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Summary

Understanding the whereabouts of vulnerable population subgroups during emergencies can improve
the targeting and implementation of countermeasures, including evacuation and sheltering. This paper
uses spatiotemporal population density modelling and atmospheric dispersal modelling to estimate the
radiation exposure of a specific population at different times of day, during the start of a hypothetical
radiation accident scenario in Exeter, UK. The model outputs are analysed by GIS to discern
spatiotemporal trends in population exposure, and to identify the times of day when population

subgroups may be most at risk.
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1. Introduction

The UK began the world’s first civil nuclear energy production programme in 1956 and has a
successful legacy of power generation. Nuclear energy currently contributes toward 18.5% of the UK
electricity portfolio and a new phase of reactors is anticipated, following publication of the Nuclear
Industrial Strategy (Bolton, 2013, HM Goverment, 2013).

Emergency preparedness is an important feature of nuclear installation (NI) management. All UK Nls
are required to have off-site emergency planning to comply with Radiation (Emergency Preparedness
and Public Information) Regulations (REPPIR). REPPIR includes the testing of hypothetical scenarios
to inform understanding of potential outcomes and to improve decision-making. Nuclear and radiation
emergencies are low-likelihood but extremely high impact events which have long-term public health
implications. Demographic studies of historical accidents, including Fukushima Daiichi (2011),
Chernobyl (1986), Three Mile Island (1979) and Idaho National Engineering Laboratory SL-1 (1961)
have been used to advise preparedness. Fortunately, the UK has not experienced an accident of
equivalent scale to these accidents. This paper tests a hypothetical scenario which includes accurate
spatial and temporal population profiles, to understand how the timing of the start of an accident may
cause differential exposure to vulnerable population subgroups.
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2. Methodology and Data

Gridded spatiotemporal population density modelling was combined with atmospheric dispersal
modelling by GIS analysis. SurfaceBuilder was implemented to model spatiotemporal population
density (Smith, 2013). Using this model, an adaptive kernel density algorithm was applied to
redistribute population subgroups from individual postcode-based origin centroids, to destination
centroids, and onto a transport network. The proportion and distance of the redistribution was
determined by centroid density, catchment size, and time; and was dasymetrically constrained to
prevent inappropriate relocation. It is important to include different population subgroups, due to age
and gender differences in daytime spatiotemporal activity patterns, which can result in differential
exposure. There are also some physiological differences between body mass, respiration and
susceptibility to the effects of radiation exposure, across age and gender subgroups (Shore, 2014,
Simon and Linet, 2014). Spatiotemporal distribution profiles were constructed for six new age groups
and two new genders with 2011 data. An example of population data sources, scales, subgroups and
temporal profiles within this case study is shown by Figure 1.
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Figure 1: A residential and workplace population example of data sources, scales, subgroups and
temporal profiles.

However, the model also includes 2011 education, healthcare, retail, tourism, and leisure data to
provide a comprehensive insight into the spatiotemporal whereabouts of different population
subgroups during day-time. Figure 2 shows the distribution of some of these activities, compared to
the residential population distribution.
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Figure 2: The original spatial distribution of residential population data (left) and activities (right).



The Numeric Atmospheric Modelling Environment (NAME) is a Lagrangian model which uses
Monte-Carlo random walk techniques to represent and predict turbulent atmospheric transport, and the
deposition of airborne substances in the atmosphere within a stochastic framework. NAME was
applied to model the dispersal of 0.47PBqg of Cs-134 a source term of ~1% of Chernobyl for this
isotope. Archive MESUMb5 meteorological data used to generate dispersal for an hours’ time slice
from 08:00 to 09:00 on Monday 28" March 2011. This slice is being used to represent the start of an
incident, to investigate exposure differentials for different populations. Regional weather was dry with
hazy sunshine and a peak temperature of 19°C, providing good conditions for dry deposition, which
can be a source of external exposure in urban environments. However washout of atmospheric
particles and gases may be a more significant exposure mechanism (IAEA, 1994). Dry deposition is
also affected by deposition surface, but this is beyond the scope of this paper.

Atmospheric plume dispersal model and spatiotemporal population model data layers were combined
using GIS to assess exposure likelihood, by concentration (Bg/m?) for each grid cell of residential
population density at 08:00 and 20:00.

3. Results

A study area of 15km? centered upon the City of Exeter (X: 286000, Y: 079500) was selected. Exeter
is a location without a nuclear installation (NI), and is therefore a suitable analogue site. The city
includes national and international rail, road and air transport infrastructure, and has a residential
population of approximately 117,770 individuals (ONS, 2014).

Figure 3 3 shows some modelling results from the study area. Both images include NAME output for
the dispersal of an atmospheric plume of Cs-134 from 08:00 to 09:00 on 28"™ March 2011. This has
been combined with two different outputs of population distribution model, for assessment of radiation
exposure.
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Figure 3: GIS analysis of NAME Cs-134 plume dispersal has been combined with a) Census total
residential population centroid distribution; and b) SurfaceBuilder spatiotemporal population density
surface output for a working-age male population subgroup, at 08:00 on 28" March 2011.

Figure 4 shows the difference between male and female spatiotemporal distribution for the working



age population subgroup, at 22.00 on 28™ March 2011. It is evident that fewer females are present
within the city centre at the time. Combining this information with the plume model output,
significantly more males of working age are likely to be exposed than females of working age within
this scenario. This may be due to more females working in occupations that do not require evening-
shift working patterns in this region.
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Figure 4: Comparison of male and female working age population distributions with equivalent
NAME model output, at 22.00 on 28" March 2011.

Comparing the temporal profiles of the male and female working-age population subgroups confirms
that more males than females should be anticipated within the city at 22.00 on a working weekday,
and that therefore males are potentially more vulnerable to the effects of radiation exposure at the start
of an incident, within this specific application.

4. Discussion and Conclusions

The inclusion of spatiotemporal population density modelling offers improvements upon the
traditional chloropleth map, by revealing spatial population subgroup change through time. Whilst the
hypothetical scenario of differential male and female exposure to radiation is interesting, the key
purpose of this study is to demonstrate that spatiotemporal radiation plume dispersal modelling and
population density modelling can be combined to offer new insights into the likelihood of subgroup
exposure to radiation and its cumulative effects; providing substantial improvement to existing
comparative study methodologies across different times, spaces, ages and genders, for any location
where appropriate data is available.

Whilst this study provides a methodology for assessment of exposure at the start of a radiation
emergency, there is still a need for a model which estimates the deterministic and stochastic health
effects of radiation exposure to different populations in space and time.
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