Layered Multi-Group Steered Space-Time Shift-Keying for Millimeter-Wave Communications

Ibrahim A. Hemadeh, Student Member, IEEE, Mohammed El-Hajjar, Senior Member, IEEE, SeungHwan Won, Senior Member, IEEE, and Lajos Hanzo, Fellow, IEEE

Abstract—We propose a novel multi-user Multiple-Input Multiple-Output (MIMO) technique termed as the Layered Multi-Group Steered Space-Time Shift Keying (LMG-SSTSK) for the downlink of millimeter wave (mmWave) communications, which combines the concepts of Multi-User MIMO (MU-MIMO), Space-Time Shift Keying (STSK), beamforming and Orthogonal Frequency-Division Multiplexing (OFDM) to simultaneously convey information to multiple users. The LMG-SSTSK tackles the propagation challenges of the high-attenuation mmWave frequencies by sub-dividing the users into multiple groups. The proposed system allows more users to be served simultaneously in the downlink over the same time-and frequency-resources than a system dispensing with the proposed grouping technique.

Index Terms—MU-MIMO, Massive MIMO, Millimeter Waves, Multifunctional Antenna Array, STSK, OFDM.

I. INTRODUCTION

The large-scale proliferation of wireless communications devices across the globe may lead to a 1000-fold increase in capacity demand over the next decade [1]. The millimetre wave (mmWave) frequency spectrum has recently been considered as a complement to the crowded sub-3 GHz frequency band, since it offers a huge license-free bandwidth (BW) [2]. However, mmWave propagation suffers both from a high path-loss and from sparse multipath scattering [3].

Multiple-input multiple-output (MIMO) techniques have been proposed in the literature both for improving the system’s reliability [4] and for increasing the data rates [5]. Additionally, the Signal-to-Noise Ratio (SNR) or Signal-to-interference-Plus-Noise Ratio (SINR) achieved can be improved by beamforming techniques [6]. Intrinsically amalgamating two or more of these compelling MIMO techniques introduces the concept of Multi-Functional Antenna Arrays (MFAA) [7], such as the Layered Steered Space-Time Codes (LSSTC) [8] and Space-Time Shift Keying (STSK) concept [9]. For instance, STSK is capable of striking a trade-off between the attainable multiplexing and diversity gains. MFAAs are capable of simultaneously gleaning the above-mentioned three main MIMO advantages detailed in [7], and the family of mmWave systems more crucially depends on combining these techniques for overcoming their unfavourable propagation characteristics.

Extensive research efforts have been dedicated to single-user mmWave scenarios [10], [11], but recently the community’s attention has been shifted towards MU-MIMO systems [12], [13]. Hence in this paper, we introduce a new multi-user system concept conceived for the mmWave frequency band. The novel contributions presented in this paper are as follows:

- We introduce the concept of MU MFAA systems in the downlink of our novel Layered Multi-Group Steered Space-Time Shift Keying (LMG-SSTSK) scheme, which is specifically designed for achieving multiplexing, diversity and hybrid beamforming gains. Our SSTSK concept is a novel multi-user extension of the STSK scheme, where multiple users sharing the same time-and frequency-resources communicate simultaneously.
- We present the novel idea of grouping users and partitioning the transmit antennas into layers, where each antenna layer serves a specific group of users. The separation between user groups occurs naturally due to the high attenuation experienced at mmWaves, which is further imposed by highly directional analogue beamforming (ABF). A specific group of multiple users is defined as the set of users who are 1) sufficiently close to each other, so that they fall within the focus of a specific transmitted beam and 2) yet they are sufficiently separated so that they can experience independently fading channels. Partitioning the users into groups and the transmit antennas (TAs) into layers facilitates transmission to a higher number of users compared to a single-layer system having the same number of TAs.
- The system also involves digital transmit precoding, where the Multi-User Interference (MUI) of each group’s users is cancelled at the transmitter with the aid of digital MU-MIMO transmit precoding (TPC). Furthermore, linear TPC is employed in order to support the above-mentioned digital beamforming and/or to reduce the receiver’s complexity, which can be combined with ABF into a hybrid beamforming regime.

The rest of the paper is organized as follows. In Section II we present the novel concept of our LMG-SSTSK system. Then in Section III we provide simulation results for characterising the proposed LMG-SSTSK system. Finally, we conclude in Section IV.

II. SYSTEM DESIGN

In this section we introduce the LMG-SSTSK system designed for the downlink (DL) of mmWave communications, where we further develop the concept of STSK for the sake of achieving both diversity and multiplexing gains. MIMO techniques are

The financial support of the EPSRC projects EP/N004558/1 and EP/L018659/1, as well as of the European Research Council’s Advanced Fellow Grant under the Beam-Me-Up project and of the Royal Society’s Wolfson Research Merit Award is gratefully acknowledged.
eminent for mmWaves [11], [14], [15], for the sake of mitigating their attenuation and sparse multipath profile [2], [10]. These constraints make beamforming a key enabling technology for mmWave systems [16], in order to mitigate their high attenuation and to reduce the interference among the users in MU-MIMO scenarios.

Again, the above concept of MFAA is adopted to operate at mmWave frequencies for three main reasons. Firstly, to mitigate the high attenuation of the channel by a beamforming gain. Secondly, at 60 GHz or a wavelength of 0.5 cm we can accommodate a large number of antennas in a relatively small space at the transmitter (Tx) and receiver (Rx). Hence, the degrees of freedom in the system are increased, therefore achieving higher multiplexing gains. Lastly, provided that the antenna elements (AE) can be sufficiently separated at the transmitter and receiver, for achieving their independent fading, MIMO techniques are capable of achieving a beneficial diversity gain. Our design combines STSK with beamforming at mmWave frequencies, hence it is capable of combining multiplexing, diversity and beamforming techniques, whilst striking a trade-off between the first two techniques and having the ability to overcome the high attenuation with the aid of a directional beamforming gain. Given that at mmWaves a large number of compact yet high-gain antenna arrays can be employed [17], narrow directional beams can be utilized for suppressing the interference between the angularly separated\(^1\) users [18], whilst MU-MIMO techniques can be applied to angularly close\(^2\) users that fall within the same transmitted beam, as shown in Figure 1. This is one of the main advantages of mmWaves, where a base station serving a specific user does not interfere with another angularly separated user. However, there is another challenge, because the BS cannot readily communicate with both angularly separated users at the same instant, even if they roam within the same BS’s transmission range, since a narrow transmitted beam cannot reach both users at the same time. Hence, partitioning all users into groups is an efficient technique of increasing the number of users that are being served simultaneously, as shown in Figure 1. Explicitly, the system users are divided into three groups, so that the transmitter can communicate with all groups using its layered structure. Furthermore, partitioning the antenna arrays at the transmitter into multiple layers of antenna arrays is an efficient technique of simultaneously serving all angularly separated user groups, where each antenna layer is configured to communicate with all users within the same user group. This introduces the concept of Multiple Groups (MGs) of multiple users.

The proposed system, which is referred to as Layered Multi-Group Steered STSK (LMG-SSTSK), chooses multiple STSK encoders combined with Orthogonal Frequency-Division Multiplexing (OFDM) for communicating with multiple user groups over mmWaves. Specifically, OFDM is employed in order to overcome the frequency selectivity of the wideband

\(^1\)Angularly separated users are users located at sufficiently different angles so the transmitted signal does not reach both simultaneously.

\(^2\)Angularly close users are users located close enough so they fall within the same transmit beam.

\(^3\)MGI defines the level of interference between two user groups.
channel between the Tx and the user, \(r_{g,n_u,T_s,n_s} \) is time domain received signal at the user, \(n_s \) is the Tx antenna index, \(W_{BB,g,n_u}^T \) denotes the Rx baseband combining, \(W_{g,n_u,RF}^T \) is the Rx analogue beamforming, and \(\tilde{R}_{g,n_u} \) is the frequency domain received signal after baseband combining.

A. Transmitter

Consider the downlink of the LMG-SSTSK system shown in Figure 2 combined with OFDM\(^6\). The BS communicates with \(N_u \) users divided into \(N_G \) groups as \(\{G_1, G_2, \ldots, G_{N_G}\} \). The transmitter is equipped with \(N_u \) RF chain front ends partitioned into \(N_G \) layers with a total of \(N_I \) AEs. Each \(g \)-th transmit antenna layer is formed of \(N_{c,g}^I \) RF chain front ends, where \(N_{c,g}^I = \sum_{g=1}^{N_G} N_{c,g}^I \). The \(g \)-th user group contains \(N_{g,u} \) users located in the focus of the same transmitted beam, where \(N_{g,u} = \sum_{g=1}^{N_G} N_{g,u} \).

![LMG-SSTSK transmitter block diagram](image)

The LMG-SSTSK transmitter consists of \(N_u \) STSK encoders assigned by the group mapper of Figure 2 to serve all users in all \(N_G \) groups. Each STSK encoder generates a space-time codeword by spreading \(B = \log_2(M_C M_Q) \) bits over \(T \) time slots and \(M \) spaces\(^5\), where \(M_C \) defines the \(M_C \)-PSK/QAM constellation and \(M_Q \) denotes the number of dispersion matrices. The LMG-SSTSK codeword is transmitted through an OFDM super-frame\(^6\) over \(1, \ldots, T \) time slots. This system is referred to here as LMG-SSTSK\((N_{c,g}^I, M, N, T, M_Q, M_C)\).

Assuming that all the \(N_u \) users of Figure 2 are grouped into \(N_G \) groups and all the input STSK encoders and antenna layers are assigned to their corresponding group, the STSK encoder of the \(g \)-th group and \(n_u \)-th user generates \(N_{sc} \) STSK codewords to be transmitted over \(N_{sc} \) sub-carriers and \(T \) time slots, where each codeword \(X_{g,n_u}(n_{sc}) \in \mathbb{C}^{M \times T} \) is defined as:

\[
X_{g,n_u}(n_{sc}) = A_{g,n_u}(n_{sc}) x_{g,n_u}(n_{sc}),
\]

where \(n_{sc} = 1, 2, \ldots, N_{sc} \), the matrix \(A_{g,n_u}(n_{sc}) \in \mathbb{C}^{M \times T} \) is the dispersion matrix selected from the set \(\{A_g\}_{g=1}^{N_G} \), while \(x_{g,n_u}(n_{sc}) \) is a single \(M_C \)-PSK/QAM modulated symbol and \(X_{g,n_u}(n_{sc}) \in \mathbb{C}^{M \times 1} \) is the \(T \)-th STSK time slot of the \(X_{g,n_u}(n_{sc}) \) codeword.

The BBP is represented by the \(W_{BB,g,n_u}^T(n_{sc}) \in \mathbb{C}^{M \times M} \) matrix, which is then applied to each of the generated STSK codewords to produce the precoded STSK block, as shown in Figure 2. It is termed as the second-stage TPC, because its coefficients are extracted after the MU-TPC. The precoded codeword can be expressed as:

\[
D_{g,n_u}(n_{sc}) = W_{BB,g,n_u}^T(n_{sc}) X_{g,n_u}(n_{sc}) \in \mathbb{C}^{M \times T},
\]

where the column representation of \(D_{g,n_u}(n_{sc}) \) can be defined as

\[
D_{g,n_u}(n_{sc}) = [D_{g,n_u,1}(n_{sc}), \ldots, D_{g,n_u,T}(n_{sc})],
\]

Furthermore, in order to suppress the interference between users in the same group, the MU-TPC is employed here and it is based on the \textit{block diagonalization} (BD) technique\(^1\). In MU-TPC, the precoded codeword \(D_{g,n_u}(n_{sc}) \) intended for the \(n_u \)-th user in the \(g \)-th group at the \(n_{sc} \)-th sub-carrier is multiplied by an \(N_{c,g}^I \times M \) MU-TPC matrix \(W_{MU,g,n_u}^T(n_{sc}) \) generated by the MU-TPC component of Figure 2, where given that \(N_{c,g}^I \) antenna arrays are assigned for transmission to user group \(g \), the MU-precoded codeword is expressed as

\[
P_{g,n_u}(n_{sc}) = W_{MU,g,n_u}^T(n_{sc}) D_{g,n_u}(n_{sc}),
\]

where all the \(N_{g,u} \) multiplexed symbols of all the \(g \)-th group’s STSK encoders \(P_{g,n_u}(n_{sc}) \) of the same sub-carrier are summed as:

\[
P_g(n_{sc}) = \sum_{n_u=1}^{N_{g,u}} P_{g,n_u}(n_{sc}),
\]

and the corresponding symbol at the \(n_{sc} \)-th sub-carrier after applying MU-TPC can be expressed as

\[
P(n_{sc}) = W_{MU}^T(n_{sc}) D(n_{sc}) = \begin{bmatrix} P_1(n_{sc}) \\ \vdots \\ P_g(n_{sc}) \\ \vdots \\ P_{N_g}(n_{sc}) \end{bmatrix},
\]

where \(W_{MU}^T(n_{sc}) \) and \(D(n_{sc}) \) are the corresponding MU-TPC matrix and the precoded codewords of all users in all groups, respectively.

Afterward, the \(N_{sc} \) symbols are fed into a space-time mapper in order to produce \(T \times N_{c,g}^I \) OFDM super-frames, where every

\(^6\)The LMG-SSTSK combined with OFDM is also termed as LMG-SSTSK, since the system considered in this work is only employed with OFDM so there is no need to differentiate it with a non-OFDM system.

\(^5\)The number of spaces in the STSK encoders is equivalent to the number of antennas in the simplified STSK scheme of [9].

\(^4\)A super-frame here represents the combination of all OFDM symbols transmitted from all antenna layers intended to all users in all groups.
super-frame holding N_G frames is transmitted simultaneously from the N_s antenna arrays over T time slots, as shown in Figure 3(a). Note that N_s^t should be higher than M, i.e. $N_s^t > M$. The ST mapper maps the input codewords to the N_s orthogonal sub-carriers. A frame collected during the T_i-th time slot is defined as:
\[
F_{g,T_i} = [\bar{P}_{g,T_i}(0), \ldots, \bar{P}_{g,T_i}(N_{sc} - 1)] \in \mathbb{C}^{N_s^t \times N_{sc}},
\]
where $\bar{P}_{g,T_i}(n_{sc}) \in \mathbb{C}^{N_s \times 1}$ is the T_i-th column of the n_{sc}-th multiplexed codeword $\bar{P}_g(n_{sc})$ of the g-th group frame, as shown in Figure 3(a). Hence, the super-frame at the transmit time slot T_i is defined as
\[
F_{T_i} = \begin{bmatrix}
\bar{P}_{1,T_i}(0) & \ldots & \bar{P}_{1,T_i}(N_{sc} - 1) \\
& \ddots & \\
\bar{P}_{N_G,T_i}(0) & \ldots & \bar{P}_{N_G,T_i}(N_{sc} - 1)
\end{bmatrix} \in \mathbb{C}^{N_s^t \times N_{sc}}.
\]

Moreover, Figure 3(a) shows the g-th frame in the super-frame prior to OFDM modulation. This frame is intended for the g-th group and it contains the multiplexed precoded codewords destined to its corresponding users. The sub-frame, represented by a single row of F_{T_i}, transmitted over the g-th antenna array layer is defined as $\bar{P}_{g,n_t,T_i}(n_{sc})$, where $\bar{P}_{g,T_i}(n_{sc})$ can be expressed as
\[
\bar{P}_{g,T_i}(n_{sc}) = [\bar{P}_{g,1,T_i}(n_{sc}), \ldots, \bar{P}_{g,N^t_{g,c,T_i}}(n_{sc})]^T.
\]
Each g-th frame F_{g,T_i} of the super-frame is fed into its corresponding N_s^t OFDM modulators in the g-th antenna array layer, where each sub-frame consists of an N_{sc} symbols and can be expressed as $\{\bar{P}_{g,n_t,T_i}(n_{sc})\}_{n_{sc}=0}^{N_{sc}-1}$. Hence, the modulated OFDM symbol array can be expressed as $\bar{p}_{g,n_t,T_i}(n_{sc}) = \sqrt{N_{sc}} \cdot IDFT \{\bar{P}_{g,n_t,T_i}(n_{sc})\}$, where the super-frame is formed after adding the CP of length N_{cp} at the head of all N_G OFDM symbols.

OFDM modulation is applied to the T_i-th super-frame in order to form the super-frame shown in Figure 3(b), which contains all codewords intended for all users in all groups. The post IDFT-OFDM super-frame is shown in Figure 3(b), where the g-th transmit antenna layer containing N_s^t antenna arrays transmits a multi-user OFDM-STS frame intended for all users in the g-th user group, i.e. $N_t^u = \sum_{g=1}^{N_G} N_t^{u,g}$. Each RF chain is connected to a set of N_{AA}^t antenna arrays of all N_{g}^t antenna arrays transmits a multi-user OFDM-STS frame intended for all users in the g-th user group, i.e. $N_t^u = \sum_{g=1}^{N_G} N_t^{u,g}$. Each RF chain is connected to a set of N_{AA}^t antenna arrays transmits a multi-user OFDM-STS frame intended for all users in the g-th user group, i.e. $N_t^u = \sum_{g=1}^{N_G} N_t^{u,g}$. Each RF chain is connected to a set of N_{AA}^t antenna arrays transmits a multi-user OFDM-STS frame intended for all users in the g-th user group, i.e. $N_t^u = \sum_{g=1}^{N_G} N_t^{u,g}$.

Finally, RF beamforming is applied at the very end of each RF chain with the aid of phase shifters and power amplifiers. Given that the output of all the N_t^u OFDM modulators at the logical time index n_{sc} is represented by $\{\bar{p}_{n_t,T_i}(n_{sc})\}_{n_{sc}=0}^{N_{sc}-1}$, the symbol transmitted at the time index n_{sc} can be expressed, without loss of generality, as
\[
s_{T_i}(n_{sc}) = W_{RF,T_i}^t[n_{sc}] \bar{p}_{e_p,T_i}(n_{sc}),
\]
where $W_{RF,T_i}^t[n_{sc}] \in \mathbb{C}^{N_s \times N_t^u}$ is the ABF matrix, which steers each antenna layer to its intended user group, where the g-th antenna layer applies ABF in the direction of the g user group and the $(g+1)$-st antenna array applies its ABF weights towards the $(g+1)$-st user group and so on.

B. User Grouping

The most recent efforts on user grouping [12], [13] and [20] exploit the second-order statistics of the channel in order to form user groups. The second-order statistics considered depend on the users’ channel covariance matrices. Due to the short wavelengths of the mmWave signal, a large number of antennas may be employed with a compact space to enhance the directivity of the antenna arrays by forming narrow beams. A group of multiple users served by a single base station should be located close enough to fall within the scope of the same transmitted beam. Local scatterers would to a degree scatter the transmitted signal [2]. For example, in outdoor wireless systems, high rise
buildings and landscape structures, may scatter the transmitted signal destined for a specific area [21]. Hence, the users falling within the same geographical area of the incident multipath components would receive a composite signal containing multiplexed data stream for each one of them. The angles of departure and arrivals are considered to be indistinguishable at all receivers, hence the ABF applied at the transmitter is identical for the angularly close users. However, the users should be located far enough so they may experience independent fading. A similar approach was advocated in [12], [13], where a group was identified as a set of users sharing the second-order statistics, while their instantaneous fading characteristics were assumed to be independent. Furthermore, the angularly close users would apply nearly the same receive ABF weights to the incoming signal, since the directions of the received multipath components are nearly the same at all users.

In this paper, the users are assumed to be grouped into N_G groups, where each group is isolated from the other by the high attenuation of mmWave frequencies. Users within the same group are angularly close enough to fall within the same transmitted beam, and at the same time they are far enough to experience independent fading. At mmWaves, both conditions may be satisfied, since the directional transmit antennas may be focused with the aid of ABF toward a specific area and as little as 5λ spacing between two users is sufficient for the users to experience independent fading channels, which translates to a minimum distance of 10 cm at 28 GHz and 5 cm at 60 GHz. In addition to the high antenna directionality, the high path loss experienced at mmWaves would further assist in separating the groups. For example, the two user groups G_1 and G_3 experience zero group interference in Figure 4. When the transmitter beam is focused toward a specific area, the receivers that are far from each other cannot capture the incoming signal due to the associated high attenuations. In LMG-SSTSK, the users are divided into groups based on the sub-sector they belong to, where the sub-sectors are portrayed in Figure 4, and all the users located in the same sector are considered to form a group.

![Figure 4. Multiple groups belong to multiple transmission sectors.](image)

To avoid any inter-group interference, the transmitter does not communicate with two adjacent sectors simultaneously over the same time and/or frequency slot. Conversely, when time-domain multiple group access is considered, the transmit antenna array layers communicate with two angularly separated groups within a specific time slot and with their neighbouring groups in another time slot, we refer to this resource-sharing as the Group-TDMA regime. For instance, consider the 6 groups seen in Figure 4. The figure illustrates the overlapping between the adjacent groups G_1 & G_2, G_2 & G_3, G_3 & G_4, G_4 & G_5 and G_5 & G_6, which may lead to inter-group interference. Hence, to avoid this inter-group interference, the transmitter antenna array layers are assigned to cover G_1, G_3 and G_5 during even time slots, as well as G_2, G_4 and G_6 during odd time slots. The user group-based transmission time slot here should not be confused with the 1, ..., T time slots of the STSK codewords. However, when frequency domain multiple group access is considered, a similar approach to that of the MU scheme proposed in [22] may be extended to the multiple group level rather than applying it to multiple users. The approach of [22] follows the Long Term Evolution Advanced (LTE-Advanced) standard [23], where the Orthogonal Frequency-Division Multiple-Access (OFDMA) concept is adopted for the downlink. Hence, two neighbouring user groups may be served simultaneously by occupying different groups of subcarriers.

The grouping technique advocated would improve the efficiency of the system by allowing the base station to communicate with more users at any instant than a single-group system. At mmWaves, users should be angularly close enough to be able to receive the same transmitted beam, hence dividing the transmit antenna arrays into layers to simultaneously serve multiple user groups would be an effective mmWave technique.

C. Millimetre Wave Channel

The mmWave channel is represented by a clustered multipath channel model [25], where a cluster is a combination of many multipath components sharing adjacent space-time characteristics. The channel between a specific transmit antenna element and a single receive antenna element of the n_c-th user in the g-th group can be characterized by a double-directional impulse response of the amalgamated multipath components as [21], [26]

$$h_{g,n_c,n_r,n_t}(t,\tau,\varphi) = \sum_{n_c=1}^{N_c} \sum_{n_p=1}^{N_p(n_c)} \alpha_{n_c,n_p} \delta(\theta - \theta_{n_c} - \theta_{n_c,n_p}) \delta(\theta - \theta_{n_c} - \theta_{n_c,n_p}) \delta(\tau - \tau_{n_c} - \tau_{n_c,n_p}),$$ \hspace{1cm} (12)

where α_{n_c,n_p} is the complex gain of the n_p-th multipath component in the n_c-th cluster. Both $(\theta_{n_c,n_p}, \theta_{n_c,n_p})$ characterize the (transmit, receive) angle-of-departure (AoD) and angle-of-arrival (AoA), respectively, and $(\theta_{n_c}, \theta_{n_c})$ are the mean cluster angles of the AoD and AoA.

\(^7\)A single-group system communicates with all users simultaneously as a single group [24].
The parameter \(\tau_{n_c,n_p} \) denotes the delay of the \(n_p\)-th multipath component in the \(n_c\)-th cluster and \(\tau_{n_c} \) is the \(n_c\)-th cluster delay. Given that each receiver is equipped with \(N_{r,g,n_u} \) receive antenna elements, the \((N_t \times N_{r,g,n_u})\) discrete-time CIR of the mmWave MIMO channel between the base station and the \(n_u\)-th user in the \(g\)-th group \(\hat{H}_{g,n_u}[n_{sc}] \in \mathbb{C}^{N_{r,g,n_u} \times N_t} \) may be represented as

\[
\hat{H}_{g,n_u}[n_{sc}] = \sum_{n_p=0}^{N_p-1} \hat{H}_{g,n_u,n_p}[n_p] \delta[n_{sc} - n_p], \tag{13}
\]

where \(\hat{N}_p = \sum_{n_u=1}^{N_{r,g}} N_{r,g,n_u} \) is the total number of multipath components in all channel clusters and \(\hat{H}_{g,n_u,n_p} \in \mathbb{C}^{N_{r,g,n_u} \times N_t} \) is the CIR of \(n_p\)-th path, whose entries are denoted by \(h_{g,n_u,n_r,n_t}[n_p] \) in order to represent the \(n_p\)-th path between the \(n_t\)-th transmit antenna of the \(g\)-th antenna arrays layer and the \(n_r\)-th receive antenna at the \(n_u\)-th user in the \(g\)-th user group. Furthermore, the channel between the \(n_r\)-th antenna layer and the \(g\)-th group is null when \(n_r \neq g \), since the two groups are well separated, so that the Signal-to-Group-Interference-Plus-Noise Ratio (SGINR\(^8\)) is high enough for ensuring that no interference arrives from the other users. However, for later analysis, the channel \(\hat{H}_{g,n_u,n_{sc}} \) including the effect of the antenna arrays assigned for other groups will be considered.

D. Receiver

The receiver block diagram is shown in Figure 5. The signal received by the \(n_u\)-th antenna element of the \(n_u\)-th user in the \(g\)-th group at the \(T_i\)-th time slot is:

\[
r_{g,n_u,T_i,n_{sc}} = \sum_{n_r=1}^{N_t} \sum_{n_p=0}^{N_p-1} h_{g,n_u,n_r,n_t}[n_p] \hat{s}_{T_i,n_{sc}}[n_{sc} - n_p] + v_{T_i,n_{sc}}, \tag{14}
\]

where \(\hat{s}_{T_i,n_{sc}}[n_{sc}] \) is the corresponding OFDM symbol transmitted from the \(n_t\)-th antenna element of \(s_{T_i}[n_{sc}] \) defined in (11) and \(\otimes \) is the circular convolution operator. ABF is applied at the receiver by directing its receiver beam towards the best receive direction with the aid of power amplifiers and phase shifters. After applying receive beamforming, the signal received at the corresponding users at the \(n_{sc} \) time index can be expressed as:

\[
\hat{r}_{g,n_u,T_i,c_i}[n_{sc}] = W_{RF,g,n_u}[n_{sc}] r_{g,n_u,n_r}[n_{sc}], \tag{15}
\]

where \(W_{RF,g,n_u}[n] \in \mathbb{C}^{N_r \times N_t} \) is the ABF matrix of the aforementioned user.

After passing through the RF chains shown in Figure 5, the OFDM demodulators output the detected frequency domain symbol, which is fed into a space-time demapper. After receiving all the \(T \) time slots OFDM symbols, the demapper is used to reconstruct the received multiplexed symbols at the \(n_{sc}\)-th sub-carrier. The ST demapper takes the \(n_{sc}\)-th received vector \(\hat{R}_{g,n_u,T_i}[n_{sc}] \) which is the frequency domain representation of \(\hat{r}_{g,n_u,T_i,c_i}[n_{sc}] \) after removing the CP by the OFDM demodulators, and constructs the received STSK codewords. Then all received codewords are fed into a baseband combiner, represented by the corresponding sub-carrier’s baseband combining matrix \(W_{BB,g,n_u}(n_{sc}) \). Each of the received symbols contains the information intended for all users in the same group, however the MU-TPC suppresses all the intra-group MUI, while the analogue beamforming rejects the other groups’ MGI. The symbol at the output of the baseband combiner of the \(n_{sc}\)-th sub-carrier can be expressed as:

\[
W_{BB,g,n_u}(n_{sc}) \hat{R}_{g,n_u}(n_{sc}) = \{W_{BB,g,n_u}(n_{sc})W_{RF,g,n_u}(n_{sc}) \hat{H}_{g,n_u}(n_{sc})W_{RF}(n_{sc}) P(n_{sc})\} \nonumber + \hat{V}(n_{sc}). \tag{16}
\]

For simplicity, the sub-carrier index \(n_{sc} \) is omitted in the following, hence the above equation is simplified to,

\[
\hat{R}_{g,n_u} = W_{RF,g,n_u} \hat{R}_{g,n_u} = W_{RF,g,n_u} \hat{H}_{g,n_u} W_{RF} P + \hat{V}, \tag{17}
\]

where \(\hat{R}_{g,n_u}(n_{sc}) \in \mathbb{C}^{N_r \times T} \) is the codeword demapped from the received vectors at the sub-carrier \(n_{sc} \) at the \(n_u\)-th user in the \(g\)-th group after \(T \) time slots, \(\hat{H}_{g,n_u}(n_{sc}) \in \mathbb{C}^{N_r,n_r \times N_t} \) is the frequency domain representation of \(\hat{H}_{g,n_u}[n_{sc}] \) at the \(n_{sc}\)-th sub-carrier, \(W_{BB,g,n_u}(n_{sc}) \in \mathbb{C}^{K \times N_{r,c,n_u}} \) is the baseband receiver combing matrix at the corresponding user, with \(K \) being the received vector’s length. The value of \(K \) considered here is \(N_{r,c,n_u} \), and \(\hat{V}(n_{sc}) \in \mathbb{C}^{N_r \times T} \) is the frequency domain noise vector.

Then, after applying the ABF, the RF channel at the \(n_u\)-th user in the \(g\)-th group can be replaced by the effective channel defined as

\[
H_{n_u} = W_{RF,g,n_u} \hat{H}_{g,n_u} W_{RF}^T, \tag{19}
\]

where \(H_{n_u} \in \mathbb{C}^{N_{r,c,n_u} \times N_t} \), hence we have \(\hat{R}_{g,n_u} = W_{BB,g,n_u} H_{n_u} P + \hat{V} \).

As stated earlier, the MGI is zero, which means that the effect

\[\]
of the interfering symbols intended for users in other groups is eliminated. Hence, the effective channel at the corresponding user is $H_{g,n_u} \in \mathbb{C}^{N_{c,g} \times N_{c,n_u}}$, which is the channel after applying beamforming between the g-th antenna array layer at the transmitter of size $N_{c,g}$ and the n_u-th user’s receive antenna array in the g-th group. In LMG-SSTSK, its value is known at the BS. Then, the received signal can be expressed as

$$
\tilde{R}_{g,n_u} = W_{BB,g,n_u}^{r} H_{g,n_u} W_{MU,g,n_u}^{t} D_{g,n_u} + \sum_{k \neq g} W_{BB,g,n_u}^{r} \sum_{n_{g,k}} N_{g,n_{g,k}} \sum_{k=1}^{N_{g,n_{g,k}}} \{H_{n_{g,k}} W_{MU,g,k}^{t} D_{g,n_{g,k}}\} + \tilde{V}, \quad (20)
$$

where the intra-group MUI of the users within the same group is suppressed with the aid of MU-TPC. The BD technique [19] is adopted in this paper although any TPC technique can be applied. Then we have $W_{BB,g,n_u}^{r} \sum_{k \neq g} \{H_{g,n_u} W_{MU,g,k}^{t} D_{g,k}\} \approx 0$, and the MGI interference is suppressed with the aid of the user grouping and ABF, where our user grouping technique has already grouped the users by ensuring that their MGI is zero and the ABF further focused the transmitted signal towards the intended user group only, hence we have $W_{BB,g,n_u}^{r} \sum_{k \neq g} \sum_{n_{g,k}} \{H_{n_{g,k}} W_{MU,g,k}^{t} D_{n_{g,k}}\} \approx 0$, which implies that

$$
\tilde{R}_{g,n_u} = W_{BB,g,n_u}^{r} H_{g,n_u} W_{MU,g,n_u}^{t} D_{g,n_u} + \tilde{V}, \quad (21)
$$

and

$$
\tilde{R}_{g,n_u} = W_{BB,g,n_u}^{r} Z_{g,n_u} D_{g,n_u} + \tilde{V}, \quad (22)
$$

where Z_{g,n_u} is the effective channel defined as $Z_{g,n_u} = H_{g,n_u} W_{MU,g,n_u}^{t}$.

Then

$$
\tilde{R}_{g,n_u} = W_{BB,g,n_u}^{r} Z_{g,n_u} W_{BB,g,n_u}^{t} X_{g,n_u} + \tilde{V}. \quad (23)
$$

Now, the N_{sc} received SSTSK codewords are fed into the user’s STSK decoder shown in Figure 5, which decodes the received codewords in order to regenerate the transmitted bits. Furthermore, in order to view the system as an extended SM system for each n_{sc} received codeword, the $(KT \times 1)$ received symbol of the equivalent SM can expressed scheme after performing the vectorization operation as:

$$
\tilde{R}_{g,n_u} = H_{g,n_u,n_{sc}} \chi \tilde{x}_{g,n_u,n_{sc}} + \tilde{v}_{n_{sc}}, \quad (24)
$$

where $\chi = \{vec(A_1), \ldots, vec(A_{M_g})\}$ is the equivalent $\mathbb{C}^{KT \times N_Q}$ dispersion matrix, $H_{g,n_u,n_{sc}} = I \otimes H_{n_u}$ is the equivalent $(N_{c,g}^{r} N_{c,n_u}^{t}) \times (N_{c,n_u}^{r} N_{c,n_u}^{t})$ channel matrix of $\hat{H}_{n_u} = [W_{BB,g,n_u}^{r} Z_{g,n_u} W_{BB,g,n_u}^{t}] \in \mathbb{C}^{N_{c,n_u}^{r} \times N_{c,n_u}^{t}}$ over T time slots, $\tilde{x}_{g,n_u,n_{sc}}$ is the corresponding n_{sc}-th user’s equivalent dispersion matrix selection vector given by $\tilde{x}_{g,n_u,n_{sc}} = \{0, \ldots, 0, x_{g,n_u,n_{sc}}, 0, \ldots, 0\}$ and $\tilde{v}_{n_{sc}} = vec\{\tilde{V}\} \in \mathbb{C}^{KT \times 1}$ is the equivalent vectorized noise.

The Maximum Likelihood (ML) detector is applied at the decoder in order to estimate the received codeword at the n_{sc}-sub-carrier over T time slots characterized by \hat{l}, which is the estimate of the q-th modulated PSK/QAM symbol and by \hat{q}, which denotes the estimate of the q-th transmitted dispersion matrix, and it is given by

$$
< \hat{l}, \hat{q} > = \arg \min_{i,j} || \tilde{R}_{g,n_u} - (H_{g,n_u,n_{sc}} \chi) j x_i ||^2, \quad (25)
$$

where the symbol x_i is the i-th symbol of the M_c symbol constellations and $(H_{g,n_u,n_{sc}} \chi) j$ is the j-th column of the product matrix $(H_{g,n_u,n_{sc}} \chi)$.

E. Diversity Order

When BD is employed for MU-TPC, the diversity order of the LMG-SSTSK system can be enhanced, provided that the number of transmit antenna arrays per group is higher than the total number of antenna arrays in the corresponding user group. The diversity order achieved at the n_u-th user can be expressed as

$$
D_{MG} = (N_{g,c}^{t} - \tilde{R}_{BD,g,n_u}) \times \min(M, T), \quad (26)
$$

where $\tilde{R}_{BD,n_u} \leq \sum_{g \neq g} N_{g,c}^{r}$ when the channel’s correlation is zero, then \tilde{R}_{BD,n_u} reaches its maximum and the diversity order becomes

$$
D_{MG} = (N_{g,c}^{t} - \sum_{k \neq g} N_{g,c}^{r}) \times \min(M, T). \quad (27)
$$

The minimum diversity order is achieved, when the total number of antenna arrays in the user group is equal to the corresponding total number of transmit antenna arrays, e.g. $N_{g,c}^{t} = \sum_{k=1}^{N_{g,c}^{r}} N_{g,c}^{r}$. The diversity order is then reduced to that of a single-user STSK system [9] associated with $(N_{g,c}^{t} - \tilde{R}_{BD,n_u}) = M = N_{g,c}^{r}$, hence we have $min(D_{MG}) = N_{g,c}^{r} \times \min(M, T)$.

F. System Throughput

The Cyclic Prefix (CP) reduces the throughput of the system [22], especially at mmWaves, where the CP is substantially higher compared to the systems operating in lower frequency bands. According to [27], each STSK codeword carries $\log_2(M_c M_r)$ bits and the achievable throughput per user is defined as

$$
R_c = \frac{\log_2(M_c M_r)}{(1 + \frac{N_{cp}}{N_{sc}})} \text{ (bit/symbol)}, \quad (28)
$$

where a large value of N_{cp} drastically reduces the attainable throughput. However, due to the large bandwidth available at each of the mmWave frequency bands, the total bandwidth can be further divided into a large number of narrowband sub-channels. For example, assuming a 1 GHz bandwidth in the
28 GHz frequency band that can be divided into \(N_{sc} = 4096 \) or \(N_{sc} = 8192 \) sub-bands, which reduces the effect of a 100-symbol CP. Furthermore, at 60 GHz, the number of data-bearing sub-carriers may be an order of magnitude higher than the CP length, hence for \(N_{sc} \gg N_{cp} \) (28) can be written as

\[
[R_c]_{N_{sc} \rightarrow 0} \rightarrow \log_2(M_q M_c) \text{ (bit/symbol).} \tag{29}
\]

III. RESULTS

In this section the performance of the LMG-SSTSK system is evaluated using Monte Carlo simulations.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrier Frequency</td>
<td>28 GHz</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>500 MHz</td>
</tr>
<tr>
<td>(P_t)</td>
<td>30 dB</td>
</tr>
<tr>
<td>(N^g_{g,n})</td>
<td>16</td>
</tr>
<tr>
<td>(N_{c,g})</td>
<td>2</td>
</tr>
<tr>
<td>(G_{Rx})</td>
<td>24 dBi</td>
</tr>
<tr>
<td>(G_{Tx})</td>
<td>24 dBi</td>
</tr>
<tr>
<td>System</td>
<td>LMG-SSTSK</td>
</tr>
<tr>
<td>(N_{sc})</td>
<td>2048</td>
</tr>
<tr>
<td>(N_{cp})</td>
<td>100</td>
</tr>
<tr>
<td>Distance</td>
<td>78 m</td>
</tr>
<tr>
<td>(N_c)</td>
<td>Poiss((\mu = 3.4, \sigma = 2.1))</td>
</tr>
<tr>
<td>(N_{p}(n_c))</td>
<td>Exp((\mu = 66.3, \sigma = 68.0))</td>
</tr>
<tr>
<td>RMS DS</td>
<td>Exp((\mu = 13.4, \sigma = 11.5))</td>
</tr>
<tr>
<td>AoA, AoD, AS</td>
<td>Exp((\mu = 34.6, \sigma = 27.8))</td>
</tr>
</tbody>
</table>
| \(\bar{\varphi}_R \) and \(\bar{\varphi}_T \) | \(U(0, 360) \)

Consider a single-group based system supporting \(K = 4 \) users, where the transmitter constructs a single-layer in our LMG-SSTSK system. The BER performance of this system is shown in Figure 6, where the LMG-SSTSK(8, 2, 2, 4, 4) arrangement relying on QPSK modulation and different number of sub-carriers, namely on \(N_{sc} = 32, 64, 128, 2048 \), and 4096 sub-carriers, is evaluated for transmission over the mmWave channel. Other system configurations, such as the distance, transmit power, directional antenna gains, receiver configurations and channel characteristics are shown in Table I. The curve characterizing the performance of the basic STSK(2,2,2,4,4) single-carrier scheme is represented by the (\(\times \)) marker.

As shown in Figure 6, the performance of the system communicating over the mmWave channel is dependent on the number of sub-carriers used. For \(N_{sc} = 32 \) and 64 sub-carriers, we encountered an error floor similar to the single-user OFDM-STSK system relying on a small number of sub-carriers in [27]. However, when dividing the bandwidth into a higher number of sub-channels, such as \(N_{sc} \geq 128 \), the system attains a BER of \(10^{-5} \) at an \(E_b/N_0 \) of 16 dB. Since by dividing a huge BW, e.g. 500 MHz, into small number of sub-channels, each sub-channel would be wide enough to introduce ISI. Hence, the total system bandwidth should be divided into a large number of narrowband sub-channels in order to overcome the dispersive channel’s ISI.

In the following, we scale-up the system to a multi-layered LMG-SSTSK system, where the key parameters summarizing the system characteristics used for the Monte Carlo simulation are listed in Table I. In our simulations, a base station equipped with 64 antenna arrays communicates with \(K = 20 \) users at 28 GHz carrier frequency, each provided with \(N_{g,c} = 2 \) antenna arrays. The LMG-SSTSK system divides the total number of \(K = 20 \) users into 4 groups, where \(N_{g,c} = 16 \) antenna arrays per layer are dedicated to serve each user group. Sub-dividing the users into groups enables the system to communicate with all the \(K = 20 \) users in the group instead of only with the users of a single group at a time. The four groups \(\{G_1, G_2, G_3, G_4\} \) have 2, 4, 6 and 8 users, and STSK(2,2,2,4,4) encoders are used to convey the information to all users. Based on Equation (28), the achievable throughput of the system over \(T = 2 \) time slots is equal to \(\log_2(16) \left(\frac{1}{10^{3.81}} \right) = 3.81 \) bits/codeword.

Initially, the system is simulated under the assumption of having no ABF gain and no second stage BBP, where the BD is adopted for MU-TPC. Owing to the fact that the number of components of the \(g \)-th antenna array should be higher than or equal to the total number of receive antenna arrays in the \(g \)-th user group, and under the constraint of having \(N_{g,c} = M \), the simulated system can handle a maximum of 8 users per group. The BER performance of this LMG-SSTSK system is shown in Figure 7. Given that all antenna layers are of the same dimension, the BER performance is enhanced as the number of users decreases, i.e. \(BER_{G_1} > BER_{G_2} > BER_{G_3} > BER_{G_4} \).

\(^9 \)Note that the proposed system can work with any number of users and any number of antennas while using any STSK configuration.
The BER performance in G_1 is equivalent to that of the STSK(2,2,2,4,4) system [9], since this group is formed of 8 users, which is the maximum number of users per antenna layer. Furthermore, based on Equation (27), the diversity order achieved in G_1 is $D_{MG} = (16 - 14) \times \min(2 \times 2) = 4$, which is equal to the diversity order of the STSK(2,2,2,4,4) system in Figure 7. Given the identical antenna layer dimensions, a higher diversity order can be achieved in the specific user groups accommodating a smaller number of users. Observe from Equation (27) that the diversity orders of groups G_2, G_3 and G_4 are 12, 20 and 28, which are equal to the diversity orders of STSK(2,6,2,4,4), STSK(2,10,2,4,4) and STSK(2,14,2,4,4), respectively, as seen in Figure 7.

In Figure 8, the BER performance of a single user in G_3 is shown compared to the performance recorded after employing second-stage BBP-MMSE precoding and ABF using different antenna array sizes at the transmitter and receiver; e.g. $N_{AA}^r = 2$ and $N_{AA}^t = 2$. The system shows that applying a second stage BBP does not enhance the attainable BER performance of the system, but it reduces the computational cost of the ML detector and reduces the receiver’s design complexity. The BER achievable performance may be further enhanced with the aid of ABF by employing multiple AEIs at each of the antenna arrays at both the transmitter and receivers.

In Figure 8, the BER performance of LMG-SSTSK(64, 2, 2, 2, 4, 4) is shown compared to the performance recorded after employing second-stage BBP-MMSE precoding and ABF using different antenna array sizes at the transmitter and receiver; e.g. $N_{AA}^r = 2$, and 4 and $N_{AA}^t = 2$.

IV. CONCLUSIONS

The OFDM-aided MG-MIMO concept was proposed for mmWaves systems. This system is capable of enhancing the MU-MIMO efficiency in terms of the number of simultaneously served users when operating at mmWaves. Owing to their high attenuation, mmWave signals cannot reach distant users at the same time with the same transmit beam. Hence, as a solution, all users are divided into groups and the transmit antenna arrays are divided into array layers for supporting the user groups. Furthermore, when the number of users detected in a group is lower than the maximum number of users, a higher diversity order is achieved with the aid of the additional antenna arrays.

The proposed system may be used as the basis of multi-group system, where multiple MIMO techniques may be combined into layers in order to form the LMG scheme.

REFERENCES

Multi-user MIMO.

Mohammed El-Hajjar is a lecturer in the Electronics and Computer Science in the University of Southampton. He received his BEng degree in Electrical Engineering from the American University of Beirut, Lebanon in 2004. He then received an MSc in Radio Frequency Communication Systems and PhD in Wireless Communications both from the University of Southampton, UK in 2005 and 2008, respectively. Following the PhD, he joined Imagination Technologies as a design engineer, where he worked on designing and developing Imagination’s multi-standard communications platform, which resulted in three patents. In January 2012, he joined the Electronics and Computer Science in the University of Southampton as a lecturer in the Southampton Wireless research group. He is the recipient of several academic awards including the Dean’s award for creative achievement, Dorothy Hodgkin postgraduate award and IEEE ICC 2010 Best paper award. He has published a Wiley-IEEE book and in excess of 60 journal and international conference papers. His research interests are mainly in the development of intelligent communications systems including energy-efficient transceiver design, MIMO, millimetre wave communications and Radio over fibre systems.

SeungHwan Won (M’04) received the B.S. and M.S. degrees in Radio Science and Engineering from Korea University, Seoul, Republic of Korea, in 1999 and 2001, respectively. He was a research engineer in Mobile Communication Technology Research Lab, LG Electronics R&D, from January 2001 to September 2004. He was the recipient of the 2004 state scholarship of the Information and Telecommunication National Scholarship Program, Ministry of Information and Communication (MIC), Republic of Korea. During 2004 and 2008 he conducted research, working towards the Ph.D. degree in the Communications Research Group, School of Electronics and Computer Science at the University of Southampton, UK. His major research interests included initial synchronization in non-coherent MIMO aided single- and multi-carrier CDMA, IDMA and OFDMA as well as in iterative synchronization schemes designed for MIMO aided single- and multi-carrier transmission systems. He published a host of papers in these research fields. Upon completing his PhD he returned to his native Korea and joined Samsung. In 2013 he was appointed as an Associate Prof. by the University of Southampton and currently he is teaching and conducting research at the campus of the University of Southampton in Johor, Malaysia.

Ibrahim Hemadeh received his BEng degree (with first class honour) in Computer and Communications Engineering from the Islamic University of Lebanon in 2010. He then received an MSc in Wireless Communications (with distinction) from the University of Southampton, UK in 2012. He is currently pursuing his PhD in Wireless Communications with the University of Southampton under the supervision of Prof Lajos Hanzo and Dr Mohammed El-Hajjar. His research interests mainly include millimeter wave communications, Multi-functional MIMO and
Lajos Hanzo received his degree in electronics in 1976 and his doctorate in 1983. In 2009 he was awarded the honorary doctorate "Doctor Honoris Causa" by the Technical University of Budapest. During his 38-year career in telecommunications he has held various research and academic posts in Hungary, Germany and the UK. Since 1986 he has been with the School of Electronics and Computer Science, University of Southampton, UK, where he holds the chair in telecommunications. He has successfully supervised about 100 PhD students, co-authored 20 John Wiley/IEEE Press books on mobile radio communications totalling in excess of 10,000 pages, published 1,500+ research entries at IEEE Xplore, acted both as TPC and General Chair of IEEE conferences, presented keynote lectures and has been awarded a number of distinctions. Currently he is directing a 100-strong academic research team, working on a range of research projects in the field of wireless multimedia communications sponsored by industry, the Engineering and Physical Sciences Research Council (EPSRC) UK, the European Research Council’s Advanced Fellow Grant and the Royal Society’s Wolfson Research Merit Award. He is an enthusiastic supporter of industrial and academic liaison and he offers a range of industrial courses.