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Abstract

In this paper we analyse the delay between illness diagnosis and claim settlement in critical
illness insurance using generalised linear-type models under a generalised beta of the second
kind family of distributions. A Bayesian approach is employed which allows us to incorporate
parameter and model uncertainty and also to impute missing data in a natural manner. We
propose methodology involving a latent likelihood ratio test to compare missing data models
and a version of posterior predictive p-values to assess different models. Bayesian variable
selection is also performed, supporting a small number of models with small Bayes factors,
and therefore we base our predictions on model-averaging instead of on a best-fitting model.

Keywords: critical illness insurance, settlement delay, GB2 family of distributions, gener-
alised linear-type models, Bayesian model assessment

1 Introduction

Critical illness insurance (CII) is a type of long-term insurance that pays a lump sum on the
diagnosis of a specified list of critical illnesses as specified in the policy. The delay between date
of diagnosis of a critical illness and date of settlement of the corresponding claim is the main
driver of outstanding claims reserves in the insurance sector, for example the incurred-but-not-
settled reserve in CII. This is closely related to insurance capital retention requirements, under EU
regulation (Solvency II directive). CII is often subject to long delays between the dates of illness
diagnosis and settlement of the resulting claim. In many cases this delay can be measured in
months, while often it can be measured in years — as demonstrated in the distribution of observed
delay in Figure 1 for the data used in this paper. The frequency of long delays leads us to consider
heavy-tailed distributions for modelling their duration. Modelling of this delay has been previously
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considered (Ozkok et al., 2012), where a 3-parameter Burr distribution was used to model the CII
settlement delay.

In this paper we build on earlier work to model the delay between the dates of diagnosis and
settlement by fitting a generalised linear-type (GL-type) model to the observed settlement delay
under a Bayesian framework using a generalised beta of the second kind (GB2) error distribution.
Our work also considers extensive model assessment and comparison involving distributions of
the same family. In particular, for model assessment, we propose the use of methodology which
is related to posterior predictive checking, and is based on the properties of latent quantities
which become available through data augmentation within Markov chain Monte Carlo estimation
schemes (e.g. Lau et al. (2014)). Comparison between candidate models is also considered using
a latent likelihood ratio-type test (e.g. Streftaris and Gibson (2012)) that is designed to avoid
common problems associated with Bayesian model choice. The resulting model offers additional
flexibility and better estimation, which are central when aiming at accurate prediction especially
in the presence of missing information, as explained later.

The 4-parameter GB2 distribution, sometimes called transformed beta or Pearson Type VI dis-
tribution, is a very flexible distribution and encompasses many distributions which are particularly
helpful for fitting heavy-tailed data, such as the Burr, Pareto and log-logistic distributions. Since
insurance data are generally strongly right-skewed (e.g. claim amounts, number of claims) the
GB2 distribution is appropriate for related modelling and is a well-known loss distribution (Klug-
man et al., 2012). The use of the GB2 distribution has become increasingly popular in relevant
literature. To name few, Venter (1983) introduced the GB2 distribution in the actuarial literature
as the transformed beta. McDonald and Butler (1990) used covariates under the GB2 model, while
Cummins et al. (1990) used it for modelling insurance losses. A hierarchical model for insurance
claims was developed by Frees and Valdez (2008), where the long tail of the claims distribution
is captured through the GB2 distribution. Recently, Dong and Chan (2013) considered the GB2
distribution in insurance reserving, and Jones et al. (2014) modelled healthcare cost by applying
the same distribution to UK data.

The data used in this paper contain individual records related to 19,127 claims settled in the
UK during the years 1999-2005. In approximately 17% of these cases the length of the delay period
is missing, mainly due to the date of either illness diagnosis or claim settlement not having been
recorded. Where only one of these dates is known, the missing date can be estimated using the
appropriate distribution of the delay between the two events. Since missing values can be seen
as another source of uncertainty, they can naturally be incorporated under a Bayesian analysis.
Modelling the distribution of this delay, which we will refer to as the claim delay distribution
(CDD), incorporating the cause-specific covariates, is a necessary first step in the estimation of
claim rates. Throughout this paper we focus on a Bayesian approach for inference under parameter
and model uncertainty. In actuarial research, especially in life-related insurance area, focusing on
parameter and model uncertainty is a relatively recent development. There are only few studies in
mortality modelling accounting for uncertainty, for example Cairns et al. (2006) or more recently
Bennett et al. (2015).

The rest of the paper is organised as follows. The available data are summarised in Section
2. In Section 3 we introduce the GB2 model, construct Bayesian GL-type models by linking
the claim related factors possibly affecting the delay to the mean of the data distribution and also
estimate relevant parameters. In Section 4 we compare and assess different models using traditional
and newly proposed methods. We discuss Bayesian variable selection, particularly Gibbs variable
selection, under the GB2 error distribution in Section 5. In Section 6, we explain why we prefer
to impute the missing data using Bayesian model-averaging, while final comments and conclusions



Table 1: Information about the covariates.
Covariates Description
Age Age last birthday at diagnosis
Sex Female (42.7%) & Male (57.3%)

Benefit type

Smoker Status
Policy Type
Settlement year
Benefit amount
Policy duration
Office

Cause

Full accelerated (FA) if the policy covers
critical illness and death (88.2%) &
Stand alone (SA) if the policy covers
only the critical illness (11.8%)
Non-smoker (73.9%) & Smoker (26.1%)
Joint life (50.9%) & Single life (49.1%)
1999-2005

in GBP

Policy duration at diagnosis

13 anonymously coded insurance offices
See text

are given in Section 7.

2 Data

We use CII claims data settled in the UK between 1999 and 2005, which have been supplied by
the Continuous Mortality Investigation (CMI) of the UK. The CMI asks contributing insurance
offices to provide four dates related to each claim, these being the dates of: diagnosis of related
illness; notification of the insurance company; admission of the claim by the company; and finally
settlement. Illness diagnosis signifies the insured event for CII and therefore it is important for
financial purposes that the date of this event is available. Out of 19,127 claims in the data, 15,860
cases have both dates of diagnosis and settlement recorded, while the remaining have either no
date of settlement (7.9%) or no date of diagnosis (9.1%) available. The observed delay between
the dates of diagnosis and settlement has a mean of 185 days with a standard deviation of 263
days (see Figure 1).

The data also contain information on 10 claim-related characteristics, which are used as covari-
ates in our analysis. These are described in Table 1. Covariate ‘office’ represents the contributing
company where the insurance policy was issued. The last covariate in the table gives the cause
of claim, related to the following illnesses: coronary artery bypass graft (CABG), cancer, heart
attack, kidney failure, major organ transplant (MOT), multiple sclerosis (MS), stroke and total
and permanent disability (TPD). These eight causes and death account for 93.4% of the data,
while the remaining claims are categorised as ‘other’ cause. Further details on the data can be
found in Ozkok et al. (2012, 2014).

3 The model

We denote the delay period for claim i as D; and assume it follows a GB2 distribution, i.e.

D; ~GB2(a,T,7,s), i=1,...,n



with probability density function
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for d; > 0 and parameters «, 7,7,s > 0. Here I'(.) is the gamma function, o, 7 and  are shape
parameters and s is the scale parameter. The kth moment of the distribution is given by
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Where dates of diagnosis (DoD) or settlement (DoS) are missing, we use other dates related to each

claim, i.e. dates of commencement (DoC) of the policy, notification (DoN) and claim admission
(DoA) as natural upper and lower limits so we restrict the missing delay values using

, ar > k. (3)

Dmis ~ GB2(05’ 7,7, Smis)I(Lmi57 Umzs) (4>

Here the lower and upper bounds are denoted by L,,;s and U,,;s, respectively. I(Lyis, Upnis) is the
restriction we impose on the missing delay and the boundaries are obtained using the chronological
order of the dates. So we have

DoS — DoN < d,,;s < DoS — DoC, when DoD is not recorded;

DoA — DoD < d,,;s, when DoS is not recorded;

DoN — DoD < d,,,;s, when both DoS and DoA are not recorded;

0 < d,nis, when only DoD or DoS is recorded.

Note that the Burr and Pareto distributions are special cases when v = 1 and 7 = v = 1,
respectively. Also the generalised gamma (GG) distribution is a limiting case of the GB2 distri-
bution. The GG distribution has two shape parameters, a and 7, and a scale parameter, s. The
gamma, Weibull and exponential distributions are special cases of the GG distribution when 7 = 1,
a =1and a = 7 = 1, respectively. Also, the log-normal distribution is a limiting distribution.
Detailed information on generalised beta distributions and other nested distributions can be found
in McDonald (1984) and McDonald and Xu (1995). In this paper we focus our attention on the
GB2 model and its performance relative to the previously considered Burr distribution. In addi-
tion, comparisons are extended across related models mentioned above and some summary results
are presented throughout.

For almost all offices contributing to our data, and for almost all years, the number of CI
policies in force increased year on year. Due to the nature of the claims data, for claims settled
in any of these seven years, those with relatively short delays relate to claims from policies in
force in more recent years; those with relatively longer delays relate to policies in force in earlier
years (Ozkok et al., 2014). The growth in the numbers of policies in force means that claims with
shorter delays are relatively over-represented in our data. If this is not taken into account, it can
introduce bias into the modelling of the CDD. Therefore we should allow for business growth. We
do this by introducing weights, representing a growth factor, in the CDD modelling. The growth
factor is set at 1 for the most recent year for which the office contributed data. For each earlier
year of diagnosis for that office, the growth factor is calculated by multiplying the growth rates
for that year of diagnosis and all subsequent years of diagnosis up to the final year for which the
office contributed data. Here the growth rate is calculated as the ratio of the average number of
policies in force in the following year for that office to the average number of policies in force in
the year in question for the same office. In this context, average number in force is the average of
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the numbers of policies in force at the start and at the end of the year (for more details see Ozkok
et al. (2014, Sec. 4.2)).

Here we assume that these office specific weights according to the year of diagnosis are inversely
proportional to the variance of the underlying distribution. An example of this can be found in
weighted least squares estimation (see for example, Draper and Smith (2014)). The variance of
the GB2 distribution is given as

L@ (+ )T (0=2) — [P+ PP [ (o= )]
PP )P |

To introduce weights, w, in the model we define a new scale factor, s, such that

s =s/\w.

In Figure 1 we illustrate the fit of the GB2 and related distributions to the observed delay on a
log scale before including the covariates under a generalised linear-type setting. It can be seen
that the GB2 and Burr have a similar and very close fit to the data at both tails. The GG and
log-normal distributions are also close to each other but their fit is not as good as that of the GB2
and Burr distributions. The fit of the Pareto distribution is the least successful among the five
distributions, especially for shorter delays.

Var(D) = s (5)
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Figure 1: Left panel: histogram of the observed delay (in days). Right panel: CDF of observed
delay (in days, on log scale) and fitted distributions.

3.1 GB2 GL-type model

We allow the delay for claim i to depend on the px 1 vector of standardised covariates, z;, presented
in Table 1. We also show the baseline values of the binary covariates in bold font in this table.
For the other categorical variables, i.e. office and cause, we use a sum-to-zero restriction. Since



the GB2 distribution does not come from an exponential family, we construct a GL-type model
(see for example Ozkok et al. (2012)). Although the covariates can be linked to any of the model
parameters, we link them to the mean of the GB2 distribution through

8
log (E(D;)) =n; = By + Zﬁjzz‘j + Boo, + Broc;, (6)

where B is a 32 x 1 vector of regression parameters and in particular Sy, and (19¢, denote the
coefficients of the office and cause variables, respectively.
For equation (6) to hold, equation (3) implies that

. INCIINGD
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Here w; denotes the office specific weights according to the year of diagnosis for claim i. For the
nested Burr distribution, equation (7) can be adjusted accordingly by substituting v = 1. Similar
results can be derived for other related distributions (see Section S1 in supplementary material).

We use a Metropolis-Hastings algorithm, more specifically a random walk Metropolis algorithm,
to draw samples from the following joint posterior density

fla, 7,7, BID) o< f(Dle, 7,7, B)f () f(7)f(7) f(B), (8)

where f(«), f(7), f(7) and f(B) denote the prior density functions for «, 7,7 and B parameters,
respectively. We assign the following non-informative priors to these model parameters:

a ~ Gamma(1,0.01)/(1/7, 00)

7 ~ Gamma(1,0.01)

v ~ Gamma(1,0.01)

B; ~N(0,10%),j =1,...,8

Byo, ~ N(0,10"),0;, =2,...,13
Bioe, ~ N(0,10%),C; = 2,...,10.

Here I(lower, upper) denotes the restriction we must impose (a7 > 1) in order for the mean of
the distribution to be defined. We run this algorithm for a total of 304,000 iterations and obtain
inferences after a burn-in phase of 4,000. For efficiency of the algorithm, the parameters are tuned
to obtain an acceptance rate between 15% and 40%. By inspecting relevant trace plots (not shown
here) we confirmed that all algorithms converged satisfactorily.

For comparison purposes (see also Section 4) we also fit four other related models: Burr,
log-normal, generalised gamma and Pareto. The GL-type setting is the same to that presented
earlier for the GB2 model, with equation (7) adjusted accordingly for each distribution. Also,
similar non-informative priors are assumed for model parameters (see Section S1 in supplementary
material).

The posterior densities and histograms of GB2 model parameters («, 7 and ) can be seen in
Figure 2 and support the use of the GB2 distribution, as discussed later in Section 4. Posterior
estimates under the other fitted models are shown in supplementary material (Table S1 and Figure
S1).

The posterior estimates and 95% credible intervals of the covariate coefficients (8) under the
fitted distributions are shown in Figure 3. The plots illustrate the effect of these claim related
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characteristics on the duration of the delay period, and the results are generally in agreement
with previous work as discussed in (Ozkok et al., 2012). Figure 3 suggests that there are some
differences for the coefficients of office and settlement year covariates. This is expected as here we
allow for the business growth within each office between successive years.

In terms of variation in parameter estimates, we note that the credible intervals do not show
any obvious advantage for either of the two models of main interest (GB2 and Burr). At the same
time, the GB2 model is more efficient than the Burr model in dealing with missing values. For this,
we compare the relative posterior variance of the § coefficients under the two models when missing
values are included and excluded from the analysis (see details in Section S4 in supplementary
material).

The plots also show that some covariates are more affected by the tail structure of the dis-
tribution. For example, the coefficient estimates of settlement year and policy duration are quite
different under different distributions. Omne of the reasons for this could be that the values of
these two covariates are determined using dates of diagnosis (policy duration at diagnosis) and
settlement (year of settlement) and hence are most affected from the shape of the underlying delay
distribution. Estimates of TPD also appear to be considerably different under different models.
As discussed in Ozkok et al. (2012), this may be explained by the large variations in the definition
of TPD used by different offices and for different claims, leading to inconsistencies in the recorded
date of diagnosis. Similarly, differences in office coefficient estimates (e.g. Offices 4, 12) may be
attributed to varying practices in determining the period from claim diagnosis to settlement.

4 Model assessment and comparison

In Section 3 we introduced a GL-type model under the GB2 distribution and briefly discussed sev-
eral related distributions with varying degrees of complexity. Assessment and comparison of these
models is important, especially when aiming at prediction. These tasks are not very straightforward
in the presence of missing data, especially with Bayesian models. In this section we present model
comparison based on the deviance information criterion and also propose alternative approaches
for both model comparison and assessment.

The full Bayesian analysis and inference obtained in Section 3.1 provides solid evidence regard-
ing the suitability of the fitted GB2 model when compared to the nested Burr model (resulting
when v = 1) which was favoured in earlier work. This evidence can be drawn from the posterior
densities of model parameters shown in Figure 2 where ~ is significantly different from one, imply-
ing that the data suggest moving away from the Burr model. Similar results hold for other related
distributions as discussed in the supplementary material (Section S1).

4.1 Deviance information criteria

For formal assessment and comparison of generalised linear models, Spiegelhalter et al. (2002)
introduced the deviance information criterion (DIC). Similarly to other information criteria, the
DIC is based on a trade-off between the goodness of fit and the complexity of the model. Let 6
denote the parameter vector. Then the DIC can be defined as

DIC = —4Epp (log f(D|8)) + 2log f(D|6) (10)

where 6 is the posterior mean, or alternatively the posterior mode or median of 8. The use of
this information criterion can be problematic (Delorio and Robert, 2002). However, for relatively

7



Figure 2: Posterior densities and histograms of model parameters together with their posterior
means (dashed line) under the GB2 distribution.

simple models where there are no missing data, the DIC provides a measure for model comparison.

We first consider the DIC, calculated by employing (10) at the posterior means of the param-
eters under the Bayesian model without considering the missing values. The results are shown
in Table 2. The DIC values support the evidence provided by the posterior estimates in Section
3.1, and further suggest that the GB2 gives the best fit to the data among the five considered
distributions.

However, for missing data, model comparison based on DIC is more complicated. Due to
different interpretations of the missing data (e.g. whether they should be treated as parameters
or missing variables) calculation of the DIC is not unique. Celeux et al. (2006) present eight
different DIC versions depending on the meaning of the missing data and the type of the model.
Here we consider three of these versions, based on the partially observed nature of the likelihood
and allowing for different interpretations of the missing information. Keeping the original indices
in their paper, we calculate DIC,, DIC5 and DICg (for details see Section S2 in supplementary
material).

The results are given in Table 2 and once more they indicate that GB2 clearly outperforms
the Burr model by providing the best fit to the data. However, with regards to other considered
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coefficients under various distributions.

models, we observe a slight discrepancy in their ranking when missing data are considered; while
DICg maintains the ranking suggested by the values of DIC without considering the missing data,
DIC4 and DICs5 swap the order between the log-normal and Pareto models.

Table 2: Values of DIC of the models.

Without considering missing data

GB2 Burr GG Log-normal Pareto

DIC | 190,983 191,260 193,018 194,356 195,986
Considering missing data

GB2 Burr GG Log-normal Pareto

DIC, | 230,952 231,251 233,262 237,798 237,665

DICs | 231,677 232,002 233,835 238,765 238,297

DICg | 191,037 191,315 193,065 194,796 196,060



4.2 Latent likelihood ratio test

We propose an alternative approach for comparing models under different distributions using
a latent likelihood ratio (LLR) test, which can be convenient in cases where Bayesian model
selection suffers from problems typically associated with sensitivity to choice of priors within
models (e.g. Lindley—Bartlett paradox), chain mixing in reversible-jump MCMC and missing data.
The methodology has been originally developed in a different context (e.g. Streftaris and Gibson
(2012)), and is particularly relevant to problems with incomplete data. It relies on computing the
likelihood ratio of two competing models, where only the hypothesised model, My, is fitted under
our Bayesian inference process, while for the alternative model, M5, a maximum likelihood value
is calculated. A sample of the posterior distribution of this likelihood ratio can be obtained by
employing a posterior sample of the model parameters @ (and other latent quantities, e.g. missing
data) to evaluate the likelihood of M;, and the maximum likelihood of 8 to evaluate the likelihood
of My. Then, for each value in the posterior sample of the LLR a relevant tail probability can
be computed as explained below and used to provide evidence against the fit of M; relative to
M. Implementation of the method can be achieved utilising the MCMC estimation process.
More specifically, when M is Burr and M, is GB2, at each MCMC post-convergence iteration
t=1,...,N, we compute the latent value of the likelihood ratio A as

L (oﬁ), 70, g0 D>

A®) — :
L2 <Oé,7',’}/,,8, D)

(11)

where o, 7 B(t) are MCMC posterior estimates at iteration (¢) and the dotted values in the
denominator are the MLEs. To calculate the tail probability mn = P (A < A(t)) we need the
sampling distribution of A under (M;). If models are nested, we can use asymptotic arguments
(as demonstrated in Streftaris and Gibson (2012)) implying —2log A® ~ Xz approximately, and
therefore obtain a tail probability as WX) =P (Xﬁf > —2log A®), where df is the degrees of freedom
of Ms, i.e. the number of estimated parameters in Ms. For non-nested models we can employ
simulation to obtain the empirical sampling distribution of A (see Section S3 in supplementary
material).

To compare the missing data models, we suggest to impute the missing values under M;
through data augmentation in MCMC, use the same imputed values in the denominator in (11)
when finding the MLEs and follow the same procedure thereafter. When we compare the Burr
and the GB2 model using this approach the range of —2log A® is (239.2, 301.7) when we include
the missing data in the analysis. These refer to the x3, distribution, and therefore lead all p-values
7T/(\t) being practically zero, giving overwhelming evidence in favour of GB2. The range of the
—2log A statistic that we find here is also consistent with the differences between the DIC values
presented in Table 2, and therefore confirms our earlier conclusions. Based on these results we do
not compare other distributions to the GB2 using the LLR approach.

4.3 Posterior distributions of p-values

We now focus on checking the adequacy of the models, using latent posterior probabilities of the
delay variable, whose distribution is known under the assumption that the fit of the assessed model
is good. This is related to posterior predictive checking, but leads to model assessment through
posterior distributions of p-values (e.g. Streftaris and Gibson (2012); Lau et al. (2014)), similarly
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to the work in the previous section. As before, we consider the MCMC estimation process and
let f(D,]|0") be a sampling distribution (such as GB2) for delay j at (post-convergence) iteration
t, where j = 1,...,k and t = 1,...,N. We also assume that D;]0,..., Dy|@ are conditionally

independent and that we are able to compute the cumulative distribution function value qj(-t)

P(D; < D$™|0, D) given the sampling distribution f (D,|6™). Then, under the hypothesis that

the model fits the data adequately, we should have that q° = qgt), s ,q,(:) ~ U(0,1), and therefore
we can obtain a p-value Wg) for compliance with U(0, 1) at each MCMC iteration (e.g. perform
a Kolmogorov-Smirnov goodness-of-fit test). Hence, wg = 778 ), e ,W(E?N) gives a sample from the

posterior distribution of these p-values, and can be used to assess evidence against the fitted model.

4.3.1 Simulation results

To demonstrate the use of the approach described above, we first apply the method to 500 simulated
delay values '
D™ ~ GB2(a, 7,7, st)

)

where s} is given in (7) and the covariates 3 and the remaining model parameters (a, 7 and ) are
taken from fitting the real data. For this we randomly select 500 policies to provide the covariate
values z (see Section 3.1 for the model specification). Then we fit the GB2 and Burr models to
the simulated data D®™ and perform model assessment by obtaining posterior distributions of
p-values as described above (Figure 4) and DIC values (Table 3). For comparison purposes we also
present results for the GG, log-normal and Pareto models. Noting that a posterior distribution
of p-values concentrated close to zero provides evidence against the fitted model, we observe that
Figure 4 shows clear differences among the fit of the five distributions, with increasing evidence
against the fitted model as we move away from the assumed (true) GB2 model.

Table 3: Values of DIC under different models for a random sample of 500 delay values.

‘GBQ Burr GG Log-normal Pareto
DIC \ 5951 6039 6090 6139 6198

4.3.2 Real data results

We now apply the method to the entire data set of delay times. Figure 5 shows the distribution
of g' at iteration ¢’ which gives the highest p-value. Visual inspection shows that the distribution
under the GB2 model is the closest to U(0,1). However, at this iteration we have Wg = 0.0413,
while for the Burr distribution the corresponding p-value is 7'('6 = 5 x 1072, The distributions of
q" under the GG, log-normal and Pareto models do not show uniformity and indeed all T are
practically zero under these three models.

For the GB2 and Burr models, the distribution of p-values, 7, are given in Figure 6. The
p-values shown here are obtained using a Kolmogorov-Smirnov goodness-of-fit test for g* ~ U(0, 1),
but results have also been confirmed using bootstrap techniques for the sampling distribution of
the relevant statistic. Both 7 posterior distributions demonstrate very small p-values; however
under the Burr model the distribution is more heavily concentrated close to zero, with 100% of
g values being smaller than 5 x 107. We note here that the magnitude of the evidence against
these models, as shown by the small p-values, can be partly explained by the large volume of data
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Figure 4: Posterior distributions of p-values 7 for assessment of different models using a random
sample of 500 delay values. Note that, for presentation purposes, the scale on the x axis is not the
same in all plots.

and extended number of covariate combinations implying that certain clusters of observations may
not be fitted well. Nevertheless, the results here reveal that in terms of adequacy of predictive
behaviour, the evidence against the Burr model is relatively much stronger. This is in agreement
with the model comparison results in Sections 4.1 and 4.2. Furthermore, 95% credible intervals of
the fitted delay contained 95.3% of the observed delay values under the GB2 model, and 94.4% of
values under the Burr model. Overall, our analysis provides solid Bayesian arguments against the
examined simpler distributions when considering the more general GB2.

5 Bayesian variable selection with GB2

For prediction purposes it is important to choose the most suitable model. In our case the 10
covariates lead to 2% = 1024 possible models, denoted as my, ..., m1g24, and we want to choose
the ‘best’ model which includes a selected subset of covariates. Since posterior model probabilities
are not always analytically tractable, we use an MCMC approach (specifically Gibbs variable
selection, see Dellaportas et al. (2002)) to generate a sample from the joint posterior distribution
and observe the relative frequencies of the 1024 competing models. Let & be a p x 1 indicator
vector, where k € {0,1}?, showing which covariates are in the model. For example if x; = 1 then
the ith covariate is present in the model.

We consider the GB2 GL-type model as discussed in Section 3. Under Bayesian variable
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selection the linear predictor becomes

8

n; = Bo + Z k;jBizij + KoBoo, + KioBioc;,
j=1

The prior we specify for (k,8) is in the form of f(k,3) = f(k)f(B|k). That is, the prior of
parameter vector 3 is conditional on the model including a subset of covariates k. It is common
to use f(k;) = Bernoulli(0.5) as a prior for indicators when there are no restrictions on the model
space (see Chipman (1996) and George and McCulloch (1993)). In other words, we give equal
probabilities to each of the possible models. We note that different Bernoulli(p) priors could be
employed here to reflect stronger preference towards inclusion of certain covariates in the model,
for example to accommodate expert beliefs in the field. On the other hand, there are various
approaches in the literature for the choice of f(8|x). Here we use empirical Bayes priors which
use information equivalent to that contained in one data point (Kass and Wasserman, 1995).

The estimates of the posterior inclusion probabilities, f (k|D), and their standard deviations
are given in Table 4. According to this, policy type, benefit amount, policy duration, office and
cause of claim are found to be important with more than 95% inclusion probability. Age and
benefit type have inclusion probabilities that are relatively high but less than 50%, while sex,
smoker status and settlement year are only included with less than 20% probability. Table 5 shows
the highest five posterior model probabilities, f(m|D). The first model, mgr7, excludes all the
covariates with less than 50% posterior inclusion probability in Table 4. The differences between
mo77 and mgg1, Mg7s and mggs are due to the inclusion of benefit type, age, or both benefit type
and age, respectively. The relatively high posterior inclusion probabilities of benefit type and age
leads to very close posterior model probabilities.

Table 4: Posterior inclusion probabilities under the GB2 distribution.

Parameter f(k| D) sd
Age B1 | 0.3738 0.4838
Sex B2 | 0.1370 0.3438

Benefit type B3 | 0.4440 0.4969
Smoker status 84 | 0.1758  0.3806
Policy type Bs | 0.9997 0.0176
Settlement year (g | 0.0617 0.2406
Benefit amount #; | 0.9687 0.1742

Policy duration [ 1 0
Office B 1 0
Cause Bio 1 0

To interpret these probabilities we use posterior odds, defined as PO = ;E:}Li kg; ;E:Z ;, j # k,
which under the same prior distribution for each model are equal to the Bayes factor. Models
with Bayes factor less than 3 are barely different (Kass and Raftery, 1995), and therefore we
can not distinguish between the first four models in Table 5. These results were also confirmed
using an approximation to the marginal likelihood for the GB2 model, as shown in Section S5 in
supplementary material.

We can also compare the first five models given in Table 5 employing the LLR test we introduced

in Section 4.2. We compare (a) mgr7 t0 morg; and (b) mg77 to moss. In both cases, at each iteration
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Table 5: Posterior model probabilities under the GB2 distribution using the same covariate sub-
scripts as presented in Table 4.

Model f(m|D) PO(myr/.)
1 Mmo77 25 + 27 + 28 + 29 + 210 0.1996 1.00
2 Mmost 2z3 4+ 25 + 27+ 28 + 29 + 210 0.1843 1.08
3 Mmors 21+ 25 + 27 + 28 + 29 + 210 0.1503 1.33
4 mgga 21+ 23+ 25+ 274+ 28+ 29+ 210 0.1007 1.98
5) Mo79 Zo + 25 + 27 + 28 + 29 + 210 0.0449 4.44

(t) we need to compute
Lo, (Oé(t)’ RORNON 108 D)
Li (a,7,%,8; D)

where i = mgrg, Mgg2 and j = a, b, respectively. To obtain the posterior p-values, 7, we calculate
the tail probabilities as described in Section 4.2 with df = 29, 30 for cases (a) and (b). The posterior
distributions of these p-values can be seen in Figure 7. In case (a) the proportion of p-values that
are smaller than 0.01 is 2%, giving no evidence at all against mg;; when compared to mgrg. In
case (b), the corresponding proportion is 23%, and the plot now suggests some weak evidence

against mgry; when compared to the larger model mggs. Again, these findings are consistent with
the results in Table 5.
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(a) Comparison of mg77 and mgrg. (b) Comparison of mgz7 and mgss.

Figure 7: Posterior distributions of p-values mp under the GB2 distribution with different covari-
ates.
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6 Bayesian model averaging and prediction

In Section 5, we showed that under the GB2 GL-type setting there is a number of candidate models
with relatively small difference in posterior model probability. Although a highest probability
model can be identified, the small differences in relative posterior odds point towards the use of
model averaging across models. This will enable us to incorporate model uncertainty in a natural
manner and will provide better average predictive ability than using a single model (Madigan and
Raftery, 1994). Therefore, we perform model-averaging across models for which the posterior odds
(or Bayes factor here) are less than 3, following Kass and Raftery (1995). We estimate the missing
delay using the first four models in Table 5 separately, and average over these selected models.
Under model uncertainty, the posterior probability distribution for the quantity of interest (e.g.
parameters, missing delay), A can be given as f(A|D) = Y f(A|my, D) f(my|D) which is a
k

mixture of the posterior probability distributions for A, obtained from the individual models in
the usual way, weighted by their posterior probabilities f(m|D) o< f(D|myg)f(my). Since we are
only interested in the first four models, all probabilities are implicitly conditional on this set of
models and we need to reassign the posterior probabilities of these models. So, for example, the
reassigned posterior probability of mg77 is

# (mgr7| D) = 0.1996/(0.1996 + 0.1843 + 0.1503 + 0.1007) = 0.3144.

To illustrate prediction of the delay using model averaging, we identify eight observations with
different characteristics which have missing delay. These are given in Table 6. In each case we
choose a covariate with a different value (or level) in order to explore the effect of these claim-
related characteristics on delay prediction. In Table 6, missing observation 1 serves as a base
case for missing observations 2-6, while missing observation 6 serves as a base case for missing
observations 7 and 8. The value or level changes in observations are highlighted in boldface.
For each observation, posterior estimates of the mean of the missing delay distribution under
the ‘best’” model (mg77) and average model are given in Table 7. According to these, for shorter
policy durations (observation 2) the delay is longer. Having a joint life policy (observation 6)
and increasing benefit amount (observations 3 and 4) lead to shorter delay duration. This might
be due to shorter notification period. On the other hand, MS (observation 5) or cancer claims
(observations 5 and 8) have longer delay predictions compared to death claims. Also some offices
appear to settle the claims significantly faster than others (observation 7).

Note that the missing delay predictions for observations 1-7 are very close under model mg77 and
the average model (see Table 7), whereas there is a small difference between the predictions under
these two approaches for observation 8. This difference could be explained by covariate benefit type;
for missing observations 1-7 its level is ‘full accelerated’ (baseline category — see Table 1), while
for observation 8 it is ‘stand alone’. Note that under mgg; and mggs, benefit type (z3) is retained
in the model and the coefficient is estimated as —0.0199 (CI: —0.0301, —0.0099) and —0.0215
(CI: —0.0311, —0.0130), respectively. The negative coefficient for benefit type causes shorter delay
predictions for observation 8 under mgg; (305.57; CI: 280.78, 328.00) and mygsy (308.75; CI: 284.81,
331.92) compared to the models which do not include this covariate, i.e. mg77 (323.44; CI: 298.88,
350.99) and mgrg (322.94; CI: 302.26, 343.12). The average model provides an average prediction
(315.81; CI: 292.19, 339.43) and demonstrates how model uncertainty could be incorporated under
the Bayesian model averaging.
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Table 6: Characteristics of the missing observations considered for prediction.

Missing observation 1 2 3 4
Policy type JL JL JL JL
Benefit amount (GBP) | 50000 50000 5000 115000
Policy duration (years) | >5 <1 > 5 > 5
Office 2 2 2 2
Cause Death Death Death  Death
Benefit type FA FA FA FA
Missing observation 5 6 7 8
Policy type JL SL SL SL
Benefit amount (GBP) | 50000 50000 50000 50000
Policy duration (years) | > 5 > 5 > 5 > 5
Office 2 2 11 2
Cause MS Death Death Cancer
Benefit type FA FA FA SA

Table 7: Posterior estimates of the mean of the missing delay distribution under the ‘best’ model
(mg77) and average model for the observations summarised in Table 6.

1 2 3 4
Mean 221.22 271.60 234.59 214.06
T 95%CT | (203.58, 240.24)  (251.39, 292.70)  (216.81, 254.16)  (196.23, 232.72)
Average  Mean 220.26 270.40 233.49 213.25
model  95%CT | (202.87, 236.22)  (249.89, 289.09)  (214.97, 250.38)  (196.18, 228.91)
5 6 7 8
Mean 403.36 244.60 152.62 323.44
MITT - 95%CT | (368.40, 440.64)  (225.47, 265.05)  (141.08, 163.55)  (298.88, 350.99)
Average  Mean 402.44 244.06 152.68 315.81

model  95%CI | (366.83, 439.28) (224.84, 262.75)  (141.24, 163.64)  (292.19, 339.43)

7 Discussion

Accurate prediction of the settlement delay for CII claims, that also accounts for the associated
uncertainty, is very important for premium pricing, estimation of future liabilities and solvency of
insurance companies. The research presented in this paper can therefore contribute towards the
practical implementation of robust statistical methodology in this field. At the same time, our
work brings forward the application of a number of methodological advances into the area of CII,
including the use of the GB2 distribution in a GL-type setting and relevant variable selection, and
the assessment of such models, also in the presence of incomplete data, using recently developed
techniques. The use of these methodological advances, as presented here, can also be generalised
in a range of applications concerning lifetime, survival, or other heavy-tailed data.

The GB2 distribution is a very flexible distribution which encompasses various distributions
relevant in modelling insurance data. Previously, CMI (2008) and Ozkok et al. (2012) found
that a 3-parameter Burr distribution provides a very good fit to the delay between diagnosis
and settlement in critical illness insurance. In this paper different model comparison approaches
suggested that the 4-parameter GB2 distribution improves the fit to the data considerably, when
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compared to the fit under the nested Burr distribution. While the Burr model runs (as perhaps
expected) faster, at approximately 79% of the CPU time required for the GB2 model, our analysis
demonstrates that the latter does not increase the variation of parameter estimates, and is also
more efficient in dealing with missing values. These considerable improvements also suggest that
there are marked differences in the fit of the models, thus highlighting the challenge in fitting
detailed models to such long-tailed data.

When missing observations are considered in the analysis, we compared models using different
versions of DIC. While the DIC approach strongly demonstrated that the GB2 performs better
than competing distributions, the comparison outcome among less well performing models was not
clear due to the complexities associated with incomplete data. Therefore, we have provided here
methodology relying on a latent likelihood ratio test within a hybrid Bayesian-classical framework.
This has the advantage that does not involve prior distributions under both competing models,
while also being designed to deal with missing data models and can therefore provide an alternative
to more commonly used model comparison techniques. A possible limitation of this approach
can appear under an excessive volume of missing data, as these are only estimated under the
hypothesised model. This may potentially lead to bias in favour of the hypothesised model, but
mainly in cases of severe under-observation of the data generation process which are not typical
of the applications presented here.

Model assessment was also performed, using posterior distributions of p-values related to pos-
terior predictive checking. Similarly to other methods based on p-values, this approach is also
affected by the sample size, where typically as the sample size increases, the p-value decreases.
Nevertheless, we confirmed the ability of the method to correctly assess candidate models using
a simulation study based on 500 random samples. Using the full data set (more than 19,000 ob-
servations), results based on p-values related to posterior predictive checking strengthened earlier
conclusions in the paper, by showing that evidence against the predictive adequacy GB2 model is
weaker than for the Burr and other considered models.

Finally, Bayesian variable selection results suggested that it is not straightforward to distinguish
between the four highest probability models. Hence, instead of choosing the ‘best” model, we opted
to use a Bayesian model averaging approach. Missing data were imputed using the average model.
Predictions under the ‘best’ and the average model were presented for a set of missing observations,
demonstrating an advantage for the model averaging approach in certain cases.
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