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This thesis presents a novel multi-element fibre (MEF) technology for implementing 

space-division multiplexing (SDM) in optical fibres. MEF comprises multiple fibre-

elements that are drawn and coated together using a common polymer coating. In MEF, 

the fibre-elements are compatible with current technology i. e. the fibre-elements can 

be directly fusion spliced to standard single mode pigtail fibre. Thus, a smooth upgrade 

from WDM based systems to SDM system is possible. In this work, MEF technology 

has been implemented for both, passive SDM fibres and SDM amplifiers.  

Erbium-doped Core-pump MEF amplifiers have been demonstrated exhibiting similar 

gain and noise figure performance to conventional Er-doped fibre amplifier while 

maintaining ultralow crosstalk levels. In addition, an Erbium/Ytterbium-doped 

cladding-pumped MEF amplifier has been developed, and a novel technique to 

achieve a broadband gain has been demonstrated which could cover wavelength 

region of 1536nm-1615nm using a single multimode pump. Furthermore, MEF 

technology has been combined with mode-division multiplexing to show that higher 

spatial multiplicity could be achieved by implementing the MEF with other SDM 

technologies.  

In passive MEFs, the fabricated fibres have been characterised for their loss and 

transmission properties, showing low loss and error-free transmission. Also, the MEFs 

are proof-tested showing high strength. The compatibility of MEF fibres have been 

tested in a concatenated SDM system demonstrating their flexibility in the telecom 

network.
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Chapter-1 
 

Introduction 
 

1.1. Historical Perspective 

Silica fibres have been the best possible means available for long distance 

communication to-date due to their advantages such as low scattering loss, ease of 

fabrication and robustness. The development of fibre optical technology experienced 

a phenomenal growth during the second half of the 20th century. In 1966, Charles Kao 

and Charles Hockham proposed that optical fibres might become a suitable 

communication media provided the loss was reduced below 20dB/km [1, 2]. At that 

time, the best bulk optical glass had a loss of about 1000dB/km. The loss was mainly 

due to the impurities in the glass. A few years later, an optical fibre with attenuation 

<20dB/km was developed by Corning glass works [3]. The fact that the advances in 

fibre fabrication technology were complemented by the development of lasers led to a 

remarkable growth of fibre-optic communications. Fig 1.1 shows the reduction of 

losses in silica fibres over the years. Following the development in fibre fabrication, 

fibre based communication was commercially implemented in 1975. Subsequently, 

several generations of fibre optical communication systems were deployed, and these 
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are briefly reviewed in the following.  

 
Fig. 1.1 Reduction in the loss of optical fibre during the development years. (* losses at 1550nm, ** loss 
at 2550nm) [4] 

1st Generation Systems 

The first generation fibre-optic communications system operated around 850nm due 

to the availability of compact GaAs semiconductor lasers, which were suitable for long 

distance transmission [5, 6]. It used multimode fibres. These systems operated at a bit 

rate of the order of few Mbit/s with a repeater spacing up to 10km. This window was 

initially used due to the availability of low cost detectors and already optimised 

emitters, despite the attenuation being about 3dB/km. These systems became 

commercially available in 1980.  

2nd Generation Systems 

In the early 1980s, the 2nd generation fibre-optics communication systems were 

commercially developed. These systems operated around a wavelength of 1300nm, 

and used InGaAsP semiconductor lasers and detectors. The shift to this window was 

due to the fact the silica fibre losses at 1300nm were below 1dB/km, which could allow 

a considerable increase in the repeater spacing. Furthermore, the optical fibre had 

minimum dispersion in this wavelength region. Despite these advantages, the lack of 
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an efficient semiconductor laser and detector prevented an early shift to 2nd generation 

systems. The bit rate was of the order of few 100 Mbit/s which saw another leap when 

multimode fibres were replaced with single mode fibres to prevent intermodal 

dispersion. By 1987, systems were commercially available operating at a bit rate of 

1.7 Gbit/s and with a repeater spacing up to 50km [7].  

3rd Generation Systems 

The shift to 3rd generation fibre-communication systems was spurred by the discovery 

of InGaAs diodes. These lasers operated around a wavelength of 1550nm, where the 

fibre attenuation was 0.2dB/km, a loss value achieved in 1979. By 1992, commercial 

systems based on this technology were operating at a bit rate of 2.5Gbit/s with repeater 

spacing >100km. There was a rather long delay in the shift from 2nd to 3rd generation 

systems. Firstly, conventional InGaAsP lasers could not be used at 1550nm due to 

multiple longitudinal wavelength at 1550nm and dispersion-induced pulse broadening 

of the signal [6]. This was mitigated by using dispersion shifted fibres and the 

development of InGaAs sources.  

4th Generation Systems 

The 4th generation fibre-optic system used wavelength division multiplexing (WDM) 

to further increase the data capacity and high-bandwidth optical amplifiers instead of 

opto-electrical repeaters. This allowed signal transmission without digital regeneration 

after every 70-80km. The optical amplifiers, optimised for operation in the 1530nm-

1565nm band were developed after 1985. In 1991, an experiment showed data 

transmission over 21,000 km at a rate of 2.5Gbit/s. This demonstrated the possibility 

of intercontinental communication through optical amplifiers without the need for 

expensive optical/electrical/optical signal conversions. In the late 1990s through 2000, 

the use of internet increased substantially, which led to demand for cables that could 

handle high data capacities in a cost-effective manner. The copper-wires were replaced 

then with their inexpensive fibre-optic counterparts, allowing e.g. the cost of phone 

calls to drop significantly. These two developments, WDM and optical amplifier 

implementation, revolutionised the fibre-optic communications industry, and resulted 

in a doubling of the capacity every 6 months from 1992 till 2001 when bit rate reached 

10Tbit/s. 
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1.2. Economics and Rise of Internet 

One of the reasons for the astonishing growth of commercial telecom systems in the 

late 1990s was a drastic rise in internet traffic also referred to as dotcom boom. This 

led to over investment and spending in the infrastructure intensive telecommunication 

development. The investors were looking to capture the market due to the speculation 

of very high demand, which would result in significant revenue generation for them. 

However, when the dotcom bubble burst it became clear that the predicted explosion 

in demand would not happen, and the stocks of telecom companies dropped and the 

investment reduced (see fig.1.2) [8]. The increase in the demand over that period could 

have easily been accommodated with the existing technologies. Nevertheless, the 

industry saw monotonous increases in demand and revenue generation [9].  

 
Fig. 1.2 Investment in telecom market development [8] 

 

The demand for communication technology has picked up in speed in recent years as 

the internet has penetrated into the lives of the common public. This is associated with 

the advent of social networking, video streaming, cloud storage, and the ‘internet of 

things’. Also, there are numerous internet based user applications ranging from online 

gaming to e-shopping and e-governance. Today, YouTube has more than 100hrs of 

video uploaded every minute. These social websites provide a massive platform for 

entrepreneurs to obtain better customer reach. There has also been drastic increase in 
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the number of internet users and websites [10].  

1.3. Capacity Crunch in Telecommunications 

The capacity increase of the optical fibre has increased by a factor of 10 every 4 years 

(see Fig. 1.3) [11-14]. 
 

 
Fig. 1.3 Evolution of the transmission capacity of the optical fibre (the dots represent the highest reported capacity in 
their time, and red dots correspond to the recent SDM demonstrations).  [11] 

Figure 1.4 shows the possible physical dimensions in which the information can be 

multiplexed to maximise the capacity for a given transmission medium and operation 

bandwidth. Alike every other resource, current single mode optical fibre (SSMF) 

systems also has its limit to the extent it can serve the communication needs. The 

physical dimensions; frequency, polarisation, quadrature, and time along with efficient 

coding, have already been explored nearly to their limit in single mode optical fibre 

systems. As shown in Fig. 1.3, the capacity limit of current SSMF based systems is 

about 100Tbit/s  The industry is just a factor of 6 behind the single-mode capacity limit 

whereas research is behind by a factor of 2 [15]. The available bandwidth of existing 

systems is predicted to be exhausted by 2020 due the rapid increase in internet traffic 

[15]. Hence, there is an urgent need for new innovations in fibre-optic technology to 

allow for even higher communication capacities. Space is the only dimension that is 

left to be exploited in fibre-optics communication systems. 
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Fig. 1.4 Physical dimensions in optical fibres that are available for multiplexing information. 

    

1.4. Handling the Future Capacity Crunch 

Several approaches have been proposed to overcome the potential crisis. There have 

been mainly two popular approaches, (1) bandwidth expansion and (2) space-division 

multiplexing (SDM) in optical fibres.  

The bandwidth expansion can be achieved by exploring new operating bands. The 

operation of current optical fibre based telecom systems is mostly limited to the C-

band. The C-band covers the wavelength range of 1530-1565nm in the 3rd 

telecommunication window of silica fibres. However, the Erbium (Er)-doped fibre 

amplifier is the limiting factor when it comes to the available bandwidth. It serves as 

an optical amplifier to boost the optical signal, which decays over larger lengths due 

to intrinsic losses such as Rayleigh scattering. This narrow bandwidth of the C-band 

amplifiers limits the usable band in SSMF based communication systems. Though, Er 

has the potential to amplify in the region of 1500-1620nm, covering both the C and L 

(Long) band [16]. However, it has maximum gain efficiency in the C-band. Amplifiers 

for the L-band require long gain fibre lengths and have low gain efficiency. There has 

also been significant efforts to develop amplifiers for other low loss windows in silica 

fibres [6]. Thulium-doped fibre and Bi-doped fibre for the 1700-2100nm and 1150nm-

1500nm wavelength bands, respectively, have been intensively investigated with the 

aim of developing fibre amplifiers [17-18]. The silica loss increases significantly 

above 2μm and is not preferred for transmission applications. On the other hand, 

hollow core fibres, also referred to as holey core fibres, have been investigated for the 

transmission at a wavelength around 2μm. Holey core fibre has a theoretical loss lower 

than that of silica at 2μm [17]. Raman amplifiers for amplification in wavelength bands 

shorter than the C-band have also been studied. However, these unconventional 
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amplifier still require further research to enable broadband communication. 

The other approach, SDM, has received significant research attention. It aims to 

efficiently use the last available physical dimension, space. Whilst this dimension 

could in principle be explored by installing more parallel SMF systems, the economy 

of this approach is not favourable. In parallel SMF systems, the cost per additional bit 

added will essentially be fixed once optimal spectral-efficiency transmitters and 

receivers are commercially deployed. Such a scenario is not desirable for network 

operators, who have experienced a historical trend of both cost-per-bit reductions and 

capacity increases by upgrading terminal equipment to more efficient and exploit the 

bandwidth of deployed SMF fibres. On the other hand, SDM [11-13] has emerged as 

a possible route to significantly increase per-fibre capacity and to reduce the associated 

cost-per-bit. This would be achieved through the potential for device integration and 

sharing of expensive components, such as optical amplifiers and reconfigurable optical 

add drop multiplexers (ROADMs). For example, a cladding-pump SDM amplifier 

provides an additional advantage of pump sharing. This could potentially result in 

reduction of the operational cost of the amplifiers. The bulk of research on SDM has 

so far been focused on either multicore fiber (MCF) or multimode fibre (MMF), 

resulting in impressive demonstrations of capacity increases [11]. However, both MCF 

and MMF require that additional components to couple/decouple the spatial channels 

into these fibres be developed for their implementation in commercial systems. In the 

current state, lack of availability of these components reduces the advantages of cost 

optimisation that SDM technology could provide in next generation 

telecommunication system. Moreover, without the development of these 

MUX/DEMUX component these technologies are limited to transatlantic transmission 

networks at best. The deployment of the fibre cables for terrestrial networks is carried 

out by deploying short lengths (4-5km) and connecting them through established 

splicing programs. A connector with high crosstalk and/or loss could lead to decrease 

in the span length. While the main application of SDM is in long haul transmission 

scenarios, it also attracts significant interest in data centres where it could reduce the 

network complexity. 
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1.5. Outline of Thesis 

The main objective of the thesis is to develop a novel technology of multi-element 

fibres (MEFs) for implementing SDM in optical fibres. MEFs consist of multiple 

individual fibre-elements with reduced cladding diameter that are drawn and coated 

together in a common polymer coating. The use of this technology has been studied 

for the development of passive as well active fibres. In the thesis, development of 

MEFs for both core-pumped and cladding-pump amplifiers has been discussed. These 

amplifiers have also been characterised for their gain and NF performance. The 

advantages MEF based system has been demonstrated over their MCF and MMF 

counterpart throughout the work. The fabrication of passive MEFs for transmission 

networks have also been discussed in detail. These passive MEFs have also been 

characterised and tested along with MEF amplifier for their performance in 

transmission networks. It should be noted that the aim of MEFs is in direct coherence 

with the commercial industry targets. The commercial fibre optical industry is trying 

to maximise the use of current infrastructure capabilities by efficiently using the space 

in optical fibre cable and provide an economically positive outlook towards 

accommodating the future capacity trends [19]. In that context, today the optical fibres 

with coated diameter of 200μm are commercially available as compared to the 

conventional 250μm optical fibre and efforts towards further reduction are in progress 

[19, 20]. Development of passive MEFs aim towards further miniaturisation of the 

optical fibre cables in which the polymer coating could be shared between multiple 

spatial channels. It is shown that with the implementation of MEFs, the flexibility of 

the SSMF systems is not compromised. In MEFs, unlike in MCF and MMF, the 

advantage of developing the optical cables with reduced diameter is that it would not 

incur an additional cost for the development of current networks and training of 

operators.  

Chapter 2 discusses the various methods aimed towards meeting the exponential data 

capacity demand in an economically viable scenario. A review of MCF and MMF 

based SDM methods has been performed. Section 2.3 introduces our technique Multi-

element Fibre (MEF), an approach used in this thesis for increasing the density of the 

cables in the network.  

Chapter 3 provides introduction of MEF, and the general fibre fabrication procedure. 
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The MEF fabrication procedure is discussed in section 3.2. Section 3.3 describes the 

demonstration of Er-doped core-pump 3-MEF and 7-MEF, and sections 3.4 provide 

the result of MEF amplifier with different element diameter and fabrication conditions. 

Section 3.5 presents the novel cascading scheme in SDM amplifier to provide the 

flexibility in terms of gain profiling and bandwidth tuning. The work presented in this 

chapter has been published in ref. [21-24].   

In Chapter 4, Section 4.1 introduces the MEF based cladding-pump Er-Yb doped fibre 

amplifier. Section 4.2 discusses the fabrication steps and basic measurements on the 

preform and the fibre. Section 4.4 illustrates the results of the C-band SDM amplifier. 

The amplifier performance characterisation based on MEF length is also covered. The 

novel cascading configuration of different elements in MEF to obtain a broadband gain 

has been demonstrated along with performance variation with different cascading 

combination. Section 4.5 demonstrates the first cladding-pump few mode multi-

element amplifier which incorporates two of the SDM technologies, FMF and MEF, 

to obtain a spatial multiplicity of 12. The results in this chapter have been published in 

ref. [25-30].     

The details of development of passive MEFs is presented in Chapter 5. In Section 5.2, 

modifications in MEF fabrication procedure for passive MEF have been described, 

and the advantages of new process have been explained. Section 5.3 presents the 

characterisation of background loss, mechanical strength and transmission 

performance of passive MEFs. Section 5.3.3 describe the performance of passive 

MEFs and cladding-pumped MEF amplifier in SDM system. The work reported in this 

chapter led to the publications of refs. [25], [31-34].  

Chapter 6 concludes the PhD work, and briefly discusses the direction of the future 

work. 
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Chapter-2 
 

Background of SDM 

Technologies 
 

2.1. Introduction 

This chapter contains an introduction and literature review of SDM approaches, MCF 

and MMF. The potential impact and challenges of SDM transmission fibre and 

amplifier for next generation system are discussed in section 2.2.1 and section 2.2.2, 

respectively. Section 2.2.3 introduces the MEF and its advantages towards the 

realisation of SDM systems.  
 

2.2. Space-division Multiplexing 

The SDM technique in optical fibre communication has been used from wireless 

communication with a special case of multiple-input-multiple-output (MIMO). In 

general, SDM could enable a reduction of the number of components in a 
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communication system. Considering specifically the transmission medium, the 

integration of N fibre cores into a single transmission fibre could potentially provide 

huge cost savings. However, with the increase in core density per fibre the complexity 

of operation also increases which thereby hinders the full exploitation of advantages 

offered by SDM technology. At the time the work on MEF was started, there were two 

main approaches for implementing SDM in optical fibres, MCF and MMF. In the 

following, a review of MCF and MMF is provided.  
 

2.2.1. Multimode Fibre 

The passive fibre and amplifier fibre are both integral components of a communication 

system and they can have different opto-geometrical parameter requirements based on 

their use. 
 

 
 

Fig. 2. 1 Schematic of (a) SMF, (b) FMF, and (c) conventional MMF. 

 

The MMFs consists a single multimode core and can support large number of modes.  

However, Few Mode Fibres (FMFs), supporting a few modes have been of particular 

interest in SDM to incorporate mode-division multiplexing (MDM). They allow 

parallel transmission of independent channels defined by the different propagation 

modes. Figure 2.1 schematically shows the cross-sections of SMF, FMF and 

conventional MMF in order to provide a perspective of the different core sizes. The 

MMFs were used in the first generation telecommunication systems due to their 

advantage of easy splicing of the fibre and power coupling in to the core. However, 

the intermodal dispersion limited the data rate in MMFs. With the development of 

technologies such as coherent detection and digital signal processing, it became 

possible to multiplex the information in orthogonal polarisation and spatial modes, and 
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double the data rates [4].  

Passive Few Mode Fibres 

FMFs particularly have been interesting as they can provide very high spatial channel 

density by using large number of modes. Two approaches of FMF, weakly coupled 

and strongly coupled FMF, have been demonstrated in the recent years for 

implementing SDM.  

The first approach is the weakly coupled scenario where MIMO signal processing 

technique can be avoided and the LP modes are separately detected. In this scenario, 

the set of modes are chosen such that there is minimum spatial overlap between the 

modes. Further, to prevent inter modal coupling and hence crosstalk, the difference 

between their effective indices, Δneff, should be as large as possible. The step index 

profile with higher step index can be used to obtained higher Δneff. Also, large effective 

area, Aeff, of the modes is desirable to prevent non-linear effects. With the rigid 

constraints on Δneff and Aeff, it becomes harder to limit the losses of all the modes to 

lower values [5]. 

Since, the modes spatially overlap in the core and it becomes difficult to prevent mode 

coupling for large number of modes. The second category involves strong coupling 

where the modes are detected simultaneously using the coherent detection and 

decoupled using MIMO. These types of fibre require that the differential mode group 

delay (DMGD) or DGD is minimised in order to allow strong coupling between the 

modes and reduce the complexity and power consumption of the MIMO processing. 

The step index profile, however, generate high DMGD [5]. Trench-assisted graded-

index profile have been shown to provide minimised DMGD [6, 7]. The low DMGD 

imposes stringent requirements on fibre fabrication and it becomes difficult to achieve 

ultra-low DMGD for higher number of modes. Another method to achieve the low 

differential delay is to concatenate alternate fibres with positive and negative DMGD, 

which can be achieved by varying the graded index profile [8]. There have been 

experimental demonstrations of FMF with strong coupling incorporating up to 6 

modes [8, 10] and transmission reach of up to 1200km in 3-mode fibre [11]. The mode 

dependent losses (MDLs) in case of strong coupling become higher compared to first 

approach when the number of modes are increased [12]. Furthermore, FMFs requires 

that the differential mode gain (DMG) and losses in the link should be 

compensated [13]. Recently, it has been observed that the fibre non-linearity could 



 
Chapter-2 Background of SDM Technologies                                                                                       16 

give rise to cross-phase modulation and four-wave mixing interaction in the entire C-

band due to phase matching of higher order modes with the fundamental mode at 

longer wavelength [14, 15].  

In the recent years, there have been investigations of mode division multiplexing using 

orbital angular momentum (OAM) modes [16, 17]. The fact that these are the 

eigenmodes circular waveguide, they offer higher resistance to modal coupling as 

compared to the conventional LP modes. The OAM modes are generally unstable in 

conventional fibres and require vortex fibre to suppress the intermodal coupling. An 

experimental demonstration of 4-OAM modes over 1.1km of fibre had about -15dB of 

crosstalk [18]. However, it becomes hard to maintain pure modes over long distances. 

Active FMF 

 
(a) (b) 

 
Fig. 2.2 Schematic of (a) dopant distribution in micro-structured core fibre (green color with Er-ion doping), and 

(b) refractive index profile with blue color shown as a ring of dopant ions [23, 24] 

Multimode amplifiers have been investigated in the 90s and 2000s [19, 20]. In MDM for 

few-modes, an amplifier is required that could provide flat gain or at least similar gain 

profiles for the modes over the bandwidth of operation (C-band). There have been various 

investigations of FMF amplifiers for the minimisation of DMG and compensation of 

MDLs. The low DMG could be achieved by either controlling the pump modes and/or 

designing the fibre refractive index profile to control the signal overlap with active ion 

concentration [21, 22]. However, the latter is preferred where a double clad structure of 

the fibre could be used due to the ease of operation as compared to pump mode control 
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[23]. Selective doping of active ions in fibres such as microstructure core fibre, ring core 

fibre and accurately tailored profile fibre for the reduction of mode dependent gain in 

FMF amplifiers have been studied [24-27]. Fig. 2.2 (a) and (b) show the schematic image 

of microstructure core fibre with selective doping of active ions and the refractive index 

profile of a ring core fibre respectively. A few-mode amplifier supporting 4 mode groups 

has been experimentally demonstrated with 4dB of DMG [23]. 

Challenges in FMF 

The FMFs derive the advantage of easy and low loss splicing to itself and other fibres 

from MMFs. However, the accessibility of individual modes has been difficult up to date. 

Mode MUX and DEMUX are vital components for the realisation of MDM transmission 

systems. In MDM, the signals from SMFs are converted to the desired modes and coupled 

in to the FMF. Over the last few years, there have been reports of free-space couplers 

using phase plate and spatial light modulators and all-fibre coupler using photonic 

lanterns and long period fibre grating [28 ,32]. The phase plate based couplers are easier 

to use but simplicity comes with higher losses which often are mode dependent. 

Furthermore, the MDL in the couplers makes the MIMO equalisation process difficult. 

Moreover, components such as gain flattening filters need to be investigated that could 

accommodate for the variation in the amplifier gain profile for different modes. The 

reported MDM systems have shown impressive initial results and to date provide the 

highest spatial density among all the available fibre technologies for SDM. However, a 

thorough investigation of the above issues is required for MDM technology to be 

compatible with the current systems and hence to be considered for commercial 

implementation. 

2.2.2. Multicore Fibre 
MCF comprises multiple cores, which share a common cladding. The spatial channel 

density in MCF is lower than FMF. Fig. 2.3 shows the schematic cross-section image of 

MCFs with 3, 7 and 19 cores respectively.  
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Fig. 2.3 Schematic of MCFs consisting 3, 7 and 19 cores respectively. 

Passive MCF 

 
 

Fig. 2.4 Cross-sectional image of first 7-MCF with D= 150μm [33] 

The concept of incorporating multiple cores is not new, and in fact, Inao et al. from 

Furukawa electric Co. Ltd. experimentally demonstrated a multicore fibre in 1979 [33, 

34]. The main aim of developing MCF was to demonstrate a high density cable as 

opposed to conventional optical fibre cables. The MCF was fabricated through stacking 

7-preform rods in a circular jacketing tube under vacuum condition. The resulting fibre 

consisted of 7-cores in hexagonal geometry as shown in Fig. 2.4. The core loss was 

measured to be about 3dB/km at a wavelength of 850nm which was similar to single-core 

fibres. However, it suffered from crosstalk between neighbouring cores. The crosstalk 

was about -43dB for a 430m MCF. In addition, there was the difficulty of splicing and 

aligning the cores.  
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                           (a)                                                                                     (b) 

  

 
 

(c) 
 

Fig. 2.5 Cross-sectional image of (a) star bunch fibre, (b) flat bunch fibre and (c) multicore flat 
fibre [35, 36] 

 

As shown in Fig. 2.5 (a) and (b), further advancement saw the variation in the form of 

non-circular outer cladding to counter the aligning issues [35, 36]. Fig. 2.5 (c) shows 

the multicore flat fibre which was proposed as an alternative to counter the diameter 

constraint in MCFs. The development of MCFs was not pursued at that time due to the 

spectacular growth of SSMF based passive optical networks. In the 2000s, the rapid 

traffic growth and the saturation of SSMF capacity has led to a renaissance of research 

in MCFs [37, 38].  

Recent demonstration of MCFs for SDM can be also be classified into two categories, 

depending on the interaction between the spatial channels, coupled core MCF (CC-

MCF) and uncoupled core MCF.  

In CC-MCF, the spacing between the cores is small which results in higher spatial 

density than uncoupled MCF. There is strong coupling between the spatial channels 

such that the signal travelling as a super-mode. The higher core density achieved in 
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the CC-MEF comes at a cost of using the MIMO digital signal processing required to 

untangle the strongly coupled output. It is effectively similar to FMF with strong 

coupling. On the other hand, the CC-MCF has advantage over coupled FMF in terms 

of lower MIMO complexity. Due to strong coupling, the signal travels same distance 

in the cores hence resulting in small DMGD. Moreover, MDL is minimal in CC-MCF. 

Initial investigations of CC-MCF showed promising results with a record transmission 

distance of 4200km in 3-core microstructure core fibre demonstrated in 2012 [39-41]. 

The reduced complexity in CC-MCF compared to FMFs is obtained at the cost of 

decreased spatial channel density.  

 
Fig. 2.6 Heterogeneous MCF with (a) 7-cores in a triangular lattice pattern, (b) 6-cores in a rectangular lattice 

pattern, (c) 19-cores in triangular lattice, and (d) 12-cores in rectangular pattern [42] (different colour represent 
slightly different cores to prevent coupling) 
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In uncoupled MCF, the cores are desired to have no interaction between each other. 

The cores can also be different from each other in terms of size and refractive index. 

This approach has received most attention among all of the SDM technology due to 

the possibility of avoiding MIMO processing. In uncoupled MCF, Koshiba et al. 

performed a theoretical investigation in heterogeneous MCFs by placing the cores in 

triangular and rectangular lattice pattern as shown in Fig. 2.6 [42]. It was found that a 

slight difference in effective indices or propagation constants between the adjacent 

cores could help in mitigation of crosstalk (see Fig. 2.7 (a) for cross-section image). 

By using the different refractive index values (Δ), the phase matching between the 

cores could be avoided. The initial heterogeneous MCFs based on different core sizes 

were found to provide higher than expected crosstalk values. It was observed that fibre 

bending and twisting caused random phase matching between the adjacent cores 

thereby increasing the crosstalk [43-45]. 

Further, to increase the core density and reduce the crosstalk, various modifications 

around the core of MCFs such as trench-assisted core and hole-assisted profiles were 

investigated [46-48]. Figure 2.7 (b) and (c) shows the cross-section of these fibres. 

Also, the study of microbending loss with outer cladding thickness was performed to 

optimise the overall cladding thickness [49, 50]. The mechanical reliability of the outer 

diameter was also investigated in order to ensure that the strength of the fibre is not 

compromised and fibres have long operational life without degradation in their 

performance [50, 51]. Under this restriction, the cladding-diameter of about 225μm is 

shown to be the theoretical limit of MCFs [51].  Following the development of 7-MCFs, 

the number of cores were increased up to 19 in MCF [52, 53]. However, the crosstalk 

with 19 cores in hexagonal geometry was higher than -30dB even for the effective area 

of 80μm2 with 100km fibre length [53]. As shown in Fig. 2.7 (d), the cores were then 

arranged in circular geometry in order to reduce the crosstalk to about -40dB [54]. The 

inner circle core were placed at a radius slightly larger than outer circle which resulted 

in 4-5dB crosstalk reduction as compared to hexagonal geometry. The developmental 

progress of MCF based SDM system has resulted in 10 times enhancement in the 

capacity compared to SSMFs with a demonstrated record data rate of 1.01Pb/s [55]. 

It should be noted that the MCF and FMF concepts have been combined to develop 

few-mode MCFs, in order to further increase the spatial multiplicity up to 36 [56-58]. 

The highest capacity reported to-date used 14 cores, 12 single mode and 2 few-mode 
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cores, resulting in a total transmission rate of 1.05Pb/s [56]. Recent MCF 

demonstrations with 36 cores, each carrying 3 modes, and with 19 cores, each carrying 

6 modes, have shown the highest spatial multiplicity of 108 and 114 respectively [59, 

60]. The cladding diameter of these 36 core and 19 core fibres was 304μm and 318μm 

respectively suggesting a possibility to relax the outer diameter constraint of 225μm. 

However, no proof test was reported for these fibres. 

                    
 

(a)                                                               (b) 

            
 

(c)                                                                 (d)                                                
Fig. 2. 7 Cross-section images of 7-MCFs; (a) Conventional, (b) Trench-assisted, (c) Hole-assisted, (d) 19-core with 

circular core arrangement. [46-48, 54] 

Active MCF 

Both, transmission fibre and amplifier fibre are vital to the implementation of SDM 

technology. Core-pumped 7-MCF EDFAs employing uncoupled cores with an outer 

cladding diameter of 148μm and 180μm have been respectively (see Fig. 2.8 (a) and 

(b)) [61-64]. Both demonstrations used fan-in/fan-out tapered fibre bundles for 

multiplexing/de-multiplexing of the spatial channels. The former demonstration 

showed that the maximum crosstalk level from neighbouring channels were 25dB 

below the ASE level of the amplifier while the latter had a signal crosstalk of about 

40dB. Since then there have continuous push to take the technology forward, and 
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recently, a 19-core core-pumped MCF amplifier (see Fig. 2.8(d)) has been 

demonstrated using 10 pump LDs (9 were followed by a 3dB coupler to provide pump 

power to all 19 cores) [54]. 
 

                    
 

(a)                                                                     (b) 

                            
 

                                             (c)                                                               (d) 
 

Fig. 2.8 (a)-(b) 7-core Er-doped MCF for core-and cladding pumping , (c) 12-core Er/Yb-doped MCF for cladding-
pumping, and (d) 19-core Er-doped MCF for core-pumping [54, 64, 65, 68]. 

C-band MCF amplifiers in cladding-pump configuration have also been presented 

using both free-space optics and tapered fibre bundle with central fibre being coreless 

[64, 68]. The number of cores in the cladding-pump configuration have been increased 

up to 12 [65]. The cross-section image of 12-core MCF is shown in Fig. 2.8 (c). 

Challenges in MCF 

Similar to FMF, the use of MCF requires the development of specialized 

MUX/DEMUX components for accessing the individual cores with low crosstalk [67-

70]. Free space, integrated optic and fibre based devices are all now available, but with 

additional cost, appreciable loss and requiring very precise alignment [70-73]. Figure 

2.9 shows some of the MUX/DEMUX components that have been developed over the 
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years. Compared with bundled fibre couplers, free-space couplers have shown lower 

crosstalk and coupling loss even for a core pitch down to 35μm [73]. However, free-

space couplers might not be favourable for practical deployment due to their relatively 

high sensitivity to environmental perturbations. Couplers for cladding pump 

amplification in MCF also face the above challenges for pump and signal coupling. 

MCF based transmission would be limited to point-to-point network transmission due 

to its inability to separately access spatial channels. It should be that noted unlike the 

fibre links for transatlantic connections, the fibre in terrestrial networks are deployed 

in short lengths which are then connected together. In that case, an optimum coupling 

program/technique to achieve low loss and low crosstalk such as fusion splicing in 

SSMF is a necessary requirement.  

   
(a) (b) 

              
(c)                                                                            (d)  

 
Fig. 2.9 Coupling scheme for MCFs; (a) Tapered multicore connector (TMC), (b) encrypted 3-D fan-
in/fan-out device, (c) schematic of free-space coupling in 19-core fibre, and (d) image of free space-

coupler for 19-core MCF  [70-73] 

In addition, the cladding diameter in MCF is restricted to 225μm by mechanical 
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reliability considerations, although, some experiments have shown the possibility to 

go to higher diameters [50, 51]. This constraint, along with the minimum pitch required 

for low crosstalk, restricts the effective core area (Aeff) and the maximum number of 

cores that can be accommodated in an MCF design. With these constraints the 

maximum number of cores up to now have restricted to 19. A multicore flat fibre has 

shown the potential for reduced crosstalk and also better mechanical reliability as it 

could be bent only on the thin axis [74]. A cross-section image of such a fibre is shown 

in Fig. 2.5 (c). These issues/impairments reduce the cost-advantage that MCF could 

offer in a SDM system. 

 
2.2.3. Multi-element Fibre 

Multi-element fibre (MEF) is a robust and practical approach to implement SDM. 

MEFs can help towards avoiding many of the current practical limitation and rigidity 

associated with MCF and MMF systems. MEFs comprise multiple fibre-elements that 

are drawn and coated together in a common polymer coating. They could enable high 

density optical fibre cables as compared to the currently used SSMF cables with 

conventional fibre of 250μm coated diameter or even fibres with reduced coated 

diameter of 200μm. They allow for a more compact configuration of fibres as 

compared to a bundle of SSMFs, allowing increased spatial channel densities and 

efficient space utilization of the fibre cables.  The higher core density in MEF is 

enabled by the use of common polymer coating. The mechanical stiffness provided by 

the common cladding potentially allows the use of significantly thinner fibre-elements 

in MEF. In single fibre, micro-bending loss becomes significant as its diameter is 

reduced. There is in principle no fundamental upper limit to the overall diameter of a 

MEF (and associated number of elements) provided that the mechanical robustness of 

the individual elements is maintained. In addition, the independent nature of fibre-

elements in MEF geometry ensures that ultralow crosstalk can be maintained between 

the individual elements. 
Although, the spatial density of MEF is less than MCF and MMF, it maintains the 

compatibility with current SSMF based systems and could allow for a smooth 

transition to SDM systems. MEFs provide convenience in fibre handling compared to 

other SDM technologies since each fibre-element i. e. spatial channel, can be accessed 

individually by simply stripping-off the polymer coating. These fibre-elements can 
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then be connected to the SMF components using conventional fusion splicing. The 

development of fan-in, fan-out multiplexing components is therefore not required. Due 

to this, the incorporation of MEFs in current systems might help towards maintaining 

their flexibility. 

It is envisaged that the system capacity in future will scale with bandwidth per mode, 

modes per core, cores per fibre and fibres per cable [75]. It should be noted that MEF 

technology is compatible with both MCF and MMF i.e. individual fibre-elements 

could also have multiple core and/or multimode core. MEF can provide a bridging gap 

between the fibres enabling higher spatial channel density and current network 

flexibility. 

In this work, the MEF technology has been developed to build a bundle of multiple 

amplifiers. A core-pumped multi-element Er-doped fibre amplifiers (ME-EDFAs), 

comprising 3 and 7 Er-doped fibre-elements has been demonstrated, which will be 

discussed in detail in Chapter-3 [76, 77]. More importantly, a cladding-pumped Er/Yb-

doped 5-element MEF amplifier (ME-EYDFA) has also been realized [78]. In the 

cladding-pumped ME-EYDFA, a central fibre-element carries the pump light. The 

pump light is shared between several surrounding active (signal) fibres, four in the 

case of the work described here. The cladding-pumping is particularly attractive for 

SDM systems as it demonstrates component integration through pump sharing. 

Moreover, it is shown that the ME-EYDFA in novel cascading configuration can allow 

for the possibility to improve the gain flatness and/or wavelength tuneability [79, 80]. 

It has also been demonstrated the wavelength tuneability of the ME-EDYFA could be 

exploited to develop a broadband amplifier in split-band configuration. Such an 

amplifier could provide an amplification bandwidth of larger than 80nm whilst using 

a single pump source. Furthermore, in order to demonstrate the possibility to further 

increase the spatial multiplicity in SDM fibre amplifiers, a first cladding pump 

amplifier combining MEF and FMF was designed which included 4-fibre-element 

with each guiding 3 modes (LP01 and LP11) thereby enabling a spatial multiplicity of 

12 [81]. The cladding-pump amplifiers have been discussed in detail in Chapter-4.    

Passive MEFs have also been developed [82-85]. The fabrication technique for 

implementing the SDM in passive MEFs has been developed. Various passive MEFs 

with different fibre-element diameters have been fabricated. The loss, proof-test 

strength characterisation and transmission tests have been performed on the developed 
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fibres to demonstrate the benefits of this technology. It has been shown that high proof-

test strength could be achieved in MEF whilst maintaining low loss, provided the fibre-

elements do not touch each other. The details of the passive MEF fabrication and the 

characterisation of resulting MEFs has been discussed in Chapter-5 and a general MEF 

fabrication is discussed in Chapter-3. 
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Core-Pumped Er-doped 

Multi-element Fibre 

Amplifier 
 

3.1. Introduction 

Development of a SDM amplifier is critical to realisation of the SDM transmission 

system and further helps towards the integration of other components of the system. 

In particular, core-pumped SDM amplifiers have been given significant attention by 

the scientific community. Core-pump amplifier can help reduce the complexity of the 

network which increases with the increase in the number of components. Up to 19-

core and 7-core MCF amplifiers with core-pumping have been demonstrated using 

free space coupling and tapered fibre coupler respectively [1-3]. The use of coupler 

results in higher losses and crosstalk when compared with free-space coupling. 

In this chapter, Core-pumped MEF amplifiers (MEFA) have been proposed and 
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demonstrated for SDM amplifiers. A general fabrication procedure of MEF has been 

discussed. Core-pumped MEFAs with 3-MEF and 7-MEF comprising 3 and 7 Er-

doped fibre-elements respectively has been demonstrated. The gain and noise figure 

(NF) performance of MEFAs have been measured in section 3.3.2. The ability of 

MEFA to tune the gain profile of amplifier has been demonstrated in section 3.3.2.4.  

Fig. 3.1 shows the cross-sectional image of an Er-doped 7-MEF with OD of 460μm.  

 
Fig. 3.1 Microscope image of a Er-doped 7-MEF showing the 

arrangement of 7 fibre-elements in the high index coating 

3.2. MEF Fabrication 
Starting from conventional preform, MEF fabrication is divided into two steps. The 

first step involves making MEF preform assembly and 2nd step involves drawing of 

preform assembly into MEF. However, a method of stacking the preforms on tower 

can be developed which would eliminate the first step of MEF preform assembly (see 

section 5.3.1). 

3.2.1. MEF Preform Assembly 
Figure 3.2 shows the schematic of steps involved in the MEF preform assembly for a 

general X-MEF, where, X is the number of fibre-elements. Here, 3-MEF preform 

assembly is considered. At first, MEF preform assembly requires stretching of the 

fabricated preform to obtain the desired preform-element diameter. This can be 

performed on standard glass working lathe (GWL) machine, which consists of a burner, 

headstock, tailstock, and temperature controller. Burner and tailstock can be moved 

relative to each other to stretch the preform to the desired diameter. The tailstock speed,

tV , for a given initial preform diameter, iD , final diameter, fD , and burner speed, bV ,can 

be obtained using the equation 3.1. 
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Fig. 3.2 Schematic of 3-MEF preform assembly with processing steps starting with the a) fabricated preform, b) 

stretching and cutting of preform, and c) stacking in the desired MEF assembly 

The stretching operation is carried out in multiple steps to gradually reduce the 

diameter. As the diameter of the preform decreases it becomes difficult to stretch the 

preforms because at low diameter the preforms start to flex due to its own weight. This, 

in-turn changes its position in the flame during stretching. This introduces the diameter 

fluctuation in the stretched preform and limits the stretchable length. For this reason, 

the preform stretching was performed at temperatures as low as 1400oC to minimize 

the fluctuation in the diameter during the process. 

 
 

Fig. 3.3 Top view of the jig used for holding the 6mm preforms and fabricate the MEF assembly 

 
After stretching the preforms to a desired diameter, it is cut into desired pieces of equal 

length. These preforms are then stacked to obtain the MEF assembly. For this purpose, 

plastic jigs were fabricated to hold the preforms in a desired structure as shown in the 

Fig. 3.3. 

(a) 

(b) 

(c) 
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(a) (b) 

 

 
(c) 

 
Fig. 3.4 (a) Metal hooks and glass tube used to maintain the separation while assembling the preform, (b) front 

and (c) side view of metal hooks and glass tube placed on the assembly at the handle end 

The jig holds the preform on one side and the assembly is joined to the handle on other 

side using metal hooks and glass tube to maintain the geometry. The J-shaped metal 

hooks of 0.8 mm diameter were used to keep the separation between the preform-

elements in the assembly, whereas, glass tube was used to keep the preform-elements 

from diverging out. Fig. 3.4 shows the metal hooks used and their placement on the 

MEF preform assembly. This prevented any stress build up in assembly. The stress 

can result in the expansion or contraction of assembly in the furnace during fibre 

fabrication. Separation between the preform-elements in the assembly is required to 

prevent the assembly from collapsing during the MEF drawing. Although, the 

separation between the preform-elements can be kept larger but given the size of our 

furnace it was kept around 1mm (see section 3.2.2). The metal hooks and glass tube 

could be easily removed from same side. Finally, the jig is removed and a drop is 

joined on other side of the preform. 
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3.2.2. MEF Drawing 

To draw MEF from preform assembly into fibre, a conventional fibre drawing tower 

was used. A brief description of the conventional fibre drawing procedure has been 

mentioned below [4].  

 
 

Fig. 3.5 Schematic of conventional fibre drawing tower 

Preform goes into the pre-processing stage before executing the drawing process. A 

handle and a drop are attached to the preform. Drop is used as a weight to initiate the 

necking in the preform. Figure 3.5 shows the schematic diagram of fibre fabrication 

tower. At first, the fibre drawing furnace is purged using the inert Argon gas to prevent 

contamination during drawing process and reduce any turbulent flow of gasses inside 

the furnace. The turbulent flow in the furnace could lead to fragility of fibre and 

significant diameter fluctuation during the fibre drawing [4]. The preform is fitted into 
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the chuck with handle on top and drop on the bottom, and is fed into the furnace. Then, 

the furnace is ramped to the drop temperature. In silica, this temperature is typically in 

the range of 1900-2200oC depending on the size of the drop.  

The drop temperature is set above the glass softening temperature at which the drop 

starts falling due to gravity resulting in the formation of neck in the preform. After this, 

the drop is cut from the preform. Resulting thin cane from the neck is then fed into the 

tractor/cane puller. The cane puller further reduces the diameter of the glass rod being 

pulled. The diameter of the fibre being pulled from the glass can be obtained using 

conservation of mass, and is given by equation 3.2. 

                                            

1/2

* i
f p

f

VD D
V
 

=   
 

                                              (3.2) 

Where, fD is diameter of the fibre, pD is the diameter of the preform, fV is fibre drawing 

speed, and iV is the feed speed of the preform. The primary diameter gauge before the 

cane puller is used to monitor the bare fibre diameter, and allow feedback for diameter 

control in case there are diameter fluctuations in the preforms. After this, the bare fibre 

is coated using the acrylate polymer. Two types of polymer coating are used; low-

index coating and hi-index coating, depending on the required application, and dual-

coating is applied in commercial telecomm fibres. The fibre is fed into the coating 

assembly consisting of an entry and an exit die. Here, only pressurized coating 

assembly with single coating was used for the fabrication of all the amplifier fibres in 

discussion. Apart from the entry and exit die diameters, the thickness of the coating 

also depends on the fibre diameter, temperature of the coating material and the coating 

pressure inside the coating die assembly. After this, the fibre is passed through an UV 

curing chamber to cure the wet coating. Then, it is fed into the capstan through 

secondary diameter gauge, which then applies the force to pull the fibre, and the cane 

puller is released. Finally, it is sent to the take-up assembly for collection. The 

secondary diameter gauge records the coated diameter of the fibre, which gives the 

information about the coating thickness. The coating thickness can then be controlled 

by varying the temperature and pressure of the coating assembly system. 
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          (a)                                                           (b) 

Fig. 3.6 (a) Placement of MEF assembly in the furnace with furnace dimensions, (b) bottom view of the 
restrictor with 7-MEF preform assembly inside 

 
Fig. 3.6 (a) shows the schematic of a loaded 7-MEF preform assembly inside the 

furnace. The diameter of the preform-elements is limited by the dimensions of 

restrictor tube, in the lower part of the furnace. With a 21mm restrictor tube diameter 

and including the separation between the furnace and preform assembly, the maximum 

allowed diameter of preforms in 3-MEF and 7-MEF assembly is 8.8mm and 5.9mm 

(see Fig. 3.6 (b)) respectively. It should be noted that the assembly also requires that 

the gap should be maintained between the preform-elements to prevent them from 

collapsing with each other. In MEF fabrication, cladding diameter of one of the fibre-

element is observed from primary diameter gauge. Currently, there is no way to control 

the cladding diameter of the fibre-elements individually. However, the cladding 

diameter variation from element-to-element in MEF is expected to be negligible as the 

diameter of all the preform-elements in the assembly is same, and all the fibre-elements 
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are expected to have same diameter because of conservation of mass.  

In a single high-index coating (Desotech DSM 314-1) system, the preform was 

conventionally drawn (without any spin) as well as spun slowly. The spinning of 

preform assembly allowed the fibre-elements to coil together providing compactness 

to the MEF. It was observed that this provided better coating uniformity due to the fact 

that fibre-elements were not moving in the coating applicator during fabrication. In 

case of drawing without any spinning, fibre-elements were not stable in the coating 

applicator i. e. they were changing their position in the coating cup. This resulted in 

the non-uniform coating of the MEF. It should be noted that in case of passive MEF 

fabrication the preform assembly is not spun but uniformity is attained by applying the 

dual coating and optimising the fabrication conditions (see Chapter-5).    
 

3.3. Core-pumped MEFA 

 
Fig. 3.7 Refractive Index profile of L10057 

 

Er-doped 3-element MEF (3-MEF) and 7-MEF were assembled from two preforms, 

L10057 and L10058 respectively, which were fabricated by Dr. Anirban Dhar using, 

modified chemical vapour deposition (MCVD)-solution doping technique. The 

preform cores were doped with aluminium (Al) and Er ions, producing a measured 

refractive index step (Δn) of 0.0055. The refractive index profile (RIP) of L10057 
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preform is shown in Fig. 3.7., and L10058 had similar RIP. 

 
(a) (b) 

 
Fig. 3.8 (a) Schematics of a 7-MEF draw, and (b) Indexing of fibre-elements in 7-MEF 

The preforms were stretched and cut into sections of equal length to allow their 

stacking in the required 3-MEF and 7-MEF configurations. A support handle was 

joined to the stacks to allow simultaneous drawing of the fibre-elements as shown in 

Fig. 3.8 (a). The fibres were coated together in single coating with a high-index 

polymer (Desotech DSM-314). 3-MEFs and 7-MEFs were drawn at different rotation 

speed of the preform and with different fibre-element diameter. Table 3.1 lists the 

different fibres drawn by varying diameter of the fibre-element and rotation pitch in 

the MEF. Initially, Er-doped 3-MEF and 7-MEF in core-pump configuration, and fibre 

rotation pitch of about 7cm and 16cm respectively, were characterised. The cladding 

diameter of fibre-elements of both MEFs was 125µm, resulting in a core diameter of 

11µm and overall coated diameter of 310µm and 460μm for 3-MEF and 7-MEF 

respectively. Note that, as opposed to MCF, the core-pumped MEF approach is highly 

tolerant to any imperfection in fibre geometry due to the independent nature of the 

individual elements and the means of interconnection.  
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Table 3.1 List of Core-pump fabricated MEFs 

Fibre 
Type 

Fibre 
No. 

Draw 
Temp. 
(oC) 

Diameter 
(μm) 

Draw 
Speed 

(m/min) 

Rotation 
Speed 
(rpm) 

Rotation 
Pitch 
(cm) 

3-
MEF 

A0172 2060 

125 
1 0 Straight 
1 14 7 

100 
5 0 Straight 
5 48 5 
5 70 7 

7-
MEF 

A0184 2065 
125 

4.8 0 Straight 
4.8 30 16 

100 
4.8 0 Straight 
4.8 30 16 

To enable indexing of the different fibre-elements in the MEFs, the elements were 

identified by observing one end under a microscope while launching light in the 

different fibre-elements from the other end. A schematic of the cross-section of the 7-

MEF with the relative positions of the fibres and their identifying numbers is shown 

in Fig. 3.8 (b), and the microscopic image of 7-MEF is shown in Fig. 3.1.  Hereafter, 

when referring to a fibre-element, following nomenclature would be used: X-Fn, where 

X denotes the number of elements in the MEF and n is the identifier for the elements 

within that MEF; for example, 7-F3 denotes fibre number 3 of the 7-MEF. 

3.3.1. Experimental Setup for Core-pumped MEFA 
The gain, NF and crosstalk was measured using the experimental setup as shown in 

Fig. 3.9. It was assumed that the excess noise arising in the amplifier is only dominated 

by the ASE noise which is the case in high gain optical amplifiers [5]. The standard 

equations as shown below was used for the characterisation of amplifier 

performance [6].  

 10( ) 10 log out

in

PGain dB
P

= ×  (3.3) 

 
1( ) out in

w

N GNNF dB
h GB Gν
−

= +  (3.4) 

Where, outP , inP , outN , and inN  are the signal power and noise power for output and 

input signals respectively. wB  is the noise resolution bandwidth of the optical spectrum 

analyser (OSA) expressed in Hertz. The noise bandwidth was set to 0.5nm in the OSA 
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[7]. The spectra in the OSA were calibrated to match the output power values measured 

with Exfo FoT-90A power meter. To obtain output power measured by OSA, a 

spectrum with -10dBm signal power at 1550nm was used and the total power was 

calculated through the area under curve of spectral power density spectrum.   

 
Fig. 3.9 Experimental setup for measuring gain, noise figure and crosstalk containing channel-1 (ch-1) and 

channel-2 (ch-2) 

The setup comprised an Agilent-8164B tuneable laser source (TLS) for input signals 

in the C-band; a JDS Uniphase laser-diode (LD) as a pump source at a wavelength of 

976nm; isolators at a wavelength of 1550nm as a protection for the TLS, and 

980/1550nm wavelength division multiplexers (WDM) at the input/output to 

combine/separate the signal and the pump. The input and output signals for different 

wavelengths were measured by the OSA. The spectra obtained were then used to 

calculate the gain and NF of each fibre-element of the MEF under test. Performance 

for all the fibre-elements of 3-MEF and 7-MEF were calculated using ch-1, as shown 

in Fig. 3.9, for input signals of -10dBm, -15dBm, -20dBm and -23dBm at wavelengths 

of 1530nm, 1540nm, 1545nm and 1550nm.  

 

Fig. 3.10 7-MEF sample with fibre-elements fanning out after its coating is removed. 
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At first, the coating from each end of MEFs were stripped-off. In MEFs, the fibre-

elements fan-out after their coating is removed. Figure 3.10 shows one such example 

of a MEF with fibre-elements fanning out of a 7-MEF sample. SMF pigtails were then 

spliced to each fibre-element on both sides using fusion splicing. 

3.3.2. Result and Analysis 

The gain and NF performance of both 3-MEF and 7-MEF core-pumped amplifiers 

have been characterised in this section [8, 9]. The crosstalk has also been measured in 

both MEFs. 

3.3.2.1. 3-MEF Amplifier 

The amplifier was developed with a 3m of MEF length. A maximum available pump 

power of 172mW (45mW throughput) was used. 3m Er-doped fibre was used because 

it provided an amplified spontaneous emission (ASE) spectrum corresponding to C-

band amplification with peak around 1531nm and flat region around 1550nm. ASE 

spectra of one of the fibre-element is shown in the inset of Fig. 3.10. The ASE has a 

maximum around 1530nm and a flat region around 1545nm. This spectrum was typical 

of all the fibre-elements contained within each MEF with their Er absorption at 980nm 

being approximately 10dB/m.  

 

Fig. 3.11 Performance of 3-F2 at different input signal levels with a pump power of 172mW. The 
inset shows the corresponding ASE spectrum for the same pump power. 
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Table 3.2 shows the gain and NF characterisation of 3-MEF (spun, element 

diameter of 125μm) for an input signal of -23dBm. The performance characteristics of 

all the fibre-elements in the 3-MEF were similar with gain and NF in the range of 32.2-

32.8dB and 4.2-4.8dB respectively, for an input signal of -23dBm at 1530nm. Fig. 3.11 

shows the gain and NF variation for 3-F2.  

Table 3. 2 Gain and NF for 3-MEF measured at different wavelengths for an input 
signal level of -23dBm 

Wavelength 
(nm) 

Gain(dB) NF(dB) 

3-F1 3-F2 3-F3 3-F1 3-F2 3-F3 

1530 32.2 32.3 32.8 4.8 4.7 4.2 

1540 25.3 25.7 26.5 5.4 5.2 4.7 

1545 25.7 26.5 27.1 5.4 4.7 4.5 

1550 25.4 26.0 26.9 5.3 4.8 4.4 

 
The crosstalk was measured for the 3-MEF using both ch-1 and ch-2 as shown in Fig. 

3.9. Agilent and Photonetic Tunic-BT TLSs were used as input signal sources in ch-1 

and ch-2 respectively. The maximum pump power launched in ch-2 was 244mW and 

-7dBm of input signal was used to measure crosstalk. The two sources were initially 

compared using ch-1. Gain and NF for -7dBm of input signal at a wavelength of 

1530nm was 21.1dB and 5.8dB respectively for the Agilent TLS, compared with 

21.8dB and 6.3dB respectively for the Photonetic TLS. As shown in table 3.3, various 

permutations of pump and signal states (on/off) were considered in order to measure 

the crosstalk between two channels operating at wavelengths of 1530nm (ch-1) and 

1531nm (ch-2). For crosstalk in 3-MEF, all the possible fibre-pairs (3-F1↔3-F2, 3-

F1↔3-F3 and 3-F2↔3-F3) were considered. First ch-1 was monitored, followed by ch-

2 to confirm there was no influence on the measurements due to the choice of channel 

being monitored.  

Table 3.3 Pump and signal permutation in ch-1 and ch-2 for crosstalk measurement in 3-MEF for the case of 
ch-1 being monitored (Subscript 1 and 2 for pump (P) and signal (S) correspond to ch-1 and ch-2 respectively) 

Case P1  P2  S1  S2  Output (Ch-1) 

1 ON OFF ON OFF Amplified Signal in 
ch-1 

2 ON OFF ON ON No Change 

3 ON ON ON ON No Change 

4 ON ON OFF ON Only ASE of Ch-1 

5 OFF ON OFF ON OSA noise in Ch-1 
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Taking the example of ch-1 being monitored, starting with case-1, the pump and signal 

in ch-1 was switched on to record the amplified signal. Then, in case 2, the signal in 

ch-2 was switched on at -7dBm to record any changes observed in the amplification in 

ch-1; <0.05dB change in the amplified signal was observed, which is well within error 

range. After this, P2 was switched on but no change was observed. Following this, the 

signal and pump in ch-1 were shut-off one after another as shown in case 4 and 5. In 

fact, there was only ASE observed when pump in both channels at their respective 

maximum power and signal in ch-2 were switched-on. No ASE or signal leakage 

observed between the fibres of 3-MEF. 

3.3.2.2. 7-MEF Amplifier 

 

Fig. 3.12 Gain and NF variation for 7-F4 with wavelength, at different input signal levels using a 
pump power of 172mW 

Likewise, Gain and NF measurements were made for all 7 fibre-elements of the 7-

MEF (spun, element diameter= 125μm) using a similar pump power (172mW) as used 

in the case of 3-MEF experiments, and 3m of 7-MEF. Fig. 3.12 shows the gain and NF 

variation for 7-F4. Table 3.4 shows the results obtained for all fibre-elements of 7-MEF 

for -23dBm input signal. The gain and NF for all the fibres were found to be in the 

range of 32.5-33.5dB and 3.3-4.0dB respectively, for an input signal level of -23dBm 

at a wavelength of 1530nm. The gain and NF variation of all the fibre-elements of 7-

MEF was slightly better than the 3-MEF mainly due to the different preforms used for 

their fabrication. 
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Table 3.4 Gain and NF for 7- MEF for -23dBm input signal at different wavelengths 

 
To measure the crosstalk in 7-MEF, a similar procedure of taking different pump and 

signal permutations was followed as in the case of 3-MEF. First, three fibre-pairs 

comprising randomly chosen fibre-element, 7-F7, and any one of 7-F1, 7-F2 and 7-F6 

were considered. 7-F1 was observed to have relatively higher bend sensitivity, as 

observed during gain and NF measurements and all the possible fibre-pair 

combinations with 7-F1 were then considered. There was no signal or ASE crosstalk 

between the fibre pairs in 7-MEF, which is expected from the fibre geometry of MEFs. 

 

Fig. 3.13 Pump power vs gain measured for -10dBm and -23dBm input signal at 1530nm 

Wavelength Gain (dB) 

(nm) 7-F1 7-F2 7-F3 7-F4 7-F5 7-F6 7-F7 

1530 33.0 32.5 33.5 33.4 32.5 33.0 33.0 

1540 26.9 26.5 28.0 27.4 26.3 27.6 27.0 

1545 27.5 27.0 27.0 27.0 26.9 28.2 27.6 

1550 27.2 26.8 26.8 26.8 26.7 28.1 27.4 

Wavelength NF (dB) 

(nm) 7-F1 7-F2 7-F3 7-F4 7-F5 7-F6 7-F7 

1530 3.3 3.7 3.7 3.5 3.4 4.0 3.7 

1540 3.6 4.0 4.0 4.0 3.9 4.4 4.0 

1545 3.4 3.9 3.8 3.8 3.7 4.2 3.8 

1550 3.6 4.0 4.0 3.9 3.8 4.3 3.9 
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The graph of pump power vs gain was also plotted in Fig. 3.13 using two different 

input signals -10dBm and -23dBm at a wavelength of 1530nm for 7-F6. From this 

graph, it can be commented that the gain is limited by available pump power, and 

increase in the pump power may provide improvement in gain of the amplifiers. 

3.3.2.3. Straight vs. Spun 
Table 3.5 Gain for spun and straight 3-MEFs with -23dBm of input signal 

Wavelength 
(nm) 

Gain(dB) 
Input (-23 dBm) 

Spun Straight 

1530 31.7-32.6 32.4-32.9 

1540 25.6-26.9 26.7-27.1 
1545 25.8-27.1 26.9-27.4 
1550 25.4-26.7 26.0 -26.5 

The gain performance was compared for 3-MEFs with 100μm fibre-element diameter 

for straight and spun (7cm pitch) respectively with 172mW of pump power in a 3m 

MEF. Table 3.5 shows the gain in both cases. The range corresponds to the element-

to-element variation in the MEFA. There was no significant variation of gain 

characteristics in spun fibre as compared to straight fibre. The variation was <1dB 

which is within the error limits of the measurement. It could be concluded from this 

that spinning did not induce any detrimental effects on the amplifier performance. The 

performance of core-pumped MEF is highly tolerant to geometrical imperfections. The 

results of the 7-MEF were not measured. However, they are also expected to be similar 

for spun and straight MEF scenario. 

3.3.2.4. Gain profiling in core-pumped MEFA 

Besides enabling the integration of multiple amplifiers for SDM applications, core-

pumped MEFA also enables flexibility of changing the length of the fibre in the 

amplifier. This in turn allows for the gain profiling of the amplifier. The fibre elements 

were cascaded in series by connecting the output of one element to the input of the 

next, and the variation in the gain profile was observed [10, 11]. The schematic of 

cascaded MEFA for 2-element cascade is shown in Fig. 3.14. SMFs were spliced to 

each fibre-element on both sides. The output of element-1 was spliced to input of 

element-2. The cascaded amplifier was pumped bi-directionally.  
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Fig. 3.14 Schematic of 2-element cascade using bi-directional pumping showing the fibre-

elements connected by splicing using SMFs 

The gain profile and NF of the amplifier using 2-elment cascade with a total pump 

power of 208mW and 250mW have been shown in Fig. 3.15. For an input signal power 

of −23 dBm, the average gain in the C-band was 30 dB with a gain variation of ±1.5dB. 

Moreover, the NF was less than 4.5 dB for the entire C-band. As expected, the gain in 

the 2-element cascade shifted towards longer wavelength compared to the single 

element, while reducing the gain at 1530 nm [10].  

 
Fig. 3.15 Gain and NF characteristics of the 2-element cascade at pump powers of 208 mW and 250 mW. 
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Fig. 3.16 Gain in L-band for different cascades for 320mW of pump power 

Similarly, the gain in the L-band was enhanced by cascading more number of fibre-

elements. Figure 3.16 shows the gain of different cascades in L-band for total pump 

power of 320mW. It was observed that the available pump power was not sufficient to 

provide efficient gain for a cascade containing more than 4 fibre elements. The 4-

element cascade in 7-MEF provided the maximum gain in the L-band using bi-

directional pumping with a total pump power of 320 mW (forward pump power: 170 

mW, backward pump power: 150 mW). A minimum gain of 20 dB and NF less than 4 

dB were observed from 1580 to 1595 nm with the input signal power of -23 dBm. 

Further increase in either forward or backward pump power did not improve the 

performance of the 4-element cascade amplifier. This tuning characteristic could be 

used to develop a split broadband amplifier. 3 lines of different amplifier employing 

single element, 2-element cascade and 4-element cascade could be used to amplify 

signals in 1520-1530nm, 1530-1560nm and 1560-1595nm wavelength bands 

respectively. Such an amplifier could provide >20dB gain and <4.5dB NF in 

wavelength band of 1520-1595nm. 

3.4. Conclusions  
Core-pumped Er-doped 3-MEF and 7-MEF have been fabricated and characterized in 

terms of their amplification properties. It has been shown that there is no measurable 

crosstalk between the signals down the OSA noise level (-90dBm) in different fibre-

elements of core-pumped MEFA, i.e. all fibre-elements behave as single fibres in 
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isolation. The approach of combining multiple fibre-elements in a common coating 

can be scaled to fabricate long fibre lengths. The MEF geometry can also be scaled to 

a larger number of fibre-elements. All the fibre-elements in the 3-MEF and 7-MEF 

had similar amplification characteristics, providing an average gain of 33dB and a NF 

<5dB for an input signal of -23dBm at a wavelength of 1530nm, typical of EDFAs. 

The gain variation in spun and straight fibre draw condition was within 1dB. It was 

shown that the added flexibility of MEF geometry could be further exploited to change 

the length of amplifier fibre. This could help tune the gain profile of the amplifier. It 

was shown that the gain in L-band could be enhanced by using 4-element cascade. 

Using this, the split-band amplifier was proposed which would employ three amplifier 

consisting of single element, 2-element cascade and 4-element cascade respectively. 

Such an amplifier was proposed to demonstrate a broad amplification of 20dB in 

wideband covering wavelength region of 1520nm-1595nm.  
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Chapter-4 
 

Cladding-Pumped Er/Yb-

doped Multi-Element Fibre 

Amplifier 

 

4.1. Introduction 

The cladding-pumped SDM amplifiers have great potential for component sharing 

and device integration. It can be regarded as one of the drivers for reducing both cost 

and energy expenditure of the network systems. In cladding pumped SDM amplifiers, 

a less expensive, low brightness, high-power multimode pump laser diode is used as 

a pump laser source and multiple spatial channels can be amplified simultaneously 

However, note that compared to core-pumped MEFAs, the cladding pumped SDM 

amplifiers require high pump power due to small overlap between pump and signal 

intensities. There have been various demonstrations of cladding pumped MCF 

amplifiers [1-6] and a 12-core MCF amplifier is the highest core count cladding 
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pumped MCF amplifier reported up to date [3]. However, these MCF amplifiers 

require delicate fan in/out devices to access the individual cores and optical crosstalk 

between the adjacent cores is an important issue.  

 In this work, we have developed a cladding pumped MEF amplifier, where a central 

pump delivery fibre is in physical contacted with the four surrounding signal fibres 

which allows efficient pump light coupling into the neighbour signal fibres. The 

combination of pump fibres with a single active fibre has been demonstrated 

previously for high power fibre laser applications and L-band amplifiers, known as 

GTWave fibre [7, 8]. Here, the use of cladding-pumped multi-port amplifier concept 

has been used to amplify multiple signal fibre-elements [9, 10]. The number of fibre-

elements have been increased up to 5 (4 signal and 1 pump) in cladding-pump 

amplifier as compared to GTWave fibre (only one signal fibre-element and 

multimode pump fibre-elements was used) and a single pump laser diode is used to 

amplify multiple signal-fibre elements. Also, drawing multiple fibre elements with a 

common polymer coating offers the advantages of easy access to individual fibre 

elements by stripping the protective polymer coating and easy side pumping by 

optically contacting adjacent signal fibre elements. Therefore, this type of MEF 

configuration can reduce the amount of optical devices such as pump-signal 

combiners (i.e. WDM couplers) and fan in/out devices.  

Significant attention has also been paid to develop broadband optical amplifiers 

covering C and L bands. Erbium has the potential for broadband amplification with 
4I13/2 4I15/2 transition covering ~1.5 to 1.62μm [11] and a parallel configuration of C 

(1530-1565nm) and L (1565-1625nm) band EDFAs has been considered to cover the 

C+L bands. This approach however increases the system cost as the number of 

components are doubled. On the other hand, Raman amplifiers have shown the 

potential to achieve broad-gain amplification [12-14] using multiple pump laser 

diodes but special tailored pump control is required to obtain flat broadband gain. In 

this chapter, using MEF structure, we also introduce a broadband EDFA covering 

both C and L-band using a single pump. A novel scheme of combining the signal 

fibre-elements to make a loop-back cascade in MEFA has been introduced, revealing 

the ability to increase and/or tune the bandwidth of the device. The MEF based 

wideband optical amplifier can be developed either by using signal fibre-elements 

with different Er/Yb-doping concentrations or by cascading the signal fibre-elements. 
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Similar to core-pumped amplifier, the cascading in cladding-pumped MEFA 

provides flexibility of length variation by cascading the signal fibre-elements [15, 

16]. The MEFA provides advantage over conventional C+L split band EDFA as it 

uses same pump laser diode for amplification of both bands thereby reducing the 

overall cost of the amplifier. A detailed study on the gain and NF characteristics of 

MEFA for different fibre lengths, pump powers and cascading configurations has 

been presented.  

In order to achieve further higher spatial multiplicity in SDM transmission, the 

integration of MCF and FMF technologies have been demonstrated [17-19] in a 

passive transmission fibre but, until this work, SDM amplifiers supporting few-mode 

MCFs had not been demonstrated. However, these hybrid SDM amplifiers are 

essential to realize a SDM transmission system with higher spatial multiplicity. To 

fulfil these requirement, we have been experimentally demonstrated the first hybrid 

SDM amplifier, “few-mode MEFA”, in section 4.5. Few-mode MEFA consists 5 

fibre-elements (4 signal fibre-elements and 1 pump fibre-element), and each fibre 

element can amplify three spatial modes (LP01, LP11a, and LP11b), yielding an overall 

multiplicity of 12 (3 modes x 4 signal fibre-elements) [20, 21]. An average signal 

gain of 18.3dB and differential modal gain in the range of ~1-6dB were achieved in 

the wavelength range 1542-1560nm at an input signal power of -12.5dBm per 

channel. The detailed WDM performance for various pump powers and input signal 

powers has also been investigated. The experiment of few-mode cladding pumped 

MEFA was performed with the help of Dr. Yongmin Jung.  

4.2. Fibre Fabrication and Characterisation  

Cladding-pumped 5-MEFs were fabricated from a commercial preform with outer 

diameter of 12.55mm and core diameter of 1.13mm. The fibre preform was doped 

with Er and Yb ions in phospho-silicate host with their concentrations corresponding 

to the average core absorption of 50dB/m at 1536nm, and 400dB/m at 915nm 

respectively, as specified by the manufacturer. The RIP at various positions along the 

length of the preform is shown in Fig. 4.1. The refractive index varied between 

0.010-0.015 resulting in numerical aperture variation from 0.17 to 0.20. 
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Fig. 4.1 Refractive index profile of the preform along the length 

The Er/Yb-doped preform was stretched and cut into four equal lengths and stacked 

together with a pure silica rod (Suprasil F-300) at the centre to obtain a 5-element 

MEF (5-MEF) preform assembly as shown Fig. 4.2 (a) [10]. A 7-MEF jig, same as 

that used for making assembly for core-pumped ME-EDFA (see Fig. 3.3), was used 

for making the preform assembly by leaving the two opposite holes empty. A drop 

weight was attached to other side of the assembly.  The preform assembly was then 

drawn into MEF at a temperature of 2040oC and a drawing speed of 10m/min, 

keeping the elements separate in the process until they were combined in a common 

polymer coating. The fibres were coated with a low-index acrylate polymer coating 

(Luvantix PC-373 AP) to form double-clad fibre structure. The resulting 5-MEF 

comprise of one pure silica rod fibre (i.e. core-less fibre) as a pump delivery fibre at 

the centre and four surrounding Er/Yb-doped signal fibre-elements as gain medium. 

Two 5-MEFs were fabricated with two different cladding diameter of fibre-elements; 

80μm (overall coated diameter = 305μm), and 55μm (coated diameter = 275μm), 

resulting in core diameter of about 7.5μm and 5μm respectively. The preform 

assembly was spun during fibre fabrication to ensure that the signal fibre-elements 

maintain continuous optical contact with the pump fibre-element. The rotation rate of 

about 80rpm was chosen so as to maintain the fibre-element bunching point above 

the coating die. It was also verified by inspecting the cross-section of the fibres at 

multiple points in a 4m long MEF that signal fibre-elements maintained physical 

contact with the pump fibre-element. The MEF with fibre-element diameter of 55μm 

fabricated to obtain single mode cores in C-band. However, all the measurements 
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were performed on 5-MEF with fibre-element diameter of 80μm due to ease of 

handling the fibre with thicker diameters. The cores in the fibre-elements of this 

MEF was two-moded. The cross-section microscope image of 5-MEF is shown in 

Fig. 4.2 (b). 

 
(a) 

 
(b) 

Fig. 4.2 (a) Schematic of preform assembly, (b) microscope image of cross-section of 5-MEF 

The pump delivery fibre in 5-MEF was identified by observing the cross-section of 

all the fibre-elements at input end under the microscope as the pump fibre-element 

had no core. The signal fibre-elements were arbitrarily coded as S1, S2, S3 and S4 

respectively, and the pump fibre-element was coded as P. The core and cladding 

absorption of the signal fibre-elements were measured using a white light source and 

an OSA.  
Table 4.1 Cladding and Core absorption measured at 975nm and 1536nm respectively 

Fibre No. Core abs. @1536nm Cladding abs. @975nm 
S1 47 3.7 
S2 36 2.2 
S3 61 4.3 
S4 44 3.1 

 

Table 4.1 shows the cladding and core absorption measured at 975nm and 1536nm 

respectively. For cladding absorption, the measurement was performed on 5-MEF 

(80μm) with 1.8m fibre length by coupling white light into the pump fibre at input 
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end and measuring the transmission spectra from the signal fibres at output end using 

OSA. The cladding absorption at a wavelength of 975nm was found to be varying 

between 2.2-4.3dB/m between signal fibres. The core absorption at wavelengths of 

1536nm was measured by launching the white light into core of each fibre-element in 

10cm length by splicing SMF on its both ends, and taking the respective output 

spectra, and was found to have the element-to-element variation between 36-61dB/m 

as shown in Fig. 4.3 (output normalised around 1600nm). The lowest and higher 

absorption was in S2 and S3 fibre-elements respectively. The variation in absorption 

is due to variation in RIP of the preform along its length resulting in different the Er 

and Yb doping concentration in the fibre-elements of 5-MEF. 

 
Fig. 4.3 Core absorption spectra of signal fibre elements of 80μm 5-MEF for 10cm of fibre length at 1536 nm. 

4.3. Experimental Setup of ME-EYDFA 

 
Fig. 4.4 Schematic of experimental setup for gain and NF measurement. 

The setup for the gain and NF measurements of the signal fibre-elements is shown in 

Fig. 4.4. The setup comprised of a pump LD operating at a wavelength of 960nm, a 

TLS as a signal source and an OSA to record the input and amplified output signals. 

A 960nm pump chosen to such that flat region of the absorption band is used and 

effect of pump wavelength shift is not significant. It should be noted that in case of 
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cladding-pump ME-EYDFA, WDM couplers for combining pump and signal are not 

required. The signal fibre-elements, in which cores are doped with Er/Yb ions, can 

be easily separated at the input and output ends by simply removing the polymer 

coating of the fibre and standard single mode fibres can be spliced at both ends of the 

signal fibre-elements for efficient launch/extraction of signal light. Also, a pump 

delivery fibre (105μm core and 125μm cladding) was tapered to 80μm via adiabatic 

tapering and spliced to the pump fibre-element for efficient launching of the pump 

light from the laser diode into the pump delivery fibre-element (outer 

diameter=80μm). 
 

4.4. Results and Discussions 

C-band cladding-pump MEFA 

A 4m length of 5-MEF was taken and SMF patch cords were spliced to each end of 

the signal fibre-elements for gain/ NF characterization with the experimental setup as 

shown in Fig. 4.4. This length was chosen after cutting back and measuring ASE at 

different length to obtain ASE in the C-band, and prevent the reabsorption of the 

signal. Fig. 4.5 (a) shows the gain and NF performance of the individual signal fibres 

using 6.4W of launched pump power in a pump delivery fibre-element (P). A 

minimum NF of 4.7 dB with a maximum gain of 35±2.5 dB was observed per signal 

fibre element for an input signal of -23dBm. The maximum gain increased to 

37±2dB when the launched pump power was increased to 10W. The element-to-

element performance variation was a resultant of different doping concentration. 

Note that the signal fibre-elements were actually two-moded, which is likely to have 

contributed to the relatively higher noise figures as shown in Fig. 4.5 (a). However, 

the fibre was coiled tightly to about 5cm diameter and SMF pigtails were carefully 

spliced to these to ensure effectively SM operation in practice, and the amplifier 

operated in a stable fashion with no fluctuation in its output power over time. There 

is no intrinsic reason that the fibre cores should be two-moded, and this issue can be 

eliminated in the future work with expected improvements in amplifier performance. 

Another possible cause of increase in NF could be the initial section of MEF where 

the coating is stripped-off to splice the SMFs to each fibre-elements. The initial 

section remains un-pumped which contributes to the increase in the NF via increased 

loss.  
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(a) 

 
(b) 

Fig. 4.5 (a) Gain and noise figure spectra variation of MEF signal fibres with a pump power of 6.4W and input 
signal of -23dBm, and (b) pump power vs. gain for -23dBm input signal at a wavelength of 1543nm for signal 
fibres S1 and S2 respectively. 

The pump power vs. gain curve is plotted in Fig. 4.5 (b) for signal fibre-elements S1 

and S2 respectively, showing the gain saturation beyond about 8W of launched 

pump power. As similar to the case of the core-pumped ME-EDFA, no signal 

crosstalk was observed between the signal fibre-elements in a cladding-pumped ME-

EYDFA or simply MEFA due to the unique MEF structure. It was difficult to 

measure the crosstalk in active fibre due to the high absorption in the unpumped 

cores at the signal wavelengths but ultra-low crosstalk of the MEFA was verified in 

SDM system demonstration including passive MEF and C-band cladding-pumped 

MEFA, which is mentioned in section 5.3.3. Furthermore, the signal fibre-elements 

were connected together serially one by one to form a cascaded amplifier and the 

change in the ASE spectrum and gain was compared as each signal fibre-element 

was added. The gain was measured with two different launched pump power of 
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2.5W and 4.5W for the following configurations: a) S4, b) S4-S1, c) S4-S1-S2, as 

shown in Fig. 6(a). Note that, pump power requirement is reduced in cascading 

configuration due to the fact that pump gets replenished in each fibre-element. This 

works similar to Bi-directional pumping, in which pump power requirement is 

reduced to better inversion. The fibre-elements were randomly chosen for cascading. 

An input signal of -23dBm was used to measure the gain at four different 

wavelengths that are shown in Fig. 6 (b). It was observed that the gain at longer 

wavelengths was increased significantly as more signal fibre-elements were 

combined. Also, the amplifier gain spectra became flatter for cascaded amplifier as 

more signal fibre-elements were added to the device. For a three-elements cascaded 

(S4-S1-S2) amplifier, a gain of 36dB was observed over a bandwidth of  >20nm with 

a gain flatness of ±1dB. Also, there was a small variation in the gain profile of the 

amplifier depending on the cascading combination. 

 
(a) 

    
(b) 

Fig. 4.6 Variation of (a) ASE, and (b) gain spectra for different loop-back cascade amplifier configurations. 
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Amplifier Gain variation in different 2-element Cascade 

 
 (a)                                                                                     (b) 

 
(c) 

Fig. 4.7 Gain profile with different cascading combinations of 2 fibre-elements; (a) S2-S4, (b) S2-S3, and (c) S2-
S1 for pump power of 4.5W. 

Figure 4.7 shows the gain spectra over the C-band for different combination of 2-

signal fibre-elements in a cascaded configuration at the pump power of 4.5W. S2 

fibre-element was used at the start in order to minimise the NF as S2 had best NF 

performance. It can be seen that the variation in profile for different cascade 

combination was due to variation in the dopant concentration along the length of the 

preform. This feature could be used to tune the profile of the amplifier. With the S3 

fibre-element (highest absorption) in the cascade, maximum shift of the gain profile 

towards the longer wavelength was observed. It can be seen that S2-S1 and S2-S4 

had similar performance as the absorption in S1 and S4 were close to each other. 
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(a) (b) 

(c) (d) 
Fig. 4.8 Gain and NF performance of cascade combinations; (a) S2, (b) S2-S4, (c) S2-S4-S1, and (d) output 

spectra corresponding to three cascading cases. (Note the dots represent the experimental data and solid lines 
are simply trend lines to help guide the eye) 

To test the operation in a WDM environment, a source comprising 28 intensity 

modulated channels in the range of 1535-1562nm was used in place of the TLS in 

Fig. 4.4. The amplifier characteristics were measured, both for a single fibre-element 

and for different cascade configurations, for input signal powers of -6.6dBm and 

0dBm, and a launched pump power of 6.4W. Figure 4.8 (a), (b), and (c) show the 

gain and NF plots for S2, S2-S4, and S2-S4-S1 cases, respectively. The gain 

increment at longer wavelengths was observed in the multi-channel cases, and can be 

clearly seen shifting from Fig. 4.8 (a) to (c). Figure 4.8 (d) shows the output 

amplified signal spectra for S2, S2-S4 and S2-S4-S1 for 6.4W of launched pump 

power. The results indicate that further improvements in the amplifier characteristics 

can be obtained by optimizing the amplifier length. Further optimization of the 

uniformity of the amplifier fibre-element performance is also anticipated with the 

improvements of preform fabrication process. 
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Amplifier Characterisation with Length 

To characterise the MEFA with respect to length, at first, 12m of MEF was taken for 

measurement which was then cut to 9m and 6m respectively for further 

characterisation.  

 
(a) 

 
(b) 

Fig. 4.9 Gain and noise figure variation for a) signal fibre-elements using a 6m of MEF and -10dBm and -23dBm 
input signals and b) S2 at different lengths for a pump power of 6.4W and -10dBm of input signal. 

Figure 4.9 (a) shows the gain and NF performance of all four signal fibre-elements 

of MEFA using 6.4W of launched pump power with -10dBm and -23dBm of input 

signals and 6m long MEF. A maximum gain of about 37 dB and corresponding NF 

of 7.3dB was obtained for S2 signal fibre-element (with lowest pump absorption) in 

the C-band (1536nm) for -23dBm of input signal. Figure 4.9 (b) shows the gain 

variation of S2 for different fibre lengths with the launched pump power of 6.4W 

and -10dBm of input signal. Gain in only the C-band was measured for 6m fibre 

length due to significant reduction of gain in L-band. For 9m fibre, the gain in the C-
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band decreased whereas the gain in L-band reached >10 dB across the wavelength 

band 1575–1605 nm. However, for 12m long fibre, the pump power of 6.4W was not 

enough, and the gain reduced in both C and L bands as compared to 9m fibre. The 

reduction of gain in C-band was higher compared to the L-band. The gain 

dependence of launched pump power for 12m MEF with -10dBm input signal is 

shown in Fig. 4.10 (a) for S2, which had lowest NF. The maximum gain reached to 

22.5dB at a wavelength of 1565nm on increasing the pump power to 10W. 

Moreover, the gain of 26.5dB and NF <6 dB was observed in the L-band (1565–

1615nm) for an input signal of -23dBm and 10W of pump power.  

 
(a) 
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(b) 

Fig. 4.10 Gain variation of the MEFA with -10dBm of input signal for (a) 12m of MEF at two different pump 
powers, and (b) cascading of signal fibre-elements for different MEF lengths at pump power of 6.4W. 

The signal fibre-elements were cascaded one by one by connecting the output of one 

fibre-element to the input of next fibre-element, without using any isolator in-

between, and the change in the gain was measured. The gain was measured with a 

6.4W of launched pump power for 6m, 9m and 12m MEF lengths as shown in fig. 

4.10 (b). An input signal of -10dBm was used. It can be observed from Fig. 4.10 (b) 

that for 12m of MEF, the gain was <10 dB in the L-band. However, after cascading 

the fibre-elements (S1-S4-S3) the maximum gain increased to about 29dB  at a 

wavelength of 1605nm with >23.5 dB of gain in entire L-band region from 1565–

1615nm. However, 3-element cascade also had higher NF. Relatively flat gain of 

18.5±1.2dB was observed for 2-cascade (S1-S4) configuration in the wavelength 

band of 1575-1615nm. Whereas, for 6m MEF the gain is primarily dominated in the 

C-band. The MEFA using short fibre lengths can thus provide amplification in the 

C-band. For 9m of fibre length, single fibre-element provided a maximum gain of 

24dB in C-band and 2-cascade provided the gain of >17dB in the L-band. The gain 

in L-band could be further increased using 3-element cascade, however, it would 
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have higher NF difference in the C and L-band.  

A split-band cladding pumped MEFA can be configured covering both C and L band 

in which one of the fibre-elements operates in the C-band and other elements are 

cascaded to provide sufficient gain in the L-band. The expected performance of such 

amplifiers is shown in Fig 4.11, in which the gain and NF of S2, which provides 

maximum gain in the C-band, has been put together with the gain and NF of 2-

element cascade (S1-S4). 

 
(a) 

 
(b) 

Fig. 4.11 Performance of a split band MEFA with (a) gain >17dB (1536 – 1615nm) using 9m MEF at 6.4W of 
pump power and -10dBm input signal, and (b) gain >20dB (1545-1615) using 12m MEF at 10W of pump power 

for -10dBm (black) and -23dBm (red) of input signal power respectively. 

Fig. 4.11 (a) and 4.11 (b) show the performance of a broadband amplifier using 9m 

and 12m of MEF lengths respectively. For 9m length and -10dBm of input 

signal, >17dB gain in 80nm bandwidth (1536-1615nm) was achieved for pump 

power of 6.4W. Whereas, in 12m MEF with pump power of 10W and for an input 

signal of  -23dBm the amplifier provided more than 21dB gain both in C and L 
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bands (1545-1615nm). Furthermore, relatively flat gain of (22±1.5dB) was achieved 

for -10dBm of input signal in 12m MEF. The cascading configuration shown in 

cladding-pumped MEFAs can be exploited to extend the operating window further to 

C and L-band. 
 

4.5. Cladding-pumped Few-mode MEFA 

Experiment setup of 3M-MEFA 

  
Fig. 4.12 Schematic diagram of 3-moded cladding pumped multi-element fibre amplifier (3M-MEFA) comprising 
4 Er/Yb co-doped signal fibres and 1 multimode pump fibre. (BS: Beam splitter, PP: Phase plate, ISO: isolator, 

AMP: amplifier, 3MF: 3-moded passive fibre) 

Figure 4.12 shows the schematic of the setup used for the characterization of the 

cladding pumped 3-moded MEF amplifier (3M-MEFA). As discussed in section 4.4, 

the Er/Yb-doped MEF with 80μm element diameter was two-moded which can 

guide up to three spatial modes (LP01, LP11a, and LP11b). The MEF was loosely 

coiled to allow 2nd mode to propagate. A multimode laser diode as a pump laser 

operating at a wavelength of 976nm was used, available at that time in the 

laboratory, instead of 960nm. The signal source used in the setup consisted of 10 

wavelengths multiplexed external cavity lasers spread over the range 1536-1560 nm. 

The WDM channels were pre-amplified, split into two and fed into the mode 

multiplexer to allow the gain performance of the individual amplifier elements to be 

measured. A 25km single mode fibre span was inserted along the LP01 path to 

minimize modal beating due to the high degree of coherence between the seed lasers. 

A phase-plate based mode multiplexer was used to selectively excite the pure LP01 

and LP11 signal modes in a 10m long passive 3-moded fibre (3MF). The commercial 

passive fibre (a graded index fibre with 16μm core diameter and an NA of 0.14) was 

then spliced directly to one of the Er/Yb-doped elements of the 3M-MEF. The 

amplified output was fed into the mode demultiplexer to analyse the mode dependent 

gain quantitatively. The large mode field diameter mismatch between the passive and 
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active fibres resulted in a mode dependent splice loss (~1.1dB for the LP01 and 

~2.5dB for the LP11 mode).  

To confirm clean mode amplification of the input signals, mode images were taken 

using a charge coupled device (CCD) camera before and after amplification at 

1550nm. The top row of Fig. 4.13 (a) and (b) shows that two clean spatial modes 

(LP01 and LP11) were excited in the passive 3MF and that the mode quality was well 

preserved during amplification. The bottom row of Fig. 4.13 (a) and (b) shows the 

optical spectra of the WDM signals (LP01) before and after the 3M-MEFA 

demonstrating more than 35 dB optical signal to noise ratio (OSNR) after 

amplification. The length of the amplifier was chosen to be 3.25m in order to 

maximize the signal gain whilst maintaining near full C-band operation. The gain 

peak of the amplifier was located at 1545 nm. 
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(b) 

Fig. 4.13 Measured mode images and optical spectra (LP01) before (a) and after (b) amplification. 

 

Gain performance of 3M-MEFA 
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(b) 

Fig. 4.14 (a) Gain and (b) noise figure spectra for 4 different signal fibre elements of the 3M-MEFA for an input 
signal power of -2.5dBm/mode (or -12.5dBm/mode/ch) and pump power of ~7.6W. 

Figure 4.14 (a) and 4.14(b) shows the WDM gain and NF spectra for all 4 different 

signal fibre elements of the 3M-MEFA, referred as S1 to S4, measured consecutively 

over all active fibre elements. A maximum pump power of 7.6W and an input signal 

power of -2.5dBm per mode (total signal input power of 0.5dBm) were used. An 

average WDM signal gain of 18.3dB was measured in the spectral range of 1542-

1560nm. The NF was found to increase sharply for wavelengths shorter than 

1542nm while it tends to decrease at longer wavelengths. The high NF at shorter 

wavelengths is mainly due to insufficient population inversion within the active 

medium and which is clearly evident from the sharp drop in signal gain.  

 
Fig. 4.15 Refractive index profile (RIP) of signal fibre-elements showing fibre-to-fibre index variation 

We observed large gain variation amongst the different elements, which is mainly 

due to the variation in core refractive index profiles and rare-earth doping 
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concentrations of the non-identical preform elements used. As it can be clearly seen 

from Fig. 4.15 that, the RIP of S2 fibre-element had dip in the centre emulating a 

ring core profile which resulted in lower DMG whereas S3 had highest DMG 

corresponding to its RIP. However, this could certainly be improved through further 

optimization of the preform fabrication process. The LP01 signal mode experienced 

higher gain than the LP11 mode and the DMG between the two guided modes varied 

by 1-6dB over all 4 active fibre elements. Note that we used a simple step-index core 

design in the current fibres so this level of DMG is not unexpected, however careful 

tailoring of the doping profile within the individual elements (as illustrated in [22]) 

could certainly help in reducing the DMG in few-mode cladding-pumped MEFAs. 

As shown in Fig. 4.14 , fibre element-2 (S2) showed the best performance in terms 

of differential modal gain (average DMG ~1.1dB, maximum DMG ~3dB) and 

spectral gain flatness across the C-band, and the detailed gain profiles for various 

pump power and input signal power levels were investigated for this fibre-element. 

 
(a) 
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(b) 

Fig. 4.16 (a) Output spectra of the LP01 mode after the mode demultiplexer and (b) mode-dependent gain for 
different pump powers with an input signal power of -2.5dBm/mode (or -12.5dBm/mode/ch). 

Figure 4.16 (a) and (b) shows the output spectra and the mode dependent gain as a 

function of pump power at a fixed input signal power of -2.5 dBm/mode. As shown 

in Fig. 4.16 (a), for low pump power (~0.6 W) the ASE peak is located at ~1565 nm 

and it shifts towards the shorter wavelength side with increasing pump power. A 

similar trend can be observed in the measured modal gain of the amplifier shown in 

Fig. 4.16 (b). At low pump power the gain at the short wavelength edge was 

measured to be very low due to an insufficient inversion level. As the pump power, 

Pp, was increased from 0.6 W to 7.6 W, the gain of each of the guided modes 

increased due to the increased level of population inversion. It should be noted that 

the gain increment at the shorter wavelengths is higher compared to longer 

wavelengths resulting in a shift of gain peak from 1560 nm to 1545 nm. 

 
(a) 
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(b) 

Fig. 4.17 (a) Mode-dependent gain for different input signal powers per mode at a fixed 
pump power of 3.6W for 3.25m of fibre, and (b) gain comparison between two different 

fibre lengths (3.25m and 4.5m) at a fixed pump power of 5.1W. 

Figure 4.17 (a) shows the amplifier gain variation for -2.5dBm and -12.5dBm per 

mode of input signal powers at a randomly chosen fixed pump power of 3.6W. Both 

spatial modes experienced gain reduction with an increase in input signal power due 

to amplifier gain saturation. The DMG did not show much dependence on the input 

signal power and the maximum DMG remains at ~3dB for all the input signal 

powers investigated. We also investigated the length dependence of 3M-MEFA. 

Figure 4.17 (b) compares the gain spectra for two different fibre lengths (3.25m and 

4.5m), for similar input signal powers (-2.5dBm and -3.3dBm per mode for 3.25m 

and 4.5m respectively) but at a fixed pump power of 5.1W. It can be seen that 3.25m 

fibre exhibited about 5dB higher gain in the shorter wavelength region as compared 

to that of the 4.5m fibre indicating that the gain at shorter wavelength can be 

increased by optimizing the fibre length. The gain difference at shorter wavelengths 

was relatively less for 3.6W of pump power. 
 

4.6. Conclusions 

A MEF based Er/Yb-doped cladding-pumped amplifier has been demonstrated for a 

wideband operation covering both C and L band. At first, a C-band cladding-pumped 

MEFA is presented. A maximum gain of 37dB and corresponding NF of 7.3dB in the 

C-band has been obtained in the S2 fibre-element with lowest Er concentration for 

MEF length of 6m at 6.4W of pump power and -23dBm of input signal. Element-to-

element gain variation of about 3.5dB was observed at 1545nm with an input signal 
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of -23dBm. It was due to different doping concentration along the length of the used 

preform. The cladding-pump MEFA performance for different fibre length, pump 

power, and cascading configuration was also investigated. The maximum gain of 

29dB was obtained for -10dBm input signal at 1605nm using 3- element cascade in 

12m of MEF. In addition, a cladding pumped MEFA based broadband amplifier was 

proposed. It was demonstrated that such an amplifier could provide >17dB gain in 

1536-1615nm wavelength region. Furthermore, relatively flat gain of 22±1.5dB was 

observed across the wavelength band of 1545-1615nm. The performance of the 

broadband amplifier can be further improved by tailoring the doping concentration in 

fibre elements. In cladding-pump amplifier, generally the optical pump power 

required is higher compared to its core-pump counterpart. However, in cladding-

pump amplifiers, low-brightness pumps could be used. Furthermore, the pump 

sharing in cladding-pump MEFA is the main advantage over core-pumped MEFA as 

it can help reduce the component numbers. This configuration could also be used for 

power scaling.  

Also, the first cladding-pumped few-mode MEFA was successfully demonstrated by 

combining MEF and FMF technologies. An overall spatial multiplicity of 12 (3 

spatial modes × 4 signal fibre-elements) was obtained. An average signal gain of 

18.3dB and differential modal gain of ~1-6dB were achieved in the wavelength 

range of 1542-1560nm. This architecture can be further scaled both in terms of the 

number of elements and number of modes per-element. Improvements in differential 

gain between elements and modes can also be envisaged by tailoring the rare-earth 

doping profiles of the optical fibre.  
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Chapter-5 
 

Passive Multi-element Fibre 
 

5.1. Introduction 
The passive SDM fibre as a component offers integration of multiple spatial channels. 

The passive SDM fibre along with development of passive SDM components could 

potentially provide huge cost saving. For this, development of SDM transmission 

fibres has attracted a major investment by research community. In particular, two 

major technologies, MCF and FMF have gained significant research attention. Data 

capacity of up to 2.15 Pbit/s has been demonstrated in MCF [1-2]. The review of MCF 

and FMF is covered in Chapter-2. In this Chapter, development of passive fibres based 

on MEF technology has been demonstrated. The fabrication parameters and 

commercial requirements of passive fibres are drastically different from amplifier 

fibres. In passive fibres, low loss (0.2 dB/km in current SSMFs) is desired, whereas, 

the background loss of the amplifiers reach up to tens of dB/km, two order of 

magnitude higher than the losses in passive fibres. Also, the fibre length in passive 

fibres is in hundreds of kilometre compared to short length of active fibre required in 

an amplifier.  Moreover, the high mechanical strength of the fibre (>100kpsi) is critical 

in passive fibre to ensure long lifespan after deployment [3]. In this chapter, 

modification in MEF preform assembly and MEF drawing is considered in order to 
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meet the telecoms requirement. The proof-test strength and characterisation of loss 

and transmission performance of developed MEFs is reported. Finally, an SDM 

experiment involving 3-MEFs and cladding-pump MEFA is demonstrated to show the 

potential of MEF technology for SDM networks.          

5.2. Modified Fabrication for passive MEF 

The fabrication of long length of MEFs can be achieved by increasing the volume of 

glass in individual preform-elements either by increasing their diameter or length. 

Since the diameter of perform-elements is limited by the diameter of the furnace as 

explained in section 3.2. The only possible solution was to increase the length of MEF 

perform assembly which required longer length of stretched preform-elements. 

However, the length that could be obtained from stretching on GWL decreases as the 

diameter of preform-elements decreases. This is due to the fact that at low diameter, 

the preform-element starts to flex due to its weight. This changes the position of the 

glass in the flame along the length thereby resulting in temperature fluctuation and 

hence diameter deviation along its length. As discussed in Chapter-3, fluctuation in 

diameter of preform-elements in MEF assembly could lead to collapsing of the 

assembly. On the other hand, the maximum preform length that could be fabricated in 

a single stroke with our tower is 80cm resulting in maximum of 3-km length of 7-MEF 

with fibre-element diameter of 100μm, if the process explained in section 3.2 is 

implemented.  

Modification in MEF preform assembly was implemented to increase the fabricated 

MEF lengths, and it is explained in section 5.2.1. Section 5.2.2 discusses the 

modification in MEF drawing conditions to further improve their strength. The coating 

system used in the passive MEF fabrication was changed from single coating to dual 

coating. The advantages of the dual coating system have been explained in section 

5.2.2, and subsequently MEFs are proof-tested to show their high strength. The loss 

and transmission performance of MEFs has been discussed in section 5.3. 

5.2.1. Modification of MEF Preform Assembly  

In previous work (see Chapter-3), diameter of the preform-elements was limited by 

dimensions of the restrictor tube in the furnace, 21mm. But, the diameter of the 

preform-elements can be increased by adapting some changes in the MEF assembly 
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process. It can be seen from Fig. 5.1, the upper section of the furnace is 34mm and the 

diameter of the preform-elements can be larger in this section. The MEF preform 

assembly can be pre-necked on the GWL i.e. the assembly can be tapered and joined 

to a drop of diameter, φ<18mm, for the drop to pass through the restrictor in order to 

initiate the MEF drawing process. Through this, the volume of the glass to be drawn 

could be increased whilst using the same furnace. With this, the size of each preform 

elements in 3-MEF and 7-MEF preform assembly could be increased to 12mm and 

8mm respectively.  

 
Fig. 5.1 Placement of 3-MEF preform assembly for long length fabrication 

A few changes were also made in the MEF preform assembly process to accommodate 

the new procedure. First, a new jig for 3-MEF with 12mm holes was prepared, and the 

holes in the jig were made deeper (100mm) than previous case (50mm) to hold the 

thicker (12mm of 3-MEF and 8mm for 7-MEF) preform elements. 

 
(a) 
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 (b)                                                                    (c)       

  Fig. 5.2 (a) shows the schematic jig of 3-MEF, and image of (b)-(c) 3-MEF and 7-MEF jigs, respectively, 
used for passiveMEF  assembly with 3-adjustment screw holes for each preform element 

Figure 5.2 (a) and (b) shows the schematic diagram and actual jig for 3-MEF with 3 

adjustment screws for each preform element on curved surface. The adjustment screws 

on each hole were used to tightly clamp the preform elements. The screws also allowed 

some tolerance to the diameter and length precision required during MEF preform 

assembly. The metal hooks and glass tube (see Fig. 3.4) during handle joint were not 

required as a result of thicker preform and modified jig ensuring further cleanliness of 

the assembly procedure. Figure 5.2 (c) shows similar jig for 7-MEF preform assembly. 

In jig for 7-MEF preform assembly, the central rod was clamped at positions along the 

length which is different from the positions of outer preform-element clamps. Figure 

5.3 (a) shows the 7-MEF jig on the GWL with the 8mm preform elements inserted 

into it. The end view shows 7 preforms in the hexagonal geometry and uniform 

separation can be seen in Fig. 5.3 (b). The schematic procedure for 3-MEF preform 

assembly is shown in Fig. 5.4 (a)-(e). 

 
(a) 
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(b) 

Fig. 5.3 (a) Side and (b) end view of the 7-MEF preform assembly on GWL showing the separation of preform-
elements 

     
Fig. 5.4 (a)-(e)Schematic steps of 3-MEF assembly 

The fluctuation in the furnace gas flows during the fibre fabrication could result in the 

diameter variation in the fibre and even fibre break. One such fluctuation might arise 

when the handle joint enters the furnace through iris. As shown in Fig. 5.4(a), the 

handle extension rod of 200mm length was used on each preform element to prevent 

the perturbation of furnace gas flows via handle joint. The length of handle extension 

rod chosen to be the same size as the distance of the iris from the hot zone in the 
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furnace, and its diameter is same as the diameter of preform elements. As shown in 

Fig. 5.4 (a), the drop extension rods on other side of the preform was also used to 

ensure that the actual preform is not touched with hand during assembly and 

cleanliness of the preforms is maintained. Cleanliness of the preform is critical to fibre 

fabrication procedure [4]. The preform elements are then inserted into the jig from 

drop extension side as shown in Fig. 5.4 (b). The MEF preform assembly is then joined 

to a 25mm handle rod on other side (see Fig. 5.4 (c)), and the actual image of joint 

handle can be seen in Fig. 5.5. Next, the jig is removed from the other side, and another 

rod is attached on the other side as shown in Fig. 5.4 (d). The drop extension rods are 

then separated using flame which results in pointed tips (see Fig. 5.3 (b)). After this, 

these tips at the end are bent inwards using hand torch to ensure that they touch the 

drop rod.  

 
Fig. 5.5 Handle joint of 7-MEF assembly 

Finally, the preform assembly with the bent tips is joined to the drop rod of diameter 

<18mm as shown in Fig. 5.4(e). Fig. 5.6 shows the bent tips joined to the 16mm drop 

in the finished assembly. 

 
          (a)                                                                       (b) 
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(c) 

Fig. 5.6 (a)-(b) Images of MEF assembly with bent tips of preform elements that are joined to 16mm drop, and 
(c) Completed MEF assembly. 

It should be noted that in a commercial environment, the assembly process could 

altogether be eliminated. A jig could be fabricated which can allow to stack the 

preforms on the drawing tower. One such example of a jig is shown in Fig. 5.7 which 

allows 12mm preforms to be stacked on the fabrication tower and also incorporates 

water cooling. Water cooling is to prevent the jig from expanding which might result 

in loose grip of the preform elements. Multiple furnaces close to each other could also 

be used with each using thick preforms which would ease the stringent requirement of 

MEF assembly faced in our research conditions. 

 
Fig. 5. 7 Image of 7-MEF jig for 12mm preform with water cooling  

5.2.2. Modification of MEF Fabrication 

While modification in the assembly enabled larger MEF fabrication length, the 

strength was improved by changing the coating system from single coating to dual 

coating. Dual coating consists of an inner coating referred to as primary coating, and 

an outer coating referred to as secondary coating. Both primary (DSM DP-1004) and 

secondary (DSM DS-2015) coatings used for passive MEFs were high index with 

respect to silica cladding. It should be noted that commercial passive fibres 

conventionally use the dual coating system to mitigate the microbending loss. The 
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primary coating is soft with low elastic modulus which acts as a cushion for the fibre 

whereas secondary coating protects the fibre from the environment.  
Table 5.1 Viscosity and modulus of the high-index coatings used for passive MEF fabrication. 

In MEF, the viscosity of primary coating was much lower than the secondary coating 

as well as high-index and low-index single coatings used in the previous cases for 

fabrication of Er-doped active MEFs. Table 5.1 lists the supplier specified modulus 

and viscosity of the high-index coatings used for the fabrication [5]. The coating dies 

plays even more important role in the fabrication of the MEF as compared to 

conventional fibre drawing. The primary coating die acts as a restrictor to the fibre 

coming to the coating applicator which in turns decides the total diameter and hence 

the compactness of the MEF. 

In MEF, the dual coating system provided additional advantage that the low viscosity 

of primary coating did not make the MEF grouping unstable as opposed to the case of 

single coating system, in which asymmetry in the fibre alignment destroyed the 

symmetric grouping. Previously, in a single coating, the MEF preform assembly was 

rotated during the MEF drawing to make the grouping stable. Whereas, the rotation of 

preform assembly was not necessary to keep the fibre-element geometry stable in 

coating cup during MEF fabrication. The stability of MEF coating procedure becomes 

critical as the number of elements are increased from 3 to 7. The use of dual coating 

system was implemented with wet-on-wet coating application as opposed to 

conventional wet-on-dry [6] application due to limitation of the height of tower. This 

made the position of fibre-elements in the coating sensitive to manual die alignment 

in MEF fabrication.  Figure 5.8 shows the primary and secondary coating die assembly 

of the applicator provided by SG Controls. These assemblies are manually aligned to 

each other with the help of a microscope.  

 

 
DSM-3471-314 

(Single coating) 

DP-1004 

(Primary Coating) 

DS-2015 

(Secondary Coating) 

Viscosity @250C 

(mPa.sec) 10,000 4300 5900 

Modulus (MPa) 35 1.3 950 
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(a)                                                                         (b) 

 
Fig. 5.8 (a) Primary, and (b) secondary die assemblies of the dual coating system. 

The use of dual coating system also eliminated the potential air gaps between the 

elements in MEF with single coating as seen in Fig. 3.1. Though air gaps are not 

believed to be critical issue as far as passive MEF and core-pump MEF is concerned 

but in cladding-pump configuration it can lead to variation in pump-signal coupling. 

It was believed that the dual index coating would provide better strength to the MEFs 

due to the stability of the fibre geometry attained in coating applicator die. This was 

confirmed with the MEF strength tests, as demonstrated in section 5.3.  

5.3. Passive MEF Characterisation 

5.3.1. Proof-Test 

 
Fig. 5.9 Proof-test and rewinding machine 

Proof testing is a well-established method to verify the strength of the fibre by 

applying stress to it. Figure 5.9 shows the proof test machine used for the 
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measurement. Multiple 3-MEF and 7-MEF preform assembly were made using clear 

fused quartz (CFQ) test rods as preform elements, and MEFs with different element 

diameters were fabricated from it using the modified fabrication and dual coating 

system. These MEFs were then proof tested. The weight required for proof testing was 

calculated using the equation given below. 

    

2

i
o

o

dW nW
d

 
=  

 
                                              (5.1) 

Where, oW , id , od and n are weight required for standard fibre, diameter of each 

element of MEF, diameter of standard fibre and number of fibre-elements in MEF 

respectively. The standard weight corresponding to 100 kilo-pounds per square inch 

(kpsi) (1% proof strength) for a fibre with the outer diameter of 125μm is 0.86kg.  
Table 5.2 Proof-test of different MEFs 

Fibre 
No. 

Fibre Type Element-to-
element spacing 

(μm) 

Element 
Diameter 

(μm) 

Primary 
Die (μm) 

Proof Test 
Strength 
(Kpsi) 

A0327 3-MEF 95 80 300 400 

A0330 3-MEF 55 80 250 400 

A0356 3-MEF No (Compact) 80 190 ~100 

A0316 3-MEF 95-100 60 250 >500 

A0496 7-MEF 25-40 80 340 >250 

A0711 7-MEF 20-60 60 300 >430 

Several test draws of compact and non-compact 3-MEF geometries with different 

element sizes (80 and 60 µm) and element-to-element spacing were made using CFQ 

rods. This was to establish the 3-MEF fabrication parameters that are suitable for the 

manufacturing of long lengths of fiber while keeping its mechanical strength. It was 

observed that the strength of MEFs increased with decrease in their fibre-element 

diameter. Table 5.2 summarise the results of proof test on various MEFs that were 

fabricated with different fibre-element spacing. Different fibre-element spacing was 

achieved by using different primary dies as shown in table 5.2. For 80μm fibre-

elements diameter, the MEFs in which fibre-elements were not touching each other 

showed similar proof-test strength (400 kpsi), whereas strength of compact MEF was 

reduced (100kpsi).  It was established that in order to maintain higher strength in 

MEFs, the fibre-elements should not touch each other. It is worth noting that the same 
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fiber drawing conditions as obtained from the test draws of non-compact 3-MEF with 

95μm element spacing and compact (no-spacing) were utilized to draw germanium 

(Ge)-doped non-compact (Fig 5.10(a)) and compact (Fig. 5.10(b)) 3-MEFs 

respectively.  

Table 5.3 List of fabricated passive fibres (*: from commercial low loss preform, **: from CFQ rods) 

Fibre 
No. Fibre Type 

Primary 
Die 

(μm) 

Diameter 
(μm) 

Length 
(km) 

Coating 
system 

Temp. 
(oC) 

Draw 
Speed 

(m/min) 
A0292 7-MEF -- 100 1.2 Single 2025 10 

A0298 Single 
Fibre -- 100 1.2 Single 2025 20 

A0286 7-MEF** -- 60-100 N/A Single 2025 10 

A0316 3-MEF** 250 60 N/A Dual 2030 10 

A0317 3-MEF 250 60 2.5 Dual 2030 10 

A0322 3-MEF** 300 80 N/A Dual 2030 10-20 

A0327 3-MEF** 300 80 N/A Dual 2030 10-30 

A0328 Single 
Fibre 190 60 7 Dual 2030 30 

A0330 3-MEF 300 80 9.5 Dual 2030 30 

A0351 3-MEF** 190 60-80 N/A Dual 2030 10 

A0356 3-MEF** 190 80 N/A Dual 2030 30 

A0360 3-MEF 190 80 3.07 Dual 2030 20 

A0396 3-MEF 250 80 4.5 Dual 2030 20 

A0408 7-MEF** 250-
300 80 N/A Dual 2000-

2030 10 

A0419 7-MEF** 300 80 N/A Dual 2030 10-30 

A0496 7-MEF** 340 80 N/A Dual 2020-
1970 20 

A0504 7-MEF 340 80 2.7 Dual 1990 20 

A0640 Single* 170 80 2 Dual 2010 20 

A0656 7-MEF* 340 80 0.91 Dual 2000 10 

A0711 7-MEF** 300 60 N/A Dual 2000 10 

A0725 7-MEF* 300 60 3.5 Dual 2000 10 

Several passive MEFs were fabricated from a Ge-Si preform, with NA, core and outer 

diameter of 0.12, 10mm and 15mm respectively. The preform was sleeved multiple 

times by Dr. T. C. May-Smith to obtain the core/cladding ratio corresponding to the 

cut-off wavelength, 1250-1300nm. Before each fabrication, the corresponding 

parameters were obtained by performing multiple test draws using CFQ MEF preform 
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assembly. Table 5.3 lists the passive and test fibres that were fabricated from above 

mentioned preform, CFQ rods**, and low loss commercial preform*. 

5.3.2. Loss Measurement 
3-MEF 

       
(a)                                                               (b) 

 
(c) 

 
Fig. 5.10 Microscope images of non-compact with element to element separation (a) 90-95μm, (b) 

50-55μm, and (c) compact passive 3-MEF fabricated from Ge-doped preform  

Figures 5.10 (a)-(c) show microscope images of the cross-section of 3-MEFs that were 

fabricated with different element-to-element spacing using primary coating die size of 

300μm, 250μm and 190μm respectively (A0330, A0360 and A0396) [7]. Using the 

conditions obtained from the test draws, first, a non-compact 3-MEF preform was 

assembled from a Ge-doped silica preform with a step index difference (Δn) of 0.0055, 

and 9.5 km of 3-MEF (A0330) was fabricated with fibre-element cladding and core 

diameters of ~80μm and 8.5μm respectively. The overall coated diameter was 340μm 

and separation of 90-95μm as shown in Fig. 5.10 (a). As shown before in active MEFs, 

the coating in passive MEFs also can be simply stripped off which provides the access 

to each fibre-elements. These fibre-elements could then be used as conventional fibres. 

Figure 5.11 shows the 3-MEF preform assembly from Ge-doped preform and 
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corresponding fibre-sample respectively where coating is removed from the ends of a 

MEF sample to show fibre-elements fanning out [7]. Similarly, the coating was 

stripped at each of the drawn MEFs and single mode pigtails were spliced to the each 

fibre-element at both end using standard fusion splicing. 

 

Fig. 5. 11 (a) 3-MEF preform assembly and (b) 3-MEF with fibre-elements fanning out at each end [5] 

The cut-off wavelength of fibre-elements was measured to be approximately 1250nm. 

The dispersion at 1550 nm was measured by Dr. Victor Rancano, and it was 18-

ps/nm/km respectively. The loss measured at 1550nm with an Exfo-FTB-7300E 

optical time-domain reflectometer (OTDR) was 0.6dB/km [7]. Similar loss was 

measured in a single fibre, A0298, drawn from the same Ge-doped preform with single 

mode core and cladding diameter of 100μm. Fig. 5.12 compares the OTDR loss for 

one of the fibre-elements of A0330, 9.5km, with the complete channel length obtained 

by looping back the fibre-elements [7].  The loss profile along the length of the MEF 

was similar for all the fibre-elements. Also, the crosstalk in the MEF was also 

measured by launching the signal in one fibre-element and detecting the level of output 

in other fibre-elements. As expected, no crosstalk (down to the level of -80 dB) was 

observed between the different fibre-elements when measured using a laser source at 

1550nm.  
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Fig. 5. 12 OTDR loss for one of the fibre-element of 3-MEF and fibre-elements in loop-back 

After that, a compact 3-MEF (A0360) was fabricated. The cross-section image of the 

corresponding MEF is shown in Fig. 5.10 (c). No crosstalk was observed in compact 

3-MEF as well. However, the loss of the compact 3-MEF was significantly higher for 

two of the fiber-elements than it was in the third (2.5dB/km as compared to ~0.7dB/km 

at a wavelength of 1550nm) [7]. 

Table 5.4 OTDR loss of non-compact and compact Ge-doped passive 3-MEF 

3-MEF 

(80 µm element diameter) 

Length 
(km) 

Loss at 
1310nm 
(dB/km) 

Loss at 1550nm 
(dB/km) 

Loss at 1650nm 
(dB/km) 

95μm spacing 9.5 1.6 0.6 0.7 

No spacing 3.07 
2(1-element) 

~3.5(remaining 
elements) 

0.7(1-element) 
 ~2.5 (remaining 

elements) 

0.95(1-element) 
~3.5 (remaining 

elements) 

Table 5.4 lists the loss variation of the fibre elements in compact and non-compact 

MEF [8]. The loss in the fibre-elements of compact 3-MEF was higher compared to 

non-compact 3-MEF, A0330. This was due to imperfect coating with the primary 

polymer, resulting from the limited choice of primary coating dye sizes that were 

available in the laboratory. A 190μm primary dye was used for the compact 3-MEF 

fabrication. The size of the die was comparable to a notional triangular geometry fibre 

diameter of 173μm. As seen in Fig. 5.10 (c), the fibre-elements were positioned off-

centred with respect to the outer coating, and also touching each other. This also 

resulted in loss increment in fibre-elements of compact MEF.  
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Following this, a 4.5km length of Ge-doped 3-MEF, A0396, with an element 

separation of about 55 µm (cross-section image in Fig. 5.10 (b)) was fabricated. This 

MEF exhibited a similar loss profile for all three fiber-elements as that of the non-

compact 3-MEF with element separation of 95µm, confirming the scope of a dense 

packing of the fiber-elements in MEF. It was concluded that a minimum separation 

between the fibre-elements is required to ensure that the strength of MEF is maintained 

as well as there is no degradation in the performance. 

7-MEF 

After the fabrication and characterisation of passive 3-MEFs, the MEF fabrication was 

scaled to 7 fibre-elements. It was observed that parameters became harder to control 

as the number of elements increased and the separation between the fibre-elements 

decreased. Test draws were performed to observe the effect of drawing tension, 

controlled through furnace temperature and MEF drawing speed, on the fibre-element 

geometry inside the coating of MEF.  The temperature was taken down and fibre cross-

section was inspected. In general, the tension in the fibre could be increased by either 

reducing the furnace temperature or increasing the draw speed [4]. Moreover, 

temperature has a more significant effect on the tension as compared to drawing speed. 

Due to height of the tower and to avoid the wastage of preform during ramp-up the 

maximum draw speed was kept to be 20m/min and temperature was reduced.  

        
(a)                                                   (b) 

Fig. 5. 13 Cross-section image of 7-MEF at different drawing temperature for (a) low, and (b) high drawing 
tension per fibre-element 

It was observed that the fibre-elements came into the desired geometry when the 

furnace temperature was reduced below 1995oC (A0496) corresponding to about 60 

grams of tension per fibre-element with fibre-element diameter of 80μm. Figure 5.13 

(a) and (b) shows the cross-section image of 7-MEFs at 2020oC and at 1990oC (60-
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80gm/ fibre-element). Note that, due to the limitation of tension gauge which could 

measure tension up to only 240 gm. The tension at different temperature and drawing 

speed was measured during the single fibre draw with same fibre diameter as that of 

each fibre-element. The drawing tension in MEF is expected to multiply by number 

of fibre-elements. It can be clearly seen that at low tension (higher temperature), the 

fibre-elements were randomly arranged in the coating, whereas, higher tension (lower 

temperature) provided stable coating conditions.  However, it should be noted that in 

industrial environment the fibre fabrication speed are of the order of kms per min with 

furnace temperature well above 2000oC. The corresponding tension in the standard 

fibre is also kept around 50gms during commercial fabrication [4]. The low 

temperature fabrication requirement in our draw further restricted the fabrication 

tolerance in 7-MEF and frequent failures at low temperature were observed during the 

MEF draw which was not favourable for long length fabrication. The 7-MEF test 

fibres fabricated with fibre-element cladding diameter of 60μm (A0711) and 80μm 

(A0496) using CFQ rods were then proof tested which successfully passed 430kpsi 

and 250kpsi of proof test strength (see Table 5.2). It should be noted that the load 

corresponding to these measurement was the maximum load that the proof test 

machine could bear, and 7-MEFs is expected to have higher strength. 

 

Fig. 5.14 X-ray coherence tomographic (XCT)-Scan image of 7-MEF from Ge-doped preform [7] 

After this, a 2.7km of 7-MEF, A0504, was fabricated using the same preform as used 

before for 3-MEFs. The cross-section image using x-ray coherence tomographic 

(XCT)-scan taken by Reza Sandoghchi is shown in Fig. 5.14 [9]. In XCT-scan, 

multiple images of a sample are captured from different angle which are then stitched 

together to obtain a 3-D image of the sample. The spacing between the fibre-elements 

were between 25-40μm. The loss of all the fibre-elements was found to be about 0.6 
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dB/km which was equal to the losses observed in non-compact 3-MEFs and the single 

fibre, A0298, drawn from same preform. 

 
(a) 

 
(b) 

Fig. 5.15 Loss measurement in 125μm and 80μm single core fibre with (a) minimum tension and (b) 0.5N tension   

To further establish that the higher losses observed in the passive MEFs were not due 

to the MEF geometry, single fibres were fabricated using commercially available low 

loss preform. The corresponding fibres from this preform are marked with * in table 

5.3. Single fibres consisting of similar core size and NA as used in previous cases were 

fabricated with cladding diameter of 125μm and 80μm (A0640). The fabricated fibres 

were sent to the preform supplier for testing and it was observed that the rewinding 

tension in the 80μm had significant impact on the fibre loss as shown in Fig. 5.15. The 

results of the fibres fabricated at Optoelectronics Research Centre (ORC) and at 

suppliers premises produced nearly identical results. As the tension was increased to 

0.5N (50grams), the loss in 80μm increased significantly compared to the loss in 

125μm fibre due to microbending effect in single core fibre. Whereas, both showed 

similar loss when measured in tensionless condition (see Fig. 5.15). 
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Fig. 5.16 Loss measurement in fibre-elements of 7-MEF fabricated from low-loss preform (Commercial) 

Subsequently, a 7-MEF, A0656, with the same low-loss commercial preform 

corresponding to 80μm of fibre-element diameter was used to fabricate the fibre (see 

table 5.3). The fibre was drawn at 20000C instead of desired <19900C in order prevent 

fibre break during due to fragility at lower temperature. Thus, the resulting MEF 

geometry was not perfectly hexagonal due to low tension. The loss of the fibre-

elements at 1550nm was observed to be <0.3 dB/km for 5 of the fibre-elements 

whereas the remaining two showed 0.35dB/km and 0.75dB/km of loss respectively. 

The loss variation at 1310nm, 1550nm and 1650nm for all the fibre-elements is shown 

in Fig. 5.16. It can be seen from Fig. 5.17(a) that some of the fibre-elements came 

close to each other which is likely to cause higher losses. However, there was no 

significant increase in the loss as the rewind tension was increased to 90gms as 

opposed to increased loss effect observed in 80μm single fibre, A0640, drawn from 

same preform.  

      
(a)                                                                       (b) 

Fig. 5. 17 Cross-sectional image of 7-MEF with fibre-element diameter of (a) 80μm, and (b) 60μm 

Recently, a 7-MEF, A0725, with element diameter of 60μm has been fabricated. The 

cross-sectional image is shown in Fig. 5.17 (b). This MEF was characterised by 
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Miguel Nunez. In this MEF, the loss at 1310nm has been checked in one of the fibre-

element and is about 0.46dB/km whereas the loss at 1550nm and 1650nm is 

significantly higher. Owing to difficulties in splicing 60μm fibre-element with SMF 

pigtail, the losses in other fibre-elements has not yet been measured. The effect of 

tension on the loss in this fibre-element was comparatively severe at 1650nm whereas 

at 1310nm no significant change was observed in 7-MEF (60μm).  

 
Fig. 5.18 1310nm Loss in different fibres with varying tension. 

Figure 5.18 shows the comparison of tension dependent loss at 1310nm in single fibres 

with 80μm and 125μm outer diameter, 7-MEF (80) and 7-MEF (60), all drawn from 

same preform and having same core size. The results suggest that the bending losses 

at operating wavelengths away from the cut-off wavelength become significant as the 

diameter is reduced. However, the cut-off can be kept close to the operating band in 

order to maintain lower loss as observed in 7-MEF (60) at 1310nm. The cut-off in 7-

MEF (60) was around 1270nm.  

5.3.3. Transmission Experiment 
A transmission experiment was performed using 3-MEFs with the help of Victor 

Rancano in ORC Transmission Group. The experiment experimental setup is shown 

in Fig. 5.19 [7]. F1, F2 and F3 represent the three different fibre-elements of the 3-

MEF. Twenty one 10-Gbps-on/off keying (OOK) or intensity modulated 

(IM)channels, two 40-Gbps-binary phase-shift keying (BPSK) channels, and two 24-

Gbps-quadrature phase-shift keying (QPSK) channels were wavelength multiplexed 

into the fibre using an array wave guide grating (AWG) resulting in a data rate of 
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338Gbps per fibre-element and an overall transmission rate of 1014 Gbps. Prior to 

retrieving the channels at the output, dispersion compensating fibre (DCF) was used. 

Due to the limited choice of tailored DCF modules in our lab, 120-ps/nm of dispersion 

was left uncompensated. A variable optical attenuator (VOA) and a constant power 

amplifier was used before the receiver, Rx, to measure the bit-error-rate (BER). 

IM

A
W
G

BPSK

QPSK

DCF VOA

F2
F3

F1

3-MEF

F2F2
F3

F1

RX

 
Fig. 5.19 Schematic setup for BER measurement 

All the channels were detected to be error-free at the output. Indicatively, the BER vs. 

OSNR curves for three of the transmitted signals (one for each modulation format) are 

shown in Figs. 5.20 (a)-(c) [7]. For reference, the wavelengths of the BPSK, OOK and 

QPSK channels shown in the figure were 1555.710nm, 1541.804nm and 1551.562nm 

respectively. A slight difference in slope due to incomplete dispersion compensation 

is evident for higher baud rate signal (BPSK) as compared to QPSK. It can be seen 

from Fig. 5.20 (d) that the input and attenuation compensated output spectra of the 

channels launched in the MEF overlapped, indicating no OSNR degradation. The loss 

was also similar for the complete wavelength band. Similar experiments were 

performed on a 3.07-km length of compact 3-MEF with an overall coated diameter of 

297μm, which was fabricated from the same preform to increase the element density. 

Fig. 5.10 (b) shows the cross-section image of the compact 3-MEF. The compact 3-

MEF was also measured to be free from any crosstalk, and its performance was again 

confirmed by performing BER measurements. The same setup of Fig. 5.19 was used 

and this time the overall loop-back length was 9.21 km.  
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Fig. 5.20 BER vs. OSNR plots for a) 40-Gbps-BPSK, b) 10-Gbps-OOK, and c) 24-Gbps-QPSK channels. Inset 

shows constellation/eye diagrams at the input (top) and output (bottom), respectively; d) input and output spectra 
(attenuation-compensated) for all the channels [5] 

SDM System Demonstration  

 
Fig. 5.21 Experimental set-up and cross-section of the MEF [7] and ME-EYDFA [10, 11]. 

A transmission experiment using the two passive 3-MEFs (the Non-compact MEFs, 

95μm spacing, and the Compact MEF) and cladding-pump ME-EYDFA (or MEFA) 

was set up to emulate a hypothetical scenario of a smooth system upgrade from a 

single-mode WDM system to an MEF-based SDM one [12, 13]. The schematic of 

experimental setup is shown in Fig. 5.21. The transmitter comprised of 28 channels in 

the range 1535nm to 1562nm, which were modulated using a 10Gbit/s 231-1 NRZ 
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OOK bit sequence. The transmission line in the setup comprised four parallel paths, 

three of which were formed in the corresponding elements of a 3-MEF, whereas the 

fourth was a 400km dark fiber link (installed as part of the UK’s AURORA network 

and ranging the distance from Southampton to London (Telehouse) and back). The 

total length of the 3-MEF was 12.57km and was made up of the two fiber lengths 

presented above, non-compact MEF (95μm spacing) and compact MEF, with 

respective lengths of 9.5km and 3.07km. As described previously, in order to connect 

the two MEFs sections together, their individual fiber-elements were simply stripped 

out of their protective coating at the fiber tips and spliced to standard SMF connectors 

using a conventional fiber splicer. The outputs of the four transmission paths with an 

aggregate data rate of 1120 Gbit/s were connected to the four signal fiber-elements of 

the 5-MEFA: the three elements of the MEF were connected to three of the input ports 

of the MEFA, the fourth port of which was connected to the dark fiber link (see Fig. 

5.20). Three manual variable optical attenuators (MVOA) were installed at the input 

ports of the MEFA to compensate for any differences in both the attenuation of the 

different MEF elements and the gain of the various MEFA elements. It should be noted 

that the MEFA did not include any isolators or gain flattening elements (as opposed 

to what would be considered as normal for an amplifier used in a transmission link).  

Fig. 5.22 (a) and 5.22 (b) shows the input from dark fiber link and MEF to the MEFA 

and their corresponding output after MEFA, respectively [12, 13]. The BER of all 

channels propagating through the four elements of the MEFA was assessed at the 

output of the amplifier and error-free transmission (BER<10-9) was verified for both 

the MEF and the dark fiber paths. 

  
(a) 
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(b) 

Fig. 5.22 Input spectra form dark fiber link, and output spectra before and afterMEFA respectively in (a) Drak 
fibre line, and (b) one of the passive MEF fibre-element line  

An example of the BER performance of the system including the MEFA for both types 

of paths is displayed in Fig. 5.23 (as measured for the channel operating at a 

wavelength of 1542nm) [12, 13]. The black curve shows the BER spectra of the input 

signal (B2B), and it was same at the output of any of the passive MEF whereas red 

curve corresponds to the BER values after the dark fibre link. The OSNR degradation 

in MEF and dark fiber link channel was about 2dB and 1dB respectively. Higher 

degradation in MEF link was due to the first instance of amplification whereas the 

dark fibre link consisted of multiple amplifiers in the link.  

 
Fig. 5. 23 BER curves for the single amplification experiment.  

Amplifier Crosstalk measurement using transmission setup 

As discussed in Chapter-4, the crosstalk in the MEFA was not measurable due to ASE. 

In order to further verify that no crosstalk occurred in the MEFA, the signals at each 

of the MEFA output ports were characterized while the remaining fiber amplifier 
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elements were either fed with the data signals on or off at their inputs. The OSNR of 

the signals was adjusted traversing one element of the MEFA in order to achieve a 

BER level of 10-8 at the output. The deviation from this BER value was then measured 

while successively turning on the signals in the remaining fiber elements. No change 

in the detected signal power and no measurable degradation in the BER of any of the 

assessed channels were observed, irrespective of the number of elements of the MEFA 

used in parallel, or their input powers, thus confirming that the various elements were 

completely independent from one another in terms of crosstalk, and/or cross-gain 

modulation effects.  

Verification of Gain Profiling Capabilities of Cladding-Pump MEFA 

 
Fig. 5.24 Schematic of the cascaded chain consisting of passive and active MEF in each span [5] 

Subsequently, in order to assess the performance of a chain of MEFAs, the 

transmission path was changed so that pairs of MEFs and MEFA spans were connected 

in succession, as shown in the Fig. 5.24. Figure 5.25 shows the output after each span. 

The accumulated spectral gain ripple of the MEFA led to a gain variation of up to 

15dB between the transmitted WDM channels, leading to compromised data 

transmission at wavelengths away from the 1545nm peak gain region.  

 
Fig. 5.25 Spectra after each amplification with three single-stage ME-EYDFA 
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In order to demonstrate the improved performance that might be achieved by 

optimizing the amplifier length and also the tuneability of the cladding-pump MEFA, 

the set-up was modified to exploit the gain profiling capacity of the amplifier. The 

second stage of amplification was made up by cascading two elements of the MEFA 

with co-propagating pump (see green path in Fig.5.26). The result is presented in Fig. 

5.27, and expectedly the gain shifts to longer wavelengths and shows a better gain 

equalized performance. It was verified that by using this configuration that it was 

possible to achieve error-free performance for all channels beyond a wavelengths of 

1540nm, indicating that important performance benefits can be gained from an 

optimized amplifier design. 

 
Fig. 5.26 Schematic of the cascaded chain consisting of 2-cascade (dual stage) MEFA in 2nd chain. 

 
Fig. 5.27 Comparison of spectra with two single stage amplifiers and a dual-stage amplifier. 

5.4. Conclusions 

Modified MEF fabrication was demonstrated to accommodate the passive fibre 

requirements. In spatial density, MEF cable lies between MCF and conventional SMF 

cables. Furthermore, it was shown that the MEFs exhibit crosstalk-free operation, 

compatibility with conventional WDM systems and do not require the development of 

any special multiplexing components. MEF technology enables multiple fibers to be 
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drawn together within a common coating, and can be applied to the manufacturing of 

passive transmission fibers. Various 3-MEFs and 7-MEFs were fabricated and tested 

for their strength and loss. It was observed that fibre-element should not touch each 

other in order to ensure that the strength as well as loss characteristics of MEF does 

not degrade. It was shown that the technology could be scaled to incorporate higher 

number of elements without incurring additional losses due to the geometry. We 

demonstrated the feasibility of this approach by fabricating and characterizing 9.5 km 

and 3.07 km lengths of a passive 3-MEF from a Ge-doped preform. Error-free 

1014Gbps data transmission over the lengths of MEF was demonstrated, highlighting 

the crosstalk-free operation offered. Finally, the first implementation of an amplified 

MEF-based SDM transmission system including both passive and active SDM 

components was experimentally demonstrated. The MEF technology shows full 

compatibility with existing WDM systems and sufficient flexibility to be considered 

as a contender for the implementation of fully functional SDM systems. In cladding-

pump MEFAs crosstalk free operation and tuneability through cascading was also 

checked in the transmission networks thereby further confirming the results of Ch-4.  
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Chapter-6 
 

Conclusions and Outlook 
6.1. Conclusions 

 

In the thesis, a novel MEF technology has been demonstrated for implementing SDM 

in optical fibres. The fabrication aspects of MEF have been discussed for both, core 

and cladding pumped amplifier. In the first demonstration of the technology, core-

pumped SDM amplifiers, Er-doped 3-MEFA and 7-MEFA were fabricated and 

characterized for their amplification performance. All fibre-elements in the 3-MEF 

and 7-MEF provided similar performance. An average gain of 33dB and a NF <5dB 

was achieved per fibre-element using -23dBm of an input signal at a wavelength of 

1530nm. The fabrication of core-pump MEFA was shown to be tolerant to 

imperfections in the MEF geometry as opposed to MCF based amplifiers. This is due 

to that fact that conventional splicing technique could be employed in MEFs and 

precision alignment to cores was not required. It was shown that the MEF fabrication 

meets the criteria of practical rigor, and could be used to fabricate long lengths of 

fibres. Moreover, there was no measurable crosstalk between the signals in the fiber-

elements of core-pumped MEFA, i.e. fibre-elements of core-pumped MEFAs were 

shown behave as individual EDFAs in isolation. This was expected as at the 
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minimum fibre-element diameter was 100μm in core-pumped MEFAs. It was shown 

that the added flexibility in changing the length of amplifier fibre through cascading 

of the fibre-elements could help to tune the gain profile of the amplifier. It can also 

be exploited to develop a broadband amplifier in split-band configuration. Such an 

amplifier was proposed to provide an overall gain of >20dB in a wideband covering 

wavelength region of 1520-1595nm.   

The approach was also extended to develop a novel cladding pump MEFA. A 

cladding pump based 5-MEFA was developed. Cladding-pumped 5-MEFA consisted 

of a pump fibre-element and 4 surrounding signal fibre-elements. The cladding-

pumped MEFA enabled easy side pump coupling scheme which eliminates the need 

for a pump/signal combiner. At first, a C-band MEFA was developed. A maximum 

of 37dB gain and 7.3dB of corresponding NF was obtained in the fibre-element with 

lower Er/Yb concentration. Element-to-element gain variation of about 3.5dB was 

observed at 1545nm with an input signal of -23dBm. This was mainly due to the 

variation of the concentration along the length of the preform. It is expected to 

improve with the use of uniform preforms. Improvements in NF should also be 

achieved by reducing the signal loss at the input section of the fibre-elements. The 

initial stripped section in cladding-pumped MEFA was unpumped which directly 

translates to increase in the NF. However, this section can be recoated to prevent to 

improve the performance of the amplifier. Similar to core-pump MEFA, it was 

demonstrated that amplifier gain profile could be tuned by cascading fibre-elements 

of cladding-pumped MEFA. It was shown that a broadband amplifier could be 

developed using cladding-pumped MEFA which would require single pump as 

opposed to conventional split band amplifier. Such an amplifier could provide 

relatively flat gain of 22±1.5dB in the wavelength band of 1545-1615nm. 

Furthermore, a first SDM amplifier was demonstrated which incorporated two SDM 

technologies, MEF and FMF, with a spatial multiplicity of 12. An average signal 

gain of 18.3dB and differential modal gain of ~1-6dB were achieved in the 

wavelength range of 1542-1560nm.  The DMG variation was due to un-optimised 

RIP of the core of fibre-elements. The DMG is expected to reduce by tailoring the 

rare-earth doping profiles of the optical fiber. The number of fibre-elements and 

modes in the amplifier could further be increased to obtain higher spatial multiplicity.  

In the MEF for transmission channel, modification in fabrication procedure was 
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demonstrated to accommodate the stringent demand of a transmission fibre in terms 

of the loss and mechanical reliability and dual coating system was used. At first, 

various 3-MEFs with different element-to-element separation was fabricated and 

characterized. The loss in fibre-elements of non-compact 3-MEF was similar to the 

single fibre drawn from the same preform, and it was 0.6dB/km. The MEFs in which 

fibre-elements were not touching each other were shown to have >400kpsi of proof-

test strength. The compact MEF showed lower strength and higher losses. It was 

concluded that the higher strength and lower losses could be maintained in MEFs, 

provided the fibre-elements does not touch each other. The fabrication procedure was 

then scaled to 7-MEF.A 7-MEF with fibre-element diameter of 80μm was fabricated 

using commercial low loss preforms, and it was shown that the low losses could be 

maintain in MEFs. Moreover, it was shown that the loss in 7-MEF was more tolerant 

to rewinding tension as compared to an 80μm single fibre. Transmission tests were 

also performed with passive 3-MEFs. Error-free 1014Gbps data transmission over 

the lengths of MEF was demonstrated, highlighting the crosstalk-free operation 

offered. Finally, the first implementation of an amplified MEF-based SDM 

transmission system including both passive and active SDM components was 

experimentally demonstrated. The MEF technology showed full compatibility with 

existing WDM systems and sufficient flexibility to be considered as a contender for 

the implementation of fully functional SDM systems. 

 

6.2. Future Work 
 

MEF based SDM technology has a great potential towards substantial capacity 

growth of telecommunication. MEF technology could boost the development of 

dense cable which is in coherence with the commercial development. In commercial 

development, efforts are being made to reduce the coating of individual fibres from 

250μm to 200μm, and reduce the thickness of the cables. The MEF further allows 

the sharing of the coating among multiple fibres without compromising the 

flexibility of current SSMF networks. In MEF, the effect of micro-bending loss can 

be further depreciated in MEF with fibre-element diameter of 60μm, by keeping the 

cut-off closer to the wavelength band of operation. The number of fibre-elements can 

be increased to enhance the spatial channel density. To achieve even higher capacity, 

several SDM technologies could be implemented simultaneously, thanks to their 
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compatibility with each other. Apart from improvement in MEF, the next direction 

in SDM fibres would be incorporate MCF and FMF technologies along with the 

MEF technology. For example, to achieve a spatial multiplicity of 21 using one of 

the technology alone would add complexity either in terms of fabrication or 

operation. However, a 7-MEF with each element containing 3 cores would enable 

the spatial multiplicity of 21. The same could also be achieved by incorporating 2 

mode cores in 7-MEF (3 (LP01, LP11a and LP11b) x7=21). 
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