columns corresponding to the parameters to
be estimated, that is, 𝐗 = (𝟏, 𝐢1, 𝐢2, 𝐢3, 𝐭2

1 , 𝐭
2
2 , 𝐭1𝐭2)

′. If we suppose that registrations 1 and 2 are indicators
of the first latent variable and that registrations 2 and 3 are indicators of the second latent variable, then
matrix 𝐗 may be written as

𝐗 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 1 0 0
1 0 1 0 1 1 1
1 0 0 1 0 1 0
1 1 1 0 4 1 2
1 1 0 1 1 1 1
1 0 1 1 1 4 2
1 1 1 1 4 4 4

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

and the model may be fitted as a traditional log-linear model, hence the name log-linear multidimensional
Rasch model.

2.2. Model with three registrations, two strata, and two latent variables

Suppose now that registrations are recorded in two strata (or time periods, for example, 2 years). In this
situation, year is a stratifying variable with two categories denoted by the index j and ni1i2i3j, and 𝜋i1i2i3j
denote the observed frequency and the probability for year j, respectively.

The resulting contingency table has two missing cells corresponding to the capture profile of not being
observed in any registration for each stratum (as shown in Table II). T2

The probability of a generic capture profile may be written as

𝜋i1i2i3j = ∫ · · ·∫ 𝜋i1i2i3j|𝜽f (𝜽) d𝜽, (10)

where 𝜋i1i2i3j|𝜽 is the probability of capture profile (i1, i2, i3) for year j conditional on the vector of latent
variables and f (𝜽) is the multivariate density of 𝜽.

Assuming that the posterior distribution of the latent variables given the capture pattern (i1, i2, i3) =
(0, 0, 0) follows a multivariate normal distribution, the model in Equation (6) can be written as

𝜋i1i2i3j = 𝜋000j exp

(
3∑

s=1

is𝛿sj + 𝐭′𝝁j +
1
2
𝐭′𝚪j𝐭

)
, (11)

where 𝝁j is the mean vector and 𝚪j is the covariance matrix of 𝚯 in stratum j.
Let mi1i2i3j denote the expected frequency corresponding to the observed frequency ni1i2i3j, that is,

mi1i2i3j = n𝜋i1i2i3j∕
∑

A

𝜋i1i2i3j, for all
(
i1, i2, i3

)
∈ A. (12)

Table II. Contingency table for three
lists and two strata.

i3

1 0

i2 i2

Year i1 1 0 1 0

1 1 n1111 n1011 n1101 n1001

0 n0111 n0011 n0101 0∗

2 1 n1112 n1012 n1102 n1002

0 n0112 n0012 n0102 0∗

∗Missing cells are treated as structurally zero
cells.
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Thus, we obtain

ln mi1i2i3j = 𝛿j +
3∑

s=1

is𝛿sj + 𝐭′𝝁j +
1
2
𝐭′𝚪j𝐭, (13)

where 𝛿j = ln(n𝜋000j∕
∑

A 𝜋i1i2i3j). Without any additional constraints, the model in (13) is not identified;
setting 𝝁j equal to zero for identification, we have

ln mi1i2i3j = 𝛿j +
3∑

s=1

is𝛿sj +
1
2
𝐭′𝚪j𝐭, (14)

where 𝛿j is the common effect parameter in stratum j and 𝛿ij is the main-effect parameter for registration
i in stratum j.

2.2.1. Model of measurement invariance. Assume now that parameters are equal across strata. This
means that the model has measurement invariance across strata (that is, the model applies across strata).
Under the assumption of measurement invariance, we have

𝛿sj = 𝛿s, ∀j. (15)

Thus, the model in Equation (13) is equal to

ln mi1i2i3j = 𝛿j +
3∑

s=1

is𝛿s + 𝐭′𝝁j +
1
2
𝐭′𝚪j𝐭. (16)

Without additional constraints, this model is not identified. Because of the assumption of measurement
invariance, we now only need to set 𝝁j to 𝟎, for one j, to identify the model.

In the case of measurement invariance, it is possible to test whether 𝝁j = 𝝁 = 𝟎 and 𝚪j = 𝚪 for all j.
If this simultaneous hypothesis holds, then the model in Equation (16) becomes

ln mi1i2i3j = 𝛿j +
3∑

s=1

is𝛿s +
1
2
𝐭′𝚪𝐭, (17)

where the parameters can be interpreted as before.

2.3. General case

The extension of the method described in the preceding sections to a more general situation is straightfor-
ward. Assume that we have S registrations and J strata. Let ni1,…,iSj and 𝜋i1,…,iSj be the observed frequenciesQ1

and the probabilities, respectively, where j = 1, 2,… , J. Note that the resulting contingency table has J
structural zeros (one for each stratum).

Suppose now that the covariances between the random variables I1,… , IS can be explained by q latent
variables. Let 𝐮′s denote the sth row of the SJ × q full column rank matrix U =

[
usr

]
, where usr = 1 if

registration s belongs to the rth latent variable and 0 otherwise, and let 𝐭 =
(
t1,… , tq

)
be the vector of

the total scores, where tr =
∑S

s=1 usris, for r = 1,… , q.
Under the assumption of a multivariate normal posterior distribution of the latent variables (conditional

on the capture pattern of individuals not observed in any registration), the probability of a generic capture
profile 𝜋i1,…,iSj is equal to

𝜋i1,…,iSj = 𝜋0…0 exp

(
S∑

s=1

is𝛿sj + 𝐭′𝝁j +
1
2
𝐭′𝚪j𝐭

)
, (18)

where 𝝁j is the mean vector for the jth stratum and 𝚪j is a symmetric matrix. Let mi1,…,iSj = n𝜋i1,…,iSj
denote the expected count of observed frequency ni1,…,iSj. Then, we have the log-linear representation

ln mi1,…,iSj = 𝛿j +
S∑

s=1

is𝛿sj + 𝐭′𝝁j +
1
2
𝐭′𝚪j𝐭. (19)

6
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Without additional constraints, the model is not identified. If we set 𝝁j equal to 𝟎 for identification, then
the model becomes

ln mi1,…,iSj = 𝛿j +
S∑

s=1

is𝛿sj +
1
2
𝐭′𝚪j𝐭. (20)

dient The model in Equation (20) is a traditional log-linear model, and, once the parameters have been
estimated, an estimate of the portion of the population missed by all registrations and an estimate of the
total unknown population size N can be obtained.

If the assumption of measurement invariance holds, then the model in (19) can be written in the
following way:

ln mi1,…,iSj = 𝛿j +
S∑

s=1

is𝛿s + 𝐭′𝝁j +
1
2
𝐭′𝚪j𝐭, (21)

where the parameters can be interpreted as before.

3. Connection with the standard log-linear model

In applying the log-linear unidimensional Rasch model to capture–recapture data, a standard log-linear
model is assumed in which all two-factor interaction parameters are equal and positive (this model is
denoted in [2] as a model with a first-order heterogeneity term H1, but the link with the log-linear unidi-
mensional Rasch model is not explicitly made). In applying the multidimensional log-linear Rasch model
to capture–recapture data, the structure of the two-factor interaction parameters of the corresponding
standard log-linear model depends on the specific assumptions about the relationships between the regis-
trations and the latent variables. In the following, a reparameterization is given in which the parameters of
the standard log-linear model are expressed in terms of the parameters of the log-linear multidimensional
Rasch model.

The standard log-linear model in which all two-factor interaction parameters are present can be
written as

ln mi1,…,iSj = 𝜆j +
S∑

s=1

is𝜆sj +
S−1∑
s=1

S∑
c=s+1

isic𝜆scj, (22)

where 𝜆j denotes a main-effect parameter for stratum j, 𝜆sj denotes a main-effect parameter for the sth
registration in the jth stratum, and 𝜆scj denotes a two-factor interaction parameter for registrations c and
s in stratum j.

Writing out t2
r and trt𝜈 , after some algebra, the multidimensional Rasch model in Equation (20) takes

the following form:

ln mi1,…,iSj = 𝛿j +
S∑

s=1

is

[
𝛿sj +

1
2

q∑
r=1

usr𝛾rrj +
q−1∑
r=1

q∑
𝜈=r+1

usrus𝜈𝛾r𝜈j

]

+
S−1∑
s=1

S∑
c=s+1

isic

[
q∑

r=1

usrucr𝛾rrj +
q−1∑
r=1

q∑
𝜈=r+1

(
usruc𝜈 + us𝜈ucr

)
𝛾r𝜈j

]
,

(23)

and it is possible to compute the parameters of the standard log-linear model in Equation (22) starting
from those of the multidimensional Rasch model using

𝜆j = 𝛿j, (24)

𝜆sj = 𝛿sj +
1
2

q∑
r=1

usr𝛾rrj +
q−1∑
r=1

q∑
𝜈=r+1

usrus𝜈𝛾r𝜈j, (25)

and
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𝜆scj =
q∑

r=1

usrucr𝛾rrj +
q−1∑
r=1

q∑
𝜈=r+1

(
usruc𝜈 + us𝜈ucr

)
𝛾r𝜈j. (26)

In other words, through these formulas, the parameters of the standard log-linear model can be computed
from the parameters of the log-linear multidimensional Rasch model, regardless of the structure of the
latent variables [12].

4. Parameter estimation

The log likelihood for the general case of S registrations and J strata is given by

l =
J∑

j=1

nj𝛿j +
J∑

j=1

S∑
s=1

nsj𝛿sj +
J∑

j=1

∑
𝐭

n𝐭j
(
𝐭′𝝁j +

1
2
𝐭′𝚪j𝐭

)
, (27)

where nj is the number of individuals in stratum j, nsj is the number of individuals in stratum j and in
registration s, and n𝐭j is the number of individuals in stratum j with the observed vector of total scores
𝐭. Given restrictions needed for one of the special cases discussed previously, the log likelihood can be
maximized with respect to the parameters subject to identification constraints.

The data are incomplete because of the unknown frequency n000. However, assuming data are missing
at random, the EM algorithm can be used to compute the maximum likelihood estimate of the population
size. In particular, in the qth iteration of the E-step, the expected frequencies are calculated, where the
expected frequency for n000 is derived from the parameter estimates found at iteration q − 1. Once all
the expected frequencies are computed and the dataset is completed, in the M-step, a log-linear model
is fitted to the completed data, and the log likelihood is maximized in order to calculate the probability
estimates that will be used in the (q + 1)th iteration of the E-step. Thus, the updates for the completed
data are derived, and the log-linear model is fitted in the M-step. This procedure is repeated until the log-
likelihood function converges. The final parameter estimates are used to estimate the expected frequencies
for the structural zero cells, and an estimate of the total population size is calculated.

5. Application

To illustrate the methodology of the preceding sections, the data from the five registrations described by
Zwane et al. [15] on NTDs in the Netherlands are used. The five registrations on NTDs cover different
but overlapping periods of time. Zwane et al. [15] showed that if the fact that registrations refer to dif-
ferent but overlapping populations is ignored, then the resulting estimates of the total population size
may be biased. They approached this situation as a missing data problem and presented a version of the
EM algorithm to estimate the missing entry resulting from registrations that are not operating in some
strata. We will use the EM algorithm to analyze the data. All computations were carried out using the
statistical r program.

We now motivate the models that we will fit to the data. Model 1 is a classical model that can be used as
a baseline. It assumes that the five registrations are independent and adds another set of 10 parameters to
allow the sizes of the 11 years to differ. Model 2 expands model 1 by including an interaction parameter
for each pair of registrations. As there are five registrations, 10 extra parameters are added. In model 3, is
it assumed that these 10 interaction parameters are identical; thus, the number of parameters is reduced
with 9. This is the log-linear version of the unidimensional Rasch model, which is also found in [2], and
described as a log-linear model with heterogeneity of order 1 (H1). It is included in our list of models to
compare its fit with the fit of multidimensional Rasch models.

To apply the multidimensional Rasch model to the dataset on NTDs in the Netherlands, we assume
that the five registrations may be divided into two sets of indicators that each measure a separate
latent variable.

In order to decide which registrations measure the same latent variable, we study the parameter esti-
mates of the two-factor interactions of model 2. Table III summarizes the estimates for the two-factorT3
interaction parameters among registrations. A high value of an estimate of a two-factor interaction is an
indication of a positive relationship between two registrations. Such registrations can then be viewed as
indicators of the same latent variable.

8
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Table III. Estimates of the two-factor interaction parameters.

c

s 1 2 3 4 5

1 —
2 0.718424 —
3 0.185740 0.024525 —
4 0.557406 1.055780 1.690401 —
5 0.633640 −0.100489 0.467334 1.725820 —

Figure 2. Model with five registrations and two latent variables.

Figure 3. Model with five registrations and two latent variables.

From Table III, it can be concluded that registrations 1 and 2 measure a first latent variable (named
𝜃1) and that registrations 3, 4, and 5 measure a second latent variable (called 𝜃2). A visual presentation
of this situation is given by the path diagram in Figure 2. Assuming measurement invariance, the model F2
is given by

ln mi1i2i3i4i5j = 𝛿 + 𝛿j +
5∑

s=1

is𝛿s +
1
2

2∑
r=1

t2
r 𝛾rr + t1t2𝛾12, for j = 1988,… , 1997,

where 𝐭 = (t1, t2)′ = 𝐢′𝐔 are the total scores accounting for the latent variables 𝜃1 and 𝜃2, respectively;
𝛿 is the common effect parameter; and 𝛿j is the main-effect parameter for year j (here. year 1998 was
chosen as reference category). For this model, the matrix 𝐔 of weights for the latent variables is given by

𝐔 =

⎡⎢⎢⎢⎢⎣
u11 u12
u21 u22
u31 u32
u41 u42
u51 u52

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
1 0
1 0
0 1
0 1
0 1

⎤⎥⎥⎥⎥⎦
,

and the total scores are t1 = i1 + i2 and t2 = i3 + i4 + i5. This is model 4.
From Table III, it seems also reasonable to conclude that registrations 1, 2, and 4 measure the same

latent variable (say 𝜃3) and that registrations 3, 4, and 5 are indicators of the another latent variable
(named 𝜃4). In this case, the two latent variables have registration 4 in common. Figure 3 shows F3
this situation.

Under measurement invariance, the model is now given by

ln mi1i2i3i4i5j = 𝛿 + 𝛿j +
5∑

s=1

is𝛿s +
1
2

4∑
r=3

t2
r 𝛾rr + t3t4𝛾34, for j = 1988,… , 1997.

Copyright © 2015 John Wiley & Sons, Ltd. Statist. Med. 2015
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In this model, the matrix 𝐔 is given by

𝐔 =

⎡⎢⎢⎢⎢⎣
u11 u12
u21 u22
u31 u32
u41 u42
u51 u52

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
1 0
1 0
0 1
1 1
0 1

⎤⎥⎥⎥⎥⎦
,

so that the total scores are t3 = i1 + i2 + i4 and t4 = i3 + i4 + i5. This is model 5.
Table IV summarizes the results of the models fitted to the data. In Table IV(a), for each model, theT4

number of parameters, the degrees of freedom, the deviance, the value of AIC, the value of BIC, and
the estimate of the total population size N̂ are reported. In Table IV(b), the yearly estimates N̂j, for j =
1988,… , 1998, under each model are presented.

In Figure 4, the yearly estimates for each model are plotted.F4
Model 1, the log-linear model with main-effect parameters and parameters for year, does not fit the data

well and has a high deviance. Model 2, the model with a different estimate for the interaction between each

Table IV. Selected models.

(a) Selected models with deviance, AIC and BIC

Model Design matrix Par df∗ Dev AIC BIC N̂

1 i1 + i2 + i3 + i4 + i5 + Ycat 16 213 400 432 487 2229
2 1 + (i1i2 + · · · + i4i5) 26 203 298 350 439 3077
3 1 + H1 17 212 349 383 441 3009
4 1 + t1 + t2 19 210 324 362 427 2793
5 1 + t3 + t4 19 210 311 349 414 3041

(b) Selected models with yearly estimates

Model N̂88 N̂89 N̂90 N̂91 N̂92 N̂93 N̂94 N̂95 N̂96 N̂97 N̂98

1 199 224 234 206 222 186 189 202 178 210 179
2 275 309 323 285 302 258 261 280 246 290 248
3 272 305 319 281 303 249 252 271 238 280 239
4 251 282 295 260 280 232 235 252 222 261 223
5 271 305 318 281 300 255 258 277 244 287 245

There are 229 observed cells. H1 is the first-order heterogeneity term. t1 = i1 + i2 and
t2 = i3 + i4 + i5. t3 = i1 + i2 + i4 and t4 = i3 + i4 + i5.

C
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Figure 4. Yearly estimates for the five models.
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pair of registrations, has a much better fit in terms of AIC and BIC. Model 3, the unidimensional Rasch
model, uses only one parameter more than model 1, and using this single parameter, it accomplishes a fit
in between models 1 and 2. Both of the multidimensional Rasch models, models 4 and 5, fit well to the
data and have a smaller deviance than the unidimensional Rasch model. Model 5, where registration 4 is
an indicator for both latent variables, is the best model because it has the smallest AIC and BIC values.
Therefore, this model is selected as the final model.

Table V. Selected models.

Parameter Estimate Standard error

(a) Multidimensional Rasch model
𝛿 4.513951 0.142557
𝛿1988 0.101292 0.116082
𝛿1989 0.218309 0.112754
𝛿1990 0.260357 0.111628
𝛿1991 0.135194 0.115088
𝛿1992 0.201906 0.111082
𝛿1993 0.038221 0.112887
𝛿1994 0.050644 0.112545
𝛿1995 0.122103 0.110637
𝛿1996 −0.00651 0.114147
𝛿1997 0.156004 0.109768
𝛿1 −2.20858 0.14922
𝛿2 −1.04768 0.142911
𝛿3 −3.25652 0.124767
𝛿4 −2.9981 0.176131
𝛿5 −4.16525 0.145811
𝛾33 0.618927 0.082545
𝛾44 1.108461 0.087735
𝛾34 0.219176 0.053513

(b) Log-linear model
𝜆1 −1.89911 0.154823
𝜆2 −0.73821 0.148751
𝜆3 −2.70229 0.132254
𝜆4 −1.91523 0.193684
𝜆5 −3.61102 0.152267
𝜆12 0.618927 0.082545
𝜆13 0.219176 0.053513
𝜆14 0.838102 0.098373
𝜆15 0.219176 0.053513
𝜆23 0.219176 0.053513
𝜆24 0.838102 0.098373
𝜆25 0.219176 0.053513
𝜆34 1.327637 0.101656
𝜆35 1.108461 0.087735
𝜆45 1.327637 0.101656

Table VI. 95% confidence intervals.

Model Design matrix N̂ 95% CI

1 i1 + i2 + i3 + i4 + i5 + Ycat 2229 [2164, 2297]
2 1 + (i1i2 + · · · + i4i5) 3077 [2724, 3571]
3 1 + H1 3009 [2737, 3345]
4 1 + t1 + t2 2793 [2559, 3104]
5 1 + t3 + t4 3041 [2755, 3409]

H1 is the first-order heterogeneity term. t1 = i1 + i2 and t2 =
i3 + i4 + i5. t3 = i1 + i2 + i4 and t4 = i3 + i4 + i5.
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Equations (25) and (26) can now be used to obtain an expression for the standard log-linear model in
terms of the parameters of model 5. Here, Equations (25) and (26) simplify to

𝜆s = 𝛿s +
1
2

4∑
r=3

usr𝛾rr + us3us4𝛾34,

𝜆sc =
4∑

r=3

usrucr𝛾rr +
(
us3uc4 + us4uc3

)
𝛾34.

Using these equations, we obtain the following expressions for the parameters of the log-linear model:

𝜆1 = 𝛿1 +
1
2
𝛾33 𝜆2 = 𝛿2 +

1
2
𝛾33 𝜆3 = 𝛿3 +

1
2
𝛾44

𝜆4 = 𝛿4 +
1
2

(
𝛾33 + 𝛾44

)
+ 𝛾34 𝜆5 = 𝛿5 +

1
2
𝛾44 𝜆12 = 𝛾33

𝜆13 = 𝛾34 𝜆14 = 𝛾33 + 𝛾34 𝜆15 = 𝛾34
𝜆23 = 𝛾34 𝜆24 = 𝛾33 + 𝛾34 𝜆25 = 𝛾34
𝜆34 = 𝛾44 + 𝛾34 𝜆35 = 𝛾44 𝜆45 = 𝛾44 + 𝛾34

.

Thus, the main-effect parameters are equal to the main-effect parameters for model 5 plus half of the
variance (given the total scores) of the latent variable for which the registration is an indicator, except for
the registration 4, for which it is equal to the main-effect parameter 𝛿4 plus half of the variance of both
latent variables plus the covariance between 𝜃3 and 𝜃4, given the total scores. Concerning the two-factor
interaction parameters, for those involving registrations that are indicators of different latent variables
(that are 𝜆13, 𝜆15, 𝜆23, 𝜆25) are equal to the covariance (𝛾34) conditional on the total scores. The two-
factor interaction parameters that involve registrations measuring the same latent variable (except those
involving registration 4) are equal to the variance (given the total scores) of the corresponding latent
variable, while other two-factor interaction parameters (𝜆14, 𝜆24, 𝜆34, and 𝜆45) are equal to the covariance
(given the total scores) plus the variance (given the total scores) of the latent variable for which the other
registration is assumed to be an indicator. Table V(a) reports the parameter estimates for model 5 andT5
the corresponding standard errors. In Table V(b), the parameter estimates of the corresponding standard
log-linear model are reported.

To derive confidence intervals, we do not apply asymptotic methods but apply the parametric bootstrap
(compare with that of Zwane and van der Heijden [16]). One reason is that the parametric bootstrap allows
for non-symmetric confidence intervals. Second, it is not easy to derive asymptotic methods in the current
situation where registrations are not observed in every year. To compute the bootstrapped confidence
intervals, we first estimate the probabilities for the completed contingency table under a model, including
all the cells that cannot be observed by design. For the first bootstrap sample, a multinomial sample is
drawn given these parameters, and the sample is then reformatted to be identical to the observed data.
The model is then fitted to the reformatted sample, and the population size is estimated. This is the first
parametric bootstrap estimate. We used 500 parametric bootstrap samples and the percentile method to
compute the confidence intervals for the population size estimates for each of the five models (Table VI);T6
we also computed confidence intervals for yearly estimates of the population size for models 2 and 5.
In this case, confidence intervals for the yearly estimates for model 5 are always smaller than those of

Table VII. 95% confidence intervals for yearly estimates of the population size.

Model 2 Model 5 Log-linear

Year Observed N̂ 95% CI N̂ 95% CI Model N̂ 95% CI

1988 145 275 [225, 333] 271 [221, 330] i1i2 + i5 311 [200, 648]
1989 163 309 [256, 385] 305 [255, 372] i1 + i2i5 174 [161, 192]
1990 170 323 [272, 395] 318 [268, 394] i1 + i2i5 177 [168, 189]
1991 150 285 [234, 360] 281 [234, 344] i1i2+i1i5 191 [149, 282]
1992 172 302 [251, 367] 300 [254, 362] i1i2+i2i3+i5+H1 782 [326, 2687]
1993 160 258 [211, 311] 255 [211, 305] i1i2 + i1i5 + i2i4 + i3i4 + i4i5 320 [207, 957]
1994 162 261 [216, 325] 258 [215, 319] i1i4 + i1i5 + i2i4 + i3i4 + i4i5 232 [197, 293]
1995 174 280 [233, 342] 277 [235, 329] i1i2 + i1i3 + i2i3 + i3i4 + i3i5 + i4i5 206 [188, 231]
1996 153 246 [204, 308] 244 [203, 296] i1i2 + i1i4 + i2i4 + i2i5 + i3i4 + i4i5 317 [220, 583]
1997 180 290 [243, 355] 287 [238, 345] i1i2 + i1i4 + i1i5 + i2i4 + i3i4 + i3i5 + i4i5 351 [259, 595]
1998 154 248 [200, 308] 245 [205, 301] i1i4 + i2i3 + i2i4 + i2i5 + i3i4 + i4i5 212 [179, 266]
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model 2 as shown in Table VII. Here, yearly estimates of the population size and confidence intervals T7
for the standard log-linear model are presented. Note that traditional approach does not use information
from other years for registrations that are not operating; thus, log-linear models differ for each year as
the number of registrations differs for each year. Furthermore, estimation with log-linear model tends to
be more variable, especially for complete years.

6. Conclusion

In the present paper, a multidimensional Rasch model is proposed for the analysis of capture–recapture
data. We assumed that registrations may be divided into two or more subgroups (not necessarily disjoint)
measuring the latent variables accounting for correlations among registrations. As a consequence, the
random variables denoting the presence or absence of an individual in a registration are assumed to be
conditionally independent, given the latent variables.

Under the assumption that the posterior distribution of the latent variables follows a multivariate normal
distribution, we applied the extension of the Dutch Identity proposed by Hessen [12] in a psychomet-
ric context to the capture–recapture framework, and we showed how to re-express the probability of a
generic capture profile in terms of the log-linear multidimensional Rasch model. Then, we presented a
re-parameterization of the proposed model that allows for a connection between the multidimensional
Rasch model and the standard log-linear model. Applying these formulas, it is possible to compute the
parameters of the standard log-linear model, starting from those of the multidimensional Rasch model.
We also discussed an extension of the model for the situation in which a stratifying variable is available
and the assumption of measurement invariance across strata can be made.

An application of the models discussed to the NTDs’ data revealed that the final model for inference
was one of the proposed log-linear multidimensional Rasch models. The final model was preferred over
other log-linear models because it showed the smallest AIC and BIC values.
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