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Summary

Two alternative robust estimation methods often employed by National Statistical

Institutes in business surveys are two-sided M-estimation and one-sided Winsorisation,

which can be regarded as an approximate implementation of one-sided M-estimation. We

review these methods and evaluate their performance in a simulation of a repeated

rotating business survey based on data from the Retail Sales Inquiry conducted by the

UK Office for National Statistics. One- and two-sided M -estimation are found to have

very similar performance, with a slight edge for the former for positive variables. Both

methods considerably improve both level and movement estimators. Approaches for

setting tuning parameters are evaluated for both methods and this is a more important

issue than the difference between the two approaches. M-estimation works best when

tuning parameters are estimated using historical data but is serviceable even when only

live data is available. Confidence interval coverage is much improved by the use of a

bootstrap percentile confidence interval.

Key words: bootstrap; mean squared error; M-estimation; movement estimation;

influential values; outliers; robustness; sample survey; Winsorisation; Winsorization
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1 Introduction

Outliers in surveys arise from a number of sources, and can have a large effect on

estimates of totals. This is especially true in business surveys where the populations from

which samples are drawn are typically skewed and heavy-tailed. We will consider here

representative outliers (Chambers 1986), that is extreme observations which have been

confirmed by the respondent, and consequently under standard random sampling

assumptions represent some similar observations in the non-sampled part of the

population. Mulry et al. (2014) call these “verified influential values” and Martinoz et al.

(2015) note that the aim is to infer about the total population including both outliers

and “inliers”. Throughout, we refer to these influential values as outliers. Outliers are

sometimes defined as values so far beyond other values in the sample that they must be

given special treatment, otherwise survey estimates would be grossly inaccurate

(Chambers et al. 2004). In addition, we confine attention to continuous survey variables

and outliers in the response-space only. Outliers in the benchmark-space are sometimes

treated by size stratification or may be the cause of response-space outliers (Hedlin et al.

2001), but otherwise their treatment is beyond the scope of the current paper.

In many National Statistical Institutes (NSIs), outliers are typically treated by

post-stratification, in which they are moved into a “surprise stratum”, which is assumed

to be completely enumerated (CEd). For example, a technique related to the surprise

stratum approach has been considered by Statistics Norway, and is used in the majority

of Statistics Canada and Statistics Netherlands business surveys as well as by Statistics

Sweden in their business surveys (pers.comms). The choice of these outliers may be

subjective, or this approach may be supplemented by some test which determines which

observations should be treated by moving them to the surprise post-stratum; for

example, Statistics Canada uses the detection method of Hidiroglou and Berthelot
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(1986). In either case, determining the correct weights to use in the post-strata can be

difficult, especially with a small number of outliers.

More transparent approaches have been proposed, where estimators are constructed to

be robust to outliers, often involving tuning parameters optimised to achieve an

appropriate trade-off between variance and bias. One such approach is M-estimation,

where the influence of extreme values is curtailed by applying a bounded function to

residuals in the estimating equations for a model coefficient. This paper focuses on two

adaptations of M-estimation which are currently used by several NSIs. The first

approach, one-sided M-estimation (or an approximate non-iterative version, one-sided

Winsorisation), is robust only to large positive outliers, while the second (two-sided

M-estimation) is robust to both positive and negative outliers. The first approach has the

advantage that a theoretical result is available relating the optimal tuning parameters to

the survey weights (Kokic and Bell 1994; Clark 1995). The second option deals with

outliers in both directions, but lacks a simplifying theoretical rule and instead imposes a

relationship between the tuning parameters and the survey weights (Beaumont and Alavi

2004). Both approaches minimise an estimator of the mean squared error (MSE) of the

resulting estimator of total. Versions of MSE-optimal one-sided Winsorisation are used

by the UK Office for National Statistics (Lewis 2007) and the Australian Bureau of

Statistics (Preston and Mackin 2002). The two-sided alternative has been favourably

evaluated for the US Bureau of the Census (Mulry et al. 2014).

Alternative robust estimation methods exist. The log-normal method developed by

Karlberg (2000) has low variance when an assumed lognormal model is correct, but is

sensitive to this assumption (see Beaumont and Rivest 2009 who cite Myers and Pepin

1990). Basak et al. (2014) propose and evaluate a bias-corrected version of Karlberg’s

(2000) estimator based on the log-normal distribution. St̊ahl (2015) reviews estimators

3



for right-skewed data which make use of parametric models for the tail distribution.

Beaumont et al. (2013) develop an alternative approach based on the conditional

influence function. Martinoz et al. (2015) apply the idea of limiting the maximum

conditional bias to Winsorisation, and evaluate its use for domain estimation. Gwet and

Rivest (1992), Hulliger (1995) and Duchesne (1999) propose estimators related to the

M-estimation approach, replacing non-robust regression coefficient estimators by robust

alternatives (Beaumont and Rivest 2009). We do not consider these approaches, instead

concentrating on MSE-optimal M-estimators, as these are the main methods other than

the surprise outlier method used by NSIs.

Both one-sided and two-sided M-estimation are related to Winsorised estimation

(Chambers and Kokic 1993). Winsorised estimators truncate the values of the variable of

interest at upper and/or lower cutoffs. In M-estimation, the cutoffs depend on regression

coefficients estimated using the truncated values, and so must be determined iteratively.

In practice, this iteration has usually been avoided in one-sided Winsorisation by

separately estimating regression coefficients robustly. It should be noted that both of the

M-estimation approaches considered here are only applicable to continuous variables. For

NSIs this requirement essentially confines the methods to business surveys.

The novelty and contribution of this paper is that it presents a succinct proof of the

well-known result from Clark’s unpublished thesis (Clark 1995), which relates the

MSE-optimal tuning parameters in one-sided M-estimation to the survey weights. We

compare the one- and two-sided methods in a realistic simulation setting involving

sample rotation of a repeated survey based on real business survey data. A previous

simulation (Mulry et al. 2014) compares the two approaches in a one-off sample which

includes just one outlier in the population contributing only 1% to total estimates even

when selected, whereas many business surveys are more outlier-prone than this. Here, we
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simulate a greater number and contribution of outliers reflecting typical business survey

data, and partially rotate the sample each month reflecting common practice. We

consider the effect of different methods of selecting the tuning parameter in both methods

and also examine the performance of bootstrap confidence intervals (CIs) compared to

those based on variance formulae. We claim that this is a useful study for NSIs, as it is

not obvious a-priori whether one- or two-sided M-estimation performs better when

outliers are present, nor the influence of the tuning parameters on the estimators of level

and movement.

In the next section we review M-estimation methods for surveys where tuning

parameters are chosen to minimise the MSE. We present the key theoretical result for

one-sided M-estimation mentioned above, and describe the two-sided approach. Section 3

discusses and contrasts the two options. Section 4 describes a simulation study based on

data from the monthly Retail Sales Inquiry (RSI) conducted by the United Kingdom

Office for National Statistics (ONS). One- and two-sided M-estimation and one-sided

Winsorised estimators are compared, with different settings for both methods. Section 5

summarises the results of the simulation, and Section 6 is a discussion.

2 Review of MSE-Optimal M-Estimators in Survey Estimation

2.1 M-Estimation applied to Survey Estimation

Consider a finite population U of N units in which we are interested in estimating the

total ty of a continuous variable y. This variable is observed over a sample s ⊆ U of units

selected from the finite population. The set of non-sampled units is denoted r = U − s.

Auxiliary variables xi may also be available for i ∈ U to support estimation. In this case
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it is helpful to define a working model to motivate the estimators:

yi are independent continuous random variables with densities fi,

E (yi) = µi <∞

var (yi) = σ2vi <∞


(1)

where vi are known constants and µi = µi (xi) is typically a linear function

µi = βTxi (2)

with unknown coefficients β. Models such as (1) and (2) can be used in a model-assisted

framework, where they motivate the choice of an approximately design-unbiased

estimator of a total or other quantity, such as the generalized regression estimator (e.g.

Särndal et al. 1992). Alternatively the model-based approach can be adopted. Best linear

unbiased predictors of population totals can be derived, which are unbiased over repeated

realisations of population values from the model, but are not necessarily design-unbiased

(e.g. Chambers and Clark 2012).

As noted by Beaumont and Alavi (2004), under the model defined by (1) and (2), the

total ty may be estimated by

t̂y = β̂T tx (3)

(sometimes called the projective form) or

t̂y = tys + β̂T txr (4)

(the predictive form) where tx =
∑

i∈U xi is the population total of the auxiliary

variables, txr =
∑

i∈U−s xi is the non-sample total, tys =
∑

i∈s yi, and

β̂ =

(∑
i∈s

cixix
T
i

)−1∑
i∈s

cixiyi
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where ci are regression weights (some possibilities for ci will discussed shortly).

Equivalently, β̂ is the solution of the following estimating equation:

∑
i∈s

ci

(
yi − β̂Txi

)
xi = 0. (5)

The estimator t̂y is also equal to

t̂y =
∑
i∈s

wiyi (6)

where the weights wi are equal to

wi = tTx

(∑
j∈s

cjxjx
T
j

)−1
cixi (7)

when (3) is used, and

wi = 1 + tTxr

(∑
j∈s

cjxjx
T
j

)−1
cixi (8)

when (4) is used. The model-assisted generalized regression (GREG) estimator is a

special case of (3) and (7), with ci = v−1i π−1i , provided that

vi = λTxi (9)

for some λ (Särndal et al. 1992, section 6.5). Condition (9) is satisfied by many but not

all of the models used in practice. For example, in the gamma population model

(Chambers and Clark 2012, p49), it is satisfied when γ is 0 or 1, but not otherwise. The

BLUP is the special case of (4) when ci = v−1i , and also of (3) when (9) holds. Beaumont

and Alavi (2004) propose a compromise with ci = v−1i π−αi

(∑
j∈s π

−1
j

)
/
(∑

j∈s v
−1
j π−αj

)
,

where 0 ≤ α ≤ 1.

Estimators of the form (4) and (3), or equivalently (6), are not outlier-robust and the

influence of each particular value yi is unbounded. Robust versions are given by replacing(
yi − β̂Txi

)
in (5) with bounded functions of these residuals, to give a robust estimator

β̂∗: ∑
i∈s

ciψi

(
yi − β̂∗Txi

)
xi = 0. (10)
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where ψi(u) is a suitable non-decreasing but bounded function. Typically,

ψi = Qaiψ
(
Q−1a−1i u

)
, where ψ is a bounded non-decreasing function approximating the

identity function near the origin. The value of Q > 0 controls the sensitivity to outliers.

If Q is large, then ψi will closely approximate the identity function, and β̂∗ ≈ β̂. As Q

becomes closer to 0, β̂∗ becomes increasingly robust to outliers. The values of ai control

differential sensitivity to outliers for different units.

In this paper, we consider two alternatives for the function ψ which have been

proposed. Let [u]BA denote the truncation of u to the interval [A,B]. The two functions

considered are the two-sided Huber function, ψ(u) = [u]1−1, and the one-sided Huber

function, ψ(u) = min(u, 1) = [u]1−∞. The former results in robustness to large positive

and large negative outliers, while the latter only deals with large positive outliers. For

both choices,

β̂∗ =

(∑
i∈s

cixix
T
i

)−1∑
i∈s

cixiy
∗
i (11)

where

y∗i = [yi]
β̂∗Txi+Qai
β̂∗Txi−Qai

(12)

when ψ is given by the two-sided Huber function, and

y∗i = min
(
yi, β̂

∗Txi −Qai
)

(13)

when ψ is given by the one-sided Huber function. It follows that the robust estimator of

ty is equal to

t̂∗y =
∑
i∈s

wiy
∗
i (14)

in both cases.

For infinite populations, values of ci = v−1i , ai =
√
vi and Q = kσ2 would be typical

choices, where k is around 2 or 3. In sample surveys, it is less clear how these values

should be chosen because:

8



• Extreme values yi affect t̂y more if their weight wi is large. This suggests that

greater robustness to outliers is appropriate for these units, which is achieved by

making ai smaller when wi is larger.

• The aim is to estimate the total ty over all units, including outliers and

non-outliers. It is assumed that extreme values due to measurement error are

corrected prior to estimation, so that the outliers that remain are “representative

outliers” (Chambers 1986). As a result, outlier robustness will generally reduce the

variance but incur bias. Tuning parameters should therefore minimise the

mean-squared error of t̂∗y. This is particularly important in large scale surveys

where variances may be fairly small, so that biases due to outlier robustness could

lead to the mean-squared error being made worse.

2.2 M-Estimation using the One-Sided Huber Function

We now consider the estimator (14) using the one-sided Huber function, so that y∗i are

given by (13). A theorem by Clark (1995) on Winsorised estimators sheds light on how

the tuning parameters ai and Q should be chosen.

Searls (1966) compares the performance of a number of outlier-robust estimators of

total, and suggested replacing yi by y∗i = min (yi, K) where K is a cutoff, with values of

yi above K deemed to be outliers. This method is described as type 1 Winsorisation and

is unattractive because it is possible for the Winsorised estimate of the population total

of a survey variable to be less than the sum of the sample values. Gross et al. (1986)

instead recommended the type 2 Winsorised estimator:

t̂∗y = tys +
∑
i∈s

(wi − 1) y∗i . (15)

where y∗i = min (yi, K). Each observation (including outliers) is allowed to represent itself
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in the first term of the right hand side of (15), but is truncated in the second term when

weighted up by (wi − 1) to represent non-sampled units.

Clark (1995) considered the one-sided type 2 Winsorised estimator (15) where

y∗i = min (yi, Ki) and Ki may be different for every unit i in sample. This estimator has n

tuning parameters Ki which is excessive. Fortunately this can be reduced to just one due

to the following result which extends a theorem in Kokic and Bell (1994). The theorem

uses a model-based framework, but it seems reasonable to apply it even for

model-assisted approaches such as generalized regression estimators, because the model

assumptions are relatively weak and do not depend on the distributions fi in (1).

Theorem 1. Suppose that a population is generated by model (1) and (2), and that

t̂y =
∑

swiyi is model-unbiased with EM
[
t̂y − ty

]
= 0. Let t̂y = tys +

∑
i∈s (wi − 1) y∗i

where y∗i = min (yi, Ki). Then EM

[(
t̂∗y − ty

)2]
is minimised with respect to {Ki : i ∈ s}

when:

Ki = µ∗i +Q (wi − 1)−1 (16)

where

µ∗i = E [min (yi, Ki)]

and Q is the solution to

Q = −B(Q) =
∑
i∈s

wi (µi − µ∗i )

�

As the theorem has only been published in thesis form (Clark 1995), we include the

proof in Appendix 1. Remarkably, Theorem 1 does not require any restriction on the

densities fi in (1), which may be different for every i, and they do not need to be

modelled in order to apply the theorem.
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The values of µ∗i are not known, but reasonable values of µ∗i can be constructed by

assuming µ∗i = β∗Txi, where β̂∗ is obtained by regressing

y∗i = min
(
yi, β̂

∗ +Q (wi − 1)−1
)

on xi. Since y∗i itself depends on β̂∗, the result must be

calculated iteratively. It is easy to see that β̂∗ is the M-estimator (10) where ψ is the

one-sided Huber function and ai = (wi − 1)−1. The estimation of optimal values of Q can

be performed using the surveyoutliers package (Clark 2015) for the R statistical

environment (R Core Team 2014).

Fast Approximate Solution

In the literature and applications of Winsorising (e.g. Kokic and Bell 1994; Preston

and Mackin 2002), calculation of the cutoffs Ki is simplified by replacing µ∗i in (16) by µ̃i,

where µ̃i can be defined to be a robust estimator not involving Q, or set to 0. The values

of Q (wi − 1)−1 would normally dominate the values of µ∗i , so using an approximation of

µ∗i probably has little impact. We then obtain the easier to solve system:

Ki = µ̃i +Q (wi − 1)−1 (17)

Q =
∑
i∈s

(wi − 1)
{
µi − E

[
min

(
yi, µ̃i +Q (wi − 1)−1

)]}
(18)

To obtain optimal cutoffs in practice, (18) is solved using an estimator B̂(Q) based on

sample data either from the current survey or one or more historical survey datasets:

B̂(Q) =
∑
i∈s

(wi − 1)
{

min
(
yi, µ̃i +Q (wi − 1)−1

)}
=

∑
s

{
min

(
D̂i, Q

)
− D̂i

}
(19)

where D̂i = (yi − µ̃i) (wi − 1) . The aim is to solve F̂ (Q) = 0 where

F̂ (Q) = Q+ B̂(Q) =
∑
s

{
min

(
D̂i, Q

)
− D̂i

}
+Q. (20)

It is clear that F̂ (Q) is piecewise linear and decreasing with joints at the values of D̂i.

Hence the equation can easily be solved by evaluating it at D̂(1), D̂(2), . . . (the ordered
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D̂is from largest to smallest) until the sign of F̂ (Q) changes from positive to negative,

then using linear interpolation to obtain the solution (Kokic and Bell 1994; Clark 1995).

Typically, only a small number of evaluations will be needed, because the number of

values of F̂
(
D̂(k)

)
which are positive corresponds to the number of observations above

the cutoff.

If the historical dataset differs much in size or design from the data at hand, then (19)

should be modified to:

B̂(Q) =
∑
i∈sold

ui

{
min

(
D̂i, Q

)
− D̂i

}
(21)

where ui are weights scaling from sold to s. Setting ui =
(
π−1i(old) − 1

)
/
(
π−1i − 1

)
would

be a reasonable choice and is used in the simulation in the next section.

2.3 M-Estimation using the Two-Sided Huber Function

Beaumont and Alavi (2004) propose the robust estimator (14) using the two-sided

Huber function. Several suggestions for ci are given; we restrict ourselves here to

ci = v−1i π−αi

(∑
j∈s π

−1
j

)
/
(∑

j∈s v
−1
j π−αj

)
which is used in their simulation study.

Choosing a value of α between 0 and 1 gives a compromise between the BLUP’s greater

efficiency under the model and the GREG’s robustness when the model’s assumptions are

not justified.

The tuning parameters ai are defined by Beaumont and Alavi (2004) to equal c−1i .

Both ci and wi can be regarded as survey weights, so this rule for ai is somewhat similar

to the values ai = (wi − 1)−1 from Theorem 1 in the previous section. Beaumont and

Alavi (2004) note that the M-estimator of β can be expressed in terms of a weight

modification, since (10) becomes

0 =
∑
i∈s

ciψi

(
yi − β̂∗Txi

)
xi
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0 =
∑
i∈s

ciπ
−α
i

[
Q−1v−1i π−αi

(
yi − β̂∗Txi

)]1
−1
viπ

α
i Qxi

0 =
∑
i∈s

ci

[
yi − β̂∗Txi

]Qviπαi
−Qviπαi

xi

0 =
∑
i∈s

c∗i

(
yi − β̂∗Txi

)
xi (22)

where

c∗i = ci

[
yi − β̂∗Txi

]Qviπαi
−Qviπαi

/
(
yi − β̂∗Txi

)
. (23)

It is clear that c∗i = ci when
∣∣∣yi − β̂∗Txi

∣∣∣ ≤ Qviπ
α
i , otherwise c∗i < ci. It is occasionally

possible that c∗i can be less than 1, which is counter-intuitive in a survey context since

representative outliers should at least be allowed to represent themselves. To counter

this, Beaumont and Alavi (2004) redefine c∗i to be the maximum of 1 and (23). Since

both c∗i and (22) depend on β̂∗, iteration is required.

We slightly simplify the setup of Beaumont and Alavi (2004), in that they also allow

the threshold of ψi to be an unknown parameter φ rather than 1, but this makes either φ

or the tuning parameter Q redundant. We set φ = 1 and leave Q free, as this is more in

line with the mainstream robustness literature (e.g. Huber and Ronchetti 2009), whereas

Beaumont and Alavi (2004) do the reverse. Also we assume ai = c−1i which is one of the

preferred special cases of the more general form in Beaumont and Alavi (2004).

The tuning parameters α and then Q are chosen to minimise the estimated MSE of

the M -regression estimator

t̂y(M) = tTx β̂M . (24)

A number of MSE estimators are discussed by Beaumont and Alavi (2004). One of the

simpler options, which is adopted in their simulation study, is

M̂SE
[
t̂y(M)

]
= v̂ar

[
t̂y(M)

]
+
{
t̂y(M) − t̂y

}2
(25)

where t̂y is a non-outlier-robust GREG estimator (see equation 5.3 of Beaumont and
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Alavi 2004).

3 Remarks on the Two M-Estimation Approaches

3.1 Issues common to both Two Approaches

The value of Q should be updated only infrequently in a repeated survey, because then

the bias introduced will remain approximately constant, and estimates of change will

have smaller variance with approximately no bias (although measures of level will still be

biased in order to achieve a lower variance).

There are two main issues in the use of M-estimation which stop it from being an ideal

transparent outlier detection and treatment method in practice. The first is the level at

which estimates are produced, and the second how to treat derived variables.

As an example of what effect the level has, in a survey of retail trade, we may

determine a value Q̂ based on the whole survey. We may also produce several further

values Q̂g for subsectors g = 1, . . . , G of the retail sector. The results from using either

the former value, or the set of latter values will be different. In fact, the first will give an

optimum mean squared error (MSE) estimate of the total for the whole survey, but

sub-optimal estimates for any lower level of aggregation, and the second will give optimal

estimates of the totals for the subsectors, but suboptimal estimates of the survey total

and any aggregates at a lower level than subsector.

The way this works is easily seen by considering the usual bias-variance trade-off.

Processing outliers involves introducing a small amount of bias into the estimate in order

to achieve a large gain in precision (drop in variance). At the whole survey level, the

truncation in M-estimation affects relatively few outliers, and introduces a small bias for

a good gain in precision, because these are the most extreme observations in the whole

survey. If these same outlier weights are used in constructing the lower level subsector
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totals, the small amount of bias is apportioned among them (usually unevenly), so that

each gets a smaller introduction of bias, with a consequent smaller reduction in variance.

Conversely if M-estimation is applied at the subsector level, each subsector has some

small bias introduced for a substantial reduction in variance. These biases are always

negative for one-sided M-estimation. They may be positive or negative for the two-sided

alternative, but they will almost always be negative in practice, because large positive

residuals are much more common than large negative residuals in business surveys. As a

result, when the subsector estimates are added together to give a whole survey estimate,

they introduce too much bias for a minimum-MSE estimator at the whole survey level.

This is implied in the one-sided case by the fact that for all g, Q̂g ≤ Q̂, which follows

from (21).

In practice it is not possible to reconcile these measures, so a decision must be made

as to which level to choose. An initial reaction is that the total level is the best, as it is

the most important, and introduces the least bias overall. On the other hand, the

estimated total may be more accurate than needed, whereas subsector estimates may be

in greater need of improvement, suggesting calculating cutoffs at the subsector level. This

is explored more fully in the simulation study. Martinoz et al. (2015) suggest separately

estimating domain totals and the grand total, and then forcing them to agree using a

method similar to calibration. Another option is to choose the values of Q̂g to be the

simple or geometric mean of Q̂ optimised for overall estimates and Q̂g optimised for

subsector estimates.

The second issue is how to construct a robust estimator for a derived variable, which is

a linear function of other survey variables. For example, net capital expenditure is the

difference of acquisitions and disposals of capital items. In a similar way to the level of

M-estimation described above, estimating acquisitions and disposals separately leads to a
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different estimate of net capital expenditure from that obtained when forming net capital

expenditure first and then applying M-estimation. If the difference between these two

estimates is not important, the former method is the ideal because it uses the

distributions of the components separately. Typically, however, the estimates need to

correspond in publications. Derived variables may also be non-linear combinations of

other survey variables, but in this case perfect consistency between the various estimates

is not essential, because the derivation process would not be obvious to readers of the

survey publication.

The first method, separate M-estimators of the components of the derived variable,

introduces a bias into the estimate for each component. If these biases are summed in the

derived variable (that is if they are all or mostly in the same direction), the resultant

estimator will have a large bias, and will not normally be useful. However, in our

example, where disposals is negative in the derived variable, we may hope that the biases

partly cancel out, and this procedure may be quite reasonable. Consequently, where some

of the terms in the linear combination are negative, this approach should be considered.

The second method, M-estimation of the derived variable, gives an additional

challenge, which is how to allocate the bias to the component variables so as to maintain

the consistency of the derivation. There are several ways of doing this, which are

discussed in Cruddas and Kokic (1996) and Preston and Watmuff (2005). However, to

the authors’ knowledge, these methods have not been applied in any NSI, presumably

due to their complexity.

3.2 Differences between the Two Approaches

It is not clear which of the one-sided or two-sided approaches performs better in

practice. Both make the truncation cutoff for the model residual approximately inversely

proportional to the weight. The latter handles both positive and negative outliers. On
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the other hand, negative outliers are rare in many business surveys, and approximately

optimal values of ai are available in the one-sided approach. In contrast, Q is optimised

in the two-sided approach by using an MSE estimator (25) which is potentially biased

and may also be volatile. Given these strengths and weaknesses of the two methods, their

relative performance is an empirical question.

4 Simulation of MSE-Optimal M-Estimation in the UK RSI

The purpose of this section is to assess one and two-sided M-estimation approaches in

a realistic simulation. We use data collected in the UK monthly Retail Sales Inquiry

(RSI). Our aim is to mimic the sample rotation procedure used in ONS business surveys

so as to assess the amount of information required to estimate the tuning parameters

accurately. An examination is made of the level at which the cut-off parameters should

be set, and their effects on the accuracy and precision of estimators both of total and of

month on month change are determined.

4.1 Description of the RSI Data

The RSI is a monthly survey covering all retail businesses in the UK with at least 10

employees. The examples here are based on data from 1995-96, at which time the sample

design could be summarised as follows (many of these features continue in the present

design). The outcome variable is average weekly sales, calculated over a four or five week

period depending on the month. The auxiliary variable used in estimation was register

turnover, taken from the ONS inter-departmental business register (IDBR). It is an

annual total derived from value added tax returns, closely correlated with sales. The

survey was stratified into 27 industry strata and 6 size strata according to the value of

register turnover. The top one or two size strata are CEd and within stratum ratio

estimation was used in the remaining strata. The industry strata are defined in terms of
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the main activity of the business, see Central Statistical Office (1992). Simulations are

based on the five months of RSI data from October 1995 until February 1996. Table 1

shows the average sample and population sizes for the main industry groups covered by

the RSI over this time period. For the purposes of this simulation exercise data from

industry groups 526 and 527 are combined.

4.2 Modelling The Population

Since complete real survey population data are not available (only samples from

previous surveys) the population is constructed from a model. The actual register

turnover auxiliary variable is available for all the population units and so this was used.

The sales data (y) are modelled according to the following model:

log (yi) = αk + βk log (xi) + εi

where unit i belongs to industry group k, xi is register turnover and εi are independent

observations from a normal random variable with mean 0 and variance σ2. The most

extreme values are pre-treated in the dataset available for modelling, so that some further

adjustment is needed to give a realistic simulation. To give a sufficient number of extreme

values, 0.2% of the units are selected at random and their y-values are multiplied by 10.

With this approach, approximately 10 extreme outliers occur in the sample each month,

which is close to the number observed in practice. The parameters in the model are

estimated from the survey data using robust estimation procedures. They are shown in

Table 2, along with industry group population totals of the simulated sales data y.

4.3 Method of Sampling

The sampling method used in ONS business surveys and applied to the current

simulation exercise is essentially fixed size simple random sampling, but the samples are
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selected using a permanent random number (PRN) rotation system (Kokic 1997). Each

unit is assigned a random number (that is a PRN) selected from a uniform distribution

between zero and one. Within each stratum units are arranged (from left to right) on the

zero-one interval according to the value of their random numbers and the leftmost units

are included in the sample, where nh is the sample size for stratum h. A sampling

interval is thus formed by constructing a closed interval which covers all units selected in

the sample within each stratum. The sample is rotated by moving both ends of the

sampling interval to the right in such a way as to include a given number of new units in

the sample each month and to remove exactly the same number of units from the sample.

The fixed proportion of new units is referred to as the rotation rate of the sample. For

the RSI the 1995/96 rotation rate was set in such a way that newly selected units remain

in the sample for approximately 15 months before being rotated out. Of course, it is

unnecessary to rotate the sample in the CEd strata.

4.4 The Simulation Procedure

A single population is generated from the model described in Subsection 4.2 using the

population sizes indicated in Table 1, and the resulting population values of y and x are

held fixed over the whole simulation process. The procedure for simulation is as follows.

a) Each unit is given a PRN and then units are sorted within strata according to the

PRN.

b) The sample for each month is selected using a rotation period of 15 months within

sampled strata (see Subsection 4.3). Samples for 29 consecutive months are selected in

this way.

c) For one-sided M-estimation, Q is calculated to satisfy (20) from Subsection 2.2. This

is done using either pooled data from months 1-12, or data from the current month
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only. A single Q parameter is estimated for estimating the total as well as separate

values of Q for estimating each industry group total. The fast approximate solution

described in Subsection 2.2 is also calculated, using µ̃i = β̃hxi in (17) and (18) where

β̃h is the ratio of sample means of yi and xi, the ratio of sample medians, or the ratio

of Huber means (using the huber function in R), for stratum h.

d) For two-sided M-estimation, Q is calculated numerically using the optimize function

in R, to minimize the estimate of the mean squared error in (25). As for one-sided

M-estimation, a single Q parameter is estimated for estimating the total as well as

separate values of Q for estimating each industry group total. Q is calculated using

either pooled month 1-12 data, or data from the current month only.

e) These parameters are then used to produce outlier-robust and non-robust ratio

estimates of total from the samples from months 28 and 29 only. The sample from

these months are used because they are entirely non-overlapping with those samples

used to optimize Q except in CEd strata, which will correspond with practice. At the

same time, estimates of change between months 28 and 29 are produced by taking the

difference between the corresponding estimates of total. Variance estimates for each of

the estimates of total are also produced by using truncated values in the standard ratio

variance estimator (expression 6.9 in Cochran, 1977, p 155). Variances of estimates of

change are derived from the formulae presented in Cochran (1977, pp 351-353).

f) Confidence intervals are calculated using two methods. Firstly, standard errors are

calculated as described in (d), and asymptotic 95% confidence intervals are given by

the estimate plus or minus 1.96 times the standard error. Secondly, non-parametric

studentized bootstrap percentile confidence intervals are calculated (Davison and

Hinkley 1997, formula 2.12, p29), with 1000 bootstrap replicates, again using the
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standard errors from (d). Tuning parameters and cutoffs are treated as fixed so that

computation time was feasible, rather than also bootstrapping tuning parameter

estimation as recommended by Beaumont and Rivest (2009, section 4.4).

g) The process (a)-(f) above is repeated for each of 1000 simulations.

Using the simulated estimates and their corresponding variance estimates, the bias,

root mean squared error (RMSE) and coverage properties of nominal 95 per cent

confidence intervals (CIs) for the estimates of total and of change are calculated. These

results are presented in Section 6 below. In this data, where there are large positive

outliers, but no small outliers, there is, in principle, little difference between the one-sided

and two-sided M-estimators. The major difference is likely to be that a theoretical result

is available to guide the choice of Q in the one-sided case (as discussed in 2.2), while Q

minimises an approximate estimator of the MSE in the two-sided case (see 2.3).

All computations are carried out in the R statistical environment version 3.0.3 (R Core

Team 2014). The survey package is used to calculate survey-weighted estimates (Lumley

2014). Parallelisation is used to speed up the simulation using the R packages

doParallel (Revolution Analytics and Weston 2014) and doRNG Gaujoux (2014) with 7

separate processes on a desktop computer using an i7 chip running an Ubuntu UNIX

operating system. All code is provided as supplementary material to the published paper,

but access restrictions mean that the source dataset cannot be shared.

4.5 Effects not Covered by the Simulations

A number of effects are deliberately omitted from the simulations so that the impact

of those that were included can be measured without being confounded. Firstly, changes

in the register and births and deaths of businesses are excluded so that the population is

unchanging. Only one set of auxiliary data is used for the whole simulation period.
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Secondly, seasonality and real changes in the economy were excluded: the data generated

from the super-population model are fixed for all months. Finally, non-response is only

accounted for in its impact on the resulting sample sizes (the response rate in RSI, which

is a compulsory survey, is about 90 per cent): its effects have not been specifically

modelled in the simulation process. That is, data are missing at random. Such

restrictions are expected to have little impact on the results reported below for estimates

of total, but may tend to show that estimates of change perform better than they will in

reality.

5 Simulation Results

The net effect of the trade-off between the bias and variance of the outlier-robust ratio

estimators of total is presented in Table 3. The relative bias is defined as the bias divided

by the true population total (as a percentage), and the relative root mean squared error

(RRMSE) is the square root of the mean squared error divided by the true population

total (as a percentage). When outlier treatment is applied at the total level:

• The absolute relative bias is about half of the RRMSE, for the one-sided and

two-sided approaches.

• The RRMSE is reduced from 0.87 (no treatment) to 0.80 (one-sided M-estimation)

and 0.82 (two-sided M-estimation).

• Greater relative reductions in RRMSE occur at industry group level than at the

total level, for most groups.

When outlier treatment is applied at the industry group level:

• The reductions in the RRMSEs of industry group estimates is about double that

achieved by tuning at the total level.
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• Biases are much greater than when tuning is at the total level.

• The RRMSEs of total estimates are higher than if no outlier treatment is applied.

• One-sided M-estimation does better than two-sided for 4 groups and is very similar

in the other 2.

As discussed in 2.2, a non-iterative approximate form of one-sided M-estimation is

usually implemented in practice (one-sided Winsorisation). Table 4 shows the effect of

substituting alternative estimators of µ∗i into the optimal cutoffs in (17). The table shows

that the choice of an estimator of the mean in the cutoff calculation has very little effect

on RRMSEs. The ratio of the means appears to be the best option, in spite of its

non-robustness to outliers. In practice, the ratio of Huber means may be preferable for

safety in case of extreme outliers.

Table 5 shows the biases and mean squared errors achieved when the tuning

parameters are chosen using live data from the current month, compared to pooled data

from months 1-12. Both the one-sided and two-sided M-estimation approaches give

reduced MSEs compared to no treatment when live data is used. However, the benefit is

much reduced, and the reduction in RRMSE is only about half that achieved when

historical pooled data is used.

Table 6 shows relative biases and RRMSEs for estimators of monthly movement. The

outlier-robust estimators of change have much smaller biases than the corresponding

estimators of level. This can be explained by the biases in each level estimate roughly

cancelling out under subtraction. Presumably because of the resulting low biases, the

gains in RRMSE from outlier treatment are much more substantial than for level

estimates. For 5 out of 6 industry groups, one-sided M-estimation had lower RRMSE

than two-sided, by 20% for 525 but with only small differences for the other groups.
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Furthermore, both robust estimators have considerably smaller RRMSE than the

non-robust estimator, up to as much as 36%, and there appears to be a considerable

further reduction in RRMSE when cut-offs are chosen at group level.

Table 7 shows the coverage properties of confidence intervals (CIs) around the various

estimators of level. The nominal non-coverage rate is 5% in all cases. The non-coverage

rates for the asymptotic CIs (i.e. ±1.96SE) for industry group totals are 6.6-10.2% for no

treatment, 11.1-15.8% for one-sided and 10.6-19.9% for two-sided M-estimation. The

biases of the outlier robust methods apparently damage the confidence interval coverages.

The use of bootstrap percentile intervals considerably improves the coverage under all 3

approaches. Non-coverage is now 4.1-7.0%, 6.6-11.1% and 7.1-15.4% for no treatment,

one-sided M-estimation and two-sided M-estimation, respectively.

Table 8 shows the coverage of asymptotic confidence intervals for estimators of

monthly movements. The percentile intervals are not calculated, to reduce the

computation time for the simulation. The non-coverage rates of the robust estimators are

much closer to the nominal 5% for movements than for levels. This is presumably

because biases are much less for movements, due to the biases of the two monthly level

estimators approximately cancelling out.

6 Discussion

Results presented in this paper suggest that there is considerable benefit in using an

approximately MSE-optimal M-estimation when producing estimates of both level and

movement. For positive variables, one-sided M-estimation performs slightly better for

both level and movement estimates and for confidence interval coverage than the

two-sided approach of Beaumont and Alavi (2004). This is probably due to the different

methods for optimising the MSE. However, the differences between the two approaches
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are generally quite small.

Nominal 95% confidence intervals have non-coverage up to 15.8% and 19.9% for

asymptotic intervals about the one- and two-sided robust estimators of group total. This

improves to worst case non-coverages of 11.1% and 15.4% respectively when a studentized

percentile bootstrap interval is used. These non-parametric, asymmetric intervals are

therefore recommended whenever outlier-robust methods are adopted, otherwise

published confidence intervals will be excessively optimistic.

There is a very noticeable conflict between the optimal tuning parameters at total

versus industry group levels in a simulated retail survey. Tuning at the total level still

gives reductions in MSE at the industry group level. Greater gains in industry group

estimates can be achieved by tuning at the finer level, at the cost of making the MSE of

the total estimator higher than when no outlier treatment is applied. The appropriate

choice depends on the relative priority of estimates at these two levels in any particular

survey. This tradeoff applies equally to the one- and two-sided approaches.

An approximate non-iterative version of one-sided M-estimation is typically used in

practice. The use of this approximation appears to have little impact, regardless of how

the mean is estimated for the purpose of calculating Winsorising cutoffs.

For reasons of consistency with estimates of total, it may be preferable to estimate

tuning parameters based on level estimates. However, it is possible to apply the

benchmarking techniques described in Kokic and Jones (1997) to produce consistent

estimates of totals and movements, probably with little loss of precision. The cost of such

an improvement lies in the need to revise estimates. Even when tuning parameters are

based on level estimates, movement MSEs are greatly improved by outlier treatment,

more so than for level estimates.

Mulry et al. (2014) also conclude that two-sided M -estimation and one-sided
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Winsorisation have very similar empirical properties. However, they find that the optimal

tuning parameter in two-sided M-estimation is sensitive to the starting value for iteration

and that Winsorisation trims too many non-outliers in their simulation. We find that the

trimming of Winsorisation does not seem to be excessive in surveys with a more typical

number of outliers.

In a situation where output from a NSI is under public scrutiny, it helps the public

perception of the independence of the institute to have a written procedure which is

based on a transparent criterion (in this case minimisation of the mean squared error),

and not a procedure depending on the view of whoever is processing the data.

The main challenge in M-estimation is deciding between the options for the issues

discussed in Section 3. It also relies on the assumption that the auxiliary data are

correct. When negative values occur and may be outliers, two-sided M-estimation as

developed by Beaumont and Alavi (2004) is a good option. For most economic survey

variables, optimal one-sided M-estimation or Winsorisation seems to be slightly

preferable and offers an automated, transparent and relatively simple-to-implement

method of dealing with outliers.
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Appendix 1 Proof of Theorem 1

Let r = U − s refer to non-sampled units and σ∗2i = var [y∗i ]. Note that by assumption,∑
s (wi − 1)µi =

∑
r µi. The prediction MSE of t̂∗y is:

MSE = E
[(
t̂∗y − ty

)2]
= var

(
t̂∗y − ty

)
+
{
E
(
t̂∗y − ty

)}2
= var

(∑
i∈s

(wi − 1) y∗i −
∑
i∈r

yi

)
+

{
E

(∑
i∈s

(wi − 1) y∗i −
∑
i∈r

yi

)}2

=
∑
i∈s

(wi − 1)2 σ∗2i +

{∑
i∈s

(wi − 1) (µ∗i − µi)

}2

+ var

(∑
i∈r

yi

)

=
∑
i∈s

(wi − 1)2 σ∗2i +B2 + var

(∑
i∈r

yi

)

where B = E
(
t̂∗y − ty

)
=
∑

i∈s (wi − 1) (µ∗i − µi). Let pi = P [yi > Ki]. Then

∂µ∗i
∂Ki

=
∂

∂Ki

{∫ Ki

−∞
yfi(y)dy +

∫ ∞
Ki

Kifi(y)dy

}
= Kifi (Ki)−Kifi (Ki) +

∫ ∞
Ki

fi(y)dy = pi

∂σ∗2i
∂Ki

=
∂

∂Ki

{∫ Ki

−∞
y2fi(y)dy +

∫ ∞
Ki

K2
i fi(y)dy − µ∗2i

}
= K2

i fi (Ki)−K2
i fi (Ki) + 2Ki

∫ ∞
Ki

fi(y)dy − 2µ∗i pi

= 2Kipi − 2µ∗i pi = 2pi (Ki − µ∗i )

Hence

∂MSE

∂Ki

=
∂

∂Ki

(∑
i∈s

(wi − 1)2 σ∗2i +B2

)

= (wi − 1)2
∂σ∗2i
∂Ki

+ 2B (wi − 1)
∂µ∗i
∂Ki

= 2 (wi − 1)2 pi (Ki − µ∗i ) + 2B (wi − 1) pi

Setting to zero and dividing through by 2pi (wi − 1) gives Ki = µ∗i −B (wi − 1)−1 .

27



References

Basak, P., Chandra, H., and Sud, U. (2014), “Estimation of finite population total for

skewed data,” J. Indian Soc. Agricultural Statist., 68, 333–341.

Beaumont, J.-F. and Alavi, A. (2004), “Robust generalized regression estimation,” Surv.

Method., 30, 195–208.

Beaumont, J.-F., Haziza, D., and Ruiz-Gazen, A. (2013), “A unified approach to robust

estimation in finite population sampling,” Biometrika, 100, 555–569.

Beaumont, J.-F. and Rivest, L.-P. (2009), “Dealing with outliers in survey data,” in

Handbook of Statistics, Elsevier, vol. 29, pp. 247–279.

Central Statistical Office (1992), Standard Industrial Classification of Economic Activity,

Newport: Central Statistical Office.

Chambers, R. and Clark, R. (2012), An Introduction to Model-Based Survey Sampling

with Applications, Oxford: Oxford University Press.

Chambers, R., Hentges, A., and Zhao, X. (2004), “Robust automatic methods for outlier

and error detection,” Journal of the Royal Statistical Society: Series A (Statistics in

Society), 167, 323–339.

Chambers, R. and Kokic, P. (1993), “Outlier robust sample survey inference,” in

Proceedings of the 49th Session of the International Statistical Inference, Firenze.

Chambers, R. L. (1986), “Outlier robust finite population estimation,” J. Amer. Statist.

Assoc., 81, 1063–1069.

Clark, R. G. (1995), “Winsorisation methods in sample surveys,” Master’s thesis,

Australian National University, http://hdl.handle.net/10440/1031.

28



— (2015), “surveyoutliers: a package to help handle outliers in sample surveys,”

http://CRAN.R-project.org/package=surveyoutliers, R package version 0.0.

Cruddas, M. and Kokic, P. (1996), “The treatment of outliers in ONS business surveys,”

in Proceedings of the GSS(M) Methodology Conference, Office of National Statistics,

Newport UK.

Davison, A. and Hinkley, D. (1997), Bootstrap Methods and their Application, Cambridge:

Cambridge University Press.

Duchesne, P. (1999), “Robust calibration estimators,” Surv. Method., 25, 43–56.

Gaujoux, R. (2014), doRNG: Generic Reproducible Parallel Backend for foreach Loops, R

package version 1.6.

Gross, W. F., Bode, G., Taylor, J., and Lloyd-Smith, C. (1986), “Some finite population

estimators which reduce the contribution of outliers,” in Proceedings of the Pacific

Statistical Congress. Elsevier Science Publishers BV, Amsterdam, The Netherlands, pp.

386–390.

Gwet, J.-P. and Rivest, L.-P. (1992), “Outlier resistant alternatives to the ratio

estimator,” J. Amer. Statist. Assoc., 87, 1174–1182.

Hedlin, D., Falvey, H., Chambers, R., and Kokic, P. (2001), “Does the model matter for

GREG estimation? A business survey example,” J. Off. Stat., 17, 527–544.

Hidiroglou, M. and Berthelot, J. (1986), “Statistical Editing and Imputation for

Periodical Business Surveys,” Surv. Method., 12, 73–83.

Huber, P. J. and Ronchetti, E. (2009), Robust Statistics, Hoboken: Wiley.

29



Hulliger, B. (1995), “Outlier robust Horvitz-Thompson estimators,” Surv. Method., 21,

79–87.

Karlberg, F. (2000), “Survey estimation for highly skewed populations in the presence of

zeroes,” J. Off. Stat., 16, 229–242.

Kokic, P. (1997), “Repeated sampling through panel rotation,” Social and Community

Planning Research, UK: Survey Methods Centre Newsletter, 17, 6–8.

Kokic, P. and Bell, P. (1994), “Optimal winsorizing cutoffs for a stratified finite

population estimator,” J. Off. Stat., 10, 419–435.

Kokic, P. and Jones, T. (1997), “Comparing estimation methods for a monthly business

inquiry,” in Proceedings of the Statistics Canada conference: New directions in Surveys

and Censuses, Ottawa, November 5-7, 1997.

Lewis, D. (2007), “Winsorisation for estimates of change and outstanding issues with the

implementation of Winsorisation for level estimates,” ONS Report for 13th Meeting of

the National Statistics Methodology Advisory Committee, available from

http://www.ons.gov.uk/ons/guide-method/method-quality/advisory-committee/2005-

2007/thirteenth-meeting/index.html.

Lumley, T. (2014), “survey: analysis of complex survey samples,” R package version 3.30.

Martinoz, C. F., Haziza, D., and Beaumont, J.-F. (2015), “A method of determining the

winsorization threshold, with an application to domain estimation,” Surv. Method., 41,

57–77.

Mulry, M. H., Oliver, B. E., and Kaputa, S. J. (2014), “Detecting and Treating Verified

Influential Values in a Monthly Retail Trade Survey,” J. Off. Stat., 30, 721–747.

30



Myers, R. and Pepin, P. (1990), “The robustness of lognormal-based estimators of

abundance,” Biometrics, 1185–1192.

Preston, J. and Mackin, C. (2002), “Winsorization for Generalised Regression

Estimation,” Paper for the Methodological Advisory Committee, available from

http://www.abs.gov.au/ausstats/abs@.nsf/mf/1352.0.55.051.

Preston, J. and Watmuff, R. (2005), “Winsorization for linear related items,” in

Proceedings of the 55th Session of the ISI Conference, Sydney 5-12 April 2005.

R Core Team (2014), R: A Language and Environment for Statistical Computing, R

Foundation for Statistical Computing, Vienna, Austria.

Revolution Analytics and Weston, S. (2014), doParallel: Foreach parallel adaptor for the

parallel package, R package version 1.0.8.

Särndal, C., Swensson, B., and Wretman, J. (1992), Model Assisted Survey Sampling,

New York: Springer-Verlag.

Searls, D. T. (1966), “An estimator for a population mean which reduces the effect of

large true observations,” J. Amer. Statist. Assoc., 61, 1200–1204.

St̊ahl, O. (2015), “Point estimation using tail modelling for right skew populations,”

Journal of Statistical Computation and Simulation, 1–16.

31



Table 1: Sample and population sizes

Industry Group Description Sample Population

52 Whole retail sector 4881 226550

521 Non-specialist stores 709 63588

522 Food, beverages & tobacco 787 41571

523 Pharmaceutical & cosmetics 190 7788

524 Other new-goods specialist stores 2683 99112

525 Second-hand stores 179 6202

526-7 Retail sales not in stores and repairs 333 8289

of personal goods

Table 2: Model Parameters

Industry Group α β σ tyh (/pounds 1,000,000)

521 3.07 0.98 0.43 1656

522 3.27 0.93 0.47 320

523 3.26 0.85 0.91 97

524 3.03 0.98 0.74 1588

525 3.25 0.94 0.75 41

526-7 2.94 1.00 0.74 167
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Table 3: Relative bias (%) and relative root mean squared error (%) of estimators of level

with tuning parameters chosen at either group or total level using historical training data

Industry Group Ratio Estimator M-Estimators

One-Sided Two-Sided

total level group level total level group level

RELATIVE BIAS (%)

total -0.04 -0.39 -0.71 -0.42 -0.74

521 0.02 -0.01 -0.15 -0.01 -0.13

522 0.03 -0.16 -1.04 -0.18 -0.91

523 -0.08 -0.47 -3.14 -0.50 -3.61

524 -0.10 -0.86 -0.92 -0.93 -1.11

525 -0.66 -0.79 -4.11 -0.80 -2.65

526-527 0.02 0.01 -1.29 0.00 -0.79

RELATIVE ROOT MEAN SQUARED ERROR (%)

total 0.87 0.80 0.96 0.82 1.00

521 0.44 0.41 0.36 0.41 0.36

522 2.68 2.44 2.27 2.43 2.25

523 7.47 6.83 6.11 6.82 6.89

524 1.89 1.66 1.69 1.71 1.79

525 8.98 8.77 8.20 8.76 8.51

526-527 3.31 3.29 3.14 3.27 3.18
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Table 4: Relative root mean squared error (%) of estimators of level based on one-sided

M-estimation and approximate M-estimation with different estimators of level, with tuning

parameters chosen at group level using historical training data

Industry Ratio Estimator One-sided Winsorisation with truncation based on

Group ratio of ratio of ratio of One-Sided

means medians Huber means M-estimation

total 0.87 0.94 0.97 0.96 0.96

521 0.44 0.36 0.36 0.36 0.36

522 2.68 2.25 2.27 2.27 2.27

523 7.47 6.08 6.12 6.12 6.11

524 1.89 1.68 1.70 1.69 1.69

525 8.98 8.18 8.25 8.25 8.20

526-527 3.31 3.11 3.19 3.16 3.14
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Table 5: Relative bias (%) and relative root mean squared error (%) of estimators of level

with tuning parameters chosen at group level using either live or historical training data

Industry Group Ratio Estimator M-Estimators

one-sided two-sided

historical live historical live

RELATIVE BIAS (%)

total -0.04 0.01 -0.52 0.01 -0.58

521 0.02 0.00 -0.10 0.00 -0.08

522 0.03 0.05 -0.71 0.05 -0.49

523 -0.08 0.37 -2.25 0.47 -3.57

524 -0.10 0.03 -0.71 0.03 -0.88

525 -0.66 0.67 -3.26 0.72 -3.05

526-527 0.02 0.10 -1.00 0.10 -0.39

RELATIVE ROOT MEAN SQUARED ERROR (%)

total 0.87 0.96 0.91 1.00 0.93

521 0.44 0.36 0.39 0.36 0.39

522 2.68 2.27 2.42 2.25 2.40

523 7.47 6.11 6.75 6.89 6.58

524 1.89 1.69 1.77 1.79 1.79

525 8.98 8.20 8.71 8.51 8.21

526-527 3.31 3.14 3.27 3.18 3.20
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Table 6: Relative bias (%) and relative root mean squared error (%) of estimators of

movement with tuning parameters chosen at either group or total level using historical

training data

Industry Group Ratio Estimator M-Estimators

One-Sided Two-Sided

total level group level total level group level

RELATIVE BIAS (%)

total 0.01 0.01 0.01 0.01 0.01

521 0.00 0.00 0.00 0.00 0.00

522 0.01 0.01 -0.01 0.01 0.00

523 0.12 0.10 0.05 0.10 0.03

524 0.03 0.02 0.02 0.02 0.02

525 0.23 0.24 0.16 0.24 0.22

526-527 -0.05 -0.05 -0.06 -0.06 -0.06

RELATIVE ROOT MEAN SQUARED ERROR (%)

total 0.34 0.27 0.25 0.27 0.25

521 0.16 0.15 0.12 0.15 0.12

522 0.99 0.89 0.70 0.90 0.72

523 3.14 2.72 2.00 2.71 2.03

524 0.75 0.56 0.55 0.56 0.54

525 4.00 3.89 2.88 3.87 3.46

526-527 1.58 1.57 1.31 1.57 1.42
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Table 7: Non-coverage of asymptotic and bootstrap percentile confidence intervals of M-

estimators of level with tuning parameters chosen at group level using historical training

data and nominal non-coverage rate of 5%.

Industry Group Ratio Estimator One-Sided Two-Sided

asymp pctile asymp pctile asymp pctile

total 7.0 6.4 24.2 18.8 28.8 22.7

521 7.0 7.5 11.1 9.1 10.2 8.8

522 7.9 7.3 11.5 10.0 11.1 10.9

523 10.2 7.0 15.8 10.8 19.9 15.4

524 10.0 7.8 14.7 11.1 18.8 14.3

525 9.5 6.1 15.4 9.6 13.1 9.0

526-527 6.6 4.1 11.4 6.6 10.6 7.1

Table 8: Non-coverage of asymptotic confidence intervals of M-estimators of movements

with tuning parameters chosen at group level using historical training data and nominal

non-coverage rate of 5%.

Industry Group Ratio Estimator One-Sided Two-Sided

total 8.1 6.8 6.9

521 6.2 5.7 5.7

522 7.2 4.8 5.4

523 9.0 7.3 6.6

524 9.1 7.0 7.0

525 10.2 9.8 9.7

526-527 12.0 10.6 12.7
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