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ABSTRACT
The need for the extra dimension in Kustaanheimo-Stiefel (KS) regularization is ex-
plained by the topology of the Hopf fibration, which defines the geometry and struc-
ture of KS space. A trajectory in Cartesian space is represented by a four-dimensional
manifold, called the fundamental manifold. Based on geometric and topological aspects
classical concepts of stability are translated to KS language. The separation between
manifolds of solutions generalizes the concept of Lyapunov stability. The dimension-
raising nature of the fibration transforms fixed points, limit cycles, attractive sets,
and Poincaré sections to higher-dimensional subspaces. From these concepts chaotic
systems are studied. In strongly perturbed problems the numerical error can break
the topological structure of KS space: points in a fiber are no longer transformed to
the same point in Cartesian space. An observer in three dimensions will see orbits
departing from the same initial conditions but diverging in time. This apparent ran-
domness of the integration can only be understood in four dimensions. The concept of
topological stability results in a simple method for estimating the time scale in which
numerical simulations can be trusted. Ideally all trajectories departing from the same
fiber should be KS transformed to a unique trajectory in three-dimensional space,
because the fundamental manifold that they constitute is unique. By monitoring how
trajectories departing from one fiber separate from the fundamental manifold a criti-
cal time, equivalent to the Lyapunov time, is estimated. These concepts are tested on
N-body examples: the Pythagorean problem, and an example of field stars interacting
with a binary.

Key words: celestial mechanics – stars: binaries: general – methods: numerical –
stars: kinematics and dynamics

1 INTRODUCTION

In the 1960’s Eduard Stiefel started to organize the Ober-
wolfach Meetings on Celestial Mechanics, in an attempt to
draw the interest of mathematicians into this subject. The
first of those meetings took place in 1964 and Paul Kustaan-
heimo presented his work on describing Keplerian motion
using spinors. His work on spinors combined with Stiefel’s
experience in regularization gave birth to the celebrated
extension of the Levi-Civita transformation to the three-
dimensional case, known as the Kustaanheimo-Stiefel trans-
formation (Kustaanheimo & Stiefel 1965). This extension
had eluded researchers since Levi-Civita (1920) presented
his original regularization of the planar problem and Hur-
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witz (1932) proved that transformations of this type only
exist in spaces of dimension n = 1,2,4,8. This statement was
further developed by Adams & Atiyah (1966).

Heinz Hopf (1931) discovered a particular transforma-
tion from the unit 3-sphere, S3, onto the unit 2-sphere, S2,
so that the preimage of each point in three-dimensional space
turns out to be a circle on S3, called a fiber. All points in
this fiber transform into the same point in three-dimensional
space. Such transformation is referred to as the Hopf fibra-
tion. In fact, the Kustaanheimo-Stiefel transformation can
be understood as a particular Hopf map (Stiefel & Scheifele
1971, §44). Hopf was Stiefel’s doctoral advisor and influ-
enced other areas of his research, including the Hopf-Stiefel
functions and the Stiefel manifolds. Davtyan et al. (1987)
developed the generalization of KS transformation to the
case R8 → R5 in order to transform the problem of the
five-dimensional hydrogen atom into an eight-dimensional
oscillator. They successfully rewrote the Hamiltonian of the

© 2016 The Authors

http://dx.doi.org/10.1093/mnras/stw780


2 J. Roa et al.

hydrogen atom as the Hamiltonian of an eight-dimensional
isotrope oscillator. Deprit et al. (1994) published an exhaus-
tive treaty on the transformations underlying KS regulariza-
tion. They focused on the topic of linearization, connecting
with prior work from Lagrange.

The KS transformation provides a robust regularization
scheme for dealing with close approaches or even impact tra-
jectories. Close encounters between stars are one of the ma-
jor challenges in N-body simulations. The first extensions of
the KS transformation to N-body problems are due to Pe-
ters (1968), Aarseth (1971) and Bettis & Szebehely (1971).
We refer to the work of Szebehely & Bettis (1971) for a re-
view of the methods developed in those years. Aarseth &
Zare (1974) focused on the three-body problem and their
method was later generalized by Heggie (1974), who refor-
mulated the Hamiltonian for dealing with an arbitrary num-
ber of particles. The shortcoming of Heggie’s method is that
it fails to reproduce collisions of more than two particles.
Mikkola (1985) discovered a technique for avoiding this sin-
gularity by rewriting the Sundman time transformation in
terms of the Lagrangian of the system. This method inte-
grates 4N (N −1)+1 equations of motion, so its use is recom-
mended for few-body problems. The formulations based on
the KS transformation have been improved throughout the
years (Mikkola & Aarseth 1998; Mikkola & Merritt 2008),
especially since the development of the chain regularization
techniques (Mikkola & Aarseth 1989, 1993). The introduc-
tion of relativistic corrections in the models has occupied
different authors: Kupi et al. (2006) modified the KS regu-
larization for two-body close encounters in N-body simula-
tions by introducing post-Newtonian effects; Funato et al.
(1996) published a reformulation of the KS transformation
focused on time-symmetric algorithms. Aarseth (1999, 2003)
presented several reviews of the evolution and keystones in
the development of N-body simulations. The Levi-Civita
variables have recently been recovered by Lega et al. (2011)
to detect resonant close encounters in the three-body prob-
lem, and used by Astakhov & Farrelly (2004) in combination
with an extension of the phase space to analyze the elliptic
restricted three-body problem.

Binary systems of stars appear naturally in simulations
of star clusters and galaxies. The dynamical interaction be-
tween binaries and field stars is a challenging problem both
from the theoretical and computational perspective due to
its chaotic nature. The pioneering numerical exploration of
stellar dynamics by Aarseth (1963, 1966) was followed by
Heggie (1975), who analyzed different configurations of bi-
nary encounters using KS regularization. In a series of pa-
pers Hut & Bahcall (1983) and Hut (1993) focused on the
gravitational scattering of field stars interacting with stellar
binaries. They relied on extensive Monte Carlo simulations,
and papers in the same series focused on deriving analytic
solutions to the problem (Hut 1983; Heggie & Hut 1993).
Kiseleva et al. (1994) addressed the problem of the stabil-
ity of triple stars, seeking empirical formulas for modeling
the time when the system becomes unstable. Stellar colli-
sions between binary systems have been studied by Fregeau
et al. (2004). Tout et al. (1997) published an efficient algo-
rithm for the simulation of additional physical phenomena
occurring in stellar binaries. In state of the art N-body codes
such as nbody6 binaries and close two-body encounters are
analyzed using KS regularization based on the Stumpff func-

tions (Mikkola & Aarseth 1998), as described by the author
(Aarseth 1999).

The topology of the KS transformation has motivated
many studies on the subject. Velte (1978) explored its rep-
resentation in the language of quaternions, a task that also
occupied Vivarelli (1983) and Waldvogel (2006a,b). Different
representations of KS regularization have been published by
Vivarelli (1986, 1994), including a representation in hyper-
complex algebra (Vivarelli 1985). Hypercomplex numbers
have recently been recovered by Roa & Peláez (2015) to
derive a regularization scheme that describes orbital dynam-
ics in the geometry of Minkowski space-time. Deprit et al.
(1994) re-derived the KS transformation by doubling, using
quaternions and octonions. They conclude by deriving the
Burdet-Ferrándiz transformation from the foundations of KS
regularization (Ferrándiz 1987). Saha (2009) has recently re-
formulated the problem by combining quaternions with the
Hamiltonian formalism. ElBialy (2007) approached the KS
transformation from an alternative perspective, focusing on
the connection with the Hopf map and the topological struc-
ture of the transformation. In a series of papers Fukushima
(2003, 2004, 2005) analyzed different numerical aspects of
the regularization, seeking scaling factors that guarantee the
conservation of the integrals of motion and time-elements for
improving the stability of the time transformation.

In this paper we seek a theory of stability in KS space
based on the physics of the problem. We generalize the con-
cepts of fixed points, limit cycles, attractors, Lyapunov and
structural stability, and Poincaré maps to four-dimensions
by means of the KS transformation. By synchronizing the
relative dynamics of nearby trajectories in terms of the phys-
ical (and not fictitious) time, conclusions about the stability
of the system derived in KS variables apply also to Carte-
sian. From these definitions we advance to chaotic systems
and show how numerical errors can destroy the topological
structure of KS space: ideally every point in a fiber trans-
forms to the same point in Cartesian space (so it is typically
chosen arbitrarily); but for strongly perturbed problems tra-
jectories emanating from the same fiber may separate in
time and no longer represent the same trajectory in three-
dimensions. N-body problems are the main application we
consider, but the results can be extended to any application
of KS regularization.

In Section 2 the connection between the KS transfor-
mation and the Hopf fibration is established. The required
equations are presented, emphasizing the geometric aspects.
Section 3 is devoted to defining the concept of fundamen-
tal manifold, and to showing how Lyapunov and Poincaré
stability are understood in four dimensions. In Section 4 we
study the exponential divergence of trajectories in KS space
and derive a simple method to estimate an indicator that is
equivalent to the Lyapunov time. Finally, practical examples
are presented in Section 5.

2 THE KS TRANSFORMATION AS A HOPF
MAP

Let r = (x, y, z) be the position vector of a point in Carte-
sian space E3, projected in an inertial frame I, and let
x = (x, y, z,0) be its extension to R4. Kustaanheimo & Stiefel
(1965) found a regularization of the two-body problem in-
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troducing the new coordinates u = (u1,u2,u3,u4), defined in
the parametric space U4 embedded in R4. The KS transfor-
mation is defined explicitly as

x = K (u ) = L(u ) u (1)

where L(u ) is known as the KS matrix:

L(u ) =



u1 −u2 −u3 u4
u2 u1 −u4 −u3
u3 u4 u1 u2
u4 −u3 u2 −u1



(2)

The KS matrix is r-orthogonal, i.e.

L−1(u ) =
1
r
L>(u ) (3)

Every point u is KS-mapped to one single point in Cartesian
space E3. These equations are a particular case of the more
general map proposed by Hopf (1931).

Regularizing the equations of orbital motion by means
of the KS transformation requires the time transformation
due to Sundman (1912):

dt = r ds (4)

where s is referred to as the fictitious time, and r = | |r | |.
Derivatives with respect to physical time t will be denoted
by a dot, ṙ , whereas derivatives with respect to fictitious
time will be written r ′. The radial distance r relates to the
KS variables by means of

r = u2
1 + u2

2 + u2
3 + u2

4 = | |u | |
2 (5)

The KS transformation maps fibers on the 3-sphere of radius
√

r in U4 to points on the 2-sphere of radius r in E3.
Hopf (1931) proved that the transformation from the 3-

sphere to the 2-sphere maps circles to single points, defining
the structure S1 ↪→ S3 → S2. Equation (1) is invariant
under the gauge transformation R : u 7→ w ,

x = L(u ) u = L(w ) w (6)

Vector w = (w1,w2,w3,w4) takes the form:

w = R (ϑ;u ) = R(ϑ) u (7)

where R(ϑ) is the matrix

R(ϑ) =



cos ϑ 0 0 − sin ϑ
0 cos ϑ sin ϑ 0
0 − sin ϑ cos ϑ 0

sin ϑ 0 0 cos ϑ



(8)

This matrix is orthogonal, and also

R>(ϑ) = R(−ϑ) (9)

Being R(ϑ) orthogonal Eq. (7) can be inverted to provide

u = R−1(ϑ;w ) = R(−ϑ) w (10)

The transformation R preserves the radius r, i.e.

r = u · u = w · w (11)

Since the radius is invariant to the selection of the point in
the fiber it follows that the physical time, defined by Eq. (4),

Figure 1. Hopf link connecting two different fibers in KS space.

The Hopf fibration is visualized by means of the stereographic
projection to E3.

is R-invariant as well1. The identity in Eq. (6) and the r-
orthogonality of matrix L furnish a useful relation:

w = L−1(w ) L(u ) u = R(ϑ) u =⇒ L>(w ) L(u ) = rR(ϑ) (12)

The angular variable ϑ parameterizes the Hopf fibration
in four-dimensional space. In fact, Eq. (7) defines explicitly
the fiber F : changing the value of ϑ defines different points
in U4 that are KS transformed to the same point in E3.
This yields the definition of fiber as the subset of all points
in four-dimensional space that are mapped into the same
point in E3 by means of the KS transformation,

F =
{
w (ϑ) ∈ U4 ��x = K (w ), ∀ϑ ∈ [0,2π]

}
(13)

A different fiber transforms into a different point. Conse-
quently, two fibers cannot intersect because the intersection
point will then be transformed into the same point in E3

despite belonging to two different fibers (Stiefel & Scheifele
1971, p. 271). The stereographic projection of the fibers onto
E3 (see for example Griguolo et al. 2012) reveals that two
fibers in KS space are connected by a Hopf link, as sketched
in Fig. 1.

2.1 The velocity and the bilinear relation

Let u ,w ∈ U4. The KS matrix satisfies the property

L(u ) w = L(w ) u ⇐⇒ `(u ,w ) = 0 (14)

where `(u ,w ) denotes the bilinear relation

`(u ,w ) = u1w4 − u2w3 + u3w2 − u4w1 (15)

Differentiating Eq. (1) with respect to fictitious time
and taking into account the time transformation from
Eq. (4) yields

ẋ =
2
r
L(u ) u ′ (16)

1 Alternative forms of the time transformation can be found in

the literature, generalized as dt/ds = g(x, ẋ ). We refer to the

work by Zare & Szebehely (1975) for a survey of transformations
involving different powers of the radial distance, the potential, the

Lagrangian, or combinations of the relative separations for the

case of N -body problems. The vectors x and ẋ are R-invariant,
so the uniqueness of the physical time is also guaranteed for more

general transformations.
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where ẋ = (vx ,vy ,vz ,0) is the velocity vector extended to

R4. Note that the fourth component is zero, which means

`(u ,u ′) = 0 (17)

Moreover, Stiefel & Scheifele (1971, p. 29) proved that
`(u ,u ′) = 0 is a first integral of orbital motion. Provided
that the KS transformation is R-invariant, it follows that
the bilinear relation holds for all points in a given fiber,

`(w ,w ′) = `(u ,u ′) = 0 (18)

Let t (ϑ) ∈ U4 denote the vector that is tangent to a
fiber F at w (ϑ). The direction of t can be obtained by dif-
ferentiating Eq. (7) with respect to ϑ. It reads

t = R∗(ϑ) u (19)

where R∗(ϑ) = dR(ϑ)/dϑ is obtained by differentiating
Eq. (8). Taking as an example ϑ = 0 yields the components
of the tangent vector t ,

t = (−u4,u3,−u2,u1) (20)

This unveils a geometric interpretation of the bilinear rela-
tion `(u ,v ) = 0: it can be understood as an orthogonality
condition (Stiefel & Scheifele 1971, §43), since

`(u ,v ) = 0 ⇐⇒ v · t = 0 (21)

Two vectors u and v satisfy the bilinear relation `(u ,v ) = 0
if v is orthogonal to the fiber through u . Provided that
`(u ,u ′) = 0 holds naturally and it is an integral of motion
it follows that the velocity in KS space, u ′, is always or-
thogonal to the fiber at u . The fiber bundle S1 ↪→ S3 → S2

shows that the fibers constituting the 3-sphere are circles,
corresponding to points on the 2-sphere. Indeed, the tangent
vector t (ϑ) is always perpendicular to the position vector
w (ϑ),

w · t =
[
R(ϑ) u

]
·
[
R∗(ϑ) u

]
= u ·

{
R>(ϑ)

[
R∗(ϑ)u

]}
= 0 (22)

no matter the value of ϑ. Appendix A is devoted to the
definition of orthogonal bases and a cross product in U4.

2.2 The inverse mapping

The inverse KS transformation K −1 : x 7→ u maps points
to fibers. Introducing the auxiliary vector v = (v1,v2,v3,v4)
the inverse mapping takes the form

v1 = R sin θ

v2 =
1

2R
(y sin θ − z cos θ)

v3 =
1

2R
(y cos θ + z sin θ)

v4 = −R cos θ

(23)

Here R2 = (r + |x |)/2. The angle θ is different from ϑ: the
points on the fiber are parameterized by θ, which is measured
with respect to a certain axis; given two points u and w
obtained by setting θ = θ1 and θ2 in Eq. (23), respectively,
they relate by virtue of Eq. (7). This equation then provides
the relation:

θ2 − θ1 = ϑ (24)

meaning that the variable ϑ denotes the angular separation
between points along the same fiber. The value of θ depends

Figure 2. Stereographic projection to R3 of the Hopf fibration

corresponding to a set of initial positions on the three-dimensional

sphere of radius r . The black semi-torus consists of all the fibers
that transform into the semi-circumference on the 2-sphere on

the bottom-left corner. One single fiber Fi is plotted in white,

corresponding to r i .

on the position of the reference axis, whereas ϑ is indepen-
dent from the selection of the axis.

The point u is finally defined as

u = (v1,v2,v3,v4) if x ≥ 0

u = (v2,v1,v4,v3) if x < 0
(25)

Two alternative expressions are considered for avoiding po-
tential singularities. They differ in the selection of the axes
in KS space. From this result any point w0 in the initial
fiber F0 can be obtained from

w0(ϑ) = R(ϑ) u0 if x0 ≥ 0

w0(ϑ) = R(−ϑ) u0 if x0 < 0
(26)

so that x 0 = L(w0)w0. The sign criterion complies with the
different definitions of the axes in KS space. See Appendix A
for a discussion on the orthogonal frames attached to the
fiber.

The velocity in U4 is obtained by inverting Eq. (16),
taking into account the orthogonality relation in Eq. (3):

u ′ =
1
2
L>(u ) ẋ (27)

The geometry of the inverse KS transformation can be
studied from Fig. 2. The grey sphere is three-dimensional
and of radius r. The black arc corresponds to a set of initial
conditions, r j . The white dot represents one particular posi-

tion in E3, r i . The inverse KS transformation applied to r i
yields the fiber Fi . The fiber is represented by means of its
stereographic projection to R3. The black surface consists of
all the fibers Fj that are KS mapped to the points r j . In
this figure it is possible to observe the Hopf link connecting
different fibers.

3 STABILITY IN KS SPACE

The classical concepts of stability from Lyapunov and
Poincaré can be translated to KS language by consider-
ing the topology of the transformation. First, we introduce
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an important theorem regarding the geometry of the fibers.
From this theorem the concept of the fundamental manifold
arises naturally.

The stability concepts here presented are not based
in numerical analyses; previous studies about the stability
of KS transformation (Baumgarte 1972, 1976; Arakida &
Fukushima 2000) focus on the behavior of the numerical
procedure. We aim for a series of definitions that capture
the physical behavior, that should be independent from the
formulation of the dynamics.

3.1 A central theorem

Two fibers can never intersect, as discussed when formally
defining a fiber. It is now possible to advance on this state-
ment and to formulate a fundamental property of the KS
transformation:

Theorem 1: (Conservation of ϑ) The angular separation
between two trajectories emanating from F0, measured along
every fiber, is constant. That is

w0 = R(ϑ0) u0 =⇒ w(s) = R(ϑ0) u(s) (28)

for any value of ϑ0 and the fictitious time s. This is an
intrinsic property of KS space and does not depend on the
dynamics of the system.

Proof. Consider two trajectories in KS space, u = u (s) and
w = w (s), departing from the same fiber F0. They relate
by means of Eq. (7). In the most general case the angle ϑ

can be described by a function ϑ = ϑ(s) and initially it is
ϑ(0) = ϑ0. The trajectories evolve according to

w (s) = R (ϑ;u (s)) = R(ϑ)u (s) (29)

Differentiating this equation with respect to fictitious time
yields

w ′(s) = R′(ϑ) u (s) + R(ϑ) u ′(s) (30)

Equation (18) proved that the bilinear relation holds for any
trajectory in KS space, meaning that `(w ,w ′) = `(u ,u ′) = 0.
This renders:

`(w ,w ′) = `
(
R(ϑ)u ,R′(ϑ) u + R(ϑ) u ′

)
= 0 (31)

after substituting Eqs. (29) and (30). Expanding the bilinear
relation in the previous expression shows that

`
(
R(ϑ)u ,R′(ϑ) u + R(ϑ) u ′

)
= r

dϑ
ds
+ `(u ,u ′) = 0 (32)

Assuming that r > 0 and considering that `(u ,u ′) = 0 one
gets

dϑ
ds
= 0 =⇒ ϑ(s) = ϑ0 (33)

so the angular separation along every fiber remains constant.
We emphasize that no assumptions about the dynamics have
been made.

A direct consequence of this result is the relation be-
tween the velocities along the trajectories u (s) and w (s):

w ′(s) = R (ϑ;u ′(s)) (34)

Figure 3. Construction of the fundamental manifold. The map-
ping gt : x 0 7→ x (t ) denotes the integration of the trajectory from

t0 to t . Similarly, gs refers to the propagation using the fictitious

time.

3.2 The fundamental manifold Γ

A trajectory in Cartesian space, understood as a continuum
of points in E3, is represented by a continuum of fibers in
U4. Each fiber is KS transformed to a point of the trajectory.
The fibers form the fundamental manifold, Γ.

Equation (26) defines the initial fiber F0, which yields
a whole family of solutions parameterized by the angular
variable ϑ. Every trajectory w (s) is confined to the funda-
mental manifold. Thanks to Thm. 1 the manifold Γ can be
constructed following a simple procedure: first, a reference
trajectory u (s) is propagated from any point in F0; then,
mapping the transformation R over it renders a fiber Fi for
each point u (si ) of the trajectory. The set ∪iFi defines Γ.
Recall that⋂
i

Fi = ∅ (35)

The fact that all trajectories emanating from F0 are confined
to Γ is what makes an arbitrary choice of θ in Eq. (23)
possible. The diagram in Fig. 3 depicts the construction of
the fundamental manifold Γ.

3.3 Fixed points, limit cycles and attractors

Points in E3 transform into fibers in U4. Thus, a fixed point
in Cartesian space, x 0, translates into a fixed fiber in KS
space, F0. Asymptotically stable fixed fibers (to be defined
formally in the next section) attract the fundamental man-
ifold of solutions, Γ → F0. Asymptotic instability is equiva-
lent to the previous case under a time reversal.

Limit cycles are transformed to fundamental manifolds,
referred to as limit fundamental manifolds Γ0. A fundamen-
tal manifold Γ originating in the basin of attraction of a
limit fundamental manifold will converge to it after suffi-
cient time. For Γ → Γ0 convergence means that each fiber in
Γ approaches the corresponding fiber in Γ0. Correspondence
between fibers is governed by the t-synchronism.

In a more general sense, attractors in U4 are invariant
sets of the flow. The point-to-fiber correspondence connects
attractors in E3 with attractors in KS space. The basin of
attraction of an attractive set Yu ⊂ U4 is built from its defi-
nition in 3-dimensions. Let X ⊂ E3 be the basin of attraction
of Y . It can be transformed to KS space, X → Xu , thanks to

Xu = (R ◦K −1)(X ) = R
(
K −1(X )

)
(36)

This construction transforms arbitrary sets in E3 to U4. The
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inverse KS transformation constitutes a dimension raising
mapping, so in general dim(Xu ) = dim(X ) + 1.

3.4 Relative dynamics and synchronism

The theories about the local stability of dynamical systems
are based on the relative dynamics between nearby trajecto-
ries. The concepts of stability formalize how the separation
between two (initially close) trajectories evolves in time. But
the concept of time evolution requires a further discussion
because of having introduced an alternative time variable
via the Sundman transformation.

Keplerian motion is known to be Lyapunov unstable
(see Baumgarte 1972, for example). Small differences in the
semimajor axes of two orbits result in a separation that
grows in time because of having different periods. However,
Kepler’s problem transforms into a harmonic oscillator by
means of the KS transformation, with the fictitious time be-
ing equivalent to the eccentric anomaly. The resulting sys-
tem is stable: for fixed values of the eccentric anomaly the
separation between points in each orbit will be small, be-
cause of the structural (or Poincaré) stability of the motion.
These considerations are critical for the numerical integra-
tion of the equations of motion. But in this paper we seek
a theory of stability in U4 expressed in the language of the
physical time t, because of its physical and practical inter-
est. The conclusions about the stability of the system will
be equivalent to those obtained in Cartesian space.

The spectrum of the linearized form of Kepler’s problem
written in Cartesian coordinates,

d2r

d t2 = −
r

r3 (37)

exhibits one eigenvalue with positive real part, λ =
√

2/r3.
Lyapunov’s theory of linear stability states that the system
is unstable.

Under the action of the KS transformation Kepler’s
problem transforms into

d2u

ds2 = −
h
2
u (38)

where h is minus the Keplerian energy. Although the lin-
ear analysis is not useful in this case, selecting a candidate
Lyapunov function V (u ,u ′) = h(u · u )/4 + (u ′ · u ′)/2 the
stability of the system is proved. In order to represent the
Lyapunov instability of the motion with respect to time t
the Sundman transformation needs to be considered. Given
two circular orbits of radii r1 and r2, the time delay between
both solutions reads

∆t = t2 − t1 = (r2 − r1)s (39)

The time delay grows with fictitious time and small values
of r2 − r1 do not guarantee that ∆t remains small.

This phenomenon relates to the synchronism of the so-
lutions (Roa et al. 2015; Roa & Peláez 2016). Solutions to
the system defined in Eq. (38) are stable if they are synchro-
nized in fictitious time, but unstable if they are synchronized
in physical time. We adopt this last form of synchronism for
physical coherence.

3.5 Stability of the fundamental manifold

3.5.1 Lyapunov stability

A trajectory r (t) in E3 is said to be Lyapunov stable if, for
every small ε > 0, there is a value δ > 0 such that for any
other solution r∗(t) satisfying | |r (t0)−r∗(t0) | | < δ it is | |r (t)−
r∗(t) | | < ε, with t > t0. In KS language trajectory translates
into fundamental manifold. In order to extend the definition
of Lyapunov stability accordingly an adequate metric d to
measure the distance between manifolds is required.

Let Γ1 and Γ2 be two (distinct) fundamental manifolds.
The fibers in Γ1 can never intersect the fibers in Γ2. But
both manifolds may share certain fibers, corresponding to
the points of intersection between the two resulting trajecto-
ries in Cartesian space. The distance between the manifolds
at t ≡ t(s1) = t(s2) is the distance between the corresponding
fibers. Setting θ to a reference value θref in Eq. (23) so that
θ1 = θ2 ≡ θref , we introduce the metric:

d(t; Γ1,Γ2) =
1

2π

∫ 2π

0
| |w1(s1; ϑ) −w2(s2; ϑ) | | dϑ (40)

with d(t; Γ1,Γ2) ≡ d(F1,F2). It is measured by computing the
distance between points in Γ1 and Γ2 with the same value of
ϑ, and then integrating over the entire fiber. It is defined for
given values of physical time, and not fictitious time. The
reason is that the goal of this section is to define a theory
of stability such that the fundamental manifold inherits the
stability properties of the trajectory in Cartesian space. This
theory is based on the physics of the system, not affected by
a reformulation of the equations of motion.

Consider a fundamental manifold Γ, referred to a nomi-
nal trajectory r (t), and a second manifold Γ∗ corresponding
to a perturbed trajectory r∗(t). If the nominal trajectory is
Lyapunov stable, then for every εu > 0 there is a number
δu > 0 such that

d(t0; Γ,Γ∗) < δu =⇒ d(t; Γ,Γ∗) < εu (41)

If the initial separation between the manifolds is small it will
remain small according to the metric defined in Eq. (40).

The nominal solution r (t) is said to be asymptoti-
cally stable if | |r (t) − r∗(t) | | → 0 for t → ∞. Similarly,
the fundamental manifold Γ will be asymptotically stable if
d(t; Γ,Γ∗) → 0 for sufficiently large times. The opposite be-
havior d(t; Γ,Γ∗) → ∞ corresponds to an asymptotically un-
stable fundamental manifold. It behaves as if it were asymp-
totically stable if the time is reversed.

3.5.2 Poincaré maps and orbital stability

The notion of Poincaré (or orbital) stability is particularly
relevant when analyzing the fundamental manifold due to
its geometric implications. Kepler’s problem is unstable in
the sense of Lyapunov but it is orbitally stable: disregarding
the time evolution of the particles within their respective
orbits, the separation between the orbits remains constant.

The definition of the Poincaré map in E3 involves a
2-dimensional section Σ that is transversal to the flow. De-
noting by p1, p2,. . . the successive intersections of a periodic
orbit with Σ, the Poincaré map P renders

P (pn ) = pn+1 (42)

The generalization of the Poincaré section to KS space K :

MNRAS 000, 1–12 (2016)
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Σ → Σu results in a subspace embedded in U4. In Sec. 2.1
we showed that the trajectories intersect the fibers at right
angles, provided that the velocity u ′ is orthogonal to the
vector tangent to the fiber. Thus, every fiber defines a section
that is transversal to the flow. The transversality condition
for Σ translates into the section containing the fiber at u .

The Poincaré section Σu can be constructed by combin-
ing the set of fibers that are KS transformed to points in Σ.
Let n = (nx ,ny ,nz ) be the unit vector normal to Σ in E3,
projected onto an inertial frame. The Poincaré section takes
the form

Σ ≡ nx (x − x0) + ny (y − y0) + nz (z − z0) = 0 (43)

where (x0, y0, z0) are the coordinates of the first intersection
point. Equation (43) can be written in parametric form as
Σ(x(η, ξ), y(η, ξ), z(η, ξ)), with η and ξ two free parameters.
The extended Poincaré section Σu is obtained by transform-
ing points on Σ to KS space and then mapping the fibration
R:

Σu = (R ◦K −1)(Σ) (44)

The choice of the Poincaré section Σ is not unique, and there-
fore the construction of Σu is not unique either. The result-
ing Poincaré section Σu is a subspace of dimension three
embedded in U4. Indeed, the transformation (R ◦K −1)(Σ)
provides:

Σ 7→ Σu (u1(η, ξ,ϑ),u2(η, ξ,ϑ),u3(η, ξ,ϑ),u4(η, ξ,ϑ)) (45)

meaning that points in Σu are fixed by three parameters,
(η, ξ,ϑ). The dimension is raised by (R ◦K −1).

The intersection between a given fundamental manifold
and the Poincaré section Σu results in a fiber,

Γ ∩ Σu = F (46)

Successive intersections can be denoted F1, F2,. . . . The
Poincaré map in U4, P : Σu → Σu , is

P (Fn ) = Fn+1 (47)

Every point in a fiber intersects Σu simultaneously. Due to
the R-invariance of the Sundman transformation the time
period between crossings is the same for every trajectory
connecting Fn and Fn+1.

Let Γ denote a fundamental manifold representing a
nominal periodic orbit, and let Γ∗ be a perturbed solution.
They differ in the conditions at the first Σ-crossing, F1 and
F ∗1 respectively. The manifold Γ is said to be Poincaré (or
orbitally) stable if

d(F ∗1 ,F1) < δu =⇒ d(Pn (F ∗1 ),F1) < εu (48)

If the separation between the fibers at the first crossing is
small, the separation will remain small after n crossings.

4 ORDER AND CHAOS

In the previous section we generalized the key concepts of
dynamical stability to KS space. The approach we followed
aims for a theory that captures the physical properties of
the system, instead of focusing on its purely numerical con-
ditioning. The next step is the analysis of chaos in U4.

Chaotic systems are extremely sensitive to numerical
errors due to the strong divergence of the integral flow. This

is specially important in the vicinity of singularities, and it is
precisely here where KS regularization exhibits all its poten-
tial. This section focuses on characterizing the exponential
divergence of trajectories in U4 due to highly unstable dy-
namics.

By definition the fundamental manifold is mapped to
a trajectory in E3. The equations of motion in U4 are no
more than a reformulation of a dynamical system origi-
nally written in E3. For sufficiently smooth perturbations
the Picard-Lindelöf theorem ensures the uniqueness of the
solution. Thus, the corresponding fundamental manifold is
also unique and its KS transform defines only one trajectory.
This means that any trajectory in the fundamental manifold
is mapped to the same exact trajectory in E3, no matter
the position within the initial fiber. An observer in three-
dimensional space, unaware of the extra degree of freedom
introduced by the gauge R, will always perceive the same
trajectory no matter the values of ϑ.

4.1 The K -separation

In order to integrate the equations of motion numerically in
U4 the initial values of u0 and u ′0 need to be fixed. This
means choosing a point in the fiber F0. Since all the points
in F0 are KS transformed to the same exact state vector in
E3, the selection of the point is typically arbitrary. But for
an observer in U4 different values of ϑ yield different ini-
tial conditions, and therefore the initial value problem to be
integrated may behave differently. Ideally2 all trajectories
emanating from F0 remain in the same fundamental mani-
fold, that is unique. However, numerical errors leading to the
exponential divergence of the trajectories can cause the tra-
jectories to depart from the fundamental manifold. In other
words, after sufficient time two trajectories originating from
the same fiber F0, w0 = R (ϑ;u0), will no longer define the
same fiber F (s), w (s) , R (ϑ;u (s)). In this case Thm. 1
will be violated. Multiple fundamental manifolds will ap-
pear, obtained by mapping the transformation R over each
of the trajectories. The observer in E3 will see a collection
of trajectories that depart from the same exact state vector
and they separate in time, as if the problem had a random
component. This behavior can only be understood in four
dimensions.

These topological phenomena yield a natural way of
measuring the error growth in KS space without the need
of a precise solution. Let u (s) be a reference trajectory in
U4, and let w (s) be a second trajectory defined by w0 =

R (ϑ;u0). It is possible to build the fundamental manifold Γ

from the solution u (s). The second solution is expected to
be w∗(s) = R (ϑ;u (s)) by virtue of Thm. 1. When numerical
errors are present w (s) and its expected value w∗(s) (the
projection of the fundamental manifold) may not coincide.

2 Due to the limited precision of floating point arithmetic, even
the fact that all points generated with Eq. (26) and varying ϑ

will be KS-transformed to the same exact point in E3 should

be questioned. The loss of accuracy in the computation of the
initial conditions in U4 will eventually introduce errors of random
nature. As a result, Eq. (26) provides points that are not exactly
in the true fiber. Although the separation is small (of the order
of the round-off error) and negligible in most applications, it may

have an impact on the numerical integration of chaotic systems.
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Note that w (s) = w∗(s) ensures the uniqueness of the so-
lution, but says nothing about its accuracy. The separation
between w (s) and its projection on Γ is an indicator of the
breakdown of the topological structure supporting the KS
transformation, meaning that the solutions can no longer be
trusted.

Motivated by this discussion we introduce the concept
of the K -separation, dK

dK (s) = | |w (s) −w∗(s) | | = | |w (s) −R (ϑ;u∗(s)) | | (49)

defined as the Euclidean distance between an integrated tra-
jectory and its projection on the manifold of solutions. Mon-
itoring the growth of the K -separation is a way of quan-
tifying the error growth of the integration. In the context
of N-body simulations, Quinlan & Tremaine (1992) discuss
how the separation between nearby trajectories evolves: the
divergence is exponential in the linear regime when the sep-
aration is small, but the growth rate is reduced when the
separation is large. At this point the separation might be
comparable to the interparticle distance. The K -separation
will grow exponentially at first (for dK � 1) until it is
no longer small (dK ∼ O(1)), and then its growth slows
down. Locating the transition point is equivalent to finding
the time scale tcr in which the solution in KS space can no
longer be trusted: for t < tcr the topological structure of U4

is preserved, but for t > tcr the uniqueness of the manifold
of solutions Γ is not guaranteed.

For t < tcr the R-invariance of the Sundman transfor-
mation holds. The time for all the points in a fiber coin-
cides. Thus, tcr and scr are interchangeable: at t < tcr it is
also s < scr. The behavior of the solutions can be equally
analyzed in terms of the physical or the fictitious time.

In practice the K -separation is evaluated as follows:

(i) Choosing a reference θ in Eqs. (23) and (25), for ex-
ample θ = 0, integrate u∗(s).

(ii) Propagate a second trajectory w (s) generated from
Eq. (26) with ϑ , 0.

(iii) Build the expected trajectory w∗(s) by mapping
R (ϑ) over u∗(s), i.e. w∗ = R(ϑ)u∗.The K -separation is the
Euclidean distance between w (s) and w∗(s).

4.2 Topological stability

The uniqueness of Γ can be understood as topological stabil-
ity. KS space is said to be topologically stable if all the tra-
jectories emanating from the same fiber define a unique man-
ifold of solutions, and therefore they are all KS-transformed
to the same trajectory in E3. For an observer in E3 a topo-
logically unstable system seems non-deterministic, with so-
lutions departing from the same initial conditions but sepa-
rating in time with no apparent reason.

A system is topologically stable in the interval t < tcr.
The trajectories diverge exponentially,

dK (t)/dK (0) ∼ eγt t or dK (s)/dK (0) ∼ eγs s (50)

Here γ is equivalent to a Lyapunov exponent. For t > tcr this
equation no longer models the growth of the K -separation
and the system is topologically unstable. Simulations over
the transition time tcr integrated in U4 can no longer be
trusted. Depending on the integrator, the integration tol-
erance, the floating point arithmetic, the compiler, etc. the

values of tcr for a given problem might change. Thus, topo-
logical stability is a property of a certain propagation, which
requires all the previous factors to be defined.

The validity of the solution for an integration over the
critical time tcr is not guaranteed. When tcr < tesc (with tesc
denoting the escape time) not even the value of tesc can be
estimated accurately. In such a case solutions initialized at
different points in the fiber may yield different escape times.

The method presented in this section provides an esti-
mate of the interval in which the propagation is topologically
stable. The exponent γ depends on the integration scheme
and the dynamics, but it is not strongly affected by the inte-
gration tolerance. An estimate of the value of γ provides an
estimate of the critical time for a given integration tolerance
ε. Assuming dK (tcr) ∼ 1:

tcr ∼ −
1
γt

log ε (51)

Conversely, if the simulation needs to be carried out up to a
given t f , the required integration tolerance is approximately

ε ∼ e−γt t f (52)

This simple criterion proves useful for tuning and evaluat-
ing the numerical integration. In the following examples of
application the values of γt are estimated by finding the
slope of the exponential growth of the K -separation in log-
arithmic scale. Although more rigorous algorithms could be
developed, this approximation provides a good estimate of
transition time between regimes.

5 TOPOLOGICAL STABILITY IN N -BODY
PROBLEMS

Two examples of N-body problems are analyzed in this sec-
tion. The first example is the Pythagorean three-body prob-
lem. The second example is a non-planar configuration of
the four-body problem. This problem simulates the dynam-
ics of two field stars interacting with a stellar binary. The
experiments are designed for showing the practical aspects
of the new concept of stability introduced in this paper: the
topological stability of KS space.

The problems are integrated using the regularization of
the N-body problem based on the KS transformation pro-
posed by Mikkola (1985) as a reformulation of the method
by Heggie (1974). The initialization of the method is mod-
ified so that different points on the initial fiber F0 can be
chosen. This means generalizing the relative coordinates u i j

to w i j by means of the transformation R : u 7→ w . The tra-

jectories depart from the same initial conditions in E3. We
inherit the normalization proposed in the referred paper, so
that the gravitational constant is equal to one.

Heggie-Mikkola’s method is implemented in Fortran. As
Mikkola recommends, the problem is integrated with the
Bulirsch & Stoer (1966) extrapolation scheme (Hairer et al.
1991, §II.9). The total K -separation is computed by com-
bining the K -separations for the relative dynamics of each
pair of bodies. Writing u i j ≡ u` it is

dK =

√∑
`

d2
K ,`

(53)
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Table 1. Initial configuration of the Pythagorean problem. “Id”
refers to the identification index of each body.

Id x y z vx vy vz

(1) 1.0000 3.0000 0.0000 0.0000 0.0000 0.0000

(2) -2.0000 -1.0000 0.0000 0.0000 0.0000 0.0000

(3) 1.0000 -1.0000 0.0000 0.0000 0.0000 0.0000

Figure 4. Solution to the Pythagorean three-body problem. The

thick dots represent the initial configuration of the system.

where dK ,` is the K -separation computed for u` .

5.1 The Pythagorean three-body problem

Originally developed by Burrau (1913), the Pythagorean
problem consists in three particles of masses m1 = 3, m2 = 4,
and m3 = 5. The particles will be denoted (1), (2), and (3).
At t = 0 the bodies are at rest and lying on the vertices of
a Pythagorean right triangle of sides 3, 4, and 5. The ini-
tial conditions are summarized in Table 1. This problem has
been solved and discussed in detail by Szebehely & Peters
(1967), so the solution to the problem is known.

The solution is displayed in Fig. 4. Initially the bodies
approach the origin and after a number of close-approaches
body (1) is ejected along a trajectory in the first quadrant,
whereas (2) and (3) form a binary that escapes in the oppo-
site direction. The escape occurs at approximately tesc ∼ 60.
The solution shown in the figure is obtained by setting the
integration tolerance to ε = 10−13.

The problem is first integrated from a set of initial con-
ditions obtained with θ = 0 in Eq. (23). Then, a second
trajectory initialized with θ ≡ ϑ = 120◦ is integrated and
their K -separation is shown in Fig. 5. After a transient the
separation grows exponentially with γt ∼ 5/12, and no tran-
sitions are observed until the escape time (tcr > tesc). As
discussed in the previous section this is equivalent to saying

Figure 5. K -separation for the Pythagorean problem computed

from a reference trajectory with θ = 0 and ϑ = 120◦.

Table 2. Dimensionless initial conditions for the binary system,

(1,2), and the field stars, (3) and (4). “Id” refers to the identifica-

tion index of each star.

Id x y z vx vy vz

(1) 0.6245 0.6207 0.0000 -0.7873 0.0200 -0.0100

(2) 0.6245 -0.6207 0.0000 0.7873 0.0200 0.0100

(3) 3.0000 3.0000 3.0000 -0.3000 -0.3000 -0.3000
(4) -5.0817 -3.0000 -3.0000 0.3000 0.2333 0.3000

that the K -separation remains small, and consequently the
integration in U4 is topologically stable. The transformed
solution in E3 will be unique no matter the initial position
in the fiber F0.

5.2 Field stars interacting with a stellar binary

This second example analyzes the gravitational interaction
of a binary system (1,2), of masses m1 = m2 = 5, with two
incoming field stars (3) and (4) of masses m3 = m4 = 3. The
initial conditions, presented in Table 2, have been selected
so that both field stars reach the binary simultaneously.

The manifold of solutions is constructed from a refer-
ence solution with θ = 90◦. A second solution with θ = 120◦

(or ϑ = 30◦) is propagated and the corresponding K -
separation is plotted in Fig. 6. The are two different regimes
in the growth of the K -separation: the first part corre-
sponds to the linear regime where the K -separation is small,
whereas in the second part the separation is no longer small.
Both regimes are separated by tcr ∼ 42, when solutions in E3

no longer coincide. This result is in good agreement with
the value predicted by Eq. (51), which is tcr ∼ 40. Since for
t = tcr the bodies have not yet escaped and the integration
continues, the solution is topologically unstable. The escape
time associated to the reference solution, tesc ∼ 75, might
not be representative because it is corresponds to the inter-
val t > tcr.

A direct consequence of the topological instability of
the integration is the fact that solutions departing from the
initial fiber F0 no longer represent the same solution in E3.
Figure 7 shows two solutions that emanate from different
points of the initial fiber. Ideally they should coincide ex-
actly; but because the integration is topologically unstable
for t > tcr the difference between both solutions becomes ap-
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Figure 6. K -separation for the four-body problem computed

from a reference trajectory with θ = 90◦ and a second trajectory

with ϑ = 30◦.

Figure 7. Two solutions to the four-body problem departing

from the same fiber F0: the top figure corresponds to θ = 90◦, and
the bottom figure has been generated with θ = 120◦.

preciable and the accuracy of the integration over tcr cannot
be guaranteed.

The topological instability is not directly related to the
conservation of the energy. Although for t > tcr the integra-
tion becomes topologically unstable, Fig. 8 shows that the
energy is conserved down to the integration tolerance until
tesc, well beyond tcr. This is a good example of the fact that
the preservation of the integrals of motion is a necessary but
not sufficient condition for concluding that a certain integra-
tion is correct.

The evolution of the K -separation depends on the in-
tegration scheme and the tolerance. In order to analyze this
dependency Fig. 9 shows the results of integrating the prob-
lem with four different tolerances and of changing from dou-
ble to quadruple precision floating point arithmetic. It is ob-
served that refining the integration tolerance might extend
the interval of topological stability. However, the dynamics

Figure 8. Relative change in the energy referred to its initial
value, (E (t ) − E0)/E0.

Figure 9. K -separation for the four-body problem for different
integration tolerances. The solutions for ε = 10−15 and 10−17 are

computed in quadruple precision floating point arithmetic.

of the system remain chaotic and the solutions will eventu-
ally diverge for sufficiently long times.

6 CONCLUSIONS

The topology of the KS transformation has important con-
sequences in the stability and accuracy of the solutions in
KS space. There are two key aspects to consider when study-
ing the stability of the motion. First, the presence of a ficti-
tious time that replaces the physical time as the independent
variable. Second, the dimension-raising nature of the Hopf
fibration.

Classical theories of stability are based on the separa-
tion between nearby trajectories. Having introduced a ficti-
tious time, the question on how to synchronize the trajec-
tories arises. The numerical stabilization of the equations
of motion by KS regularization relates to solutions synchro-
nized in fictitious time. But a theory of stability synchro-
nized in physical time allows the translation of concepts such
as attractive sets, Lyapunov stability, Poincaré maps, etc. to
KS language.

The additional dimension provides a degree of freedom
to the solution in parametric space. In general the free pa-
rameter can be fixed arbitrarily, with little or no impact
on the resulting trajectory in Cartesian space. However, as

MNRAS 000, 1–12 (2016)



Stability in KS space and the Hopf fibration 11

strong perturbations destabilize the system, different values
of the free parameter may result in completely different so-
lutions in time. This phenomenon is caused by numerical
errors and destroys the topological structure of KS transfor-
mation: points in a fiber are no longer transformed into one
single point. By monitoring the topological stability of the
integration it is possible to estimate an indicator similar to
the Lyapunov time.
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APPENDIX A: ORTHOGONAL BASES

A1 Basis attached to the fiber

In Section 2.1 it is shown that fibers are circles in U4. Let u
and w = R (ϑ;u ) be two vectors attached to a fiber F . They
span a plane containing the fiber. This plane is not a plane of
the Levi-Civita type3 because `(u ,w ) , 0. Since trajectories
intersect fibers at right angles this subspace is transversal to
the flow. An orthogonal basis can be attached to the result-
ing plane, allowing projections on the transversal subspace.
Although arbitrary orthonormal bases can be constructed
via the Gram-Schmidt procedure (Nayfeh & Balachandran
2004, pp. 529–530), the basis described in this section ap-
pears naturally in the formulation.

Associated to every vector u there is a KS matrix
L(u ). The columns of the matrix define a vector basis

3 A plane of the Levi-Civita type, or L -plane, is a plane spanned

by two vectors satisfying the bilinear relation `(u, w ) = 0. Planes
of this type are KS-transformed to planes in E3, and the mapping
is conformal: angles are doubled and distances to the origin are

squared (Stiefel & Scheifele 1971, pp. 273–276).
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B = {u1,u2,u3,u4}, with u1 ≡ u . The basis B is orthog-
onal,

u i · u j = rδi j (A1)

Here δi j denotes Kronecker’s delta. Assuming x ≥ 0 every
point in the fiber generated by w = R (ϑ;u ) lies in the plane
spanned by u1 and u4, i.e. w · u2 = w · u3 = 0 for all ϑ.
Conversely, for x < 0 the fiber is confined to the u2u3 plane.
The basis B is an orthogonal basis attached to the fiber at
u . In addition,

u4 · u ′ = `(u ,u ′) = 0 (A2)

meaning that u ′ is perpendicular to u4. In fact, u4 = −t , as
shown by Eq. (20).

The vectors arising from the products L(u )u i , i = 1,2,3
have a vanishing fourth component. They are equivalent to
vectors in E3. However, the fourth component of the prod-
uct L(u )u4 is not zero. The three vectors obtained by these
transformations correspond to the position vector r , and a
pair of orthogonal vectors spanning the plane tangential to
the 2-sphere at r in E3. These vectors are the columns of
the associated Cailey matrix.

A2 Cross product

Stiefel & Scheifele (1971, pp. 277–281) sought a definition
of cross product in the parametric space U4 when dis-
cussing the orthogonality conditions of vectors and Levi-
Civita planes. Although the cross product of two vectors in
R3 is intuitive, its generalization to higher dimensions is not
straightforward. Independent proofs from different authors
(see for example Brown & Gray 1967) show that the cross
product of two vectors only exists in dimensions 1,3,7; for n
dimensions the cross product involves n − 1 vectors. Stiefel
& Scheifele (1971) defined the product p = u × v as

p = L(u ) v4 (A3)

where v4 = (v4,−v3,v2,−v1) is the fourth column of L(v ).
The properties of this construction motivated the authors
to call (p1,p2,p3) the cross product of u × v , with p4 = u · v .
In the following lines we analyze in more detail this con-
struction and connect with alternative definitions provided
by Vivarelli (1987) and Deprit et al. (1994).

Let {e1,e2, . . . ,en } be an orthogonal basis in Rn . The
Grassmann exterior product gives rise to the bivectors e i ∧

e j , trivectors e i ∧ e j ∧ ek , and successive blades of grade
m ≤ n (Flanders 1989, §II). They constitute the subspaces∧m Rn of the exterior algebra:∧

Rn = R ⊕ Rn ⊕

2∧
Rn ⊕ . . . ⊕

n∧
Rn (A4)

noting that
∧0 Rn = R and

∧1 Rn = Rn . Without being
exhaustive we simply recall that such exterior algebra is
associative with unity, satisfying e i ∧ e j = −e j ∧ e i and
e i ∧e i = 0. The exterior product of two parallel vectors van-
ishes. We shall write e i j ...k = e i ∧ e j ∧ . . . ∧ ek for brevity.

In Section A1 an orthogonal basis attached to u was de-
fined, where two of its vectors are KS-transformed to vectors
spanning the plane tangent to the 2-sphere in E3. Identifying
u i =

√
r e i , the exterior product of vectors {u1,u2,u3,u4}

generates the oriented hypervolume

u1 ∧ u2 ∧ u3 ∧ u4 = −r2e1234 (A5)

provided that det(L(u )) = −r2. In three dimensions the
exterior product is equivalent to the cross product, given
e1 × e2 = e3, e1 × e3 = −e2 and e2 × e3 = e1. Applying the
cross product to the first three elements of B provides

u1 × u2 × u3 = ru4 (A6)

This result confirms that B is, indeed, an orthogonal basis.
Vivarelli (1987) and Deprit et al. (1994) worked in the

more general Clifford algebra Cl3. Introducing the Clifford
product of two vectors

ab = a · b + a ∧ b (A7)

the exterior algebra over R3 can be identified with the Clif-
ford algebra Cl3: bivectors and trivectors become e i ∧ e j →

e ie j and e1∧e2∧e3 → e1e2e3. Note that ba = a ·b−a∧b ,
ab, so the Clifford product is not commutative. Thus, the
even subalgebra Cl+3 = R ⊕

∧2 R3, isomorphic to the quater-
nion algebra H, is not commutative either.

The algebra H ' Cl+3 is endowed with the multiplication

rules e2
1 = e2

2 = e2
3 = −1, and the product of vectors is

anticommutative, e ie j = −e je i . Identifying these bivectors
with the quaternion basis elements

e2e3 = i, e3e1 = j, e1e2 = k (A8)

the product of two quaternions u and v is established. Vi-
varelli (1987) rewrote Stiefel & Scheifele’s form of the cross
product in terms of the quaternion product

u × v =
1
2

(ukv∗ − vku∗) (A9)

where ∗ denotes the involution u∗ = u1 + u2i + u3j − u4k. Dis-
regarding the arrangement of the components, Deprit et al.
(1994) defined the cross product of two quaternions as

u × v =
1
2

(vu† − uv†) (A10)

Here † denotes the quaternion conjugate. The difference be-
tween these quaternionic definitions and the original one
from Stiefel & Scheifele is the fact that u×v is a pure quater-
nion, i.e. <(u × v) = 0, whereas the fourth component of
Stiefel & Scheifele’s product u × v is u · v .

This paper has been typeset from a TEX/LATEX file prepared by
the author.
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