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Abstract. The additive constant problem has a long history in multi-dimensional scaling and
it has recently been used to resolve the issue of indefiniteness of the geodesic distance matrix in
ISOMAP. But it would lead to a large positive constant being added to all eigenvalues of the centered
geodesic distance matrix, often causing significant distortion of the original distances. In this paper,
we reformulate the problem as a convex optimization of almost negative semidefinite matrix so as
to achieve minimal variation of the original distances. We then develop a Newton-CG method and
further prove its quadratic convergence. Finally, we include a novel application to the famous LLE
(Locally Linear Embedding in nonlinear dimensionality reduction), addressing the issue when the
input of LLE has missing values. We justify the use of the developed method to tackle this issue
by establishing that the local Gram matrix used in LLE can be obtained through a local Euclidean
distance matrix. The effectiveness of our method is demonstrated by numerical experiments
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1. Introduction. It is probably not too exaggerating to say that ISOMAP [37]
and LLE [29] – two most famous methods in nonlinear dimensionality reduction, have
helped extensive use of classical Multidimensional Scaling (cMDS) in machine learn-
ing. In particular, ISOMAP uses the geodesic distance to approximate the pairwise
Euclidean distance on a manifold and then applies cMDS to the geodesic distance
matrix. If the matrix is close to be Euclidean, ISOMAP would work perfectly fine.
Otherwise, a certain modification is necessary. One of the popular proposals is rooted
in the additive constant problem (ACP) in MDS [38]. However, it often leads to a large
positive number being added to all the eigenvalues of the centered geodesic distance
matrix (see, e.g., [9, 33] and [39, Sect. 8.1.3] ), causing significant distortion of the
original distances. As for LLE with its inputs being pairwise distances/dissimilarities
[30, Sect. 5.1], the neighbouring distance matrix at each point is assumed to be Eu-
clidean. However, those distance matrices are rarely Euclidean in practice, say due to
missing values. Once again, certain modification is needed. The purpose of this paper
is to reformulate a variant of ACP as a convex matrix optimization, which results in
a smaller constant to be added and hence causes less distortion. We will develop a
fast method for this matrix optimization problem and demonstrate its application to
LLE. Below we first give a brief introduction of ACP and its variants.

1.1. ACP and cMDS. We start with cMDS. Suppose there are n points xi in
IRr. Let D be the matrix of squared Euclidean distances: Dij := d2ij = ‖xi − xj‖2.
Such matrices are called Euclidean. The theory of MDS implies that one can actually
generate a set of such points xi from D by decomposing the centralizing matrix
B := − 1

2JDJ , where J := I − 1
nee

T (“=:” and “:=” mean “define”) is the centring
matrix and e is the column vector of all ones in IRn. In fact, it follows from [31, 41]
that the matrix B is positive semidefinite and a set of embedding points xi can be
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obtained via

B = Pdiag(λ1, . . . , λn)PT =: XTX with X := [x1,x2, . . . ,xn],

where λ1 ≥ . . . ≥ λn ≥ 0 are the eigenvalues of B, PTP = I, and the ith column
of X is xi. When D is not Euclidean, cMDS simply orthogonally projects B to the
positive semidefinite cone Sn+ in the n× n symmetric matrix space Sn endowed with
the standard inner product. The projection is denoted by ΠSn+(B) and is given by

ΠSn+(B) := Pdiag(λ+1 , . . . , λ
+
n )P =: XTX, (1)

where λ+i := max{λi, 0}. The famous ISOMAP can be cast as the direct application of
(1) with dij being given by the geodesic distance from point i to point j on a manifold.

The indefiniteness of B may be from various reasons. Torgerson [38] argues
that all the distances dij should be simultaneously added by a constant to become

d̂ij := dij + c so that D̂ := (d̂2ij) becomes Euclidean. The principle is that the smaller
c is, the better. This is the origin of ACP. The question of existence as well as how
to compute such c was only settled 30 years later by Cailliez [6], who proved that the
smallest c is the largest eigenvalue of 2n× 2n matrix

B̂ :=

[
0 2B

−I −2J
√
DJ

]
,

where
√
D is the componentwise square root of D (note: Dij ≥ 0). This result was

first used by Choi and Choi [9] to tackle the indefiniteness of ISOMAP.

There were also other developments on ACP. Lingoes [21] proposed a slightly
different version. He argues that the constant can be added to d2ij and it would
result in a simpler solution: (−c) is the smallest eigenvalue of B (note: the smallest
eigenvalue must be negative; otherwise D would be Euclidean already). In both
the computation of [21, 6], the distance dij remains fixed. Cooper [11] numerically
demonstrated that it is more favourable if it also allows dij be varied, resulting in a
non-convex optimization problem. There are advantages and disadvantages of those
methods and we do not intend to discuss them in detail here. However, we would
like to point out one major weakness in those methods in that they tend to yield
large corrections even there were only a small number of distances that have large
deviations from their true distances (they are known as outliers). This phenomenon
is well demonstrated in the following example.

We generate a small network of 15 points. The first point is at the origin and
the remaining 14 points are evenly generated on the unit circle. Suppose there is just
one distance from the origin that has a large deviation. For example , let d(1, 15) = 4
(the true distance is 1). Figure 1.1 shows the reconstructions of the network by the 4
methods: cMDS (1), Lingoes [21], Cailliez [6], and the method LLEMDS to be proposed
in this paper. It is obvious that only LLEMDS correctly recovered the underlying
structure. The major reason for the observed distortion from the other methods
is that the correction constant c is too big with c = 12.5812 by Lingoes [21] and
c = 6.1234 by Cailliez [6]. Our method yielded a smaller constant c = 1.2071. This
example also justifies the routine used in [9, 33] that a outlier removal procedure is
necessary before the Cailliez method can be used to ISOMAP. We now explain our
proposal.
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(a) (b)

(c) (d)

Fig. 1.1. Reconstruction of a small network by the 4 methods. Fig. 1.1a is by cMDS in (1);
Fig. 1.1b is by the method of Cailliez [6] with c = 6.1234; Fig. 1.1c is by the method of Lingoes [21]
with c = 12.5812. Each of those methods has resulted in a certain level of distortion of the original
network. Fig. 1.1d by our method with c = 1.2071 correctly reveals the original network structure.

1.2. Our formulation and relevant research. Suppose D̂ = (d̂2ij), i, j =
1, . . . , n contains the observed squared pairwise distances. The purpose is to find a
true Euclidean distance matrix D = (d2ij) and a constant c such that (throughout the

paper, D̂ is reserved for the observed distance matrix)

d2ij ≈ d̂2ij + c ∀ i 6= j. (2)

This approximation that allows changes both in dij and c follows the line of argument
of Cooper [11], where d2ij was represented by ‖xi − xj‖2 with xi ∈ IRr. When using
the least-square principle to (2), we obtain

min
1

2

∑
i 6=j

(
Dij − (D̂ij + c)

)2
, s.t. D is Euclidean, c ∈ IR, (3)

which does not include the diagonal part (i = j). Unfortunately, this least-square
reformulation does not lead to any new improvement because it always has zero as
its optimal objective value and the Lingoes solution [21] would be one of the optimal
solutions (see the proof of Prop. 2.1). In order to achieve a good improvement, we
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include the diagonal part below:

min
1

2

∑
i 6=j

(
Dij − (D̂ij + c)

)2
+

1

2
nc2, s.t. D is Euclidean, c ∈ IR. (4)

We will show that the optimal constant thus obtained must be less than the Lingoes
constant [21]. Below, we explain how to reformulate (4) into a form that can be
efficiently solved.

The greatest advantage in using the squared distances is that the Euclidean matrix
D has a nice characterization due to Schoenberg [31, 32] and Young and Householder
[41]:

D is Euclidean ⇐⇒ D ∈ Kn− and diag(D) = 0, (5)

where diag(D) is the diagonal vector of D and Kn− is the almost negative semidefinite
cone defined by (see also [22, Def. 2.2])

Kn− :=
{
A ∈ Sn | vTAv ≤ 0 ∀ v ∈ e⊥

}
=
{
A ∈ Sn | − JAJ ∈ Sn+

}
(6)

with e⊥ ⊂ IRn being the subspace orthogonal to the vector e. The second characteri-
zation in (6) is due to J being the projection matrix to e⊥. Understandably, the cone
Kn+ := −Kn− is called the almost positive semidefinite cone.

It follows from (5) and the fact Je = 0 that{
A− ceeT | A is Euclidean and c ∈ IR

}
=
{
Y | Y ∈ Kn− and Y11 = · · · = Ynn

}
. (7)

Consequently, problem (4) is equivalent to

min
1

2
‖Y − D̂‖2, s.t. Y ∈ Kn− and Y11 = · · · = Ynn, (8)

where the norm is the Frobenius norm. The objective in (8) is due to the observation:∑
i 6=j

(
Dij − (D̂ij + c)

)2
+ nc2 =

∑
i,j

(
(Dij − c)− D̂ij

)2
= ‖(D − ceeT )− D̂‖2

using the fact diag(D̂) = diag(D) = 0. The feasible region of (8) is the cone of
the almost negative semidefinite matrices with constant diagonals. The relationship
between the solutions of (4) and (8) is D = Y + ceeT with c = −Y11.

Problem (8) is the core problem that we are going to solve in this paper and

it can be cast as the orthogonal projection of a given point D̂ onto a closed convex
cone intersected with a hyperplane. Such problems can often be efficiently solved
by a Newton-CG method as previously demonstrated in [26, 42, 24], where problems
of similar structures have been studied. A key requirement is that the matrix in
defining the Newton equation should be positive definite, guaranteeing the quadratic
convergence of Newton’s method. We will show that it is the case for Problem (8).

1.3. Application to LLE and organization of the paper. The proposed
method has several direct applications. For example, it can be used to tackle the
indefiniteness issue in ISOMAP. However, we would like to present a novel application
to LLE [29, 30] on an issue that has not been well addressed in literature. Usually,
the input of LLE are the high dimensional data matrix X = [x1, . . . ,xn] with the
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coordinates xi ∈ IRN being known. We denote it by LLE(X). However, in practice,
the data matrix such as the genetic data studied in [34, 5] often has missing values.
A common approach is to impute all the missing values. When the missing values
appear across a large portion of the dimensions, a set of low dimensions would be left
after imputation, rendering the remaining data invalid for use.

In this paper, we propose a new approach in handling the missing values in
X. We first calculate the squared pairwise distances using the data available in X.
This would generate the distance matrix D̂. LLE(D̂), described in [30, Sect. 5.1],

assumes that D̂ is Euclidean. We will prove that when X has no missing values,
LLE(X) and LLE(D̂) actually produce a same set of embedding points. This result

immediately suggests to make D̂ Euclidean if it is not yet so. Furthermore, what
is needed in LLE(D̂) is that the local distance matrix D̂i at each embedding point

should be Euclidean. Therefore, we can apply the proposed method on D̂i to make
it Euclidean. The advantage on working on D̂i is that the size of D̂i is usually small
and is decided by the neighborhood size chosen in LLE. A disadvantage is that there
are as many as n such D̂i’s. Therefore, the speed of algorithms for (8) is crucial to
this application. Fortunately, the fast Newton-CG method proposed in this paper is
up to this challenge. We will develop and numerically demonstrate this application
in details.

The paper is organized as follows. In the next section, we present some basic
results on the almost negative semidefinite cone Kn−, especially on the generalized
Jacobian of the projection function on it. In Sect. 3, we study the constraint nonde-
generacy, a key property that ensures the quadratic convergence of the Newton-CG
method, which is described in Sect. 4. Numerical comparison with other leading
methods are reported in Sect. 5. The promised novel application to LLE in developed
in Sect. 6 with numerical demonstrations. We conclude the paper in Sect. 7.

2. Preliminaries and Some Basic Results on Kn−. We first list some nota-
tion that we will use in this paper. We use In (to indicate the dimension involved
whenever it is necessary) or I to denote the identity matrix in Sn. For a matrix
A ∈ Sn, we let Tr(A) be the trace of A. Let Sn− := −Sn+ and the vectors be denoted
by bold faced lower letters and treated as column vectors. For example, xT will be
a row vector. Diag(x) is the diagonal matrix formed by x. A ◦ B := [AijBij ] is the
Hadamard product between two matrices A and B of same size. For subsets α, β of
{1, . . . , n}, denote Aαβ as the submatrix of A indexed by α and β (α for rows and β
for columns). |α| is the cardinality of α.

There are two important matrices that will play an important role in our anal-
ysis. One is the centralizing matrix J used to define the matrix B in (1). Another
is the Householder transformation Q that maps the vector e ∈ IRn to the vector
[0, . . . , 0,−

√
n]T ∈ IRn. Let v := [1, . . . , 1, 1 +

√
n]T ∈ IRn. Then

Q = I − 2

vTv
vvT . (9)

The matrices J and Q have the following properties:

J2 = J, Je = 0, Q2 = I and J = Q

[
In−1 0

0 0

]
Q. (10)

The orthogonal projection ΠKn−(X) of X onto the almost negative semidefinite
cone Kn− also plays a vital role in this paper and is defined as follows:

ΠKn−(X) := arg min
Y
‖X − Y ‖ s.t Y ∈ Kn−.
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A nice property is that this projection can be done through the orthogonal projection
ΠSn+(·) onto the positive semidefinite cone Sn+ and it is due to Gaffke and Mathar [14]

ΠKn−(X) = −ΠKn+(−X) = X −ΠSn+(JXJ) ∀ X ∈ Sn, (11)

which with [27, Lemma 2.1(i)] implies that

−JΠKn−(X)J = JΠKn+(−X)J = ΠSn+(−JXJ). (12)

The remaining of the section is devoted to three tasks. The first is about our
optimization model (4) showing that it yields a smaller constant than the Lingoes
constant [21]. The second task is on the description of the generalized Jacobian of
ΠKn−(·) when cast as a function. The third one is on the description of the tangent
cone of Kn−. Both descriptions are such formulated that they will be convenient for
our quadratic convergence analysis of Newton’s method later on.

2.1. On Model (4). First of all, we note that Problem (4) has a unique solution.
This is because its equivalent problem (8) is strongly convex and there is one-to-one
correspondence between their solutions. We now report a result that shows Problem
(4) yields a smaller constant than the Lingoes constant [21].

Proposition 2.1. Let cL and c be the positive constants obtained respectively
by the Lingoes method [21] and the Cailliez method [6]. Let (DN , cN ) be the optimal
solution of (4). We must have

c2N < c2L and c2N <
1

n

∑
i 6=j

d̂2ij(1− d̂ij)2 + c2.

Proof. According to Lingoes [21] that there exists a constant cL > 0 such that

DL := D̂ + cLee
T − cLI

is Euclidean. Hence, (DL, cL) is feasible with respect to Problem (4). It is also an
optimal solution to (3) as it would achieve the optimal objective value zero. The
optimality of (DN , cN ) yields

nc2N ≤ nc2N +
∑
i 6=j

((DN )2ij − (D̂ij + cN ))2

< nc2L +
∑
i 6=j

((DL)2ij − (D̂ij + cL))2 = nc2L.

The strict inequality < above is because (cN , DN ) is the unique optimal solution of
(4). Now we prove the second part of the claim. According to Calilliez [6] that the
matrix

D :=
(√

D̂ + ceeT − cI
)
◦
(√

D̂ + ceeT − cI
)

is Euclidean. It follows from [32, Cor. 1] (see also [25, page 166 (R3)]) that the com-

ponentwise square root matrix
√
D is also Euclidean. Therefore, (

√
D, c) is feasible

with respect to Problem (4). The optimality of (DN , cN ) yields

nc2N ≤ nc2N +
∑
i 6=j

((DN )2ij − (D̂ij + cN ))2 < nc2 +
∑
i6=j

((
√
D)ij − (D̂ij + c))2

= nc2 +
∑
i 6=j

(

√
D̂ij + c− (D̂ij + c))2 = nc2 +

∑
i6=j

(d̂ij − d̂2ij)2.

6



Dividing n on both sides of the inequalities leads to our claim in the proposition. �
We note that Cailliez’s constant c is added to the distance d̂ij , while our constant

cN is added to the squared distance d2ij . Our result shows that cN is bounded by
c plus a positive term. It is a very rough bound as in our proof, we dropped the
positive quantity

∑
i 6=j((DN )2ij − (D̂ij + cN ))2. This term may potentially force cN

much smaller than c. This possibility has been verified in Fig. 1.1b. The constant cN
is also much smaller than cL in Fig. 1.1c.

2.2. Generalized Jacobian of ΠKn−(·). The projection operator Φ(X) := ΠKn−(X)

is Lipschitzian with constant 1 (i.e., nonexpansive). It is hence almost everywhere dif-
ferentiable. The generalized Jacobian at any given point X, denoted by ∂Φ(X) [10,
Def. 2.6.1], is then defined to be the convex hull of all limiting Jacobians, which are
obtained as the limit of a sequence of the form {Φ′(Xj)} with Xj → X and Φ′(Xj)
exists. Because of the formula (11), ∂Φ(X) can be obtained through the Jacobian
of ΠSn+(·) at (JXJ). Fortunately, the structure of ∂ΠSn+(·) has been well understood

due to Sun [35, Prop. 2.2]. In order to apply this result, we need to handle the linear
mapping JXJ . It follows from (10) that

JXJ = Q

[
In−1 0

0 0

]
QXQ

[
In−1 0

0 0

]
Q = Q

[
X1 0

0 0

]
Q, (13)

where X1 ∈ Sn−1 is the leading (n− 1)× (n− 1) block of the partition of QXQ:[
X1 x

xT x0

]
:= QXQ. (14)

Let X1 have the following spectral decomposition:

X1 = WDiag(λ1, · · · , λn−1)WT , (15)

where λ1 ≥ . . . ≥ λn−1 are the eigenvalues of X1 and WTW = In−1. Define the n×n
orthogonal matrix W by

W :=

[
W 0
0 1

]
. (16)

Then JXJ admits the following spectral decomposition:

JXJ = QWDiag(λ1, · · · , λn−1, 0)W
T
Q. (17)

Define three index sets which partition the (n− 1) eigenvalues {λi}:

α := {i : λi > 0} , β := {i : λi = 0} and γ := {i : λi < 0} . (18)

For those eigenvalues, define the corresponding symmetric matrix Ω ∈ Sn−1 with
entries

Ωij :=
max{λi, 0}+ max{λj , 0}

|λi|+ |λj |
, i, j = 1, . . . , n (19)

where 0/0 is defined to be 1. Applying [35, Prop. 2.2] to the formula (11), we obtain
a description for ∂Φ(X) = ∂ΠKn−(X) below.
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Proposition 2.2. For every element V ∈ ∂Φ(X), there exists a generalized

Jacobian Ṽ ∈ ∂ΠS|β|+1
+

(0) such that

V H = H − PWHP
T , ∀ H ∈ Sn, (20)

where P := QW , and

WH :=


WT
αH1Wα

[
WT
αH1Wβ 0

]
Ωαγ ◦WT

αH1Wγ[
WT
β H1Wα

0

]
Ṽ

([
WT
β H1Wβ 0

0 0

])
0

ΩTαγ ◦WT
γ H1Wα 0 0


and H1 ∈ Sn−1 is from the partition:[

H1 h

hT h0

]
:= QHQ. (21)

The following remarks are useful for those who are not familiar with the gener-
alized Jacobian of matrix-valued functions (note: ΠKn−(X) is matrix-valued) studied

in [36, 7].
(R1) If we collect all the linear operations V : Sn 7→ Sn defined in (20) in the set:

∂̂Φ(X) :=
{
V | V satisfies (20) for some Ṽ ∈ ΠS|β|+1

+
(0)
}
,

then we have the following property (see [18, Thm. 2.2])

∂Φ(X)H ⊆ ∂̂Φ(X)H, ∀ H ∈ Sn.

The subtle difference is that it usually hard to characterize ∂Φ(X), but its

image ∂Φ(X)H can be characterized through the image ∂̂Φ(X)H, which is
sufficient for our theoretical analysis later on. We also refer to [40, Sect. 2]
for discussion on a similar case where the inclusion becomes equality.

(R2) When it comes to compute a particular element V , WH in (20) can be signif-

icantly simplified. For example, it is known that Ṽ can be chosen to be the
zero operator [8]. All that is needed to characterizeWH can be done through
the spectral decomposition of JXJ :

JXJ = PDiag(λ1, . . . , λn)PT ,

where λ1 ≥ . . . ≥ λn are eigenvalues and PPT = I. Define the matrix Ω̂ ∈ Sn
by

Ω̂ij :=
max{λi, 0}+ max{λj , 0}

|λi|+ |λj |
, i, j = 1, . . . , n

where 0/0 is defined to be 1. The corresponding V takes the following form:

V H = H − P
(

Ω̂ ◦ (PT (JHJ)P )
)
PT .

It follows from [23, Lemma 11] that V ∈ ∂Φ(X) and also V ∈ ∂̂Φ(X). This
type of matrices have been previously used in implementing Newton’s method
in [26, 4] for the nearest correlation matrix problem. We will also use this
element in our computation.
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Next, we give a sufficient condition for any linear operator in ∂Φ(X) to be positive
definite over a subspace. We continue to use the notation in Prop. 2.2.

Proposition 2.3. Let X ∈ Sn be given and the generalized Jacobian ∂Φ(X)
is characterized in Prop. 2.2. Let H0 be a subspace in Sn. For any H ∈ Sn, let
the matrix QHQ have the partition (21). If the following implication holds for all
H ∈ H0:

WT
γ H1 = 0

h = 0
h0 = 0

 =⇒ H = 0, (22)

then every V ∈ ∂Φ(X) is positive definite on H0. That is 〈H, V H〉 > 0 for 0 6= H ∈
H0.

Proof. The proof involves some heavy calculations between matrices, e.g., multi-
plications. We omit some of them in order to save space. However, the omitted parts
can be directly verified. Noticing that both Q and W are orthogonal matrices, we
calculate for any V ∈ ∂Φ(X) and H ∈ H0,

〈H, V H〉 = ‖WT
(QHQ)W‖2 − 〈WT

(QHQ)W, WH〉
= 2

{
‖WT

α h‖2 + ‖WT
αH1Wγ‖2 − 〈WT

αH1Wγ , Ωαγ ◦ (WT
αH1Wγ)〉

}
+2
{
‖WT

β H1Wγ‖2 + ‖WT
γ h‖2 + ‖WT

γ H1Wγ‖2/2
}

+‖G1‖2 − 〈G1, Ṽ (G2)〉,

where

G1 :=

[
WT
β H1Wβ WT

β h

hTWβ h0

]
, G2 :=

[
WT
β H1Wβ 0

0 0

]
.

It is easy to prove that

‖G1‖(‖G1‖ − ‖G2‖) ≥ ‖WT
β h‖2 +

1

2
h20. (23)

It follows from [8, Eq (17)] that

〈G1, Ṽ (G2)〉 ≤ ‖G1‖‖G2‖. (24)

Define τmax := maxi∈α,j∈γ Ωij . By (19), 0 < τmax < 1. We continue to simplify
〈H,V H〉.

〈H, V H〉 ≥ 2
{
‖WT

α h‖2 + ‖WT
γ h‖2 + ‖WT

β H1Wγ‖2 + (1− τmax)‖WT
αH1Wγ‖2

}
+‖WT

γ H1Wγ‖2 + ‖G1‖2 − ‖G1‖‖G2‖ (by (24))

≥ 2

{
‖WT

α h‖2 + ‖WT
γ h‖2 +

1

2
‖WT

β h‖2
}

+ ‖WT
γ H1Wγ‖2

+2
{

(1− τmax)‖WT
αH1Wγ‖2 + ‖WT

β H1Wγ‖2
}

+
1

2
h20 (by (23))

≥ 0.

Hence, the assumption 〈H, V H〉 = 0 would imply{
WT
α h = 0, WT

β h = 0, WT
γ h = 0, and h0 = 0

WT
αH1Wγ = 0, WT

β H1Wγ = 0, WT
γ H1Wγ = 0,
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which is equivalent to

WTh = 0, h0 = 0, and WTH1Wγ = 0.

Because W in (15) is orthogonal, it follows that

h = 0, h0 = 0 and H1Wγ = 0,

which in turn by (22) implies that H = 0. This proves that 〈H, V H〉 ≥ 0 and it
equals 0 if and only if H = 0. Hence, V is positive definite over H0. �

2.3. Tangent cone of Kn−. Now suppose X belongs to Kn−. Let TKn−(X) denote

the tangent cone of Kn− at X and lin(TKn−(X)) be the largest subspace contained

in TKn−(X). We now give a description of this subspace. It follows from (6) that

−JXJ ∈ Sn+. Then all the eigenvalues of X1 in (15) are nonpositive. Suppose
r = rank(X1). Since the eigenvalues in (15) are arranged in nonincreasing order, we
must have

λ1 = · · · = λn−r = 0, 0 > λn−1−r ≥ · · · ≥ λn−1.

Using the fact Kn− = −Kn+ and the formula [24, Eq. (23)] for the tangent cone of Kn+,
we obtain

TKn−(X) =

Q
 W

[
Σ1 Σ12

ΣT12 Σ2

]
WT a

aT a0

Q :
Σ1 ∈ Sn−1−r− , Σ2 ∈ Sr
Σ12 ∈ IR(n−1−r)×r

a ∈ IRn−1, a0 ∈ IR

 .

Therefore, the largest subspace in TKn−(X) is given by

lin(TKn−(X)) =

Q
 W

[
0 Σ12

ΣT12 Σ2

]
WT a

aT a0

Q :
Σ2 ∈ Sr
Σ12 ∈ IR(n−1−r)×r

a ∈ IRn−1, a0 ∈ IR

 . (25)

In particular, we have{
Q

[
0(n−1)×(n−1) a

aT 0

]
Q : a ∈ IRn−1

}
⊂ ∩X∈Kn− lin(TKn−(X)). (26)

3. Constraint Nondegeneracy. We continue to prepare one more technical
result that will eventually lead to the quadratic convergence of Newton’s method to be
developed soon. This result is about the constraint nondegeneracy of the constraints in
(8). We restate the constraints as follows. Define the linear mapping A : Sn 7→ IRn−1

by

(A(Y ))i := Yii − Ynn, i = 1, . . . , n− 1, ∀ Y ∈ Sn.

We let A∗ : IRn−1 7→ Sn be the adjoint of A. Then the constraints in (8) become:

Y ∈ Kn− and A(Y ) = 0. (27)

The concept of constraint nondegeneracy, which is generalization of the linear inde-
pendence constraint qualification, has been extensively used by Bonnans and Shapiro
[2] for abstract optimization problems. Its prominent role in the stability analysis
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of (nonlinear) semidefinite programming has been revealed by Sun [35, 8]. It often
implies the quadratic convergence of a class of Newton’s method, see [26, 24, 1]. We
define this concept below.

Definition 3.1. We say that constraint nondegeneracy holds at a feasible point
X of (27) if

A
(

lin(TKn−(X))
)

= IRn−1. (28)

Proposition 3.2. Constraint nondegeneracy holds at every feasible point of
(27).

Proof. Let X be a feasible point with the decompositions in (14) and (15). It
follows from (26) that

Y := Q

[
0(n−1)×(n−1) a

aT 0

]
Q ∈ lin(TKn−(X)) ∀ a ∈ IRn−1.

We calculate the diagonals of Y .

Yii = eTi Y Qei = Tr

(
Qei(e

T
i Q)

[
0(n−1)×(n−1) a

aT 0

])
= eTnQei(e

T
i Q)

[
2a
0

]
= − 1√

n
eT (eie

T
i Q)

[
2a
0

]
(using Qen = − 1√

n
e)

= − 1√
n
eTi Q

[
2a
0

]
= − 2√

n
eTi Q1a,

where Q1 is the submatrix of Q consisting of the first (n − 1) columns and ei is the
ith column of the identity matrix in Sn. We recall the matrix Q in (9) to get Q1,
whose special structure leads to (note that Q1 is n× (n− 1) matrix):

eTi Q1 =

{
ẽTi − 1√

n
ẽT + 1√

n+1
ẽ, for i = 1, . . . , n− 1

− 1√
n
ẽT , for i = n

where (to avoid confusion with the base vectors ei in IRn) we use ẽi to denote it is
the ith basis in IRn−1 and ẽ is the vector of all ones in IRn−1. Hence, we have

Yii − Ynn = − 2√
n

(ei − e1)TQ1a = − 2√
n

(
ẽi +

1√
n+ 1

ẽ

)T
a, i = 1, . . . , n− 1.

Therefore, for any y ∈ IRn−1, the equation A(Y ) = y becomes

〈ẽi + ẽ/(
√
n+ 1), a〉 = −

√
n

2
yi, i = 1, 2, . . . , n− 1.

This is a system of (n − 1) × (n − 1) linear equations, whose coefficient matrix is
nonsingular (the coefficient vectors are linearly independent). Hence, it has a unique
solution a ∈ IRn−1. Therefore, we must have (28) and constraint nondegeneracy holds
at X. �
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We have the following consequence of constraint nondegeneracy.

Proposition 3.3. Let X be a feasible point of (27) and it has the decompositions
in (14) and (15), where the eigenvector matrix W is defined. Let γ be defined in (18).
For any h ∈ IRn−1, denote H := A∗(h) and let H be decomposed as in (21). Then
we must have the following implication:

WT
γ H1 = 0

h = 0
h0 = 0

 =⇒ h = 0. (29)

Proof. Let h ∈ IRn−1 satisfy the left-hand-side condition of (29). We will

prove that such h must belong to
{
A
(

lin(TKn−(X))
)}⊥

, which is {0} because of the

constraint nondegeneracy (28) at X. Hence, we obtain h = 0 and we would complete
the proof. We now prove it is the case.

It follows from (25) that

{
QBQ : B ∈ lin(TKn−(X))

}
=


 W

[
0 Σ12

ΣT12 Σ2

]
WT a

aT a0

 :
Σ2 ∈ Sr
Σ12 ∈ IR(n−1−r)×r

a ∈ IRn−1, a0 ∈ IR

 .

We have

〈h,A(B)〉 = 〈A∗(h), B〉 = 〈QA∗(h)Q, QBQ〉 (because Q2 = I)

= 2〈h,a〉+ h0a0 + Tr

(
WTH1W

[
0 Σ12

ΣT12 Σ2

])
.

We note that the rank r of X1 in (15) equals |γ|, where γ is the index set in (18) that
contains all negative eigenvalues. The condition WT

γ H1 = 0 implies that the last r

rows of WTH1 are zeros. This further implies that the last r rows of (WTH1W ) are
zeros, so are the last r columns because of the symmetry of the matrix. Therefore,

Tr

(
WTH1W

[
0 Σ12

ΣT12 Σ2

])
= 0.

The other conditions in (29) h = 0 and h0 = 0 further imply that 〈h, A(B)〉 = 0.

This is true for all B ∈ lin(TKn−(X)). Hence, we must have h ∈
{
A
(

lin(TKn−(X))
)}⊥

.

We established the case. �

4. Newton-CG Method. In this section, we develop the Newton-CG method
for Problem (8), which is equivalent to

min
Y

1

2
‖Y − D̂‖2 s.t. Y ∈ Kn− and A(Y ) = 0. (30)

Define the Lagrangian function for the problem (30):

L(Y ; y) := −1

2
‖Y − D̂‖2 − 〈A(Y ), y〉+ δKn−(Y ),
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where δKn−(·) is the indicator function of Kn−. The Lagrangian dual function is

θ(y) := min
Y ∈Sn

L(Y ; y)

= min
Y ∈Sn

1

2
‖Y − (D̂ +A∗y))‖2 + δKn−(Y )− 1

2
‖D̂ +A∗y‖2 +

1

2
‖D̂‖2

=
1

2
‖ΠKn−(D̂ +A∗y)− (D̂ +A∗y|2 − 1

2
‖D̂ +A∗y‖2 +

1

2
‖D̂‖2

= −1

2
‖ΠKn−(D̂ +A∗y)‖2 +

1

2
‖D̂‖2.

The Lagrangian dual problem in the form minimization is defined by

min
y∈IRn−1

Θ(y) := −θ(y) =
1

2
‖ΠKn−(D̂ +A∗y)‖2 − 1

2
‖D̂‖2. (31)

Since Kn− is a closed and convex cone, Θ(·) is convex and continuously differentiable
(see [17, Chapter IV, Example 2.1.4]). We also note that Sn− ⊆ Kn− and the negative
identity matrix satisfies the constraints in (30). This implies that the generalized
Salter condition1 holds for the constraints in (30). It follows from the general results
[15, Prop. 2.20, Prop. 4.11] that the dual function Θ(·) is coercive (i.e., Θ(y)→∞ as
‖y‖ → ∞). Therefore the dual problem (31) must admit an optimal solution and the
first-order optimality condition is

F (y) := ∇Θ(y) = A
(

ΠKn−(D̂ +A∗(y))
)

= 0. (32)

It follows from the projection formula (11) of Gaffke and Mathar that F (y) is strongly
semismooth2 because it is a composition of linear mappings and ΠSn+(·), which is

known to be strongly semismooth [36, 7]. Now it becomes natural to develop the
semismooth Newton method for the semismooth equation (32): Given y0 ∈ IRn−1

and letting ` := 0, compute M` ∈ ∂F (y`) and

y`+1 := y` −M−1` F (y`), ` = 0, 1, 2, . . . . (33)

Since F is the gradient of Θ, ∂F is often called the generalized Hessian of Θ.
Let y∗ be the optimal solution of the dual problem (31), then the optimal solution

Y ∗ of the original problem (30) is given by

Y ∗ = ΠKn−(D̂ +A∗(y∗)).7 (34)

We now study the structure of ∂F (y) and its nonsingularity at y. Following the chain
rule of the generalized Jacobian, we have

∂F (y)h ⊆ A
(
∂ΠKn−(X)(A∗h)

)
, ∀ h ∈ IRn−1, (35)

1This is because A is linear independent, the negative identity matrix is in the interior of Kn
−

and A(I) = 0.
2A (locally) Lipschitz function Φ : IRm 7→ IR` is said to be strongly semismooth at x ∈ IRm if (i)

Φ is directionally differentiable at x, and (ii) for any V ∈ ∂Φ(x+ h),

Φ(x+ h)− Φ(x)− V h = o(‖h‖2), h ∈ IRm,

where ∂Φ(x) denotes the generalized Jacobian of Φ at x in the sense of Clarke [10, Sect. 2.6].

13



where X := D̂ + A∗y and ∂ΠKn−(X) is characterized in Prop. 2.2. We have the
following result.

Proposition 4.1. Every matrix element in ∂F (y) is positive definite for any
y ∈ IRn−1. Consequently, the Newton equation in (33) is well defined.

Proof. Let M be an arbitrary matrix in ∂F (y). It follows from the chain rule in
(35) that there exists V ∈ ∂ΠKn−(X) such that

Mh = A
(
V (A∗h)

)
, ∀ h ∈ IRn−1.

This implies

〈h, Mh〉 = 〈A∗h, V (A∗h)〉.

Because A is linearly independent, the positive definiteness of M is implied by that
of V restricted to the subspace H0 := {H = A∗h : h ∈ IRn−1}. We have proved
in Prop. 2.3 that a sufficient condition for V being positive definite on H0 is that
Condition (22) holds for all H ∈ H0. We now prove it is the case.

We now note that the matrix X = D̂+A∗y and Y := ΠKn−(X) have the following

relationship from (12):

−JY J = ΠSn+(−JXJ) = Q

[
ΠSn−1

+
(−X1) 0

0 0

]
Q, (36)

where X1 is from the decomposition in (13). Following a similar calculation as in
(13), we decompose JY J by

JY J = Q

[
Y 1 0

0 0

]
Q.

The relation in (36) implies that

−Y 1 = ΠSn−1
+

(−X1),

Equivalently, we have Y 1 = ΠSn−1
−

(X1). That is to say that the negative eigenvalues of

Y 1 are the negative eigenvalues of X1. Furthermore, they share common eigenvectors
for those negative eigenvalues. Those eigenvectors are contained in Wγ with γ being
defined in (18). Therefore, Condition (22) is just Condition (29) with H = A∗h.
We already proved that Condition (29) is automatically satisfied because constraint
nondegeneracy holds at Y by Prop. 3.2 and Prop. 3.3. Therefore, V is positive definite
on H0 and consequently M is positive definite. �

A direct consequence of Prop. 4.1 is that the Newton method in (33) is quadrat-
ically convergent. We state this result below.

Proposition 4.2. Let y∗ be the optimal solution of the dual problem. Then the
generalized Jacobian of ∂F (y∗) is positive definite. Consequently, y∗ is the unique
solution of the dual problem (31) and the semismooth Newton method (33) is quadrat-
ically convergent provided that the initial point y0 is sufficiently close to y∗.

Proof. The positive definiteness of ∂F (y∗) is just the direct consequence of
Prop. 4.1 at y∗. The generalized Jacobian ∂F (y∗) has the maximal rank because
every element in it is nonsingular (i.e., positive definite). The inverse function theorem
of Clarke [10, Thm. 7.1.1] and the convexity of the dual problem (31) ensure that y∗
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is the unique solution. The quadratic convergence follows the convergence result for
semismooth Newton method of Qi and Sun [28, Thm. 3.2] provided that the initial
point y0 is close enough to y∗. �

We finish this subsection by an important remark. Estimating the Newton matrix
M` in (33) has a computational complexity O(n4), which is prohibitive when n is
large. However, estimating the matrix and vector product M`h is much cheaper
and the sparse structure in V` can be exploited. Moreover, the matrix M` is always
positive definite (Prop. 4.1). Those are the key reasons why the conjugate gradient
method was originally suggested by Qi and Sun [26] to solve such (positive definite)
Newton equations. Therefore, the method is termed as Newton-CG method, which
has found applications in other situations [42, 24]. The Newton method in (33) is
just a local version. A globalization strategy needs to be used in order to ensure its
global convergence. In our numerical implementation, we used the one via Armijo
line search proposed in [26, Alg. 5.1], which is adapted to our case below.

Algorithm 4.3. Semismooth Newton-CG Method: NCG(D̂).

Input: an n× n distance matrix D̂.
Output: an n× n Euclidean distance matrix D∗.
(S.0) Given y0 ∈ IRn−1, η ∈ (0, 1), σ ∈ (0, 1), κ1 ∈ (0, 1), κ2 ∈ (1,∞), κ3 ∈ (1,∞),

and δ ∈ (0, 1). Let ε > 0 be the given termination tolerance. Let ` := 0.
(S.1) Select an element M` ∈ ∂F(y`), compute t` := min{κ1, κ2‖∇θ(y`)‖}, and

apply the CG method [19] starting with the zero vector as the initial search
direction to

(M` + t`I)∆y = −∇Θ(y`) (37)

to find a search direction ∆y` such that

‖∇Θ(y`) + (M` + t`I)∆y`‖ ≤ ηj‖∇Θ(y`)‖ , (38)

where η` := min{η, κ3‖∇Θ(x`)‖}.
(S.2) Let k` be the smallest nonnegative integer k such that

θ(yk + δk∆y`)−Θ(y`) ≤ σ δk
〈
∇Θ(y`),∆y`

〉
.

Set τ` := δk` and y`+1 := y` + τ`∆y`.
(S.3) If ‖∇Θ(y`+1)‖ ≤ ε. Stop. Otherwise, replace ` by `+ 1 and go to (S.1).
(S.4) Upon termination, output

Y `+1 := ΠKn−(D̂ +A∗y`+1) and a := diag(Y `+1).

The final Euclidean distance matrix D∗ is given by

D∗ := Y `+1 − 1

2
(aeT + eaT ).

We end this section by two remarks. One is to explain why the output D∗

must be a true Euclidean distance matrix. After the termination test , Y `+1 is almost
negative semidefinite. It follows from the characterization (5) that the matrix D∗ thus
obtained in Step 4 must be Euclidean. If the diagonals of Y `+1 are all equal (note:
due to practical computational errors, A(Y `+1) = 0 may not be exactly satisfied), D∗

is Euclidean also follows from (7).
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The second remark is on extending the Newton-CG method to the general H-
weighted problem:

min
Y

1

2
‖H ◦ (Y − D̂)‖2 s.t. Y ∈ Kn− and A(Y ) = 0, (39)

where H ∈ Sn is a weight matrix with Hij ≥ 0. When H = eeT (the matrix of
all ones in Sn), (39) reduces to (30). Including H-weights often leads to significant

advantage over the model (30). For example, when some of the data in D̂ are missing,
it is perfectly reasonable to set the corresponding weights to 0 so as for the missing
values not to contribute to the objective. An effective approach to solving (39) is
through the majorization technique developed by Gao and Sun [15, 16] for a class of
matrix optimization problems structurally similar to (39). The key idea is to optimize
a majorized problem, which is diagonally weighted as follows:

min
Y

1

2
‖W 1/2(Y − D̂)W 1/2‖2 s.t. Y ∈ Kn− and A(Y ) = 0,

where W = Diag(w) with positive vector w ∈ IRn properly chosen. A Newton-CG
method can be developed for this diagonally weighted problem. We refer to [24,
Sect. 4.2] for the detailed steps in developing such a method. We omit the details
here because there exist no technical difficulties in the extension and it would take
much space to do so.

5. Numerical Comparison. This part includes some numerical comparison of
our method with others, namely the methods of Cailliez [6], of Lingoes [21], and the
Newton method for the nearest Euclidean distance matrix problem (NEDM) [24].

Given a matrix D̂ ∈ Sn, NEDM is to find the nearest Euclidean matrix Y from D̂:

min
Y

1

2
‖Y − D̂‖2 s.t. Y ∈ Kn− and diag(Y ) = 0. (40)

The key difference between (40) and model (30) is that the former has zero diagonals
and the latter has equal diagonals. This means that the optimal solution of (40) is
just one feasible point of (30). In other words, model (30) has more freedom to adjust

D̂ so as for it to become Euclidean.
NEDM has long been well studied, particularly in numerical linear algebra (see

[24] and the references therein). It seems that Newton’s method of [24], denoted as
ENewton for easy reference below, is among the most efficient methods for (40). It is

important to emphasize that the input matrix D̂ for ENewton, NCG and Lingoes do
not need to be of pre-distance (i.e., D̂ij ≥ 0). This feature has been highlighted in
[21] and has important implications as we see in an application described in Example

5.1 below. However, the method of Cailliez requires D̂ to be of pre-distance matrix.
Example 5.1. (Comparative distance matrix D̂) In the classical paper on MDS

[38], Torgerson argued that the initial input for any MDS method should be a compar-
ative distance matrix among the stimuli under study and that “a comparative distance
is not a distance in the usual sense of the term, but is a distance minus an unknown
constant” Therefore, comparative distance can be negative (see the section on the scale
of comparative distances in [38]). The matrix D below is the true Euclidean distance
matrix among 5 points studied in [38]. It can be embedded in IR2 and the 5 points
form 4 identical right triangles with edge lengths 3, 4 and 5 (the fifth point at the cen-

ter). The matrix D̂ is obtained by subtracting 5 from D and hence D̂ is a comparative
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(a) (b)

Fig. 5.1. Reconstruction of 5 points network in Example 5.1. Fig. 5.1a is by Lingoes with
c = 3; Fig. 5.1b by NCG with c = 1.2160. Both correctly reveal the original network structure.

distance matrix.

D =


0 5 6 5 3
5 0 5 8 4
6 5 0 5 3
5 8 5 0 4
3 4 3 4 0

 and D̂ =


0 0 1 0 −2
0 0 0 3 −1
1 0 0 0 −2
0 3 0 0 −1
−2 −1 −2 −1 0

 .
The example demonstrates the weakness of ENewton that tends to generate “crowding”
embedding (see [27] for more discussion). For this case, the nearest EDM to D̂ is the
zero matrix, meaning that ENewton will collapse all 5 points into just one point. Since
D̂ is not a pre-distance matrix, Cailliez cannot be applied. In contrast, both Lingoes

and NCG work well (see Fig. 5.1).
To further demonstrate the capability of NCG, we randomly generate a class of

comparative distance matrices D̂ below of sizes up to n = 2000.
Example 5.2. (random comparative distance matrix) The matrix is generated

over the square region [0, 2]2 by the following Matlab commands:

X = 2 ∗ rand(n, 2); d = pdist(X); D = squareform(d); D = D. ∗D.

The comparative distance matrix is generated by subtracting a positive constant c > 0,
followed by a small perturbation (e.g., noise) contained in ∆ below:

∆ = rand(n)− 0.5; D̂ = D − c+ nf ∗ (∆ + ∆′).

We then reset the diagonal of D̂ to zero. Our purpose is to test the capability of the
four methods to recover the true distance matrix D in terms of the distance error
‖Y −D‖ between the found EDM Y and D.

The computational results are reported in Table 1. We note that both Cailliez

and Lingoes require only computation of the largest eigenvalues of certain matrix
and there is no need to report their cpu. By looking at the columns under c̄, cL and
cN , it is encouraging to see that NCG is capable of recovering the magnitude of the
constant (c column) subtracted from the original distance matrix, hence resulting in
the smallest distances (see the columns under ‖Y −D‖). Moreover, the method is very
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fast. For example, it only took just over 7 seconds for n = 2000. All computations
in this paper were done with Matlab R2014a on a Windows 7 desktop with a 64-bit
operating system having Intel Core 2 Duo CPU of 3.16 GHz and 4.0 GB of RAM.

Table 1
Comparison of four methods on Example 5.2 with nf = 0.05: the method of Cailliez [6];

the method of Lingoes [21]; Newton’s method ENewton for NEDM problem [24]; and NCG Alg. 4.3.
Results reported are the average over 10 runs. The cpu time is in seconds. The tolerance used for
both ENewton and NCG is ε = 10−3.

Cailliez Lingoes ENewton NCG
n c

c̄ ‖Y −D‖ cL ‖Y −D‖ ‖Y −D‖ cpu cN ‖Y −D‖ cpu

200 0.3 14.4 4.68E+04 0.9 1.12E+02 4.73E+01 0.03 0.3 3.67E+00 0.04
200 0.5 25.5 1.39E+05 1.1 1.12E+02 7.86E+01 0.04 0.5 9.60E-01 0.05
200 1 49.4 5.05E+05 1.6 1.12E+02 1.55E+02 0.03 1.0 2.20E+00 0.02
400 0.3 27.1 3.13E+05 1.1 3.20E+02 9.45E+01 0.13 0.4 2.24E+01 0.12
400 0.5 48.5 9.76E+05 1.3 3.21E+02 1.57E+02 0.17 0.5 6.20E+00 0.17
400 1 96.8 3.82E+06 1.8 3.20E+02 3.11E+02 0.13 1.0 2.24E+00 0.18
800 0.3 51.0 2.16E+06 1.4 9.13E+02 1.89E+02 0.74 0.4 9.47E+01 0.67
800 0.5 92.9 7.03E+06 1.6 9.13E+02 3.14E+02 0.90 0.6 4.90E+01 0.64
800 1 192.7 3.00E+07 2.1 9.18E+02 6.21E+02 1.46 1.0 2.04E+00 1.32
1000 0.3 63.2 4.11E+06 1.6 1.28E+03 2.36E+02 1.26 0.4 1.45E+02 1.13
1000 0.5 115.4 1.35E+07 1.8 1.28E+03 3.93E+02 1.55 0.6 8.36E+01 1.10
1000 1 239.7 5.78E+07 2.3 1.28E+03 7.76E+02 1.52 1.0 6.25E+00 1.61
2000 0.3 121.8 3.01E+07 2.1 3.63E+03 4.73E+02 19.90 0.6 5.05E+02 7.85
2000 0.5 225.9 1.03E+08 2.3 3.64E+03 7.85E+02 10.89 0.7 3.60E+02 7.65
2000 1 474.1 4.51E+08 2.8 3.63E+03 1.55E+03 10.41 1.1 1.12E+02 7.16

6. Application to LLE. Alg. 4.3 has a number of direct applications. For
example, it can be directly used to address the indefiniteness in ISOMAP. However,
in this section we include a novel application to LLE [29], a very-known method in
nonlinear dimensionality reduction. The main purpose of LLE is to reveal the hidden
low-dimensional structures among the given high-dimensional data X := [x1, · · · ,xn]
with xi being in IRN . Our main interest here is when X has missing values, to which
LLE has no obvious extensions. This section has three parts. Firstly, we briefly review
LLE(X) when X is completely known. We then describe LLE(D) when the Euclidean
distances among X are known. Both LLE(X) and LLE(D) have been documented
in [30]. Our key result Prop. 6.1 shows that the local Gram matrix in LLE can be
obtained through a local Euclidean distance matrix. This result motivated us to use
the developed Newton-CG method to make the local distance matrix, which is not
Euclidean due to the missing values, to be Euclidean. In this way, we can handle the
missing value case. Finally, we numerically demonstrate the efficiency of our method,
denoted as LLEMDS.

6.1. LLE(X): LLE from coordinates. Suppose we are given a set of the
coordinates of n points X := [x1, . . . ,xn] in the high dimensional space IRN . The
purpose is to embed the n points in a low dimensional space IRr (e.g., r = 2, 3 for
visualization) with the local structure of the original points being preserved. LLE

has three steps to accomplish this task. The first step (Neighborhood search) is to
construct the neighborhood index set for each point xi. Let Ni denote the index set
of the neighboring points of xi (say through the K-nearest neighbors). The second
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step (Weight matrix construction) is to construct a weight vector wi ∈ IR|Ni| for each
point xi to be the solution of the following linear equations:

Giwi = e and
∑
j∈Ni

wi(j) = 1, (41)

where Gi ∈ S |Ni| is the inner-product matrix (Local Gram matrix indexed by Ni):

Gi(j, `) = 〈xj − xi, x` − xi〉, j, ` ∈ Ni. (42)

The geometric meaning of (41) is that the point xi is best linearly approximated
through its neighboring points in Ni.

The third step (Computing embedding points) is to find the bottom (r + 1)
eigenvectors v1,v2, . . . ,vr+1 of the sparse and symmetric matrix M ∈ Sn defined by

M := (I −W )T (I −W ), (43)

where the weigh matrix W ∈ IRn×n is defined as follows. The ith row of W , denoted
as Wi: is given by

Wi:(j) :=

{
wi(j), for j ∈ Ni
0, otherwise.

It is noted that the bottom eigenvector v1 is constant v1 = 1√
n
e. Hence, the em-

bedding points in IRr are given by the remaining r eigenvectors v2, . . . ,vr+1. The
detailed description including regularization of LLE can be found in [30, Sect. 4 (Im-
plementation)]. Its Matlab code is freely available online. Our focus is on the input
X having some values missing.

6.2. LLE(D): LLE from distances. Suppose now that the only information
available is a true Euclidean distance matrix D. Step 1 and Step 3 of LLE will go
through without any difficulties as they do not involve any coordinates of existing
points. But we need to construct the local Gram matrix Gi for each point xi. It can
be constructed from D as follows.

Let Di ∈ S1+|Ni| be the principal matrix of D indexed by {i} ∪ Ni, with the
first row (and column) of Di consisting of distances from point xi to other points
indexed by Ni. Since any principal matrix of an Euclidean matrix must also be
Euclidean, Di is Euclidean. cMDS in (1) is able to generate (1 + |Ni|) points labelled
as {z0, z1, . . . , z|Ni|}:

Bi := −1

2
JDiJ = ZTZ with Z := [z0, z1, . . . , z|Ni|] and J := I− 1

1 + |Ni|
ẽẽT , (44)

where I is the identity matrix in S1+|Ni| and ẽ is the column vector of all ones in
IR1+|Ni|. Here, z0 plays the same role as xi in Step 2 of LLE and the rows (and
columns) of Bi are indexed from 0 to |Ni|. The local Gram matrix Gi ∈ S |Ni| is then
given by

Gi(j, `) = 〈zj − z0, z` − z0〉 = Bi(0, 0)−Bi(j, 0)−Bi(`, 0) +Bi(j, `). (45)

Once Gi is obtained, LLE can be implemented as before and is described in [30,
Sect. 5.1]. We now prove that there is no need to form the matrix Bi in order to
calculate the local Gram matrix Gi in (45).
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Proposition 6.1. Let Di be partitioned as follows:

Di =

[
0 sTi
si Si

]
with Si ∈ S |Ni|, si ∈ IR|Ni|.

Then we have

Gi = −1

2

(
Si − (sie

T + esTi )
)
, (46)

where e is the column vector of all ones in IR|Ni|.
Proof. We let s := (1, 0, . . . , 0)T ∈ IR1+|Ni| be the first coordinate in IR1+|Ni|

and define the matrix

Js := I − ẽsT ,

where I is the identity matrix in S1+|Ni|. On the one hand, following (45) we have

JsBiJ
T
s = JsZ

TZJTs = (Z − z0ẽ
T )T (Z − z0ẽ

T )

=


0

(z1 − z0)T

...
(z|Ni| − z0)T

 [0, z1 − z0, · · · , z|Ni| − z0
]

=

[
0 0
0 Gi

]
. (47)

On the other hand, we have

JsBiJ
T
s = JsJ

(
−1

2
Di

)
JJTs = −1

2
JsDiJ

T
s , (48)

where we used the fact that ẽT s = 1 and

JsJ = (I − esT )

(
I − 1

1 + |Ni|
ẽẽT
)

= I − ẽsT = Js.

Taking into consideration of the partition in Di, we have sTDis = 0, which leads to

JsDiJ
T
s = (I − ẽsT )

[
0 sTi
si Si

]
(I − sẽT )

=

[
0 sTi
si Si

]
−
([

0
si

]
ẽT + ẽ[0, sTi ]

)
. (49)

The claimed result follows from (47), (48) and (49). �
It follows from (46) that the local Gram matrix Gi defined in (45) is independent

of the choice of the embedding points zi. If the Euclidean distance matrix D is from
the set of points in X in Subsect. 6.1, then the local Gram matrix Gi in (42) and Gi
in (45) are same because {xi} are just one set of embedding points of D. Therefore,
we have the following corollary.

Corollary 6.2. If D is given by the set of points X = [x1, . . . ,xn] with xi ∈
IRN , then LLE(D) and LLE(X) will generate a same set of embedding points.

The difficulty arises when the local distance matrix Di is not Euclidean due to the
missing values in X. For this case, the geometric property of the linear equations (41)
in computing the weight vectors do not hold any more, hence breaking the fundamen-
tal principal of LLE that is to construct the best linear approximation to xi through
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its neighbors. This non-Euclidean issue has not been well addressed in literature. To
indicate that D might not be Euclidean, we use D̂ to differentiate it from D being
Euclidean . Fortunately, Cor. 6.2 immediately suggests to make each local distance
matrix D̂i Euclidean. Since the size of the resulting matrix optimization problem
will be small, equal to the neighborhood size |Ni|, we will end up with a very fast
algorithm, which is denoted as LLEMDS.

Algorithm 6.3. LLEMDS (D̂).

Input: n× n distance matrix D̂ (pairwise distances from the available data in X).
Output: n embedding points in IRr: yi ∈ IRr, i = 1, . . . , n .
Step 1. For each i = 1, . . . , n, find neighborhood index set Ni through K-nearest neigh-

bors.
Step 2. For each i, draw the neighboring matrix D̂i ∈ S1+|Ni| from D̂. Apply NCG(D̂i)

in Alg. 4.3 to output a true Euclidean distance matrix Di. Compute the local
Gram matrix Gi from Di by (46).

Step 3. Get the weight matrix W by solving the equations (41) for i = 1, . . . , n.
Step 4. Compute the bottom (r + 1) eigenvector of the matrix M in (43). The em-

bedding points yi ∈ IRr, i = 1, . . . , n are formed by the (r + 1) eigenvectors
except the first one.

Comparing to the original LLE, the extra computation in LLEMDS is in Step 2,
which is to compute a true Euclidean distance matrix Di. When the neighborhood size
is small, the Newton-CG method developed in this paper allows us fast computing of
Di. For example, when the K-nearest neighbors is used forNi, the complexity of NCG
is about O(K3), which is repeated n times. This results in an overall complexity of
O(nK3) in Step 2, comparable to the original LLE. We will demonstrate its numerical
efficiency in the next subsection.

6.3. Numerical examples. In this part, we report the numerical experiments
of Alg. 6.3 on several popular image data sets. We conduct two groups of experiments.
One is for problems that have deterministic missing-values. The purpose of this test
is, on the one hand, to ensure that the reported results are reproducible, and on other
hand, to deliberately fail the imputation method in such a way that if it is used to
remove the dimensions that have missing values, then there would be no data left for
use. The second group consist of problems with random missing-values. Below we
detail the two experiments.

(a) Experiments with deterministic missing-values. Recall the data size
of X: [N,n] = size(X) (we use Matlab notation for simplicity), with N being the
dimension of each data points xi in X, i = 1, . . . , n. Suppose that the first m points
in X have missing values and the remaining points do not. We further assume that
each point has L missing values. More precisely, we set m = floor(N/L)−1. For xi,
i = 1, . . . ,m−1, its L components from the position L(i−1)+1 are removed. For xm,
its components from L(m− 1) + 1 are removed. Therefore, in total, we have removed
N values from X and the missing values occur in every dimension. Consequently,
if the imputation method is to be used, all dimensions would be removed and there
would be no data left for use.

The first data tested is Teapots3 data, which has n = 400 points, each represents
a color picture (N = 76 × 101 × 3 = 23028) of a teapot. The pictures were taken
by a camera circulating around the teapot. Despite the data being in a very high
dimensional space, they can be embedded ideally along a circle in 2 dimensions.

3available from http://www.cc.gatech.edu/∼lsong/code.html.
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Fig. 6.1a is embedded by LLE on the complete data. Now we set m = 93 (meaning
more than 23% of the data points having missing values), L = 250 (meaning more
than 1% of the values in each point are missing), and K = 4 (the neighborhood size
used in LLE). The original LLE would not be able to embed those data with missing
values. Fig. 6.1b is the embedding generated by our method LLEMDS. It can be seen
that it has a similar structure as in Fig. 6.1a, but less smooth on the circle due to the
lack of information of those missing values.

The second example is the digit 1 data set from MNIST database [20]. It has
n = 1135 8-bit grayscale images and each image has a resolution of 28 × 28 pixels
(resulting in N = 784). Fig. 6.1c is the LLE embedding for the complete data set,
whereas Fig. 6.1d is the embedding of LLEMDS with m = 14 (about 1% of the data
points have missing values), L = 80 (more than 10% of the values of each point are
missing) and K = 6. It can be seen that Fig. 6.1d has sharp edges compared to its
LLE counterpart. This effect is due to the missing values. But the key features of
slantness and the thickness of the digit have been captured by LLEMDS despite the
missing values. The third example is the face image data Face698 [37], which has
n = 698 images of faces with different poses (up-down, left-right) and each image has
64 × 64 pixels (N = 4096). Fig. 6.1e is the embedding by LLE on the complete data
and Fig 6.1f is the embedding by LLEMDS for the incomplete data where m = 82 (more
than 11% of the data points have missing values), L = 50 (more than 1% values of
each point are missing) and K = 12. It can be seen that LLEMDS is still capable of
capturing the key features among the images without having to remove any points
that have missing values.

(b) Experiments with random missing-values. We note that there are two
indices (both in percentages) that decide the amount of data missing in X. One is
the percentage of the data points that have missing values. We denote it by pD (i.e.,
pD = m/n). The other is the percentage of the number of the missing values in
each point. We denote it by pL (i.e., pL = L/N). The tests in part (a) have chosen
the missing values deterministically and kept one of the indices at about 1% level,
which is enough to fail the imputation method. One of the purposes in this part is
to demonstrate that LLEMDS still returns meaningful embeddings when both indices
have higher values (e.g., at 10% level).

We use the Matlab built-in function datasample.m to randomly choose the miss-
ing values in the data matrix X, with the Replace option being false. For example,
for the Teapots data, we set pD = 0.1, pL = 0.1, and K = 4. This results in about
40 points (i.e., 40 = pD × 400 and randomly chosen) having missing values and each
point has about L = 2300 (i.e., L = pL × N and randomly chosen) missing values.
A typical embedding is shown in Fig. 6.2a, which still yielded the correct order (the
key feature) of the 400 pictures of the data. But the shape is more a triangle rather
than a circle. This is also because of the large amount of data missing. For the Digit
1 data, we set pD = 0.2, PL = 0.1, and K = 6. A typical embedding is shown in
Fig. 6.2b, which also revealed the key features (line thickness and slantness) of 1135
images of Digit 1 despite the fact that 20% of the data points each has 10% missing
values.

The second purpose of this part of the experiments is to show that LLEMDS is still
fast enough when compared to the original LLE. In Table 2, we report our experiments
on 8 data sets: Teapots, Face698, Face1965 [29], and the MNIST data sets. We
combined a few of the digits data sets in MNIST to create new and larger test data.
For example, Digit1to5 is the set including test data of digits from 1 to 5, totally
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(a) (b)

(c) (d)

(e) (f)

Fig. 6.1. Various data sets embedded by LLE for complete data and by LLEMDS with missing values.

n = 3969 data points. For each data set, we tested three scenarios: pD = 5%, 10%,
and 20% with K = 8 or K = 16 and pL = 10%. In Table 2, we report the cpu

times used by LLE when X has no missing values, by LLEMDS when X has random
missing values governed by pD and pL; and by cpu(D), which is the time used for
random sampling and computing the pairwise Euclidean distances from X when all
the missing values are discarded. As seen from Table 2, LLEMDS is, on average, only 2
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(a) (b)

Fig. 6.2. (a) Teapots data embedded by LLEMDS with missing values pD = 10%, pL = 10% and
K = 4. (b) Digit 1 data embedded by LLEMDS with missing values pD = 20%, pL = 10% and K = 6.

or 3 times slower than the original LLE. In particular, when the number of data points
gets bigger, the time difference used by the two methods gets smaller. For example,
for the data set Digit6to9 (n = 5051, pD = 0.2, K = 8), LLE(X) used about 5
seconds (i.e., 5.33s) and LLEMDS(D) used less than 8 seconds (i.e., 7.73s). Given that
the original LLE is very fast, our method is still very competitive and is able to deal
with the case of missing values. This shows that our Newton-CG method is efficient
enough not to drastically slow down the original LLE.

7. Conclusion. In this paper, we proposed a convex matrix optimization refor-
mulation of the additive constant problem initially studied in multidimensional scaling
and lately used in some of the dimensionality reduction methods. We developed a
Newton-CG method and proved its quadratic convergence. We further demonstrate
its use in a novel application to the famous LLE method in order to deal with the
missing value case. The resulting method is denoted as LLEMDS. The additional com-
putational work in LLEMDS compared to LLE is that it has to compute many local
Euclidean distance matrices because of the missing values. This part of computation
has to be fast in order for LLEMDS to be competitive. Our numerical results showed
that the Newton-CG method is an ideal method for this step. We also demonstrated
that even with missing values of considerable high percentages, LLEMDS is still able to
reveal the low-dimensional structures hidden in the high-dimensional data.

There are a couple of issues we left out in the application. For example, how
to find the “best” neighborhood in LLEMDS? In this paper, we used the K-nearest
neighbors based on the distance information available. Another issue is what is the
appropriate way to compute the pairwise distances (not necessarily Euclidean) when
there are missing values. Can the geodesic distances be used? Those issues may
become essential for some practical problems. Another important application is on
visualization of social networks where only certain dissimilarities (one kind of dis-
tances) are available among users/agents (see, e.g., [13]). However, the matrix of
those dissimilarities is rarely Euclidean. Hence the proposed LLEMDS can be applied
to such situations. We hope to explore those topics in future research.

Acknowledgements. We would like to thank the two referees for their valuable
comments, which have led to Sect. 5 being added.
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Table 2
Comparison on cpu (in seconds) between LLE and LLEMDS on 8 data sets. LLE(X): cpu time by

LLE when X has no missing values; LLEMDS(D̂): cpu time by LLEMDS when X has no missing values;

cpu(D̂): cpu time for random sampling and computing the pairwise Euclidean distances from X
when the missing values are discarded. Time reported is the average over 10 runs.

K = 8, pL = 0.1 K = 16, pL = 0.1
Data pD

LLE(X) LLEMDS(D̂) cpu(D̂) LLE(X) LLEMDS(D̂) cpu(D̂)
Teapots 0.05 1.85E-01 5.04E-01 7.82E+00 1.96E-01 1.08E+00 6.78E+00
N = 23028 0.1 1.84E-01 5.07E-01 1.17E+01 1.79E-01 1.49E+00 1.17E+01
n = 400 0.2 1.74E-01 7.02E-01 2.30E+01 1.83E-01 1.87E+00 2.33E+01
Face698 0.05 1.80E-01 6.01E-01 3.08E+00 2.33E-01 8.56E-01 3.14E+00
N = 4096 0.1 1.83E-01 6.27E-01 5.19E+00 2.46E-01 1.01E+00 5.33E+00
n = 698 0.2 1.71E-01 6.42E-01 9.52E+00 2.32E-01 1.30E+00 9.67E+00
Face1965 0.05 4.89E-01 1.68E+00 3.70E+00 1.27E+00 3.16E+00 3.61E+00
N = 560 0.1 4.90E-01 1.69E+00 6.29E+00 1.28E+00 3.55E+00 6.20E+00
n = 1965 0.2 4.92E-01 1.73E+00 1.29E+01 1.26E+00 4.63E+00 1.25E+01
Digit 1 0.05 2.83E-01 9.74E-01 1.53E+00 5.59E-01 1.41E+00 1.51E+00
N = 784 0.1 2.84E-01 9.77E-01 2.61E+00 5.69E-01 1.56E+00 2.58E+00
n = 1135 0.2 2.97E-01 9.82E-01 4.58E+00 5.76E-01 1.89E+00 4.53E+00
Digit 9 0.05 3.25E-01 9.39E-01 1.21E+00 6.78E-01 1.39E+00 1.20E+00
N = 784 0.1 3.38E-01 9.38E-01 2.03E+00 6.70E-01 1.36E+00 2.00E+00
n = 1009 0.2 3.30E-01 9.37E-01 3.60E+00 6.91E-01 1.35E+00 3.55E+00

Digits 1, 9 0.05 7.97E-01 2.01E+00 5.61E+00 2.40E+00 3.92E+00 5.58E+00
N = 784 0.1 7.91E-01 2.02E+00 9.60E+00 2.36E+00 3.96E+00 9.58E+00
n = 2144 0.2 8.11E-01 2.02E+00 2.14E+01 2.36E+00 4.39E+00 2.12E+01
Digit1to5 0.05 3.73E+00 5.78E+00 2.03E+01 1.35E+01 1.54E+01 2.11E+01
N = 784 0.1 4.07E+00 6.08E+00 4.20E+01 1.21E+01 1.42E+01 4.15E+01
n = 3969 0.2 4.09E+00 6.11E+00 8.30E+01 1.21E+01 1.40E+01 8.21E+01
Digit6to9 0.05 6.02E+00 8.53E+00 3.54E+01 1.69E+01 2.01E+01 3.39E+01
N = 784 0.1 5.96E+00 8.40E+00 7.60E+01 1.74E+01 2.09E+01 7.44E+01
n = 5051 0.2 5.33E+00 7.73E+00 1.35E+02 1.83E+01 2.18E+01 1.37E+02
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