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Abstract: We present a comprehensive discussion of renormalisation of 3-point functions

of scalar operators in conformal field theories in general dimension. We have previously

shown that conformal symmetry uniquely determines the momentum-space 3-point func-

tions in terms of certain integrals involving a product of three Bessel functions (triple-K

integrals). The triple-K integrals diverge when the dimensions of operators satisfy certain

relations and we discuss how to obtain renormalised 3-point functions in all cases. There

are three different types of divergences: ultralocal, semilocal and nonlocal, and a given

divergent triple-K integral may have any combination of them. Ultralocal divergences

may be removed using local counterterms and this results in new conformal anomalies.

Semilocal divergences may be removed by renormalising the sources, and this results in

CFT correlators that satisfy Callan-Symanzik equations with beta functions. In the case

of non-local divergences, it is the triple-K representation that is singular, not the 3-point

function. Here, the CFT correlator is the coefficient of the leading nonlocal singularity,

which satisfies all the expected conformal Ward identities. Such correlators exhibit en-

hanced symmetry: they are also invariant under dual conformal transformations where

the momenta play the role of coordinates. When both anomalies and beta functions are

present the correlators exhibit novel analytic structure containing products of logarithms

of momenta. We illustrate our discussion with numerous examples, including free field

realisations and AdS/CFT computations.
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1 Introduction

Conformal invariance and its implications for correlation functions is a well-studied sub-

ject [1]. Already from the first works on this topic it was clear that 2- and 3-point functions

are fixed by conformal invariance up to constants. For example, the 2-point and 3-point

functions of scalar operators are given by [2]

〈O(x)O(0)〉 =
CO
|x|2∆

, (1.1)

〈O1(x1)O2(x2)O3(x3)〉 =
C123

|x1−x2|∆1+∆2−∆3 |x2−x3|∆2+∆3−∆1 |x3−x1|∆3+∆1−∆2
, (1.2)

where ∆, ∆1, ∆2 and ∆3 are the conformal dimensions of the operators O, O1, O2 and O3

respectively, and CO and C123 are constants. These results were obtained using position-

space techniques and hold when the operators are at separated points.

Correlation functions should be well-defined distributions, i.e., they should have a

Fourier transform. It is well known that when the dimension of the operator is

∆ =
d

2
+ k, k = 0, 1, 2, . . . (1.3)

the 2-point function (1.1) does not have a Fourier transform because of short-distance

singularities. One needs to regularise and renormalise the correlator and this gives rise

to new conformal anomalies [3–5].1 The renormalised correlators then satisfy anomalous

conformal Ward identities. The purpose of this paper is to present a renormalised version

of the 3-point correlators (1.2). In particular, we would like to understand the analogue of

the condition (1.3), the possible new conformal anomalies that arise, and their structure.

In [7] we initiated a study of conformal field theory in momentum space.2 In par-

ticular, we started a systematic analysis of the implications of the conformal Ward iden-

tities and we presented a complete solution of the conformal Ward identities for scalar

and tensor 3-point functions. Here we will present a comprehensive discussion of regu-

larisation/renormalisation for scalar 3-point functions. The corresponding discussion for

tensorial 3-point function will be discussed in a sequel [29].

The organisation of this paper, and an overview of our plan of attack, is as follows.

We start in section 2 with the conformal Ward identities in position space, and derive their

corresponding form in momentum space. Rather than attempting to construct a well-

defined Fourier transform for the correlators (1.1) and (1.2) (which, while straightforward

for 2-point functions, is very challenging for 3-point functions [12]), we will instead simply

solve the conformal Ward identities directly in momentum space. As preparation for our

analysis of 3-point functions, in section 3 we first solve the momentum-space Ward identities

12-point functions of tensorial operators (e.g., the stress tensor) also have conformal anomalies and it is

in this context that conformal anomalies were first discovered [6].
2The initial motivation for this work was the need for momentum-space CFT correlators in the context of

holographic cosmology [8–12]; similar applications of conformal/de Sitter symmetry in cosmology have been

discussed in [13–21]. Other recent works that contain explicit computations of CFT correlation functions

in momentum space include [22–28].
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for 2-point functions, reviewing their renormalisation and the anomalies that arise in cases

where the condition (1.3) is satisfied.

Our main analysis of CFT 3-point functions then follows in section 4. In section 4.1,

we convert the conformal Ward identities from their original tensorial form to a purely

scalar form. The solution for 3-point functions can then be written as an integral of three

Bessel-K functions:

〈〈O1(p1)O2(p2)O3(p3)〉〉 ∝
∫ ∞

0
dx xd/2−1

3∏
j=1

p
∆j−d/2
j K∆j−d/2(pjx). (1.4)

This is the triple-K integral, and we review its derivation in section 4.2. (Our double-

bracket notation for momentum-space correlators simply indicates the removal of the overall

momentum-conserving delta function.) For generic values of the operator dimensions this

triple-K integral is well defined, either directly through convergence of the integral or

else indirectly through analytic continuation, leading to a correspondingly well-defined 3-

point function in momentum space. As we will show, however, there are certain special

values of the operator dimensions for which the triple-K integral is singular. In these cases

regularisation and renormalisation are required. The condition identifying these special

values is:
d

2
±
(

∆1 −
d

2

)
±
(

∆2 −
d

2

)
±
(

∆3 −
d

2

)
= −2k. (1.5)

Here, d is the spacetime dimension (though we work throughout in Euclidean signature for

simplicity) and k is any non-negative integer (i.e., k = 0, 1, 2, . . .). Any independent choice

of the ± signs can be made for each of the terms in this expression, and a different value

of k is permitted for each choice.

The remainder of section 4 then presents our renormalisation procedure. First, we

discuss the different types of singularities that can arise in the triple-K integral: these

correspond to the different choices of signs for which the singularity condition (1.5) can be

satisfied. The different types of singularity are not mutually exclusive and can arise either

separately or in various combinations. Each type of singularity is linked to the existence

of a particular type of counterterm that can be added to the CFT action: the nature of

these counterterms then reveals how to deal with each of the different types of singularity.

In general, the singularities may be either ultralocal, semilocal or nonlocal, by which we

mean that the corresponding position-space expressions have support either only when all

three insertion points coincide (ultralocal), only when two insertions coincide (semilocal),

or else without any insertions coinciding (nonlocal). In momentum space, ultralocal singu-

larities correspond to expressions that are purely analytic in the squared momenta (i.e., p2
1,

p2
2 and p2

3, where each p2
i = pi ·pi), while semilocal singularities are constructed from terms

each of which is non-analytic in only a single squared momentum. Nonlocal singularities,

on the other hand, are constructed from terms that are individually non-analytic in two or

more squared momenta. For the triple-K integral to contain such nonlocal singularities,

the singularity condition (1.5) must admit at least one solution with either two or three

plus signs. If nonlocal singularities are absent but the triple-K integral has semilocal sin-

gularities, the singularity condition (1.5) admits a solution with two minus signs and one

– 3 –
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plus sign. If instead only ultralocal singularities are present (as was the case for 2-point

functions when (1.3) was satisfied), the singularity condition (1.5) can only be satisfied

with three minus signs.

In section 4.3, we show that ultralocal singularities in the triple-K integral can be

removed through the addition of local counterterms constructed from the sources. The

corresponding renormalised 3-point functions then contain single logarithms of momentum

divided by the renormalisation scale µ. This explicit µ-dependence signals the presence of a

conformal anomaly. Interestingly, this anomaly can arise in both odd- and even-dimensional

spaces, unlike the more familiar trace anomaly that appears when we put the CFT on a

background metric. Semilocal singularities of the triple-K integral can be removed by a

renormalisation of the sources for the scalar operators. In this case we find a surprising

new result: that the corresponding renormalised 3-point correlators contain double loga-

rithms of momenta.3 These renormalised correlators obey Callan-Symanzik equations with

non-trivial beta function terms. There is no contradiction with the theory being a CFT,

however, as these beta functions are for sources that couple to composite operators, rather

than to operators appearing in the fundamental Lagrangian of the theory. Finally, nonlocal

singularities of the triple-K integral cannot be removed by local counterms: instead it is

the triple-K representation that is singular. In such cases the renormalised correlator is

simply given by the leading nonlocal singularity of the triple-K integral, which as we will

show directly satisfies the appropriate conformal Ward identities.

Section 4.3.1 discusses our regularisation procedure for the divergent triple-K integral:

this is most easily accomplished by infinitesimally shifting the dimensions of operators and

of the spacetime itself. These shifts give rise to corresponding shifts in the indices of the

Bessel-K functions that appear in the triple-K integral, as well as in the power of the

integration variable. The advantage of this regularisation scheme is that the regulated

triple-K integral preserves conformal invariance, and satisfies a set of regulated conformal

Ward identities. It is also straightforward to extract the divergences of the regulated triple-

K integral as the regulator is removed. As we will show, the divergences can be read off

from a simple series expansion of the integrand about the origin.

In section 4.3.2 we discuss the residual freedom in the regularisation scheme, corre-

sponding to the precise manner in which the operator and spacetime dimensions are shifted.

It is straightforward to convert between the different choices of scheme, and we discuss the

procedure for doing this. As the regulated triple-K integrals satisfy regulated Ward identi-

ties, by expanding in powers of the regulator one can identify the Ward identities satisfied

by the individual divergent terms in the regulated triple-K integral. These Ward identities

contain anomalous terms as we show in section 4.3.3, although we defer a full analysis

until section 5.

In section 4.3.4 we illustrate in detail our renormalisation procedure for all cases in

which the triple-K integral has only a single pole in the regulator, and present a number of

explicit examples. This case is the simplest that can arise; cases where the regulated triple-

K integral contains higher-order singularities are discussed in section 4.3.5, which again

presents a number of worked examples, postponing a complete analysis to appendix A.

3Double logs were also observed earlier in [30] in the context of AdS/CFT computations. We thank

Manuel Perez-Victoria for bringing this paper to our attention.
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In certain cases the correlation functions we consider can be realised in perturbative

conformal field theories or in free field theories such as massless scalars or fermions. When

this happens, the correlators can be calculated using perturbation theory by means of (typ-

ically multi-loop and heavily divergent) Feynman diagrams. The standard renormalisation

procedure for Feynman diagrams then proceeds loop by loop, where nested divergences are

removed at every step leading to a sequence of momentum integrals, each exhibiting only

ultralocal divergences. This renormalisation procedure differs only in execution from our

more general procedure, which is valid for any CFT (perturbative or non-perturbative), but

is otherwise completely equivalent. In both cases the divergences are removed by the ad-

dition of counterterms to the action, and these counterterms have identical form (modulo

scheme dependence). Any possible difference in the final renormalised correlation func-

tions can therefore be removed by introducing finite counterterms, meaning that the two

schemes are equivalent. However, since conformal field theories may be not perturbative,

the methods we present in this paper are much more general than Feynman diagram-based

calculations.

In section 5, we present a general first-principles discussion of the conformal Ward

identities obeyed by the renormalised correlators, including the contributions from both

beta functions and conformal anomalies. As well as confirming the Ward identities found

earlier for specific correlators, we obtain a general understanding of the relationship be-

tween the anomalous terms appearing in the Ward identities for dilatations and for special

conformal transformations. As we show, this relationship sometimes leads to additional

constraints on the renormalisation-scheme dependent constants that feature in the renor-

malised correlators.

In section 6 we discuss dual conformal invariance: the extraordinary observation that

in certain cases the CFT 3-point functions in momentum space take precisely the form

expected for a CFT 3-point function in position space (namely (1.2) with xi → pi). For

this additional momentum-space conformal symmetry to be present, the leading divergence

of the regulated triple-K integral must be nonlocal. We give a number of examples and

clarify the origin of dual conformal invariance by relating triple-K integrals to the star-

triangle duality of ordinary 1-loop massless Feynman integrals.

We summarise and present our main conclusions in section 7. Four important appen-

dices then complete our analysis. In appendix A, we derive a complete classification of

all possible singularities of the triple-K integral for any 3-point correlator. Renormalising

in a convenient choice of scheme, we arrive at explicit expressions for the renormalised

3-point functions wherever these can be read off from the singularities of the triple-K in-

tegral. Changes of renormalisation scheme are related to a corresponding non-uniqueness

of the triple-K representation as we discuss. Appendix B then elaborates on the curious

relations found between correlators of operators with ‘shadow’ dimensions ∆ and d − ∆.

Appendix C provides independent confirmation of our main results (including the presence

of double logarithms of momenta) through explicit free field calculations. Here we also

demonstrate that our renormalisation procedure yields results equivalent to those obtained

through a conventional perturbation theory analysis. Appendix D discusses triple-K in-

tegrals in a holographic context, explaining how they arise in AdS/CFT calculations of
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3-point functions. We present a complete worked example of holographic renormalisation

for the 3-point function of a marginal operator in three dimensions.

2 Conformal Ward identities

Let O1,O2, . . . ,On be conformal primary operators of dimensions ∆1,∆2, . . . ,∆n. The

dilatation Ward identity in position space reads

0 =

n∑
j=1

(
∆j + xµj

∂

∂xµj

)
〈O1(x1) . . .On(xn)〉. (2.1)

This Ward identity tells us that the correlator is a homogeneous function of the positions

of degree −∆t, where the total dimension ∆t =
∑

∆j .

The Ward identity associated with special conformal transformations for n-point func-

tions is

0 =
n∑
j=1

(
2∆jx

µ
j + 2xµj x

ν
j

∂

∂xνj
− x2

j

∂

∂xjµ

)
〈O1(x1) . . .On(xn)〉, (2.2)

where µ is a free Lorentz index. For tensorial operators an additional term appears, see [7].

In position space, the special conformal Ward identity is a first-order linear PDE. It can

be solved by using the fact that special conformal transformations can be obtained by

combining inversions and translations, and then analysing the implications of inversions.

Here we will instead solve the special conformal Ward identity directly.

In momentum space, translational invariance implies that we can pull out a momentum-

conserving delta function,

〈O1(p1) · · · On(pn)〉 = (2π)dδ(p1 + · · ·+ pn)〈〈O1(p1) · · · On(pn)〉〉, (2.3)

thereby defining the reduced matrix element which we denote with double brackets.4 The

Ward identities for the reduced matrix elements are then

0 =

−(n− 1)d+

n∑
j=1

∆j −
n−1∑
j=1

pµj
∂

∂pµj

 〈〈O1(p1) . . .On(pn)〉〉, (2.4)

0 =

n−1∑
j=1

(
2(∆j − d)

∂

∂pjµ
− 2pνj

∂

∂pνj

∂

∂pjµ
+ pµj

∂

∂pνj

∂

∂pjν

)
〈〈O1(p1) . . .On(pn)〉〉, (2.5)

where we used the momentum-conserving delta function to express pn in terms of the other

momenta.

The dilatation Ward identity (2.4) is again easy to deal with: it tells us that the

reduced matrix elements are homogeneous functions of degree ∆t − (n− 1)d. The special

conformal Ward identity (2.5) is now a second-order linear PDE (while it was first-order

in position space), so at first sight going to momentum space appears to make the problem

more difficult. However, momentum space has one advantage: any tensorial object can

4In some of the literature, for example in [14, 21], the reduced matrix elements are denoted by 〈 〉′.
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be expanded in a basis constructed out of momenta and the metric. Let us denote the

differential operator on the right-hand side of (2.5) as Kµ, so that the conformal Ward

identities may be compactly expressed as

Kµ〈〈O1(p1) . . .On(pn)〉〉 = 0. (2.6)

Since Kµ carries one free Lorentz index, Kµ can be decomposed into a basis of independent

vectors pµj , j = 1, 2, . . . , n− 1, i.e.,

Kµ = pµ1K1 + . . .+ pµn−1Kn−1. (2.7)

The Ward identity (2.5) thus gives rise to (n− 1) scalar equations,

Kj〈〈O1(p1) . . .On(pn)〉〉 = 0, j = 1, 2, . . . , n− 1. (2.8)

Altogether the dilatation and special conformal Ward identities constitute n differential

equations. A Poincaré-invariant n-point function of scalar operators depends on n(n−1)/2

kinematic variables, so after imposing the conformal Ward identities, the correlator should

be a function of n(n− 3)/2 variables. This agrees with position-space considerations: the

number of conformal cross-ratios in n variables in d > 2 dimensions is n(n− 3)/2.

3 2-point functions

As a warm-up exercise, in this section we discuss CFT 2-point functions. We will use this

section to establish the benchmarks we want to achieve for 3-point functions.

Poincaré symmetry implies that the correlator depends only on the magnitude of a

single vector p1 = −p2 ≡ p and both the dilatation and special conformal Ward identi-

ties (2.4) and (2.5) simplify to ordinary differential equations.

We start by discussing the implications of special conformal transformations. The spe-

cial conformal Ward identity is indeed proportional to pµ (after using d/dpµ = (pµ/p)d/dp)

and the corresponding scalar equation reads

0 = K〈〈O1(p)O2(−p)〉〉 =

[
d2

dp2
+
d+ 1− 2∆1

p

d

dp

]
〈〈O1(p)O2(−p)〉〉. (3.1)

As we shall see, the differential operator K will reappear later in our discussion of the

conformal Ward identities for 3-point functions. Note also that

K =
1

pd+1−2∆1

d

dp

(
pd+1−2∆1

d

dp

)
(3.2)

which, when acting on spherically symmetric configurations, is equal to the box operator

in Rd+2−2∆1 with p the radial coordinate.

The general solution of (3.1) is

〈〈O1(p)O2(−p)〉〉 = c0p
2∆1−d + c1, (3.3)

– 7 –
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where c0 and c1 are integration constants. We still need to impose the dilatation Ward

identity,

D〈〈O1(p)O2(−p)〉〉 =

[
d−∆1 −∆2 + p

d

dp

]
〈〈O1(p)O2(−p)〉〉 = 0. (3.4)

Inserting (3.3) we find that5

∆1 = ∆2 ≡ ∆, c1 = 0. (3.5)

We thus recover the well-known fact that only operators with the same dimension have

non-zero 2-point function in CFT. The general form of the 2-point function is

〈〈O1(p)O2(−p)〉〉 = c∆p
2∆−d, (3.6)

where we renamed c0 → c∆.

For generic dimension ∆ this is the end of the story. Something special happens

however when

∆ =
d

2
+ k, k = 0, 1, 2, . . . (3.7)

When this condition holds,

〈〈O1(p)O2(−p)〉〉 = c∆p
2k. (3.8)

This correlator is local,6 i.e., it has support only at x2 = 0, since if we Fourier transform

to position space it is proportional to (derivatives of) a delta function,

〈O(x)O(0)〉 = c∆(−�)kδ(x). (3.9)

When the dimension of the operator is (3.7) there is something else special: there is a new

local term of dimension d, namely

φ�kφ, (3.10)

where φ is the source of O. This term can appear as a new counterterm (and as we shall see

below, as a new contribution to the trace of the energy momentum, i.e., a new conformal

anomaly [5]). Adding the counterterm (3.10) with appropriate (finite) coefficient one may

arrange to cancel the right-hand side of (3.9), 〈O(x)O(0)〉 = 0. In a unitary theory, this

implies that O = 0 an an operator. However, we know there are CFTs containing non-

trivial operators of dimension ∆ = d/2 + k. For example, all half-BPS scalar operators of

N = 4 SYM in d = 4 have dimensions of this form.

5In the special case ∆1 = d/2 the general solution of (3.1) is 〈〈O1(p)O2(−p)〉〉 = c0 + c1 ln p and then

inserting in (3.4) we find (3.5).
6In position space the problem is that the standard expression, 1/x2∆, does not have a Fourier transform

when ∆ = d/2 + k. Indeed, using∫
ddx e−ip·x

1

x2∆
=
πd/22d−2∆Γ

(
d−2∆

2

)
Γ(∆)

p2∆−d

we see that the gamma function has a pole when ∆ = d/2+k. One may proceed by differential regularisation

to obtain the renormalised correlator. The final result (upon taking the Fourier transform, which now exists)

agrees with (3.23).
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What happens in these special cases is that there are new UV infinities and we need

to renormalise theory. As we shall see, the renormalised correlators will be non-trivial.

However, the theory will now have a conformal anomaly: the conformal Ward identities will

be violated by local terms. Our strategy will be the following. First, we will regularise the

theory and solve the conformal Ward identities in the regulated theory. We will then add

counterterms to remove the UV infinities and remove the regulator to obtain renormalised

correlators.

To proceed we need to discuss our regularisation. We want to analyse the problem in

complete generality, i.e., with no reference to any specific model, and the only parameters in

our disposal are the space-time dimension and the dimensions of the operators. We proceed

by using a dimensional regularisation that also shifts the dimensions of the operators as

follows,

d 7→ d̃ = d+ 2uε, ∆ 7→ ∆̃ = ∆ + (u+ v)ε, (3.11)

where u and v are arbitrary real numbers and ε denotes a regulator. More generally, one

may shift each dimension by a different amount but we found that this scheme is sufficient

for the discussion up to 3-point functions. We will discuss special choices of u and v below.

The solution of the conformal Ward identities in the regulated theory is exactly the

same as in (3.6) (with d and ∆ replaced by d̃ and ∆̃) but the integration constant c∆ can

depend on the regulator,

〈〈O(p)O(−p)〉〉reg = c∆(ε, u, v)p2∆̃−d̃ = c∆(ε, u, v)p2∆−d+2vε. (3.12)

In dimensional regularisation, UV infinities appear as poles in ε. In local QFT, UV infinities

should be local and this implies that c∆ can have at most a first-order pole,

c∆(ε, u, v) =
c

(−1)
∆ (u, v)

ε
+ c

(0)
∆ (u, v) +O(ε). (3.13)

Inserting this in (3.12) and expanding in ε we find,

〈〈O(p)O(−p)〉〉reg = p2∆−d

[
c

(−1)
∆

ε
+ c

(−1)
∆ v ln p2 + c

(0)
∆ +O(ε)

]
. (3.14)

The generators of dilatations and special conformal transformations in the regulated

theory are related to those of the original as follows,

D̃ = D − 2vε, K̃ = K − 2vε
1

p

d

dp
. (3.15)

Notice that in the v = 0 scheme the generators are not corrected. However, for this

scheme the 2-point function itself is not regulated so this is not a useful scheme for 2-point

functions. This will change when we move to 3-point functions and it will turn out that

for scalar 3-point functions this is a convenient scheme. From now on we will stay with

a general (u, v) scheme. The fact that the regulated correlator (3.14) is annihilated by D̃

and K̃ implies that the terms that appear in its ε expansion will satisfy related equations.
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In particular, the leading-order term in the ε expansion should satisfy the Ward identities

of the un-regulated theory which we have already solved.

Let us start with the generic case, ∆ 6= d/2 + k. In this case there are no true UV

infinities and our earlier discussion shows that (3.6) is the correct 2-point function. It is

instructive however to still discuss it starting from the regulated theory. The regulated

2-point function (3.14) has a 1/ε singularity. However, its coefficient is nonlocal and thus

it cannot be removed by a local counterterm. On the other hand, it satisfies the correct

(non-anomalous) Ward identities,

D̃〈〈O(p)O(−p)〉〉reg = 0 ⇒ Dp2∆−d = 0 (3.16)

and the same with D̃ and D replaced by K̃ and K. It follows that p2∆−d is the correct 2-

point function. In a sense the leading-order pole is ‘fake’: we could remove it by multiplying

c0(ε, u, v) by ε. This discussion may look somewhat superfluous but we will find an exactly

analogous situation when we discuss 3-point functions

Let us now discuss the case ∆ = d/2+k. Here, the leading-order divergence is local and

satisfies the Ward identities. This is precisely as expected on general grounds: divergences

should be local and should be invariant under the original symmetries of the theory. With

φ again denoting the source for the operator O, the regulated action reads

S[φ] = SCFT +

∫
dd+2uεx φO. (3.17)

If Z denotes the generating functional of the regulated theory,

Z[φ] =

∫
DΦ e−S[φ], (3.18)

then

〈O(x1)O(x2)〉reg =
δ2Z

δφ(x1)δφ(x2)

∣∣∣∣
φ=0

. (3.19)

The divergence in the 2-point function (3.14) can be removed by the addition of the coun-

terterm action

Sct = act(ε, u, v)

∫
dd+2uεx µ2vεφ�kφ, (3.20)

where act(ε, u, v) is a counterterm constant. As is standard in dimensional regularisa-

tion, the renormalisation scale µ appears for dimensional reasons. In the regularisation

scheme (3.11), φ has scaling dimension d−∆ + (u− v)ε and this implies that µ enters with

power 2vε.

The contribution from the counterterm action reads

〈〈O(p)O(−p)〉〉ct = −2act(ε, u, v)(−p2)kµ2vε (3.21)

and cancels the divergence in (3.14) if

act(ε, u, v) =
(−1)k

2

[
c

(−1)
∆ (u, v)

ε
+ a0(u, v) +O(ε)

]
, (3.22)
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where a0 is an arbitrary constant. We can now take the limit ε → 0 to obtain the renor-

malised correlation function

〈〈O(p)O(−p)〉〉 = p2k

[
c

(−1)
∆ v ln

p2

µ2
+ c

(0)
∆ − a0

]
= p2k

[
c∆ ln

p2

µ2
+ c′∆

]
, (3.23)

where c∆ is the actual normalisation of the 2-point function and the combination c′∆ =

(c
(0)
∆ − a0) is scheme dependent, since it can be absorbed by a redefinition of the scale µ.

The renormalised 2-point function (3.23) is however scale dependent,

A2 = µ
∂

∂µ
〈〈O(p)O(−p)〉〉 = −2c∆p

2k. (3.24)

There is thus a conformal anomaly,

µ
∂

∂µ
W = A, (3.25)

where W = lnZ is the generating functional of connected correlation functions and A is

the conformal anomaly [5],

A =

∫
ddxAkφ�kφ+ · · · (3.26)

where Ak is the anomaly coefficient (which can be read off from (3.24)), the sum is over

all operators of dimension ∆ = d/2 + k, and the dots indicate terms higher order in the

sources and terms that are associated with non-scalar operators (such as the more often

discussed terms that depend only on the background metric). In the next section we will

compute the terms cubic in the sources.

4 3-point functions

We now present the analogue discussion for scalar 3-point functions. We start with the

conformal Ward identities and their solution for generic conformal dimensions, then discuss

the special cases where renormalisation may be required. We illustrate our discussion

throughout with explicit examples.

4.1 Ward identities

Poincaré invariance implies that 3-point functions can be expressed in terms of three vari-

ables, which we choose to be the magnitudes of the three momenta,

pj = |pj |, j = 1, 2, 3. (4.1)

Using the chain rule and noting that p3 = −p1 − p2, we find

∂

∂p1µ
=
pµ1
p1

∂

∂p1
+
pµ1 + pµ2
p3

∂

∂p3
. (4.2)

The dilatation Ward identity (2.4) may then be processed to become

0 = D〈〈O1(p1)O2(p2)O3(p3)〉〉 =

2d−∆t +

3∑
j=1

pj
∂

∂pj

 〈〈O1(p1)O2(p2)O3(p3)〉〉, (4.3)
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where ∆t = ∆1 + ∆2 + ∆3. This equation shows that the correlation function is a homo-

geneous function of degree ∆t − 2d, which implies that

〈〈O1(p1)O2(p2)O3(p3)〉〉 = p∆t−2d
1 F

(
p2

p1
,
p3

p1

)
, (4.4)

where F is a general function of two variables.

Let us now discuss the special conformal Ward identity (2.5). As noted in section 2,

it implies two scalar equations. The first one reads

0 = K1〈〈O1(p1)O2(p2)O3(p3)〉〉

=

[
∂2

∂p2
1

+
∂2

∂p2
3

+
2p1

p3

∂2

∂p1∂p3
+

2p2

p3

∂2

∂p2∂p3
− 2∆1 − d− 1

p1

∂

∂p1

−2∆1 + 2∆2 − 3d− 1

p3

∂

∂p3

]
〈〈O1(p1)O2(p2)O3(p3)〉〉, (4.5)

while the second equation, K2〈〈O1(p1)O2(p2)O3(p3)〉〉 = 0, is obtained from this one by

substituting p1 ↔ p2 and ∆1 ↔ ∆2.

Let us consider the combinations

K13 = K1 −
2

p3

∂

∂p3
D, K23 = K2 −

2

p3

∂

∂p3
D. (4.6)

The effect of the dilatation terms is to remove the terms with mixed derivatives in (4.5).

In this way we arrive at the particularly simple set of equations discussed in [7],

0 = K13〈〈O1(p1)O2(p2)O3(p3)〉〉 = K23〈〈O1(p1)O2(p2)O3(p3)〉〉, (4.7)

where

Kij = Ki−Kj , (4.8)

Ki =
∂2

∂p2
i

− 2∆i − d− 1

pi

∂

∂pi
, (4.9)

for i, j = 1, 2, 3. Note that Ki is the same operator that appeared in our analysis of 2-point

functions, see (3.1).

4.2 General solution

The system of the dilatation and special conformal Ward identities is equivalent to that

defining the generalised hypergeometric function of two variables Appell F4 [7, 27] and

from this fact one can infer general properties such as the uniqueness of the solution. An

explicit form of the general solution is given in terms of triple-K integrals [7],

〈〈O1(p1)O2(p2)O3(p3)〉〉 = c123Iα{β1β2β3}(p1, p2, p3), (4.10)

where c123 is an integration constant and

Iα{β1β2β3}(p1, p2, p3) =

∫ ∞
0

dx xα
3∏
j=1

p
βj
j Kβj (pjx). (4.11)
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is the triple-K integral. Here Kν(x) denotes the modified Bessel function of the second

kind (or the Bessel-K function for short), while the parameters

α =
d

2
− 1, βj = ∆j −

d

2
, j = 1, 2, 3. (4.12)

Before we proceed to use this result, let us present an elementary derivation of it. We

will start by solving (4.7) using separation of variables,

〈〈O1(p1)O2(p2)O3(p3)〉〉 = f1(p1)f2(p2)f3(p3). (4.13)

Inserting this ansatz in (4.7), we obtain

K1f1

f1
=
K2f2

f2
=
K3f3

f3
= x2, (4.14)

where x2 is a constant since the equalities hold for arbitrary pi. The equation Kifi = x2fi
is equivalent to Bessel’s equation and has the general solution

fi(pi) = pβii
(
aKKβi(pix) + aIIβi(pix)

)
. (4.15)

The integrand of the triple-K integral is thus itself a solution of the special conformal Ward

identities.

Now, given a solution of the special conformal Ward identities f(p1, p2, p3) =
∏
i fi(pi),

we can immediately construct a solution of both the special conformal and the dilatation

Ward identities by taking the Mellin transform,∫ ∞
0

dxxα−βtf(p1x, p2x, p3x). (4.16)

where βt = β1 + β2 + β3. To see this, note that

3∑
i=1

pi
∂

∂pi
f(p1x, p2x, p3x) = x

∂

∂x
f(p1x, p2x, p3x) (4.17)

and then use integration by parts. In order for this Mellin transform to converge, at least

one of the fi(pi) must be a Bessel-K function, as Bessel-I grows exponentially at large x.

A closer analysis [7, 27] (see also appendix A.3) reveals that in fact all three fi(pi) must

be Bessel-K functions, as otherwise the resulting 3-point function becomes singular for

collinear momentum configurations (e.g., p1 + p2 = p3).

It remains to discuss convergence at x = 0. As it stands, the triple-K integral converges

only if

α > |β1|+ |β2|+ |β3| − 1, p1, p2, p3 > 0. (4.18)

However, one can extend the triple-K integral beyond this region by means of analytic

continuation. If one considers the triple-K integral as a function of its parameters with

momenta fixed, then analytic continuation can be used in order to define the triple-K

everywhere, provided

α+ 1± β1 ± β2 ± β3 6= −2k, (4.19)

– 13 –



J
H
E
P
0
3
(
2
0
1
6
)
0
6
6

for any choice (of independent) signs and non-negative integer k. When the equality

holds we recover (1.5) and the triple-K integral contains poles (as we will discuss in detail

shortly). In such cases a non-trivial renormalisation of the correlation function (4.10) may

be required.

In summary, when the dimensions are generic, meaning (1.5) is not satisfied for any

choice of signs and non-negative integer k, the solution of the dilatation and special confor-

mal Ward identities is (4.10). This is then the analogue of (3.6) for 3-point functions. We

will shortly discuss in detail the special cases but first a couple of examples. In these exam-

ples, and those we consider later, it will often be useful to label operators and their sources

according to their (bare) dimensions, as indicated in square brackets. In this notation an

operator of dimension ∆ and its corresponding source are thus O[∆] and φ[d−∆].

Example 1: d = 4 and ∆1 = ∆2 = ∆3 = 5/2.

This is an example of a finite correlation function expressible in terms of elementary

functions. The 3-point function is represented by a triple-K integral

〈〈O[5/2](p1)O[5/2](p2)O[5/2](p3)〉〉 = c (p1p2p3)
1
2

∫ ∞
0

dx xK 1
2
(p1x)K 1

2
(p2x)K 1

2
(p3x), (4.20)

where c is the integration constant. All Bessel K functions with half-integral indices are

elementary. In this case the integral is convergent and evaluates to

〈〈O[5/2](p1)O[5/2](p2)O[5/2](p3)〉〉 =
cπ2

2
3
2

1√
p1 + p2 + p3

. (4.21)

Example 2: d = 4 and ∆1 = ∆2 = ∆3 = 2.

In this case the 3-point function is given by

〈〈O[2](p1)O[2](p2)O[2](p3)〉〉 = cI1{000} (4.22)

It turns that this integral has already been computed in the literature [31, 32] and is given by

I1{000} =
1

2
√
−J2

[
π2

6
− 2 ln

p1

p3
ln
p2

p3
+ ln

(
−Xp2

p3

)
ln

(
−Y p1

p3

)
− Li2

(
−Xp2

p3

)
− Li2

(
−Y p1

p3

)]
. (4.23)

where

J2 = (p1 + p2 − p3)(p1 − p2 + p3)(−p1 + p2 + p3)(p1 + p2 + p3), (4.24)

X =
p2

1 − p2
2 − p2

3 +
√
−J2

2p2p3
, Y =

p2
2 − p2

1 − p2
3 +
√
−J2

2p1p3
. (4.25)

As will be discussed in [33] (see also [7]), triple-K integrals with integral indices can be

obtained from this integral using a recursion method.
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Example 3: d = 4 and ∆1 = ∆2 = ∆3 = 7/2.

This is an example of a finite correlation function expressible in terms of a triple-K

integral which diverges but nevertheless possesses a unique analytic continuation. The

3-point function is represented by

〈〈O[7/2](p1)O[7/2](p2)O[7/2](p3)〉〉bare = c I1,{3/2,3/2,3/2} (4.26)

= c (p1p2p3)
3
2

∫ ∞
0

dx xK 3
2
(p1x)K 3

2
(p2x)K 3

2
(p3x).

In this case the condition (4.18) is violated so the integral does not converge. How-

ever, (4.19) does hold for all choices of signs and therefore the integral can be defined

by means of analytic continuation. In such cases the dimensionally regulated integral is

actually finite.

We discuss dimensional regularisation below, in section 4.3.1. The integral (4.26) can

be regulated in any (u, v)-regularisation scheme (see (4.36)). However, since the Bessel

functions are elementary when their orders are half integers, it is convenient to use the

(1, 0)-scheme,

〈〈O[7/2](p1)O[7/2](p2)O[7/2](p3)〉〉reg = c (p1p2p3)
3
2

∫ ∞
0

dx x1+εK 3
2
(p1x)K 3

2
(p2x)K 3

2
(p3x)

= −
cπ

3
2 (3− 2ε)Γ

(
−5

2 + ε
)

16
√

2(p1 + p2 + p3)
1
2

+ε

[
4a3

123 − (10− 4ε)a123b123 + (5− 12ε+ 4ε2)c123

]
, (4.27)

where

a123 = p1 + p2 + p3, b123 = p1p2 + p1p3 + p2p3, c123 = p1p2p3. (4.28)

This expression is valid for a range of ε, not necessarily close to zero. It has a finite ε→ 0

limit,

〈〈O[7/2](p1)O[7/2](p2)O[7/2](p3)〉〉 =
cπ2

10
√

2

4a3
123 − 10a123b123 + 5c123√

p1 + p2 + p3
, (4.29)

as anticipated. This 3-point function satisfies all conformal Ward identities.

In summary, if all the beta indices are half-integral the triple-K integrals can be com-

puted in terms of elementary functions and if they are integral they are given in terms of

expressions involving dilogarithms. If the beta indices are generic, the triple-K integral

does not appear to be reducible to a more explicit expression.

4.3 Renormalisation

We will now focus on the special cases where the triple-K integral is singular, i.e., we

will consider the cases where the dimensions of operators satisfy one or more of the the

following conditions,

α+ 1 + σ1β1 + σ2β2 + σ3β3 = −2kσ1σ2σ3 (4.30)
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where σi ∈ {±}, i = 1, 2, 3 and the kσ1σ2σ3 are non-negative integers. There are four

conditions (up to permutations) depending on the relative number of minus and plus signs.

We will call these conditions the (−−−), (−−+), (−++) and (+++) conditions. In general

the condition (4.30) can be satisfied in more than one way, with a different number of

positive and negative signs and different values of associated non-negative integers kσ1σ2σ3 .

We will discuss all possibilities below.

When these conditions hold there are new terms of dimension d that appear (as was the

case in our discussion of 2-point functions of operators of dimension d/2 + k in section 3),

and the nature of these terms gives a hint of how to deal with each of the singularities. Let

us discuss each case in turn.

(− − −)-condition: ∆1 + ∆2 + ∆3 = 2d + 2k−−−. In this case the new terms of

dimension d have the following schematic form

�k1φ1�
k2φ2�

k3φ3, (4.31)

where the φi are sources for the operators Oi of dimension ∆i, and k1 + k2 + k3 = k−−−.

Such terms are a direct analogue of (3.10); they may appear as counterterms and also as

new conformal anomalies. The fact that new conformal anomalies may appear when the

theory has operators with dimensions that satisfy this relation was anticipated in [5, 30].

We thus expect that when such singularities are present one would have to renormalise

by adding (4.31) with the appropriate coefficient and there would be an associated confor-

mal anomaly. As we shall see such singularities are linked with logarithmic terms in the

renormalised 3-point functions, similar to what we saw for 2-point functions.

(− − +)-condition: ∆1 + ∆2 − ∆3 = d+ 2k−−+. In this case (and similarly for its

permutations), the new terms of dimension d have the following schematic form

�k1φ1�
k2φ2�

k3O3, (4.32)

where k1 + k2 + k3 = k−−+. This term can appear as a counterterm (with appropriate

singular coefficient act) and thus in this case we renormalise the source of O3,

φ3 → φ3 + act�
k3(�k1φ1�

k2φ2). (4.33)

We then expect the renormalised correlators to satisfy a Callan-Symanzik equation with

beta function terms. These beta functions are for sources that couple to composite op-

erators and not for couplings that appear in the Lagrangian of the theory, so there is no

contradiction here with the fact that we are discussing CFT correlation functions. As

we shall see, singularities of this type are linked with double logarithms in correlation

functions. The existence of such double-log terms, noted also in [30], is one of our most

surprising findings, and will be discussed further in the conclusions.

(− + +)-condition: ∆1 − ∆2 − ∆3 = 2k−++. In this case7 (and similarly for its

permutations), the following term has a classical dimension d,

�k1φ1�
k2O2�

k3O3, (4.34)

7Note that when k−++ = 0, we have extremal correlators which were conjectured not to renomalise [34].
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where k1 + k2 + k3 = k−++. In other words, classically O1 has the same dimension8 as

�k1(�k2O2�k3O3). Such a term cannot act as a counterterm for the 3-point function. As

will shall see, in such cases it is the representation of the 3-point function in terms of the

triple-K integrals that is singular, not the correlator itself. The conformal Ward identities

have a finite non-anomalous solution.

(+ + +)-condition: ∆1 + ∆2 + ∆3 = d − 2k+++. This is similar to the previous

case. The operator �k1O1�k2O2�k3O3 is classically marginal and the same comments as

in the case of (−++)-condition apply. In particular, this term cannot act as a counterterm

and it is again the representation of the 3-point function that is singular. The conformal

Ward identities have a finite non-anomalous solution.

4.3.1 Regularisation

We will regularise using the dimensional regularisation (3.11). In the regulated theory the

solution of the conformal Ward identities is again given by (4.10) but with the indices

shifted, and the integration constant depends now on the regularisation parameters,

〈〈O1(p1)O2(p2)O3(p3)〉〉reg = c123(ε, u, v)Iα̃,{β̃i}(p1, p2, p3), (4.35)

where

α̃ = α+ uε, β̃i = βi + vε, i = 1, 2, 3. (4.36)

We see from these expressions that v = 0 is special in that the indices of the Bessel functions

remain the same. This makes the analysis of the singularity structure of the triple-K

integral easier, as we discuss in appendix A. However, as mentioned in the previous section,

this scheme does not regulate 2-point functions and as such it is not a good scheme for

regulating tensorial 3-point functions involving the energy momentum tensor and conserved

current. In these cases, the Weyl and diffeomorphism/conservation Ward identities relate

2- and 3-point functions (see for example [7]). For this reason we will continue to work

in the general (u, v) scheme. In section 4.3.2 we will discuss how to go from one scheme

to another.

The regulated triple-K integral Iα̃,{β̃i} is well defined since for nonzero ε the condi-

tion (4.30) (with α→ α̃, βi → β̃i) does not hold. The integral is nevertheless still singular

as ε→ 0, however, and our task is to extract the singularities and understand how to deal

with them. This can be achieved in an elementary fashion as follows.9 Since the integral

converges at infinity even when ε → 0, all singularities come from the x = 0 region. We

therefore split the integral into an upper and a lower piece,

Iα̃,{β̃i} =

∫ µ−1

0
dxxα̃

3∏
j=1

p
β̃j
j Kβ̃j

(pjx) +

∫ ∞
µ−1

dxxα̃
3∏
j=1

p
β̃j
j Kβ̃j

(pjx), (4.37)

8Note however that quantum mechanically the dimension of the product of two operators may not be the

sum of their dimensions, as we are using here in asserting that the two operators have the same dimension.
9In principle, the singularities of the regulated triple-K integral could also be found by converting to

the massless triangle Feynman integral representation following appendix A.3 of [7] then using the double

Mellin-Barnes representation in equation (2.5) of [31] (see also [35]).
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where µ is an arbitrary scale which plays the role of the renormalisation scale. Note that

by construction the full answer for Iα̃,{β̃i} is independent of µ.

We now focus on the lower part (which contains the UV infinities) and note that for

small x, the integrand has a Fröbenius series

xα̃
3∏
j=1

p
β̃j
j Kβ̃j

(pjx) =
∑
η

cηx
η. (4.38)

The exponents η and the coefficients cη follow from the standard series expansions for

Bessel functions. After some manipulation we find

xα̃
3∏
j=1

p
β̃j
j Kβ̃j

(pjx)

=
∑

{σj=±1}

∞∑
{kj}=0

(
3∏
i=1

(−1)ki

2σiβ̃i+2ki+1ki!
Γ(−ki − σiβ̃i)p(1+σi)β̃i+2ki

i

)
xα̃+

∑
j(σj β̃j+2kj), (4.39)

where we used the fact that we work in a general (u, v) scheme so neither α̃ nor β̃i are

integers. The sums here run over all values of the σj and all non-negative integer values of

the kj (where j = 1, 2, 3). It follows that

η = α̃+
∑
j

(
σj β̃j + 2kj

)
= −1 + 2

−kσ1σ2σ3 +
∑
j

kj

+ ε

u+ v
∑
j

σj

 , (4.40)

where in the second equality we used (4.30).

Recall that in momentum space, 3-point functions are ultralocal if they depend an-

alytically on all momenta (i.e., they depend on positive integral powers of all momenta

squared), semilocal if they depend analytically in two of the three momenta (they depend

on positive integral powers of two of the momenta squared) and otherwise they are nonlo-

cal. From the form of the expansion (4.39), we see that terms for which {σi} = {−,−,−}
are ultralocal, terms for which {σi} = {−,−,+} (and permutations) are semilocal, while

terms for which {σi} = {−,+,+} (and permutations) or {σi} = {+,+,+} are generically

nonlocal.10

Inserting (4.38) in (4.37) we find,

Iα̃,{β̃i} =
∑
η

cη
µ−(η+1)

η + 1
+

∫ ∞
µ−1

dxxα̃
3∏
i=1

pβ̃ii Kβ̃i
(pix), (4.41)

Note that the lower limit of integration x = 0 gives a vanishing contribution: the integral

Iα̃,{β̃i} is defined by means of analytic continuation from the region where it converges

(i.e., (4.18) with α→ α̃, βi → β̃i) and in this region the lower limit vanishes (since η > −1

in this region).

10Note also that sending β̃i → −β̃i is equivalent to sending σi → −σi (i.e., exchanging the singularity

type), modulo a factor of p2β̃i
i . This transformation replaces an operator with its shadow, ∆i → d − ∆i,

see appendix B.
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We will now analyse the structure of singularities using the following two facts: (i) the

upper part of the integral is finite and so can only contribute at order ε0 and higher, and

(ii), the divergent terms cannot have any dependence on µ. This follows from the fact that

the total integral (i.e., upper plus lower part) is independent of the arbitrary scale µ, and

this must remain true when the integral is expanded term by term in powers of ε.

These two facts allow us to determine the form of the divergent terms, as we now

discuss. The first implication is that the divergent terms are those with η = −1 + wε for

some finite w. Indeed, suppose η = m + wε for m 6= −1. Then 1/(η + 1) is regular as

ε → 0 and the singularity must come from the coefficients cη. However, such singularities

would be µ dependent since µ−(η+1) = µ−(m+1)(1 +O(ε)). Cancelling this leading order µ

dependence requires m = −1. We thus conclude (using (4.40)) that∑
i

ki = kσ1σ2σ3 , w = {u− 3v, u− v, u+ v, u+ 3v}. (4.42)

In other words there are four possibilities for w depending on the signs required to sat-

isfy (4.30). This condition may be satisfied for different signs (and different integers kσ1σ2σ3)

and the number of such conditions that are satisfied simultaneously determines the singu-

larity structure of the integral.

Suppose (4.30) has only a single solution. Then

c−1+wε
µ−wε

wε
= c−1+wε

(
1

wε
− lnµ+O(ε)

)
. (4.43)

In this case, the coefficient c−1+wε must be finite as the lnµ piece cannot be associated

with a divergent power of ε. On the other hand, if the condition is satisfied in multiple

ways the coefficients c−1+wε may be singular. In fact if there are s conditions satisfied

simultaneously, the c−1+wε can diverge as ε−s+1, so the triple-K integral can diverge as

ε−s. Since there are at most four different values of w (in this regularisation scheme) the

most singular behaviour is ε−4.

Let us first discuss the case where there are two simultaneous solutions to (4.30).

Expanding

c−1+wε =
c

(−1)
−1+wε

ε
+ c

(0)
−1+wε +O(ε), (4.44)

we find∑
w

c−1+wε
µ−wε

wε
=
∑
w

(
c

(−1)
−1+wε

ε
+ c

(0)
−1+wε +O(ε)

)(
1

wε
− lnµ+O(ε)

)
(4.45)

=
1

ε2

(
c

(−1)
−1+w1ε

w1
+
c

(−1)
−1+w2ε

w2

)

+
1

ε

[(
c

(0)
−1+w1ε

w1
+
c

(0)
−1+w2ε

w2

)
−
(
c

(−1)
−1+w1ε

+ c
(−1)
−1+w2ε

)
lnµ

]
+O(ε0).

For the µ-dependence of the divergent terms to cancel then requires c
(−1)
−1+w1ε

+ c
(−1)
−1+w2ε

= 0.

The leading ε−2 divergence of the triple-K integral then carries a coefficient
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c
(−1)
−1+w1ε

(w2 − w1)/w1w2. This case occurs for example when we have both {σi} = {−−−}
and {−−+} singularities, for which w equals u− 3v and u− v respectively. Here, the ε−2

divergence of the triple-K integral appears with a coefficient

c
(−1)
−1+(u−3v)ε

2v

(u− v)(u− 3v)
, (4.46)

giving rise to additional divergences at u = v and u = 3v if c
(−1)
−1+(u−3v)ε is nonzero at these

points. Of course, it is still possible that c
(−1)
−1+wε = 0, i.e., the coefficients c−1+wε are finite

even when multiple conditions hold. In such cases the singularity is of first order.

In the general case where solutions of (4.30) exist for multiple values of w, expanding∑
w

c−1+wε
µ−wε

wε
=
∑
w

c−1+wε

(
1

wε
− lnµ+

1

2
wε ln2 µ+ . . .

)
(4.47)

we see that for the divergent part of the triple-K integral to be µ-independent requires∑
w

c−1+wε(wε)
m = O(ε0), (4.48)

for all m≥0, in order for the coefficient of (ln µ)m+1 to vanish. Expanding the coefficients as

c−1+wε =
∑
s

c
(−s)
−1+wε

1

εs
, (4.49)

we obtain the nontrivial equations∑
w

c
(−s)
−1+wεw

m = 0, 0 ≤ m ≤ s− 1. (4.50)

As there are s equations for c
(−s)
−1+wε, to obtain a nontrivial solution requires that there are

at least s+ 1 coefficients c
(−s)
−1+wε. Thus, if the leading divergence of the c−1+wε is ε−(s−1),

there must be at least s different values of w.

With all µ-dependent divergences cancelling, the remaining divergent part of the triple-

K integral is then simply

Idiv
α̃,{β̃i}

=
∑
w

c−1+wε

wε
+O(ε0). (4.51)

For a specific triple-K integral, (4.51) is straightforward to evaluate. In particular, there is

no need to evaluate the triple-K integral itself, only the series expansion of its integrand.

We can therefore compute the divergent part of any triple-K integral, in any (u, v)-scheme,

through this procedure.

Before we proceed, we illustrate how to compute (4.51) using an example.

Example 4: divergence of regulated triple-K integral for ∆1 = 4, ∆2 = ∆3 = 3 in

d = 4.

Here α = 1 while β1 = 2 and β2 = β3 = 1. Thus, the (−−−)-condition is satisfied with

k−−− = 1 and the (−−+) and (−+−) conditions are satisfied with k−−+ = k−+− = 0.
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Expanding the integrand of the regulated triple-K integral, I1+uε,{2+vε,1+vε,1+vε}, the

terms of the form x−1+wε are

x1+uεp2+vε
1 p1+vε

2 p1+vε
3 K2+vε(p1x)K1+vε(p2x)K1+vε(p3x) =

2−1+vεΓ(−1− vε)Γ(1 + vε)Γ(2 + vε)(p2+2vε
2 + p2+2vε

3 )x−1+(u−v)ε

− 2−1+3vεΓ2(1 + vε)Γ(2 + vε)

vε(1 + vε)

(
p2

2 + p2
3 + vε(p2

1 + p2
2 + p2

3)
)
x−1+(u−3v)ε + . . . (4.52)

The divergent part of the regulated triple-K integral is then

Idiv
1+uε,{2+vε,1+vε,1+vε} =

2−1+vεΓ(−1− vε)Γ(1 + vε)Γ(2 + vε)

(u− v)ε
(p2+2vε

2 + p2+2vε
3 )

− 2−1+3vεΓ2(1 + vε)Γ(2 + vε)

v(1 + vε)(u− 3v)ε2
(
p2

2 + p2
3 + vε(p2

1 + p2
2 + p2

3)
)

+O(ε0)

= − (p2
2 + p2

3)

(u− 3v)(u− v)ε2
+

1

2ε

( 1

(u− v)
(p2

2 ln p2
2 + p2

3 ln p2
3)− 1

(u− 3v)
p2

1

+
v − u(1− 2γE + ln 4)

(u− 3v)(u− v)
(p2

2 + p2
3)
)

+O(ε0). (4.53)

The coefficient of the leading order term is ultralocal while the coefficient of the subleading

singularity is semilocal.11

4.3.2 Changing the regularisation scheme

Some regularisation schemes (i.e., choices of u and v) may be more convenient than others.

For example, there may be a scheme in which one can compute the regulated integrals ex-

actly. More generally, different schemes come with different advantages and disadvantages.

As discussed earlier (see also appendix A.2), the choice u = 1, v = 0 is particularly conve-

nient because the indices of the Bessel functions are unchanged. However, this scheme is

unsuitable for tensorial correlators involving conserved currents and/or stress tensors, since

these are related via the diffeomorphism Ward identity to 2-point functions which are not

regulated by this scheme. The scheme with u = v, on the other hand, has the attractive

property that ∆ and d are each shifted by the same amount. The dimensions of conserved

currents and the stress tensor in the regulated theory are thus still correlated with the

dimension of the regulated spacetime, as required by conservation. In some cases, however,

divergences may have poles in 1/(u− v), as we saw in (4.53). A third useful scheme is to

set u = −v: here only the spacetime dimension is shifted, and as will be discussed in [33],

many regulated integrals can be computed exactly.

Given the different choices of scheme available, we would like to understand the de-

pendence of the renormalised correlators on the scheme used. In this subsection we discuss

how to change from one regularisation (u0, v0)-scheme to another (u, v)-scheme. Let us

consider a divergent triple-K integral, Iα,{βi} and consider the difference in its value in the

two different schemes,

I
(scheme)
(u0,v0) 7→(u,v) = Iα+uε{β1+vε,β2+vε,β3+vε} − Iα+u0ε{β1+v0ε,β2+v0ε,β3+v0ε}. (4.54)

11The same conclusion can be reached using differential regularisation in position space, see [30].
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Note now that triple-K integrals satisfy the following relations:

L1Iα{β1,β2,β3} = Iα+1{β1−1,β2,β3}, (4.55)

M1Iα{β1,β2,β3} = Iα+1{β1+1,β2,β3}, (4.56)

where

Li = − 1

pi

∂

∂pi
, Mi = 2βi − pi

∂

∂pi
, (4.57)

as can be shown by using the definition of the triple-K integral and the standard properties

of Bessel functions (complete proofs will be given in [33]).

Suppose that we start with a divergent triple-K integral (an integral where one or more

of the conditions (4.30) hold). Then acting with L1 on its regulated version will decrease

k−σ2σ3 by one and leave k+σ2σ3 unchanged, while acting with M1 will decrease k+σ2σ3 by

one and leave k−σ2σ3 unchanged. Thus, by acting a sufficient number of times with Li
and/or Mi, we will end up with a convergent integral in all cases. Let {Dr} be the set of

such differential operators, where r labels each operator in the set. Then

DrIα{β1,β2,β3} = Iα+mr1{β1+mr2,β2+mr3,β3+mr4}, (4.58)

where mr
1,m

r
2,m

r
3,m

r
4 are integers, are convergent integrals. It follows that

DrI
(scheme)
(u0,v0) 7→(u,v) = 0 +O(ε). (4.59)

The equations (4.59) are a set of differential equations that may be used to determine the

momentum dependence of I
(scheme)
(u0,v0) 7→(u,v), which on general grounds should be a sum of local

and semilocal terms. The coefficients of the different terms are constants that depend on

u, v, u0, v0 and ε, and can be determined by expanding Iα+uε{β1+vε,β2+vε,β3+vε} for small pi,

extracting all terms up to finite order in ε, then inserting in (4.54) and comparing with the

solution of (4.59).

We will now illustrate this procedure with a simple example. Consider the integral

I2{111}. In this case the (−−−) condition holds with k−−− = 0, and thus it suffices to act

once with Li in order to obtain a convergent integral. We then have {Dr} = {L1, L2, L3},
and (4.59) reads

L1I
(scheme)
(u0,v0) 7→(u,v) = L2I

(scheme)
(u0,v0) 7→(u,v) = L3I

(scheme)
(u0,v0) 7→(u,v) = 0 +O(ε), (4.60)

which implies that I
(scheme)
(u0,v0) 7→(u,v) is independent of momenta,

I
(scheme)
(u0,v0) 7→(u,v) = C(u, v;u0, v0; ε) +O(ε). (4.61)

We therefore need to compute the momentum-independent terms in I2+uε{1+vε,1+vε,1+vε},

up to finite terms in ε. Since we want the momentum-independent part of this integral, we

may wish to take first the zero-momentum limit in the integrand and then compute the

integral. One has to be careful, however, as taking the limit inside the integral is not always

allowed. Moreover, I2+uε{1+vε,1+vε,1+vε} may diverge in this limit. What we are guaranteed

is that I
(scheme)
(u0,v0) 7→(u,v) is independent of momentum. In other words, any IR divergence must

be independent of (u, v).
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In the case at hand, we may safely take two momenta to zero, say p1 and p2, but we

need to keep the third momentum non-zero,

lim
p1→0,p2→0

I2+uε{1+vε,1+vε,1+vε} = 4vεΓ2(1 + vε)

∫ ∞
0

dx x(u−2v)εp1+vε
3 K1+vε(p3x). (4.62)

This integral can computed using the result∫ ∞
0

dx xα−1Kν(cx) =
2α−2

cα
Γ

(
α+ ν

2

)
Γ

(
α− ν

2

)
, (4.63)

with the integral defined outside its domain of convergence Re α > |Re ν| and Re c > 0

through analytic continuation. Expanding the answer in ε, we find

I2+uε{1+vε,1+vε,1+vε} =
1

(u− 3v) ε
+

[
− ln p3 +

u

u− 3v
(ln 2− γE)

]
+O(ε). (4.64)

This is divergent as p3 → 0, but the coefficient is (u, v) independent and we obtain

I
(scheme)
(u0,v0) 7→(u,v) =

1

ε

(
1

(u−3v)
− 1

(u0−3v0)

)
+(ln 2−γE)

(
u

u−3v
− u0

u0−3v0

)
+O(ε), (4.65)

which is what we wanted to derive. This allows us to obtain I2+uε{1+vε,1+vε,1+vε} in any

(u, v) scheme. More generally, using this method we can convert a triple-K integral evalu-

ated in one scheme to its counterpart in any other scheme.

4.3.3 Ward identities

The regulated correlators satisfy the original Ward identities by construction

D̃〈〈O1(p1)O2(p2)O3(p3)〉〉reg = 0, K̃ij〈〈O1(p1)O2(p2)O3(p3)〉〉reg = 0, (4.66)

where

D̃ = 2d̃− ∆̃t +

3∑
j=1

pj
∂

∂pj
= D + (u− 3v)ε, (4.67)

K̃ij = K̃i − K̃j = Kij − 2vε

(
1

pi

∂

∂pi
− 1

pj

∂

∂pj

)
. (4.68)

This implies that the coefficient of the leading-order divergence is also annihilated by Kij

and D,

D

(∑
w

c
(−smax)
−1+wε

w

)
= 0, Kij

(∑
w

c
(−smax)
−1+wε

w

)
= 0, (4.69)

while sub-leading coefficients satisfy inhomogeneous equations,

D

(∑
w

c
(−s+1)
−1+wε

w

)
= −(u− 3v)

(∑
w

c
(−s)
−1+wε

w

)
, s < smax, (4.70)

Kij

(∑
w

c
(−s+1)
−1+wε

w

)
= 2v

(
1

pi

∂

∂pi
− 1

pj

∂

∂pj

)(∑
w

c
(−s)
−1+wε

w

)
, s < smax, (4.71)

where smax is the power of the most singular behaviour in c−1+wε ∼ 1/εsmax .
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Equations (4.69) imply in particular that if the leading divergence is nonlocal then

its coefficient satisfies the non-anomalous Ward identities and is therefore the sought-for

answer for the 3-point function. We have seen that the divergences are nonlocal in the cases

of (−+ +) and (+ + +) singularities. In other words, in these cases it is the representation

of the 3-point function in terms of triple-K integral that is singular, not the correlator

itself. To obtain the correlators it suffices to multiply the triple-K integral by εsmax and

take the limit ε→ 0. (See below (3.16) for the analogous discussion for 2-point functions.)

On the other hand, if the leading order singularity is local or semilocal, then one needs

to renomalise. This is again exactly analogous to what we saw when we discussed 2-point

functions: the solution of the non-anomalous Ward identities is (semi)-local and as such

not acceptable as a 3-point function (because one can add finite local counterterms in

the action and set these correlators to zero). Instead, after renormalisation one obtains

renormalised correlators, which now satisfy anomalous Ward identities to which we will

return in section 5.

In the following we will organise our discussion according to the degree of singularity

of the triple-K integral.

4.3.4 Triple-K integrals with 1/ε singularity

In this case only one of the conditions (4.30) holds. The analysis then depends on which

condition this is.

(+ + +) or (+ + −) singularities. In this case, as discussed above, the correlator

can be read off from the leading-order singularity. We will present the general case in

appendix A and focus our attention here on a few illustrative examples:

Example 5: ∆1 = ∆2 = 1/2, ∆3 = 1 in d = 3.

This is an example of a (+ + −) singularity: α = 1/2, β1 = β2 = −1 and β3 = −1/2

and k++− = 0. Expanding the triple-K integrand we find

c−1+(u+v)ε = 2−3/2−εv(p1p2)−2+2εvΓ2(1− vε)Γ(−1/2 + vε). (4.72)

Extracting the leading term as ε→ 0 we obtain

〈〈O[1/2](p1)O[1/2](p2)O[1](p3)〉〉 ∝ (p1p2)−2. (4.73)

One may easily verify that this 3-point function satisfies the (non-anomalous) conformal

Ward identities. This example may be realised using a free scalar Φ as O[1/2] = Φ and

O[1] = :Φ2 :.

Example 6: ∆1 = ∆2 = ∆3 = 1 in d = 3.

This is an example of a (+ + +) singularity: α = 1/2, βi = −1/2 and k+++ = 0.

Expanding the triple-K integrand we have

c−1+(u+3v)ε = 2−3/2−3vεΓ3(1/2− vε)(p1p2p3)−1+2vε, (4.74)
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and extracting the leading term as ε→ 0 we obtain

〈〈O[1](p1)O[1](p2)O[1](p3)〉〉 ∝ 1

p1p2p3
. (4.75)

This example may be realised using a free scalar Φ setting O[1] = :Φ2 :, as in the previous

example.

It is also instructive to also analyse this case in the (1, 0) scheme:

〈〈O[1](p1)O[1](p2)O[1](p3)〉〉reg = c1(p1p2p3)−
1
2

∫ ∞
0

dx x
1
2

+εK 1
2
(p1x)K 1

2
(p2x)K 1

2
(p3x),

(4.76)

The advantage of this scheme is that the index of the Bessel function does not change and

since K 1
2
(x) =

√
π/2x exp(−x) the integral is elementary leading to

〈〈O[1](p1)O[1](p2)O[1](p3)〉〉reg =
c1

p1p2p3

(π
2

) 3
2

[
1

ε
− ln(p1+p2+p3)− γE +O(ε)

]
. (4.77)

Thus,

〈〈O[1](p1)O[1](p2)O[1](p3)〉〉 ∝ 1

p1p2p3
. (4.78)

One may easily verify that this 3-point function satisfies the (non-anomalous) conformal

Ward identities.

(− − −) singularities and new anomalies. In this case the divergence is ultralocal

and satisfies the conformal Ward identities, as one expects on general grounds. Using (4.39)

and (4.43) we find the divergent terms are12

〈〈O1(p1)O2(p2)O3(p3)〉〉div = c123
µ(3v−u)ε

(u− 3v)ε
(−1)k

∑
k1+k2+k3=k

3∏
i=1

Γ(−ki + βi)

22ki−βi+1ki!
p2ki
i , (4.79)

where c123 is a constant and here and in the following we have shortened k−−− to k.

To proceed we add a counterterm to remove the infinity and then remove the regulator

to obtained the renormalised 3-point function. The counterterm takes form

Sct =
∑

k1+k2+k3=k

ak1k2k3(ε, u, v)

∫
dd+2uεx µ(3v−u)ε�k1φ1�

k2φ2�
k3φ3, (4.80)

where the renormalisation scale µ was introduced on dimensional grounds and

ak1k2k3(ε, u, v) =
a

(−1)
k1k2k3

(u, v)

ε
+ a

(0)
k1k2k3

(u, v). (4.81)

As we shall see, the constant a
(−1)
k1k2k3

(u, v) is uniquely fixed by requiring the cancellation

of infinities, while a
(0)
k1k2k3

(u, v) parametrises the scheme dependence. Note that all terms

12When deriving this expression we can set β̃i → βi since the gamma functions are finite: for example,

−k1 + β1 ≥ −k−−− + β1 = −k+−−, but the assumed absence of a (+−−) singularity means that k−−+ as

defined in (4.30) is either non-integer or else a negative integer.
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with different contraction of derivatives can be always rearranged in the form of (4.80).

Indeed, using integration by parts,∫
dd+2uεxφ1∂µφ2∂

µφ3 =
1

2

∫
dd+2uεx [�φ1 φ2φ3 − φ1�φ2 φ3 − φ1φ2�φ3] , (4.82)

which can be used recursively to end up with the expression (4.80). The counterterm

contribution is

〈〈O1(p1)O2(p2)O3(p3)〉〉ct = (−1)k
∑

k1+k2+k3=k

ak1k2k3p
2k1
1 p2k2

2 p2k3
3 µ(3v−u)ε. (4.83)

where k1+k2+k3 = k (we assume that all three operators are pairwise different — otherwise

there are additional symmetry factors). Thus with appropriate choice of the coefficients

ak1k2k3 we may cancel the divergence (4.79) in the 3-point function. We then define the

renormalised correlator as

〈〈O1(p1)O2(p2)O3(p3)〉〉ren = lim
ε→0

[
〈〈O1(p1)O2(p2)O3(p3)〉〉reg + 〈〈O1(p1)O2(p2)O3(p3)〉〉ct

]
.

(4.84)

This renormalised correlator depends on the scale µ:

µ
∂

∂µ
〈〈O1(p1)O2(p2)O3(p3)〉〉ren = (−1)k(3v − u)

∑
k1+k2+k3=k

a
(−1)
k1k2k3

p2k1
1 p2k2

2 p2k3
3

= (−1)k+1c123

∑
k1+k2+k3=k

3∏
i=1

Γ(−ki + βi)

22ki−βi+1ki!
p2ki
i (4.85)

where in the first equality we used the fact that the regulated 3-point function does

not depend on µ, and in the second the fact that the counterterm cancels the infinity

in (4.79). This implies that there is a new conformal anomaly A123 associated with this

3-point function.

The existence of the anomaly implies that the generating functional of correlators

W [φi] depends on the mass scale µ,

µ
∂

∂µ
W = A. (4.86)

Indeed, differentiating (4.86) with respect to φ1, φ2 and φ3 and comparing with (4.85) we

find

A =

∫
ddx

∑
k1+k2+k3=k

Ak1k2k3�
k1φ1�

k2φ2�
k3φ3, (4.87)

where

Ak1k2k3 = c123

3∏
i=1

Γ(−ki + βi)

22ki−βi+1ki!
(4.88)

and the ratio Ak1k2k3/c123 is universal.
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One may integrate the anomaly equation (4.85) to obtain

〈〈O1(p1)O2(p2)O3(p3)〉〉ren =
∑

k1+k2+k3=k

p2k1
1 p2k2

2 p2k3
3 (−1)kAk1k2k3 ln

p1 + p2 + p3

µ

+ p∆t−2d
3 f

(
p1

p3
,
p2

p3

)
, (4.89)

where ∆t =
∑

j ∆j and f(x, y) is an arbitrary function of two variables (which is of course

uniquely fixed by the conformal Ward identities). The argument of logarithm must be

linear in momenta and changing the specific combination amounts to redefining f(x, y).

We thus conclude that conformal anomalies lead to terms linear in ln pi.

Example 7: ∆1 = ∆2 = ∆3 = 2 in d = 3.

This example is closely related to the example of three operators of dimension one in

d = 3 we discussed earlier. The correlator in the (1, 0)-scheme is given by

〈〈O[2](p1)O[2](p2)O[2](p3)〉〉reg = −c222(p1p2p3)
1
2

∫ ∞
0

dx x
1
2

+εK 1
2
(p1x)K 1

2
(p2x)K 1

2
(p3x),

(4.90)

where the overall minus is for later convenience. Notice that this is the same triple-K

integral that appeared in (4.76). Nevertheless, we will deal with the divergence in a very

different way. The regulated correlator is given by

〈〈O[2](p1)O[2](p2)O[2](p3)〉〉reg = c222

(π
2

) 3
2

[
−1

ε
+ ln(p1 + p2 + p3) + γE +O(ε)

]
, (4.91)

In this case the divergence is local and it can be cancel by a local counterterm

Sct = a(ε)

∫
d3+2εx φ3µ−ε, (4.92)

where φ is the source of O2. Choosing

a(ε) =
1

6
c222

(π
2

) 3
2

(
1

ε
+ a0

)
, (4.93)

where a0 is an arbitrary constant parametrising the scheme dependence, we find for the

renormalised correlator

〈〈O[2](p1)O[2](p2)O[2](p3)〉〉ren = c222

(π
2

) 3
2

[
ln
(p1 + p2 + p3

µ

)
+ a1

]
(4.94)

where a1 = a0 + γE .

The renormalised correlator correlator now depends on a scale,

µ
∂

∂µ
〈〈O[2](p1)O[2](p2)O[2](p3)〉〉ren = −c222

(π
2

) 3
2
, (4.95)

so A222 = −c222

(
π
2

) 3
2 in agreement with (4.88). Correspondingly, there is a new conformal

anomaly

〈T 〉 =
1

3!
A222 φ

3, (4.96)

and the ratio A222/c222 indeed does not renomalise.
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(− − +) singularities and beta functions. In this case the divergence is semilocal

and satisfies the conformal Ward identities, as one expects on general grounds. The analysis

is identical for the three cases, (− − +), (− + −) and (+ − −), and for concreteness we

discuss the case of a (− − +) singularity. Using (4.39) and (4.43) we find the divergent

terms are13

〈〈O1(p1)O2(p2)O3(p3)〉〉div = c123
µ(v−u)ε

(u− v)ε
(4.97)

× (−1)k
∑

k1+k2+k3=k

Γ(−k1 + β1)

22k1−β1+1k1!

Γ(−k2 + β2)

22k2−β2+1k2!

Γ(−k3 − β3)

22k3+β3+1k3!
p2k1

1 p2k2
2 p2β3+2k3

3 ,

where k = k−−+ denotes the integer appearing in the defining condition (4.30). Since this

expression is analytic in p2
1 and p2

2 it is semilocal.

When the dimensions of operators satisfy the (− − +) condition there is a possible

counterterm given by

Sct =
∑

k1+k2+k3=k

ak1k2k3(ε, u, v)

∫
dd+2uεx µ(v−u)ε�k1φ1�

k2φ2�
k3O3, (4.98)

where

ak1k2k3(ε, u, v) =
a

(−1)
k1k2k3

(u, v)

ε
+ a

(0)
k1k2k3

(u, v). (4.99)

The coefficient a
(0)
k1k2k3

(u, v) parametrises the (finite) scheme-dependent contribution of this

counterterm. The counterterm contribution reads

〈〈O1(p1)O2(p2)O3(p3)〉〉ct

= (−1)k+1
∑

k1+k2+k3=k

ak1k2k3p
2k1
1 p2k2

2 p2k3
3 µ(v−u)ε〈〈O3(p3)O3(−p3)〉〉reg

= (−1)k+1
∑

k1+k2+k3=k

ak1k2k3p
2k1
1 p2k2

2 p2k3
3 (c∆3p

2∆3−d+2vε
3 )µ(v−u)ε, (4.100)

where c∆3 is the normalisation of the 2-point function (see (3.12)). Recalling that β3 = ∆3−
d/2 we see that the momentum dependence of (4.100) exactly matches that of (4.98) and

therefore we may cancel the infinity by an appropriate choice of ak1k2k3 . The renormalised

correlator is then

〈〈O1(p1)O2(p2)O3(p3)〉〉ren = lim
ε→0

[
〈〈O1(p1)O2(p2)O3(p3)〉〉reg + 〈〈O1(p1)O2(p2)O3(p3)〉〉ct

]
.

(4.101)

The renormalised correlator depends on the scale µ,

µ
∂

∂µ
〈〈O1(p1)O2(p2)O3(p3)〉〉ren =(v−u)

∑
k1+k2+k3=k

(−1)k+1a
(−1)
k1k2k3

p2k1
1 p2k2

2 p2k3
3 (c∆3p

2∆3−d
3 ),

(4.102)

13In deriving this expression we can set β̃i → βi since the gamma functions are finite: for example,

−k3 − β3 ≥ −k−−+ − β3 = −k−−−, but the assumed absence of a (−−−) singularity means that k−−− as

defined in (4.30) is either non-integer or else a negative integer.
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where we used the fact that the regulated 3-point function does not depend on µ. To

understand this result, note that the counterterm amounts to a renormalisation of the

source that couples to O3. The source φ3 is in fact the renormalised coupling, since

functionally differentiating with respect to it yields the renormalised correlator, while the

bare source is

φbare
3 ≡ φ3 +

∑
k1+k2+k3=k

ak1k2k3(ε, u, v)(−1)k3�k3(�k1φ1�
k2φ2)µ(v−u)ε. (4.103)

Inverting perturbatively, to quadratic order we find

φ3 = φbare
3 −

∑
k1+k2+k3=k

ak1k2k3(ε, u, v)(−1)k3�k3(�k1φbare
1 �k2φbare

2 )µ(v−u)ε, (4.104)

where we have defined φbare
1 = φ1 and φbare

2 = φ2 since these sources are unrenormalised.

As the bare couplings are independent of the renormalisation scale µ, we then obtain the

beta function

βφ3 ≡ lim
ε→0

µ
∂φ3

∂µ
= −(v − u)

∑
k1+k2+k3=k

a
(−1)
k1k2k3

(u, v)(−1)k3�k3(�k1φ1�
k2φ2). (4.105)

Comparing (4.102) and (4.105) we find14

µ
∂

∂µ
〈〈O1(p1)O2(p2)O3(p3)〉〉ren =

∂2βφ3

∂φ1∂φ2
〈〈O3(p3)O3(−p3)〉〉ren. (4.106)

We thus find that in this case the correlators depend on µ through the implicit µ-

dependence of the renormalised source φ3. In terms of the generating function W we

now have

µ
d

dµ
W [φi] = 0, (4.107)

where the total variation is given by

µ
d

dµ
= µ

∂

∂µ
+
∑
i

∫
ddxβφi

δ

δφi(x)
. (4.108)

Indeed, differentiating (4.107) with respect to the renormalised sources we recover (4.106).

Integrating (4.106) we find that the renormalised correlator will contains terms pro-

portional to either ln pi, if ∆3 6= d/2 + k, or ln pi ln pj terms if ∆3 = d/2 + k. Thus, single

logs are not only associated with conformal anomalies but also with beta functions and

(perhaps more surprisingly) double logs may also appear in conformal correlators. In the

case of double logs, one of the logs is due to the conformal anomaly in 2-point functions

and the other is due to the beta function.

14For ease of presentation we assume ∆3 6= d/2 + k.
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Example 8: ∆1 = ∆2 = ∆3 = 3 in d = 3.

We will now illustrate this case by discussing the computation of the 3-point function

of three marginal operators in d = 3. In this case, α = 1/2, β1 = β2 = β3 = 3/2 and the

(−−+), (−+−), (+−−) conditions are satisfied with k−−+ = k−+− = k+−− = 0.

The bare 3-point function,

〈〈O[3](p1)O[3](p2)O[3](p3)〉〉bare = c333 I 1
2
{ 3

2
3
2

3
2
} (4.109)

is divergent. As we are in d = 3 it is most convenient to work in the (1, 0)-scheme (since

then the integral is elementary). Extracting the divergences as discussed earlier we obtain

I 1
2

+ε{ 3
2
, 3
2
, 3
2
} =

(π
2

) 3
2 p3

1 + p3
2 + p3

3

3ε
+O(ε0). (4.110)

This divergence is semilocal because it is a sum of terms each of which is analytic in two

momenta and non-analytic in one.

To remove this divergence we add the counterterm,

Sct = a(ε)

∫
d3+2εx µ−εφ2O. (4.111)

This counterterm does not contribute to 2-point functions and its contribution to the 3-

point function reads

〈〈O[3](p1)O[3](p2)O[3](p3)〉〉ct = −2aµ−ε
[
〈〈O[3](p1)O[3](−p1)〉〉reg + 2 perms.

]
= −2a c3µ

−ε(p3
1 + p3

2 + p3
3). (4.112)

Therefore, the counterterm removes the divergence from the 3-point function provided

a(ε) =
c333

c3

(π
2

) 3
2

[
1

6ε
+ a(0) +O(ε0)

]
, (4.113)

where a(0) is an undetermined ε-independent constant that parametrises scheme depen-

dence. The renormalised source φ is related to the bare source via

φbare = φ+ φ2µ−ε
c333

c3

(π
2

) 3
2

[
1

6ε
+ a(0) +O(ε0)

]
, (4.114)

which after inverting leads to a beta function

βφ ≡ lim
ε→0

µ
∂φ

∂µ
=

1

6

c333

c3

(π
2

) 3
2
φ2. (4.115)

The triple-K integral I 1
2
{ 3

2
3
2

3
2
} can easily be calculated in the (1, 0)-regularisation

scheme and reads

I 1
2

+ε{ 3
2

3
2

3
2
} =

1

3

(π
2

) 3
2

[
p3

1 + p3
2 + p3

3

ε
− p1p2p3 + (p2

1p2 + p2
2p1 + p2

1p3 + p2
3p1 + p2

2p3 + p2
3p2)

− (p3
1 + p3

2 + p3
3) ln(p1 + p2 + p3) +

4

3
(p3

1 + p3
2 + p3

3)

]
. (4.116)
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Adding the contribution from the counterterm (4.112) and sending ε → 0 we obtain the

renormalised correlator,

〈〈O[3](p1)O[3](p2)O[3](p3)〉〉ren =
1

3

(π
2

) 3
2
c333

[
− p1p2p3 + (p2

1p2 + 5 perms.) (4.117)

− (p3
1 + p3

2 + p3
3) ln

p1 + p2 + p3

µ
− 6a(0)(p3

1 + p3
2 + p3

3)

]
.

Note that changing the renormalisation scale µ amounts to changing a(0), i.e., the scheme-

dependent part of the correlator. Acting with µ(∂/∂µ) we find

µ
∂

∂µ
〈〈O[3](p1)O[3](p2)O[3](p3)〉〉ren =

1

3

(π
2

) 3
2
c333(p3

1 + p3
2 + p3

3)

=
∂2βφ0

∂φ2
0

(
〈〈O[3](p1)O[3](−p1)〉〉ren + perms.

)
, (4.118)

confirming our earlier general analysis.

4.3.5 Triple-K integrals with higher-order singularities

Higher-order singularities are associated with multiple conditions holding simultaneously.

The analysis of the general case is analogous to what we have discussed already: if there

are (− − −) singularities there are new conformal anomalies while if there are (− − +)

singularities we have beta functions. The renormalised correlators in such cases depend on

the renormalisation scale µ. The form of this µ-dependence may be found by functionally

differentiating

µ
d

dµ
W [φi] = A (4.119)

with respect to the renormalised sources φi and noting that

µ
d

dµ
= µ

∂

∂µ
+
∑
i

∫
ddxβφi

δ

δφi(x)
. (4.120)

If there are additional singularities of type (+ + −) and/or (+ + +) then one needs to

multiply the triple-K integral by an appropriate power of ε before removing the regulator.

The classification and analysis of all possible cases is discussed in appendix A. Here we will

discuss two examples that illustrate the general case.

Example 9: ∆1 = 4, ∆2 = ∆3 = 3 in d = 4.

In this case α=1, β1 =2, β2 =β3 =1 and thus both a (−−−) condition (with k−−−=1)

and (− + −) and (− − +) conditions (with k−+− = k−−+ = 0) hold simultaneously. The

bare 3-point function is given by

〈〈O[4](p1)O[3](p2)O[3](p3)〉〉bare = c433 I1,{211}. (4.121)

We have already discussed the computation of the divergent terms at the end of

section 4.3.1 (see example 4 on page 20), where we saw that the regulated triple-K in-

tegral, I1+uε,{2+vε,1+vε,1+vε}, diverges as ε−2. This leading order singularity is ultralocal

while the subleading singularity at order ε−1 is semilocal.
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To cancel the infinities we introduce the counterterm action

Sct =

∫
dd+2uεx

[
a0µ

(v−u)εφ[0]φ[1]O[3] + a1µ
(3v−u)εφ[0]φ[1]�φ[1] + a2µ

(3v−u)εφ[1]
2�φ[0]

]
,

(4.122)

where φ[0] is the source of O[4] and φ[1] is the source of O[3]. (To reduce clutter here we have

used the bare rather than regulated dimensions in our notation, writing φ[0] as shorthand

for φ[0+(u−v)ε], etc.) This generates the following contribution to the 3-point function,

〈〈O[4](p1)O[3](p2)O[3](p3)〉〉ct

= −a1(p2
2 + p2

3)µ(3v−u)ε − 2a2p
2
1µ

(3v−u)ε

− a0µ
(v−u)ε[〈〈O[3](p2)O[3](−p2)〉〉reg + 〈〈O[3](p3)O[3](−p3)〉〉reg], (4.123)

where a0, a1 and a2 have series expansions in ε, and the regulated 2-point function is

〈〈O[3](p)O[3](−p)〉〉reg =

(
c

(−1)
3

ε
+ c

(0)
3 +O(ε)

)
p2+2vε. (4.124)

When (4.123) is expanded in ε, the divergent terms must match Idiv
1+uε,{2+vε,1+vε,1+vε} as

evaluated in (4.53). This procedure fixes the coefficients in the counterterm action as

a0

c433
=

1

2v(u− v)c
(−1)
3 ε

+ a
(0)
0 +O(ε), (4.125)

a1

c433
= − 1

2v(u− 3v)ε2
+

(
− a(0)

0 c
(−1)
3 +

v − u(1− 2γE + ln 4)

2(u− v)(u− 3v)

)
1

ε
+ a

(0)
1 +O(ε), (4.126)

a2

c433
= − 1

4(u− 3v)ε
+ a

(0)
2 +O(ε), (4.127)

where for simplicity we set c
(0)
3 = 0. The constants a

(0)
0 , a

(0)
1 and a

(0)
2 parametrise the

scheme dependence. Due to the a0 counterterms, the renormalised source φ[1] is related to

the bare source φbare
[1] by

φbare
[1] = φ[1] + a0µ

(v−u)εφ[0]φ[1], (4.128)

leading to a beta function

βφ[1]
= lim

ε→0
µ
∂φ[1]

∂µ
=

c433

2vc
(−1)
3

φ[0]φ[1]. (4.129)

The triple-K integral I1+uε,{2+vε,1+vε,1+vε} can be computed exactly using recursion

relations [7, 33], and after adding the contribution of the counterterm contribution, the

limit ε→ 0 may be taken leading to the renormalised correlator

〈〈O[4](p1)O[3](p2)O[3](p3)〉〉ren

= c433

(
2− p1

∂

∂p1

)(
1

4
J2I1{000}

)
+
c433

8

[
(p2

2 − p2
3) ln

p2
1

µ2

(
ln
p2

3

µ2
− ln

p2
2

µ2

)
− (p2

2 + p2
3) ln

p2
2

µ2
ln
p2

3

µ2

+(p2
1 − p2

2) ln
p2

3

µ2
+ (p2

1 − p2
3) ln

p2
2

µ2
+ p2

1

]
+ a′0

(
p2

2 ln
p2

2

µ2
+ p2

3 ln
p2

3

µ2

)
+ a′1(p2

2 + p2
3) + a′2p

2
1. (4.130)
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Here, I1{000} and J2 are given in (4.23) and (4.24), and a′0, a′1 and a′2 are scheme-dependent

constants linearly related to a
(0)
0 , a

(0)
1 and a

(0)
2 . (In fact, as we will see later in section 5,

the special conformal Ward identities further fix a′2 +a′0 = −c433/2.) Acting with µ(∂/∂µ),

we find

µ
∂

∂µ
〈〈O[4](p1)O[3](p2)O[3](p3)〉〉ren

=
c433

2

(
−p2

1 +
1

2
(p2

2 + p2
3) + p2

2 ln
p2

2

µ2
+ p2

3 ln
p2

3

µ2

)
− 2a′0(p2

2 + p2
3)

=
∂2βφ[1]

∂φ[0]∂φ[1]

(
〈〈O[3](p2)O[3](−p2)〉〉ren + 〈〈O[3](p3)O[3](−p3)〉〉ren

)
+A433, (4.131)

where the anomaly

A433 = −c433

2
p2

1 +

(
c433

4
− 2a′0

)
(p2

2 + p2
3). (4.132)

In this case, only the coefficient of p2
1 (divided by the overall normalisation of the 3-point

function c433) is physically meaningful: the remainder of the anomaly is scheme-dependent

and can be adjusted by adding finite counterterms to change a′0.

Note that the dimensions of the operators O[3] and O[4] are such that f(φ[0])φ[1]�φ[1]

has dimension four for any function f(φ[0]) of the dimensionless sources φ[0]. As discussed

in section 3, the 2-point function of the operator O[3] also requires renormalisation and a

counterterm of the form Sct ∝
∫

d4xφ[1]�φ[1]. This counterterm and the second countert-

erm in (4.122) maybe considered as the expansion of f(φ[0]) around φ[0] ≈ 0. Similarly, the

conformal anomaly may contain a term proportional to g(φ[0])φ[1]�φ[1] for some function

g of φ[0], and we have found that the part associated with the 3-point function is scheme

dependent.

Example 10: ∆1 = 4 and ∆2 = ∆3 = 2 in d = 4.

In this case α = 1, β1 = 2, β2 = β3 = 0 and so we have (− + +), (− − +), (− + −)

and (−−−) singularities with k−++ = k−−+ = k−+− = k−−− = 0.

The divergent part of the regulated triple-K integral is

Idiv
α̃,{β̃} =

∑
w

c−1+wε

wε
+O(ε0) =

c−1+(u+v)ε

(u+ v)ε
+
c−1+(u−v)ε

(u− v)ε
+
c−1+(u−3v)ε

(u− 3v)ε
+O(ε0), (4.133)

where

c−1+(u+v)ε = 2−1−vεΓ2(−vε)Γ(2 + vε)(p2p3)2vε,

c−1+(u−v)ε = 2−1+vεΓ(−vε)Γ(vε)Γ(2 + vε)(p2vε
2 + p2vε

3 ),

c−1+(u−3v)ε = 2−1+3vεΓ2(vε)Γ(2 + vε). (4.134)
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Expanding out, we find

c−1+(u+v)ε

(u+ v)ε
=

1

2v2(u+ v)ε3
+

1 + γE − ln 2 + 2 ln(p2p3)

2v(u+ v)ε2

+
1

4(u+ v)ε

[
π2

2
− 1 +

(
1 + γE − ln 2 + 2 ln(p2p3)

)2]
+O(ε0),

c−1+(u−v)ε

(u− v)ε
= − 1

(u− v)v2ε3
− (1− γE + ln(2p2p3))

(u− v)vε2

− 1

2(u− v)ε

[
π2

2
− 1 +

(
1− γE + ln(2p2p3)

)2
+ ln2(p2/p3)

]
+O(ε0),

c−1+(u−3v)ε

(u− 3v)ε
=

1

2v2(u− 3v)ε3
+

1− 3γE + 3 ln 2

2v(u− 3v)ε2

+
1

4(u− 3v)ε

[
π2

2
− 1 +

(
1− 3γE + 3 ln 2

)2]
+O(ε0). (4.135)

The leading ε−3 divergence of Idiv
α̃,{β̃} is therefore ultralocal while the subleading ε−2 diver-

gence is semilocal. Only the sub-subleading order ε−1 divergence is nonlocal, and it is this

that is proportional to the renormalised correlator once the ε−3 and ε−2 divergences have

been removed. We therefore write

〈〈O[4](p1)O[2](p2)O[2](p3)〉〉ren = lim
ε→0

[
2ε(u+ v) c422 I

div
α̃,{β̃} + 〈〈O[4](p1)O[2](p2)O[2](p3)〉〉ct

]
,

(4.136)

where c422 is a theory-dependent constant that is independent of ε and represents the

overall normalisation of the 3-point function. (The additional factor of 2(u + v) is purely

for convenience.) The counterterm contribution follows from the action

Sct =

∫
d4+2uεx

√
g
[
a0µ

(3v−u)εφ[0]φ
2
[2] + a1µ

(v−u)εφ[0]φ[2]O[2]

]
, (4.137)

namely,

〈〈O[4](p1)O[2](p2)O[2](p3)〉〉ct = 2a0µ
(3v−u)ε

− a1µ
(v−u)ε

[
〈〈O[2](p2)O[2](−p2)〉〉reg + 〈〈O[2](p3)O[2](−p3)〉〉reg

]
(4.138)

where

〈〈O[2](p)O[2](−p)〉〉reg = C2p
2vε, C2 =

C
(−1)
2

ε
+ C

(0)
2 + C

(1)
2 ε+O(ε2). (4.139)

(Once again, to reduce clutter we are labelling operators and sources through their bare

rather than their regulated dimensions.) Working in the most compact scheme where

C
(0)
2 = C

(1)
2 = 0, to obtain a finite renormalised correlator we require

a0

2(u+v)c422
=

−1

v(u−3v)(u+v)ε2
+

1

ε

(
a

(0)
1 C

(−1)
2 +

2
(
(γE−ln 2)u−v

)
(u−3v)(u−v)(u+v)

)
+a

(0)
0 +O(ε),

(4.140)

a1

2(u+ v)c422
=

−1

C
(−1)
2 v(u− v)(u+ v)ε

+ a
(0)
1 + a

(1)
1 ε+O(ε2). (4.141)
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(Note we must keep a
(1)
1 here as the regulated 2-point function is proportional to ε−1.) The

counterterms (4.137) mean the renormalised source φ[2] is related to the corresponding bare

source according to

φbare
[2] = φ[2] + a1φ[0]φ[2]µ

(v−u)ε, (4.142)

generating a beta function

βφ[2]
≡ lim

ε→0
µ
∂φ[2]

∂µ
= −(v − u)φ[0]φ[2]a

(−1)
1 = − 2c422

C
(−1)
2 v

φ[0]φ[2]. (4.143)

The renormalised correlator is then

〈〈O[4](p1)O[2](p2)O[2](p3)〉〉ren = c422 ln
p2

2

µ2
ln
p2

3

µ2
+ a′1

(
ln
p2

2

µ2
+ ln

p2
3

µ2

)
+ a′0, (4.144)

where a′1 and a′0 are (ε-independent) scheme-dependent constants linearly related to the

a
(0)
1 , a

(1)
1 and a

(0)
0 above. Specifically, the relation is

a′1 = −a(0)
1 C

(−1)
2 v +

2c422

(u− v)
[u(γE − ln 2)− v], (4.145)

a′0 = 2a
(0)
0 −2a

(1)
1 C

(−1)
2 +

2c422

(u−3v)(u−v)
[2(ln 2−γE)2u2+4(ln 2−γE)uv+π2v2]. (4.146)

Notice also that since ∆1 = ∆2 + ∆3 this correlator is extremal. As we expect, the

momentum dependence of the nonlocal part of (4.144) then matches that of the product

of 2-point functions 〈〈O[2](p2)O[2](−p2)〉〉〈〈O[2](p3)O[2](−p3)〉〉.15

Under a change of renormalisation scale,

µ
∂

∂µ
〈〈O[4](p1)O[2](p2)O[2](p3)〉〉ren = −2c422

(
ln
p2

2

µ2
+ ln

p2
3

µ2

)
− 4a′1

=
∂βφ[2]

∂φ[2]∂φ[0]

(
〈〈O[2](p2)O[2](−p2)〉〉ren+〈〈O[2](p3)O[2](−p3)〉〉ren

)
+A422, (4.147)

where the anomaly A422 = −4a′1. In this example, then, the anomaly is purely scheme-

dependent and can be adjusted arbitrarily through the addition of finite counterterms.

As in the case of the previous example, the existence of a dimensionless source implies

that we can consider counterterms and anomalies of the form f(φ[0])φ
2
[2], where f is a

function of φ[0]. The Taylor expansion of this function is fixed by the n-point function

and we have determined the terms up to linear order. As in the previous example, the

corresponding conformal anomaly due to the 3-point function is again scheme dependent.

5 Beta functions and anomalies

In this section we examine more closely the anomaly and beta function terms that appear

in the conformal Ward identities. Since these terms break conformal symmetry, we will

15Note however the semi- and ultralocal terms in the correlator (i.e., the terms proportional to a′1 and

a′0) can be adjusted arbitrarily through finite counterterms, as can be seen from (4.145) and (4.146).
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start from the diffeomorphism and Weyl Ward identities that hold for a general quantum

field theory. We will restrict our considerations to scalar operators; for a more complete

discussion we refer the reader to [3, 36].

First, let us consider the variation of the generating functional for renormalised corre-

lators under a variation of the renormalised sources φi,

δW = −
∫

ddx
√
g

(
1

2
〈Tµν〉sδgµν +

∑
i

〈Oi〉sδφi
)
. (5.1)

Here, the quantum field theory lives on an arbitrary background metric gµν , the background

source profiles φi are also arbitrary, as indicated by the subscript s (for source) on the 1-

point functions. The index i labels the different scalar operators, and is distinct from the

spatial indices µ, ν. Under a diffeomorphism, xµ → xµ + ξµ, we have

δgµν = 2∇(µξν), δφi = ξµ∂µφi, δW = 0, (5.2)

giving rise to the Ward identity

0 = ∇µ〈Tµν〉s +
∑
i

〈Oi〉s∂νφi. (5.3)

The corresponding Ward identities for correlators, if required, can then be derived by

functionally differentiating this relation with respect to the sources φi before setting them

to zero and returning to a flat metric.

Under a Weyl transformation of the background metric gµν → e2σ(x)gµν , we have

instead

δgµν = 2σgµν , δφi = σBφi , δW = A =

∫
ddx
√
g σA, (5.4)

where the Bφi and the anomaly density A are local functions of dimension d − ∆i and d

respectively, constructed from the set of sources {φi, gµν} and their derivatives. According

to our present conventions where φi has a bare dimension d−∆i,

Bφi = (∆i − d)φi + βφi , (5.5)

where βφi is the beta function for φi. (We could alternatively regard Bφi as µd−∆i times

the beta function for the dimensionless coupling φdimless
i = φiµ

∆i−d.) Note also that since

W is the generating functional of renormalised correlators, A is a finite quantity. Writing

the trace of the stress tensor as Tµµ = T , the corresponding Ward identity is then

〈T 〉s =
∑
i

Bφi〈Oi〉s +A. (5.6)

Let us now proceed to conformal transformations, which are diffeomorphisms mapping

flat space to itself up to a Weyl transformation,

δgµν = 2∂(µξν) =
2

d
(∂ · ξ)δµν . (5.7)

We therefore specialise to a flat background metric gµν = δµν and write all indices hence-

forth in the lowered position, although we keep the scalar source profiles φi arbitrary.
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To undo the action of this diffeomorphism on the metric we can use an opposing Weyl

transformation with σ = −1
d(∂ · ξ). The net variation of the sources is then

δgµν = 0, δφi = ξµ∂µφi −
1

d
(∂ · ξ)Bφi , δW = −1

d

∫
ddx (∂ · ξ)A, (5.8)

which after integrating by parts yields the conformal Ward identity

0 =

∫
ddx

[
1

d
(∂ · ξ)A+

∑
i

(
1

d
(∂ · ξ)(∆iφi + βφi) + φiξµ∂µ

)
〈Oi〉s

]
. (5.9)

To obtain the corresponding identities for correlators we must now functionally differ-

entiate with respect to the sources before restoring them to zero. Since we assume that

the theory with all sources switched off (denoted by a subscript zero) is a CFT, βφi begins

at quadratic order in the sources as we saw in previous sections, hence

βi|0 = 0,
∂βφi
∂φj

∣∣∣
0

= 0. (5.10)

We will also assume all 1-point functions vanish once the sources are switched off, i.e.,

conformal symmetry is not spontaneously broken. Functionally differentiating three times

with respect to the sources, we then obtain

0 =

3∑
i=1

[(
∆i(∂ · ξ)xi + dξµ(xi)

∂

∂xiµ

)
〈O1(x1)O2(x2)O3(x3)〉

−
(

∂βφi(x1)

∂φ1(x1)∂φ2(x2)

∣∣∣
0
(∂ · ξ)x1〈Oi(x1)O3(x3)〉+ cyclic permutations of (123)

)]
+ (∂ · ξ)x1

δ3A

δφ1(x1)δφ2(x2)δφ3(x3)

∣∣∣
0
. (5.11)

This is the general 3-point conformal Ward identity including all beta function and anoma-

lous contributions. The beta function contributions are semilocal, arising only when the

dimensions of the operators in the 2-point functions coincide, while the anomaly contribu-

tion is ultralocal.

More generally, we see that the existence of a beta function contribution requires

a nonzero quadratic term in the expansion of the beta function about the origin: on

dimensional grounds, for βφi to contain a term ∼ �mφj�nφk requires −∆i + ∆j + ∆k =

d+ 2(m+n) or equivalently α+ 1 +βi−βj−βk = −2(m+n). The corresponding triple-K

integral therefore has a singularity of (+ − −) type with k+−− = m + n. (For k+−− > 0,

note also that the second derivative of the beta function in (5.11) leads to boxes acting on

delta functions.) Similarly, to have an anomalous contribution requires A to contain a term

∼ �lφ1�mφ2�nφ3 hence ∆1+∆2+∆3 = 2(d+l+m+n) or α+1−β1−β2−β3 = −2(l+m+n).

The triple-K integral then has a singularity of (−−−) type with k−−− = l+m+n. These

conditions, while necessary, are not always sufficient as we will see in example 13 below.

To obtain specifically the dilatation Ward identity we must set ξµ = xµ, meaning

∂ · ξ = d, while to obtain the special conformal Ward identity we set ξµ = x2bµ− 2(b · x)xµ
for some vector bµ, whereupon ∂ · ξ = −2d(b · x). Let us now consider a few examples to

illustrate this discussion.
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Example 11: ∆1 = 4 and ∆2 = ∆3 = 3 in d = 4.

Here, the (+−−) and the (−−−) conditions are satisfied with k+−− = 0 and k−−− = 1,

leading us to expect both a beta function and an anomaly. On purely dimensional grounds,

the possible contributions to the beta functions are

βφ[0]
= B000φ

2
[0] +O(φ3

[0]), βφ[1]
= B110φ[1]φ[0] +O(φ[1]φ

2
[0]), (5.12)

labelling sources by their bare dimensions for compactness.

The dilatation Ward identity then reads

0 =

(
10 +

3∑
i=1

xiµ
∂

∂xiµ

)
〈O[4](x1)O[3](x2)O[3](x3)〉 (5.13)

−B110〈O[3](x2)O[3](x3)〉
(
δ(x1 − x2) + δ(x1 − x3)

)
+

δ3A

δφ[0](x1)δφ[1](x2)δφ[1](x3)

∣∣∣
0
,

while the special conformal Ward identity is

0 =

[
−2b · (4x1+3x2+3x3)+

3∑
i=1

(
x2
i bµ − 2(b · xi)xiµ

) ∂

∂xiµ

]
〈O[4](x1)O[3](x2)O[3](x3)〉

+ 2(b · x1)B110〈O[3](x2)O[3](x3)〉
(
δ(x1 − x2) + δ(x1 − x3)

)
− 2(b · x1)

δ3A

δφ[0](x1)δφ[1](x2)δφ[1](x3)

∣∣∣
0
. (5.14)

We therefore have both beta functions and an anomalous contribution as anticipated.

Extracting the factor of bµ and converting to momentum space, these two identities become

0 =

[
− 2 +

3∑
i=2

piµ
∂

∂piµ

]
〈〈O[4](p1)O[3](p2)O[3](p3)〉〉

+B110

(
〈〈O[3](p2)O[3](−p2)〉〉+ 〈〈O[3](p3)O[3](−p3)〉〉

)
+A433, (5.15)

0 =

3∑
i=2

[
− 2

∂

∂piµ
− 2piν

∂

∂piν

∂

∂piµ
+ piµ

∂

∂piν

∂

∂piν

]
〈〈O[4](p1)O[3](p2)O[3](p3)〉〉, (5.16)

where

δ3A

δφ[0](p1)δφ[1](p2)δφ[1](p3)

∣∣∣
0

= (2π)dδ(p1 + p2 + p3)A433(p1, p2, p3). (5.17)

Decomposing these vector equations into a scalar basis, the dilatation Ward identity is

0 = D 〈〈O[4](p1)O[3](p2)O[3](p3)〉〉
+B110

(
〈〈O[3](p2)O[3](−p2)〉〉+ 〈〈O[3](p3)O[3](−p3)〉〉

)
+A433, (5.18)

where

D = −2 +
3∑
i=1

pi
∂

∂pi
, (5.19)
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while the special conformal Ward identities are

0 =
[ 2

p1

∂

∂p1
D +K31

]
〈〈O[4](p1)O[3](p2)O[3](p3)〉〉, (5.20)

0 =
[ 2

p1

∂

∂p1
D +K21

]
〈〈O[4](p1)O[3](p2)O[3](p3)〉〉, (5.21)

or equivalently,

K23〈〈O[4](p1)O[3](p2)O[3](p3)〉〉 = 0, (5.22)

K31〈〈O[4](p1)O[3](p2)O[3](p3)〉〉 =
2

p1

∂

∂p1
A433, (5.23)

where Kij = Ki −Kj with

K1 =
∂2

∂p2
1

− 3

p1

∂

∂p1
, K2 =

∂2

∂p2
2

− 1

p2

∂

∂p2
, K3 =

∂2

∂p2
3

− 1

p3

∂

∂p3
. (5.24)

While (5.22) follows trivially from permutation symmetry, (5.23) is non-trivial and re-

lates the anomalous contributions appearing in the dilatation and the special conformal

Ward identities. In fact, we can use this identity (or equivalently (5.20)) to eliminate a

scheme-dependent term in our earlier result (4.130) for the renormalised correlator. Under

dilatations

D 〈〈O[4](p1)O[3](p2)O[3](p3)〉〉 = −µ ∂

∂µ
〈〈O[4](p1)O[3](p2)O[3](p3)〉〉 (5.25)

=
c433

2

[
p2

1 −
1

2
(p2

2 + p2
3)− p2

2 ln
p2

2

µ2
− p2

3 ln
p2

3

µ2

]
+2a′0(p2

2+p2
3),

hence
2

p1

∂

∂p1
D 〈〈O[4](p1)O[3](p2)O[3](p3)〉〉 = 2c433. (5.26)

One can likewise show that

K31〈〈O[4](p1)O[3](p2)O[3](p3)〉〉 = (a′2 + a′0)K31p
2
1 = 4(a′2 + a′0), (5.27)

and hence the special conformal Ward identity (5.23) fixes

a′2 + a′0 = −c433

2
. (5.28)

There are therefore only two, rather than three scheme-dependent coefficients in (4.130).

Example 12: ∆1 = 4 and ∆2 = ∆3 = 2 in d = 4.

Here, we have (− + +), (− − +), (− + −) and (− − −) singularities with k−++ =

k−−+ = k−+− = k−−− = 0. On purely dimensional grounds, the possible contributions to

the beta functions are

βφ[0]
= B000φ

2
[0] +O(φ3

[0]), βφ[2]
= B220φ[2]φ[0] +B200φ[0]�φ[0] +O(φ[2]φ

2
[0], φ

2
[0]�φ[0]),

(5.29)

labelling sources by their bare dimensions once again.

– 39 –



J
H
E
P
0
3
(
2
0
1
6
)
0
6
6

The dilatation Ward identity is

0 =

(
8 +

3∑
i=1

xiµ
∂

∂xiµ

)
〈O[4](x1)O[2](x2)O[2](x3)〉 (5.30)

−B220〈O[2](x2)O[2](x3)〉
(
δ(x1 − x2) + δ(x1 − x3)

)
+

δ3A

δφ[0](x1)δφ[2](x2)δφ[2](x3)

∣∣∣
0
,

while the special conformal Ward identity reads

0 =

[
−2b · (4x1 + 2x2 + 2x3) +

3∑
i=1

(
x2
i bµ − 2(b · xi)xiµ

) ∂

∂xiµ

]
〈O[4](x1)O[2](x2)O[2](x3)〉

+ 2(b · x1)B220〈O[2](x2)O[2](x3)〉
(
δ(x1 − x2) + δ(x1 − x3)

)
− 2(b · x1)

δ3A

δφ[0](x1)δφ[2](x2)δφ[2](x3)

∣∣∣
0
. (5.31)

The remainder of the analysis then closely mirrors that of the previous example. The

momentum-space dilatation Ward identity reads

0 = D 〈〈O[4](p1)O[2](p2)O[2](p3)〉〉
+B220

(
〈〈O[2](p2)O[2](−p2)〉〉+ 〈〈O[2](p3)O[2](−p3)〉〉

)
+A422, (5.32)

where

D =

3∑
i=1

pi
∂

∂pi
. (5.33)

This is consistent with (4.144) above since (D + µ(∂/∂µ)) 〈〈O[4](p1)O[2](p2)O[2](p3)〉〉 = 0.

Meanwhile, the special conformal Ward identities are

0 =

[
2

p1

∂

∂p1
D +K31

]
〈〈O[4](p1)O[2](p2)O[2](p3)〉〉, (5.34)

0 =

[
2

p1

∂

∂p1
D +K21

]
〈〈O[4](p1)O[2](p2)O[2](p3)〉〉, (5.35)

or equivalently,

K23〈〈O[4](p1)O[2](p2)O[2](p3)〉〉 = 0, (5.36)

K31〈〈O[4](p1)O[2](p2)O[2](p3)〉〉 =
2

p1

∂

∂p1
A422, (5.37)

where Kij = Ki −Kj with

K1 =
∂2

∂p2
1

− 3

p1

∂

∂p1
, K2 =

∂2

∂p2
2

+
1

p2

∂

∂p2
, K3 =

∂2

∂p2
3

+
1

p3

∂

∂p3
. (5.38)

The renormalised correlator indeed satisfies these identities, since (4.144) obeys

2

p1

∂

∂p1
D 〈〈O[4](p1)O[2](p2)O[2](p3)〉〉 = 0, K31〈〈O[4](p1)O[2](p2)O[2](p3)〉〉 = 0. (5.39)
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Note that in this case (unlike the previous), the special conformal Ward identities

provide no additional constraints on the scheme-dependent constants in (4.144).

Example 13: ∆1 = ∆2 = 2 and ∆3 = 4 in d = 3.

While it is necessary for the triple-K integral to have a (− − −) singularity in order

to have an anomaly, the presence of such a singularity is not sufficient to guarantee the

anomaly is nonzero. In fact, whenever we have only (+ +−) and (−−−) singularities, the

anomaly vanishes and the renormalised correlator obeys the homogeneous conformal Ward

identities, as we saw in section 4.3.3. (Given the absence of a (+ − −) singularity, beta

function contributions are also clearly forbidden.) In the present example, which falls into

this category, we have k++− = 0 and k−−− = 1. The correlator is extremal, ∆1 +∆2 = ∆3,

and can be realised in terms of a free scalar Φ as O1 = O2 = :Φ4 : and O3 = :Φ8 :.

The leading divergence of the regulated triple-K integral occurs at ε−1 order and is

nonlocal in the momenta. The renormalised correlator then follows by multiplying through

by an overall constant of order ε and sending ε→ 0, yielding

〈〈O1(p1)O2(p2)O3(p3)〉〉 ∝ F++− + aF−−− (5.40)

where16

F++− = p1p2, F−−− = 3(p2
1 + p2

2)− p2
3. (5.41)

The nonlocal piece F++− is equal to the product 〈〈O1(p1)O1(−p1)〉〉〈〈O2(p2)O2(−p2)〉〉 as

we would expect for an extremal correlator. The finite constant a multiplying the ultralocal

F−−− piece can be adjusted arbitrarily through the addition of a finite counterterm

Sct = a

∫
d3+2uεxµ−(u−3v)ε

[
3(�φ1φ2φ3 + φ1�φ2φ3)− φ1φ2�φ3

]
. (5.42)

Both F++− and F−−− independently satisfy the homogeneous dilatation and special

conformal Ward identities, DF = 0 and KijF = (Ki − Kj)F = 0, as is easily verified

noting that

D = −2 +
3∑
i=1

pi
∂

∂pi
, K1 =

∂2

∂p2
1

, K2 =
∂2

∂p2
2

, K3 =
∂2

∂p2
3

− 4

p3

∂

∂p3
. (5.43)

Indeed this makes sense, as the finite counterterm (5.42) fails to generate a nonzero

anomaly:

µ
∂

∂µ
〈〈O1(p1)O2(p2)O3(p3)〉〉 = lim

ε→0
(εa)(3(p2

1 + p2
2)− p2

3) = 0. (5.44)

The point here is that we only have a finite counterterm: there are no counterterms with

divergent coefficients, since the renormalised correlator is given by multiplying the leading

ε−1 divergence of the triple-K integral through by an overall constant of order ε. (This

must be the case as there are no counterterms to remove the (+ +−) singularity.) To have

a nonzero anomaly would instead require a (−−−) counterterm whose coefficient has an

ε−1 pole.

16See also (A.25) in appendix A.2.
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6 Dual conformal symmetry

Several of the renormalised 3-point functions we have met thus far have the curious property

of dual conformal symmetry: their momentum-space expressions take the form expected

of a CFT 3-point function in position space.17 One example is when solely the (+ + +)

condition is satisfied with k+++ = 0. In this case, ∆1 + ∆2 + ∆3 = d, and we find (e.g.,

from the general formula (A.16) in appendix A)

〈〈O1(p1)O2(p2)O3(p3)〉〉∝p2∆1−d
1 p2∆2−d

2 p2∆3−d
3 =p∆1−∆2−∆3

1 p∆2−∆3−∆1
2 p∆3−∆1−∆2

3 . (6.1)

Defining

p1 = y23 = y2 − y3, p2 = y31 = y3 − y1, p3 = y12 = y1 − y2, (6.2)

to ensure momentum conservation
∑

i pi = 0, we then have

〈〈O1(y23)O2(y31)O3(y12)〉〉 ∝ 1

|y23|∆2+∆3−∆1 |y31|∆3+∆1−∆2 |y12|∆1+∆2−∆3
. (6.3)

The 3-point function thus has exactly the form imposed by conformal symmetry acting on

the y coordinates. This dual momentum-space conformal symmetry is present in addition

to the position-space conformal symmetry we started with, which acts on the original x

coordinates.

In the example above, the operator dimensions associated with the dual conformal

symmetry are the same as for the original conformal symmetry. This is not always the

case, however, as can be seen from the following example. Consider the case where solely

the condition (+ + −) is satisfied, with k++− = 0. Now we have ∆1 + ∆2 = ∆3 and the

correlator is extremal. From (A.17) in appendix A, the renormalised correlator is

〈〈O1(p1)O2(p2)O3(p3)〉〉 ∝ p2∆1−d
1 p2∆2−d

2 . (6.4)

Defining

∆̄1 = d/2−∆2, ∆̄2 = d/2−∆1, ∆̄3 = d−∆3, (6.5)

we see that

〈〈O1(y23)O2(y31)O3(y12)〉〉 ∝ 1

|y23|∆̄2+∆̄3−∆̄1 |y31|∆̄3+∆̄1−∆̄2 |y12|∆̄1+∆̄2−∆̄3
. (6.6)

The dimensions ∆̄i associated with the dual conformal symmetry are therefore in general

different from those associated with the position-space conformal symmetry. (Note however

the modified dimensions still satisfy the extremality condition ∆̄1 + ∆̄2 = ∆̄3.)

A third case where dual conformal symmetry can arise is when both (+ + +) and

(+ +−) conditions are simultaneously satisfied (see case (5) in appendix A). This requires

β3 to be an integer: if β3 ∈ Z+ and k+++ = 0, then the 3-point function is the same as in

17Early hints of dual conformal symmetry emerged in [37, 38], and were later developed in the context of

scattering amplitudes in N = 4 SYM, see e.g., [39–41]. Dual conformal symmetry is known to be connected

to the existence of a Yangian algebra.
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the first example above, while if β3 ∈ Z− and k++− = 0, the 3-point function is the same

as in the second example.

In all the examples above we had either k+++ = 0 or k++− = 0. To understand what

happens more generally, consider for example the case where only the (+ + +) condition

is satisfied with k+++ = 1. If all the βi ≥ 0 say, from (A.16) the renormalised correlator is

〈〈O1(y23)O2(y31)O3(y12)〉〉 ∝ y2β1
23 y2β2

31 y2β3
12

(
y2

23

β1 + 1
+

y2
31

β2 + 1
+

y2
12

β3 + 1

)
. (6.7)

Now, in order to have dual conformal symmetry, it is necessary for the correlator to trans-

form appropriately under inversions yi → yi/y
2
i , namely

〈〈O1(y23)O2(y31)O3(y12)〉〉 → y∆̄1
1 y∆̄2

2 y∆̄3
3 〈〈O1(y23)O2(y31)O3(y12)〉〉, (6.8)

where the ∆̄i denote generic dual conformal dimensions. Since under inversions,

y2
12 → y2

12 (y1y2)−2, (6.9)

we see that (6.7) transforms as a sum of 3-point functions of different conformal dimensions,

rather than as a single 3-point function. This behaviour occurs whenever the renormalised

correlator is purely the sum of products of momenta raised to various powers, without any

logarithms being present.18

As dual conformal symmetry is more typically encountered in the context of massless

Feynman diagrams [40], it is interesting to analyse the triple-K integral from this perspec-

tive. As shown in appendix A.3 of [7], we can rewrite the regulated triple-K integral as a

massless 1-loop Feynman integral,

Iα̃,{β̃i} = 2−4(2/π)d̃/2Γ(δ̃1)Γ(δ̃2)Γ(δ̃3)Γ(d̃− δ̃t)
∫

dd̃p
1

|p|2δ̃3 |p− p1|2δ̃2 |p+ p2|2δ̃1
. (6.10)

In this formula δ̃i = β̃i − β̃t/2 + d̃/4, where δ̃t =
∑

i δ̃i and β̃t =
∑

i β̃i, and we regulate in

our usual manner so that β̃i = βi + vε and d̃ = d + 2uε. Setting p = y − y3, this 1-loop

triangle integral is then related to an equivalent star integral in which we integrate over

the position y of a central vertex,∫
dd̃p

1

|p|2δ̃3 |p−p1|2δ̃2 |p+p2|2δ̃1
=

∫
dd̃y

1

|y−y1|2δ̃1 |y−y2|2δ̃2 |y−y3|2δ̃3
≡ Jd̃,{δ̃i}({yi}).

(6.11)

For this star integral to possess dual conformal symmetry, it must transform under inver-

sions yi → yi/y
2
i in the same manner as a CFT 3-point function, namely

Jd̃,{δ̃i}({yi/y
2
i }) = y2δ̃1

1 y2δ̃2
2 y2δ̃3

3 Jd̃,{δ̃i}({yi}). (6.12)

To achieve this requires

δ̃t = d̃ ⇒ δ̃i = ∆̃i, ∆̃t = d̃, (6.13)

18According to the general classification scheme in appendix A, this happens in cases (1), (2), (5) and

(7); in these cases the leading divergence of the regulated triple-K integral is nonlocal as per table 1.
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as can be seen by inverting the integration variable y → y/y2. When this condition is

satisfied, however, the relation between the star integral and the triple-K integral in (6.10)

is singular, due to the factor of Γ(d̃− δ̃t). Indeed, this makes sense as the regulated triple-

K integral does not by itself possess dual conformal symmetry. (One can verify directly

that the triple-K integral fails to transform correctly under inversions yi → yi/y
2
i .) Dual

conformal symmetry therefore cannot exist for CFT 3-point functions for which renormal-

isation is not required, i.e., cases where the singularity condition (4.30) is not satisfied and

the triple-K integral can be defined through analytic continuation alone.

How then can dual conformal symmetry arise in certain of the remaining cases for which

renormalisation is required? The answer is that, in order for the renormalised correlator

to possess dual conformal symmetry, we need not require that the star integral possesses

exact dual conformal symmetry: it is sufficient that this holds simply to leading order in ε.

In the first example above, where the (+ + +) condition alone held with k+++ = 0, we

had ∆t = d and so βt = −d/2. We then find

δ̃i = ∆i + (u− v)ε/2, d̃− δ̃t = (u+ 3v)ε/2. (6.14)

The star integral (6.11) now only satisfies (6.12) at order ε0, since after inverting we pick up

a net factor of y2(δ̃t−d̃) = y−(u+3v)ε = 1+O(ε) in the numerator of the integral. In addition,

the factor of Γ(d̃ − δ̃t) = Γ((u + 3v)ε/2) in (6.10) contributes an ε−1 pole. Consequently,

only the leading ε−1 divergence of the regulated triple-K integral possesses dual conformal

invariance. As we have already seen, however, this leading ε−1 divergence is precisely the

renormalised correlator: since there are no counterterms when the (+ + +) condition alone

is satisfied, the renormalised correlator is obtained by multiplying the regulated triple-K

integral through by an overall constant of order ε before sending ε→ 0.

In the second example, where the (+ + −) condition alone was satisfied with k++− =

0, the emergence of dual conformal symmetry is less obvious as the star integral (6.11)

does not satisfy the condition (6.13). One can show, however, that the gamma function

prefactors in (6.10) are all finite as ε→ 0, and as we know the triple-K integral has an ε−1

divergence, the star integral must therefore diverge as ε−1. This leading ε−1 divergence of

the star integral, which is proportional to the renormalised correlator, does then possess

dual conformal symmetry.

7 Discussion

We have presented a comprehensive discussion of the renormalisation of 3-point func-

tions of primary operators in conformal field theory. Our results were obtained by solving

the conformal Ward identities and as such they apply to all CFTs, perturbative or non-

perturbative, and in any dimension. Renormalisation is required when the dimensions of

operators involved in the 3-point function satisfy specific relations.

Our discussion is analogous to that for 2-point functions, where renormalisation is

required when the operators involved have dimension such that ∆− d/2 is integral. Corre-

spondingly, there is a conformal anomaly, and (like the more familiar conformal anomaly

that depends on the background metric) the coefficients of these anomalies are part of
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the CFT data. Operators with such dimensions are common in CFTs, and also in super-

symmetric CFTs as BPS operators typically have such dimensions (for example, 1/2-BPS

operators in N = 4 SYM). A recent application of the anomalies related to 2-point func-

tions may be found in [42].

In the case of 3-point functions, renormalisation leads to a richer structure: new con-

formal anomalies arise and beta functions appear. The generating functional of CFT

connected correlators satisfies

µ
d

dµ
W [φi] = A, (7.1)

where φi are the renormalised sources and

µ
d

dµ
= µ

∂

∂µ
+
∑
i

∫
ddxβφi

δ

δφi(x)
. (7.2)

Anomalies arise when

∆1 + ∆2 + ∆3 = 2d+ 2k−−−, (7.3)

while a beta function for the source that couples to O3 will appear when

∆1 + ∆2 −∆3 = d+ 2k−−+, (7.4)

where k−−− and k−−− are non-negative integers (and similarly for permutations). The

beta functions are due to renormalisation of the sources.19

If either (7.3) or (7.4) holds, (7.1) implies that the 3-point function will depend loga-

rithmically on the renormalisation scale µ, and thus it will contain logarithms of momenta.

If both conditions hold simultaneously, ∆3−d/2 must be integral and thus O3 is one of the

operators that have anomalies already at the level of 2-point functions. In this case, (7.1)

implies that the 3-point functions contain double logarithms. The fact that 3-point func-

tions can exhibit such analytic structure is one of the most surprising results to emerge

from this work.

A further special case arises when one of the other two operators is marginal. The

coefficient of the conformal anomaly due to the 2-point function of O3 may now become

a function of the source of the marginal operator, and indeed we find such an anomaly

does arise at the level of 3-point functions. This anomaly however is scheme-dependent

and the corresponding µ-dependence of the 3-point function may be set to zero by a choice

of scheme.

A different set of special cases arises when the operators have dimensions that satisfy

one (or both) of the following conditions:

∆1 −∆2 −∆3 = 2k−++, ∆1 + ∆2 + ∆3 = d− 2k+++ (7.5)

(along with permutations), where k−++ and k+++ are non-negative integers. In such

cases, the triple-K representation of the 3-point functions is singular, not the correlators

19Note that the fact that renormalisation requires the sources of composite operators to renormalise is

not new: for example, BRST renormalisation of Yang-Mills theory requires renormalisation of the sources

that couple to the BRST variation of the Yang-Mills field and of the ghost fields, see for example [43].
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themselves. The corresponding 3-point functions may be extracted from the singular part of

the triple-K integral and satisfy non-anomalous conformal Ward identities. Actually, these

correlators exhibit enhanced symmetry. If k−++ = 0 and/or k+++ = 0, the correlators take

the form of position-space correlators but with differences in position replaced by momenta,

i.e., these correlators are dual conformal invariant. If k−++ 6= 0 and/or k+++ 6= 0 the

correlators are instead equal to a sum of terms, each of which is individually dual conformal

invariant (albeit with different conformal weights). It would interesting to understand the

implications of dual conformal invariance.

We emphasise that we are considering the theory at the fixed point and the correlation

functions we derive are those of the CFT. If we were to promote the source of O3 to a

new coupling, however, then the deformed theory would run. A corollary of our analysis

is a necessary condition for a marginal operator O[d] to be exactly marginal: its 3-point

function 〈O[d]O[d]O[d]〉 should vanish. If this 3-point function is non-vanishing there will

be a beta function (see e.g., example 8), and the deformed theory will not be conformal.

A similar argument (in d = 2) based on OPEs was made in [44, 45].20

In this paper we discussed the renormalisation of 3-point functions of scalar operators.

The same techniques also apply to tensorial 3-point functions, but there are new issues that

arise. More specifically, since the diffeomorphism and Weyl Ward identities relate 2- and 3-

point functions, we need a regulator that regulates both. For this reason the (1, 0)-scheme

which proved so useful here cannot be used there. Moreover, conservation requires that

in d dimensions the stress tensor has dimension d and conserved currents have dimension

d − 1. This condition requires a u = v scheme, however the regulated expressions appear

to have singularities when u = v. We will discuss in detail how to overcome these problems

and renormalise tensorial correlators in a sequel to this work [29].

It would be interesting to extend our discussion to higher-point functions. Correlators

higher than 3-point functions are not uniquely determined by the conformal Ward identi-

ties: conformal invariance allows for an arbitrary function of cross-ratios in position space.

One would first need to understand what is the analogue of the cross-ratio in momentum

space. The singularity structure is also richer since there are different short distance be-

haviours depending on how many points are coincident. One would anticipate obtaining

new anomalies when [5]
n∑
i=1

∆i = (n− 1)d+ 2k1, (7.6)

and new contributions to beta functions, which are of order (n− 1) in the sources, when

n−1∑
i=1

∆i −∆n = (n− 2)d+ 2k2 (7.7)

and permutations, where where k1, k2 are non-negative integers. These two cases should

correspond to ultralocal divergences and divergences where all but one point is coincident.

All other divergences should already be accounted for by the counterterms introduced to

20We thank Adam Schwimmer and Stefan Theisen for bringing these references to our attention.
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renormalise lower point functions. Based on the case of 3-point functions studied here,

one may anticipate that correlators with dimensions that satisfy the analogue of (7.5)

should also be special.21 It would be interesting to see whether such correlators are dual

conformal invariant.

Anomalies have provided invaluable insights into quantum field theory and have led

to many important results. In this paper, we uncovered a new set of conformal anomalies

that originate from divergences in 3-point functions of scalar operators, and we saw that

even without anomalies CFT correlators can depend on a scale (via the scale-dependence

of the renormalised sources). Moreover, CFT 3-point functions may depend quadratically

on logarithms of momenta. It will be exciting to explore the implications and applications

of these results.
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A General results

The triple-K integral is singular whenever the condition (4.30), namely

α+ 1 + σ1β1 + σ2β2 + σ3β3 = −2kσ1σ2σ3 , (A.1)

is satisfied for some non-negative integers kσ1σ2σ3 and (independent) choice of signs σi ∈
{±}, i = 1, 2, 3, with α = d/2−1 and βi = ∆i−d/2. In the main text, we focused on cases

where only a single solution of this condition exists. In general, however, this condition may

have multiple solutions, each with a different number of positive and negative signs, and

potentially different values of kσ1σ2σ3 . When such multiple solutions exist, the regulated

triple-K integral typically has higher-order poles in ε, with the maximum permitted being

ε−s where s is the number of different solutions of (A.1) (not counting simple permutations).

Our purpose in this appendix is to classify all the cases that can arise, including those where

multiple solutions of (A.1) exist, and to understand their singularity structure. We will also

21These would be cases where one can construct dimension d combinations obtained by products of

operators, as well as sources and derivatives.
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give explicit results for the renormalised 3-point function wherever this can be determined

purely from the singularities of the regulated triple-K integral.

A.1 Classification of cases

Let us call a solution of (A.1) associated with some σi ∈ {±} a solution of type (σ1σ2σ3).

To classify the cases where (A.1) admits multiple solutions, we first observe that certain

types of solution are mutually incompatible, since on physical grounds

d > 0, ∆i > 0. (A.2)

(Note the latter condition is a weaker restriction than unitarity which requires ∆i ≥ (d−
2)/2.) The types of solution that cannot appear simultaneously are therefore:{

+ + +

−−−

{
+ +−
−−+

{
+ + +

+−−
(A.3)

In the first two cases, we would violate the condition d > 0, while in the third we would

violate the condition ∆1 > 0. For example, to have solutions of both type (+ + +) and

(−−−) requires

d/2 + β1 + β2 + β3 = −2k+++,

d/2− β1 − β2 − β3 = −2k−−−, (A.4)

but on adding these equations we find d = −2(k+++ + k−−−) ≤ 0. Similarly, to have both

(+ + +) and (+−−) solutions requires

d/2 + β1 + β2 + β3 = −2k+++,

d/2 + β1 − β2 − β3 = −2k+−−, (A.5)

but on adding we find d+ 2β1 = 2∆1 = −2(k+++ + k+−−) ≤ 0.

Excluding cases with incompatible solution types, the remaining allowed cases are:

+ + + + +− +−− −−−{
+ + +

+ +−

{
+ +−
+−−

{
+ +−
−−−

{
+−−
−−−

+ +−
+−−
−−−

(A.6)

For ease of reference we have numbered these cases (1)–(9) as listed in table 1. We will also

need to keep track of which permutations of the (+−−) type solution are present, subdi-

viding cases (3), (6), (8) and (9) into further subcases accordingly (see later). Fortunately,

we do not need to do the same for the type (+ + −) solutions as these can only arise in a

single permutation due to the condition ∆i > 0. For example, if we had both (+ +−) and

(+−+) solutions of (A.1), then on adding we would find ∆1 = −k++− − k+−+ ≤ 0.
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Case Solution types present Leading divergence First nonlocal divergence

1 (+ + +) ε−1 ε−1

2 (+ +−) ε−1 ε−1

3 (+−−) ε−1 ε0

4 (−−−) ε−1 ε0

5 (+ + +) and (+ +−) ε−2 ε−2

6 (+ +−) and (+−−) ε−2 ε−1

7 (+ +−) and (−−−) ε−1 ε−1

8 (+−−) and (−−−) ε−2 ε0

9 (+ +−), (+−−) and (−−−) ε−3 ε−1

Table 1. Singular cases consistent with d > 0 and ∆i > 0, including those where (A.1) admits

multiple solutions. The third and fourth columns refer to the divergence of the corresponding

regulated triple-K integral, as discussed in section A.2. The third column lists the maximum

leading divergence of the regulated triple-K integral, while the fourth column gives the order at

which terms fully nonlocal in the momenta first arise. When this order is ε0 we must evaluate the

regulated triple-K integral in order to determine the renormalised correlator. In all other cases,

we can determine the renormalised correlator purely from the singularities of the triple-K integral.

Explicit expressions for all such cases are listed in section A.2.

A.2 Renormalised correlators in (1, 0)-scheme

In cases (3), (4) and (8), the singularity condition (A.1) has only (+−−) and/or (−−−)

type solutions. In these cases, the singularities of the regulated triple-K integral involve

terms that are only semi- and/or ultralocal in the momenta. To determine the (fully

nonlocal) renormalised correlator then requires a complete evaluation of the regulated

triple-K integral including its finite piece of order ε0.

Here we will focus primarily on the remaining cases, where (A.1) admits solutions of

type (+++) and/or type (++−). When solutions of these types are present, the regulated

triple-K integral has singularities that are nonlocal in the momenta, for which there are

no corresponding counterterms. Rather, it is the triple-K integral representation itself

that is singular: the renormalised 3-point function is given by multiplying the regulated

triple-K integral through by appropriate positive powers of ε, so as to extract the leading

nonlocal singularities in the limit ε → 0. In cases (5), (6), (7) and (9) an additional

complication arises, which is that the desired nonlocal singularities potentially occur at

subleading order in ε (or even at sub-subleading order in case (9)). When this occurs, the

leading singularities are either ultra- or semilocal, and correspond to the presence of type

(+ − −) and (− − −) solutions to (A.1). In such instances, one must first remove these

leading ultra- or semilocal singularities through the addition of suitable counterterms.

To place this discussion on a more explicit footing, let us now systematically evaluate

the divergences of the regulated triple-K integral. In all cases apart from (3), (4) and

(8), we will be able to read off the renormalised 3-point function directly from the leading
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nonlocal divergence. A convenient scheme for this computation is (u, v) = (1, 0), where

the indices of the Bessel functions are preserved. The individual coefficients in the series

expansion of the Bessel functions (the a±k (β) defined below) then have no ε-dependence,

making it easy to identify the overall order of terms.

The Bessel function Kβ(z) has the standard series expansion

Kβ(z) =


1

2
z−β

∞∑
k=0

a−k (β)z2k +
1

2
zβ ln z

∞∑
k=0

a+
k (β)z2k if β ∈ Z+,

π

2 sin(βπ)

[
z−β

∞∑
k=0

a−k (β)z2k + zβ
∞∑
k=0

a+
k (β)z2k

]
if β /∈ Z,

(A.7)

where the coefficients a±k (β) are

a−k (β) =



(−1)k(β − k − 1)!

22k−βk!
if β ∈ Z+ and k < β,

(−1)β

22k−βk!(k−β)!
[ψ(k−β+1)+ψ(k+1)+2 ln 2] if β ∈ Z+ and k ≥ β,

1

22k−βk!Γ(−β + k + 1)
if β /∈ Z,

(A.8)

a+
k (β) =


(−1)β+1

22k+β−1k!(β + k)!
if β ∈ Z+,

−1

22k+βk!Γ(β + k + 1)
if β /∈ Z.

(A.9)

Here, ψ(k) = Γ′(k)/Γ(k) is the digamma function, which for positive integer k > 0 can

be re-expressed in terms of the k-th harmonic number Hk =
∑k

n=1 n
−1 and the Euler-

Mascheroni constant γE as ψ(k + 1) = Hk − γE . When β ∈ Z, the expansion coefficients

defined in (A.8) and (A.9) are strictly only valid for β ≥ 0. Since K−β(z) = Kβ(z),

however, we can handle all cases including β < 0 by using K|β|(z) in place of Kβ(z). We

have also pulled out the overall factors in (A.7) to simplify our later expressions for the

renormalised correlators in section A.2. These correlators are only determined up to a finite

overall constant of proportionality, to which the terms we have pulled out make a fixed

contribution. Extracting this contribution allows us to simplify our final results, which will

be expressed in terms of the expansion coefficients (A.8) and (A.9).

Writing the regulated triple-K integral as

Iα+ε,{β1,β2,β3} =

∫ ∞
0

dxxα+ε
∏
i

pβii K|βi|(pix), (A.10)

the next step is to apply the series expansion (A.7) to each of the three Bessel functions.

As the a±k (β) coefficients in the Bessel functions are all finite, divergences can only arise

from the lower part of the integrals over x. Factoring out all momentum dependence, the

only divergent integrals are those of the form∫ µ−1

0
dxx−1+ε lnn x =

(−1)nn!

εn+1
+O(ε0), (A.11)
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where the divergent pieces are independent of µ−1. The singularities with the highest

degree of divergence therefore arise from integrals with the greatest number of logarithms.

The number of logarithms present in a given term corresponds in turn to the number of

coefficients a+
k (|βi|) for which βi ∈ Z. Modulo possible logarithms, the factors of momentum

accompanying divergent x-integrals of the form (A.11) have the general structure

∑
{ki}

(
3∏
i=1

aνiki(|βi|)p
2ki+βi+νi|βi|
i

)
(A.12)

for some independent choice of signs {νi} ∈ ±1. The sum here runs over integer ki ≥ 0

such that

α+
3∑
i=1

(2ki + νi|βi|) = −1, (A.13)

so as to obtain the appropriate overall power of x. If we denote the sign of each βi by si so

that βi = si|βi|, then clearly (A.13) is solved by νi = siσi with
∑

i ki = kσ1σ2σ3 according

to (A.1). The factor (A.12) can then be re-expressed more conveniently as

Fσ1σ2σ3 ≡
∑
{ki}

(
3∏
i=1

asiσiki
(|βi|)p2ki+(1+σi)βi

i

)
, (A.14)

where the sum runs over all ki ≥ 0 such that
∑

i ki = kσ1σ2σ3 . For there to be accompanying

logarithms requires both siσi = +1 and βi ∈ Z. To understand in which of the cases (1)–(9)

this occurs, we must introduce one further concept.

Given a solution (σ1 σ2 σ3) of the singularity condition (A.1), we will term this solution

to be paired on index σ1 if there also exists a solution to (A.1) of type (−σ1 σ2 σ3). Similarly,

the solution is paired on index σ2 if there exists a solution of type (σ1−σ2 σ3), and it is

paired on index σ3 if there exists a solution of type (σ1 σ2−σ3). Thus, the solutions of (A.1)

in cases (1)–(4) are not paired as only a single solution is present in each case, while in

case (5) the two solutions are both paired on the last index. If we had solutions of type

(+ + −), (+ − −) and (− − −), as occurs in one of the subdivisions of case (9), then the

first of these solutions is paired on the second index; the second on the first and second

indices; and the third on only the first index.

The significance of pairing is as follows. Given a solution (σ1 σ2 σ3) of (A.1), for this

solution to be paired on index σ1 requires the quantity n defined by

− 2n ≡ α+ 1− σ1β1 + σ2β2 + σ3β3 = −2(kσ1σ2σ3 + σ1s1|β1|) (A.15)

to be a non-negative integer. Thus, if the solution is paired on index σ1, then β1 must be

an integer. If instead the solution is not paired, n is either non-integer or else a negative

integer. In the case where σ1s1 = +1, the solution not being paired on σ1 then implies

β1 is non-integer. (Recall kσ1σ2σ3 is a non-negative integer). In the remaining case where

σ1s1 = −1, knowing that that solution is not paired on σ1 does not tell us anything about

whether or not β1 is integer.
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si σi Paired βi ∈ Z ln present p
(1+σi)βi
i non-analytic

+ + X X X ×
+ + × × × X

+ − X X × ×
+ − × ? × ×
− + X X × X

− + × ? × X

− − X X X ×
− − × × × ×

Table 2. For any given solution of (A.1), from the sign si of βi and whether or not the solution is

paired on σi, we can deduce whether an order-boosting logarithm is present as well as whether the

accompanying factor of momentum is non-analytic in p2i . In this manner one can reconstruct the

pole structure and locality properties of the divergent parts of the regulated triple-K integral.

To have a logarithm requires both integer βi and also siσi = +1. Tabulating all

possibilities as per table 2, we see that if two solutions are paired on an index σi then we

always have a logarithm from the solution with σi = si. The momentum factor p
(1+σi)βi
i

accompanying this log is however always analytic. On the other hand, if a solution is

not paired on some index σi, there are no log contributions, and for the accompanying

momentum factor to be non-analytic requires σi = +1. If σi = −1 the accompanying

momentum factor is always analytic, regardless of pairing.

With these considerations in place, we can easily understand the order of the leading

divergence of the regulated triple-K integral given in table 1. From (A.11), this order is

one more than the maximum number of logs that can occur in each case. The maximum

number of logs is in turn given by the maximum number of indices on which any of the

solutions present is paired. Thus, for example, case (7) is only order ε−1 divergent (rather

than ε−2, the maximum allowed order when two solutions of (A.1) are present) because

neither solution is paired on any of its indices. In case (9), on the other hand, the leading

divergence can be ε−3 when the (+−−) solution (or one of its permutations) is paired on

both its first and second indices.

Going through each of the cases (1)–(9) with the aid of table 2, we can now reconstruct

all divergences of the regulated triple-K integral and read off the renormalised correlators

where possible. Before proceeding to the complete listing below, let us first run through

a few examples. In case (5), for instance, both solutions are paired on the third index

meaning β3 ∈ Z and we have one logarithm present. From table 2, this log is associated

with the type (+ + +) solution if β3 ∈ Z+; otherwise it is associated with the (+ + −)

solution. The leading divergence is therefore of order ε−2 and carries a momentum factor

of either F+++ or F++− according to which solution has the log. (Note that, after splitting

ln(p3x) = lnx + ln p3, only the ln x part acts to boost the order of the divergence: the

remaining ln p3 piece contributes only to the subleading ε−1 divergence.) Examining this
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leading ε−2 divergence we see that is nonlocal due to the non-analytic factors of momentum

associated with the first two indices. This is indeed as we expect since no counterterms

are available for removing divergences: instead we must multiply the regulated triple-K

integral by an overall constant of order ε2 before sending ε→ 0 to extract the renormalised

correlator.

As a second example, let us consider case (9b), the most complicated case, where

(+ +−), (+−−), (−+−) and (−−−) solutions of (A.1) are present. Here, each solution

is paired on both its first and its second indices. The number of logarithms associated

with each solution then depends on the signs of β1 and β2. To have a logarithm requires

σisi = +1, hence if both s1 = s2 = +1 then the (+ +−) solution has two logarithms (i.e.,

contributes a factor of ln(p1x) ln(p2x)), the (+ − −) and the (− + −) solution each have

only a single logarithm (ln(p1x) and ln(p2x) respectively), while the (−−−) solution has

none. The leading divergence is therefore ε−3F++−, however from table 2 this is ultralocal

as the momentum factors associated with all three indices are analytic. The subleading

divergence at order ε−2 is then semilocal, and only the sub-subleading order ε−1 divergence

is nonlocal. It is this last quantity therefore that is proportional to the renormalised

correlator, which may be obtained by removing the leading and subleading divergences

through counterterms, multiplying by an overall constant of order ε, then sending ε → 0.

Its momentum dependence, given in (A.30) below, follows from collecting terms without

factors of ln x: for the (+ + −) solution this is F++− ln p1 ln p2, for the (+ − −) solution

this is F+−− ln p1, etc.

We are now ready to list the complete results as follows. In cases (3), (4) and (8)

where it is not possible to determine the renormalised correlator we have instead listed

the complete singularity structure of the regulated triple-K integral, which contains only

ultralocal or semilocal terms. In the remaining cases where we provide results for the renor-

malised correlator, note that these are specified in a particular choice of renormalisation

scheme; when type (+−−) or (−−−) solutions are present we can adjust the coefficients

of ultra- and/or semilocal terms arbitrarily by adding finite counterterms to the action.

The function of momentum Fσ1σ2σ3 is as defined in (A.14).

Case (1): (+ + +) only.

〈〈O1(p1)O2(p2)O3(p3)〉〉 ∝ F+++ (A.16)

Case (2): (+ + −) only.

〈〈O1(p1)O2(p2)O3(p3)〉〉 ∝ F++− (A.17)

Case (3a): (+ − −) only.

Idiv
α+ε,{βi} ∝ ε

−1F+−− (A.18)

Case (3b): (+ − −) and (− + −).

Idiv
α+ε,{βi} ∝ ε

−1
(
F+−− + F−+−

)
(A.19)
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Case (3c): (+ − −), (− + −) and (− − +).

Idiv
α+ε,{βi} ∝ ε

−1
(
F+−− + F−+− + F−−+

)
(A.20)

Case (4): (− − −) only.

Idiv
α+ε,{βi} ∝ ε

−1F−−− (A.21)

Case (5): (+ + +) and (+ + −).

〈〈O1(p1)O2(p2)O3(p3)〉〉 ∝

{
F+++ if β3 ≥ 0,

F++− if β3 < 0.
(A.22)

Case (6a): (+ + −) and (+ − −).

〈〈O1(p1)O2(p2)O3(p3)〉〉 ∝

{
F++− ln p2 + F+−− if β2 ≥ 0,

F++− + F+−− ln p2 if β2 < 0.
(A.23)

Case (6b): (+ + −), (+ − −) and (− + −).

〈〈O1(p1)O2(p2)O3(p3)〉〉∝


F++− ln p1+F+−− ln p2+F−+− if β1≥0 and β2<0,

F++− ln p2+F+−−+F−+− ln p1 if β1<0 and β2≥0,

F++−+F+−− ln p2+F−+− ln p1 if β1<0 and β2<0.

(A.24)

Note that we cannot have both β1 ≥ 0 and β2 ≥ 0 here: taking linear combinations of the

solutions of (A.1), we find β1 +β2 = −2k++−+ k+−−+ k−+−. In the absence of a (−−−)

solution, we know moreover that −2k−−− ≡ α+1−β1−β2−β3 = −2(k+−−+k−+−−k++−)

must be such that k−−− ∈ Z−, and hence β1 +β2 = k−−−− k++− ≤ 0. As we cannot have

both β1 ≥ 0 and β2 ≥ 0, there are then no double-log contributions to the renormalised

correlator even though the (+ + −) solution is paired on both its first and second indices.

Independently, we know that such a contribution cannot appear since it would imply the

existence of an ε−3 divergence, however this is forbidden since we have only two different

types of solution of (A.1) ignoring permutations, and hence at most an order ε−2 divergence.

Case (7): (+ + −) and (− − −).

〈〈O1(p1)O2(p2)O3(p3)〉〉 ∝ F++− + F−−−. (A.25)

Case (8a): (+ − −) and (− − −).

Idiv
α+ε,{βi} ∝

{
−ε−2F+−− + ε−1

(
F+−− ln p1 + F−−−

)
if β1 ≥ 0,

−ε−2F−−− + ε−1
(
F+−− + F−−− ln p1

)
if β1 < 0.

(A.26)

The relative minus sign between the leading and subleading terms here arises from (A.11).
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Case (8b): (+ − −), (− + −) and (− − −).

Idiv
α+ε,{βi} (A.27)

∝


−ε−2

(
F+−− + F−+−

)
+ε−1

(
F+−− ln p1 + F−+− ln p2 + F−−−

)
if β1 ≥ 0 and β2 ≥ 0,

−ε−2
(
F+−− + F−−−

)
+ε−1

(
F+−− ln p1 + F−+− + F−−− ln p2

)
if β1 ≥ 0 and β2 < 0,

−ε−2
(
F−+− + F−−−

)
+ε−1

(
F+−− + F−+− ln p2 + F−−− ln p1

)
if β1 < 0 and β2 ≥ 0.

In this subcase we cannot have both β1 < 0 and β2 < 0: taking linear combinations of the

solutions of (A.1), we find β1 + β2 = 2k−−− − k+−− − k−+−. The absence of a (+ + −)

solution means however that −2k++− ≡ α+ 1 + β1 + β2− β3 = −2(k+−−+ k−+−− k−−−)

is such that k++− ∈ Z−, and hence β1 + β2 = −k++− + k−−− > 0. As we cannot have

both β1 < 0 and β+ 2 < 0, there are then no nonlocal double-log contributions to Idiv
α+ε,{βi}

even though the (− − −) solution is paired on both first and second indices. We know

independently that such a contribution cannot arise as it would imply the presence of

an ε−3 divergence which is forbidden since, discounting permutations, we only have two

different types of solution of (A.1), and hence at most an order ε−2 divergence.

Case (8c): (+ − −), (− + −), (− − +) and (− − −).

Idiv
α+ε,{βi} ∝ −ε

−2
(
F+−− + F−+− + F−−+

)
+ ε−1

(
F+−− ln p1 + F−+− ln p2 + F−−+ ln p3 + F−−−

)
. (A.28)

Note in this subcase that all βi > 0, as can be shown by adding pairwise the (+ − −),

(−+−) and (−−+) solutions of (A.1).

Case (9a): (+ + −), (+ − −) and (− − −).

〈〈O1(p1)O2(p2)O3(p3)〉〉∝



F++− ln p2+F+−− ln p1+F−−− if β1≥0 and β2≥0,

F++−+F+−− ln p1 ln p2+F−−− if β1≥0 and β2<0,

F++− ln p2+F+−−+F−−− ln p1 if β1<0 and β2≥0,

F++−+F+−− ln p2+F−−− ln p1 if β1<0 and β2<0.

(A.29)

Case (9b): (+ + −), (+ − −), (− + −) and (− − −).

〈〈O1(p1)O2(p2)O3(p3)〉〉

∝



F++− ln p1 ln p2 + F+−− ln p1 + F−+− ln p2 + F−−− if β1 ≥ 0 and β2 ≥ 0,

F++− ln p1 + F+−− ln p1 ln p2 + F−+− + F−−− ln p2 if β1 ≥ 0 and β2 < 0,

F++− ln p2 + F+−− + F−+− ln p1 ln p2 + F−−− ln p1 if β1 < 0 and β2 ≥ 0,

F++− + F+−− ln p2 + F−+− ln p1 + F−−− ln p1 ln p2 if β1 < 0 and β2 < 0.

(A.30)
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A.3 Non-uniqueness of the triple-K representation and scheme dependence

The homogeneous conformal Ward identities for the regulated correlator are equivalent to

the system of equations defining the generalised hypergeometric function of two variables

Appell F4 [7, 27]. This system of equations has four solutions in general, but three of these

solutions possess singularities in the collinear limit where the momenta satisfy p3 = p1 +p2

(or similar). Of the four solutions, the only one free from collinear singularities is the

triple-K integral. For the cases discussed in [7], for which renormalisation is not required,

the triple-K integral is then the unique representation of the 3-point correlator.

The correlators studied in this paper do however require renormalisation, and the is-

sue of uniqueness of the triple-K representation is consequently more subtle. Here, the

absence of collinear singularities need hold only for the renormalised correlator obtained

after we have sent ε → 0. The regulated correlator, obtained by solving the regulated ho-

mogeneous Ward identities and subtracting divergences with the aid of counterterms, must

therefore have a finite piece of order ε0 that is free from collinear singularities (being equal

to the renormalised correlator), but also pieces that are of higher order in ε which vanish in

the limit ε → 0. There is no physical reason why these higher-order pieces should be free

from collinear singularities, since they make no contribution to the renormalised correlator.

Thus, given the four general solutions to the regulated homogeneous Ward identities, we

should only impose that the finite order ε0 piece (after subtracting counterterms and multi-

plying through by any required overall factors of ε) is free from collinear singularities. This

additional freedom renders the triple-K representation non-unique, but the non-uniqueness

simply corresponds to our freedom to change the renormalisation scheme by adding finite

counterterms to the action.

Let us examine this argument in greater detail. As per the discussion in [7], in the

present (1, 0)-scheme the four general solutions of the regulated homogeneous conformal

Ward identities take the form

pβ1
1 p

β2
2 p

β3
3

∫ ∞
0

dx xα+εI±β1(p1x)I±β2(p2x)Kβ3(p3x), (A.31)

where Iβ(x) is a modified Bessel function of the first kind. As with the triple-K integral,

we can split each integral into a finite upper part for which µ−1 ≤ x < ∞, and a lower

part for which 0 ≤ x < µ−1. Once again, all the divergences as ε→ 0 arise solely from the

lower parts. From the large-x asymptotic expansions

Iβ(x) =
1√
2πx

ex + . . . , Kβ(x) =

√
π

2x
e−x + . . . , (A.32)

we see the upper parts are always singular for the collinear momentum configuration p3 =

p1 + p2 in any dimension d ≥ 3. The only way to eliminate this collinear singularity is to

take appropriate linear combinations of the four solutions so that the leading asymptotic

behaviours cancel, i.e., by combining the Bessel I to make Bessel K functions,

Kβ(x) =
π

2 sin(βπ)
[I−β(x)− Iβ(x)] . (A.33)
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The triple-K integral is thus the unique combination with an upper part that is free from

collinear singularities.

Turning now to the lower parts, through a modification of our earlier arguments we

easily see that the divergences these contribute are always free from collinear singularities.

First, we recall that Bessel I has the series expansion

Iβ(z) = zβ
∞∑
k=0

1

22k+βk!Γ(β + k + 1)
z2k, (A.34)

valid for any β /∈ Z−. To handle all cases including β ∈ Z−, it is convenient to choose a

different basis for the four general solutions of the homogeneous Ward identities in which

all Bessel I−|β|(z) are recombined into Bessel Kβ(z) = K|β|(z). Our new basis thus consists

of the original triple-K integral plus the three integrals

I
(1)
α+ε,{βi} = pβ1

1 p
β2
2 p

β3
3

∫ ∞
0

dx xα+εI|β1|(p1x)K|β2|(p2x)K|β3|(p3x), (A.35)

I
(2)
α+ε,{βi} = pβ1

1 p
β2
2 p

β3
3

∫ ∞
0

dx xα+εK|β1|(p1x)I|β2|(p2x)K|β3|(p3x), (A.36)

I
(3)
α+ε,{βi} = pβ1

1 p
β2
2 p

β3
3

∫ ∞
0

dx xα+εI|β1|(p1x)I|β2|(p2x)K|β3|(p3x). (A.37)

To further simplify matters, we observe that

I|β|(z) = (−1)χ z|β|
∞∑
k=0

a+
k (|β|)z2k, (A.38)

where the a+
k (β) are as defined in (A.9), where χ = 1 if β /∈ Z and χ = β + 1 if β ∈ Z+.

The divergences of the three solutions (A.35)–(A.37) can now be evaluated following the

same method we used for the triple-K integral. In fact, up to an irrelevant constant overall

phase arising from the factors of (−1)χ, the divergences are the same as for the triple-K

integral except that we discard logs and set the a−k (|β|) to zero every time we encounter

a Bessel I in place of a Bessel K. (Or equivalently, when we have a Bessel I, we only

obtain a nonzero contribution if σi = si for that index.) As all these divergences are simply

products of momenta raised to various powers, there are consequently never any collinear

singularities.

Thus, when the renormalised correlator is given by the finite part of a solution of the

regulated homogeneous conformal Ward identities, the triple-K integral is the unique solu-

tion. When, on the other hand, the renormalised correlator is given by the divergent part of

a solution to the regulated homogeneous Ward identities, there are potentially additional

contributions besides the triple-K integral. These additional contributions encode our

freedom to change the renormalisation scheme by adding finite counterterms to the action.

An example of this is case (7), where we have (+ +−) and (−−−) type singularities.

As we saw earlier in example 13 on page 41, the renormalised correlator satisfies the

homogeneous conformal Ward identities. In fact, both the F++− and the F−−− pieces of the

general solution (A.25) independently satisfy the homogeneous conformal Ward identities,
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whose solution is therefore not unique. (Note the coefficient of the F−−− term in (A.25)

can be adjusted arbitrarily through the addition of an appropriate counterterm.) In this

case, the renormalised correlator corresponds to the leading ε−1 order divergence of the

regulated triple-K integral, which must be multiplied through by an overall constant of

order ε. The non-uniqueness therefore corresponds to the presence of additional solutions of

the regulated homogeneous Ward identities of order ε−1. Collecting together contributions

at this order from (A.35)–(A.37), up to an overall constant of proportionality we obtain
F++− if s1 = s2 = +1,

F++− + cF−−− if s1 = −s2

F−−− if s1 = s2 = −1.

(A.39)

(Here, c is an arbitrary constant reflecting the fact that in the case where s1 = −s2, one of

the solutions comes from (A.35) and the other from (A.36).) As the contribution from the

triple-K integral is proportional to F+++ +F−−− for all values of the signs si (see (A.25)),

F+++ and F−−− are indeed independent solutions to the homogeneous Ward identities.

This uniqueness simply reflects our ability to adjust the coefficient of the F−−− solution

by adding finite counterterms of the (−−−) type.

B Correlators of operators with shadow dimensions: ∆ and d− ∆

In this appendix we discuss the relation between correlation functions of operators of

dimensions ∆ and d − ∆. We will assume operators of generic dimensions, i.e., none of

the conditions that lead to singularities hold. We also set the normalisation of the 2- and

3-point functions to unity.

First, note that under

∆→ d−∆ ⇒ β = 2∆− d→ −β (B.1)

It follows that

〈〈O[d−∆](p)O[d−∆](−p)〉〉 =
1

〈〈O[∆](p)O[∆](−p)〉〉
. (B.2)

Moving now to 3-point functions, we note that since Kβ(x) = K−β(x), the 3-point

functions of correlators of O[∆] and O[d−∆] involve the same triple-K integral and thus are

simply related to one another. For example,

〈〈O[d−∆1](p1)O[d−∆2](p2)O[d−∆3](p3)〉〉 =

∫ ∞
0

dx xα
3∏
j=1

p
−βj
j K−βj (pjx)

=
1

p2β1
1 p2β2

2 p2β3
3

∫ ∞
0

dx xα
3∏
j=1

p
βj
j Kβj (pjx) =

〈〈O[∆1](p1)O[∆2](p2)O[∆3](p3)〉〉∏3
i=1〈〈O[∆i](pi)O[∆i](−pi)〉〉

. (B.3)

It was argued in [46, 47] in the context of AdS/CFT that the CFT with a source for the

operator O[d−∆] can be obtained from the CFT with a source for the operator O[∆] by
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means of a Legendre transform that acts on the sources. It is straightforward to check

that (B.2) and (B.3) can be understood in this fashion. We emphasise however that this

holds only for generic dimensions, i.e., when none of the conditions that lead to singularities

hold, as it is clear from the discussion of 3-point functions of operators of dimensions one

and two in section 4.3.4.

C Examples using free fields

In this section we use free field computations to check some our results in the main text

relating to the two examples 〈O[4]O[3]O[3]〉 in d = 4 and 〈O[3]O[3]O[3]〉 in d = 3.

Example 14: d = 4, ∆1 = 4,∆2 = ∆3 = 3.

The propagator for a single real scalar field Φ in four dimensions is

〈Φ(k)Φ(k′)〉 = (2π)dδ(k + k′)
1

k2
. (C.1)

In position space, the operators O[4] and O[3] can be realised as

O[4](x) = :Φ4(x) :, O[3](x) = :Φ3(x) : . (C.2)

Denoting the corresponding sources by φ[0] and φ[1], in dimensional regularisation the

canonical dimensions (defined according to the propagator) are

[Φ] = 1− ε

2
,

[
O[3]

]
= 3− 3ε

2
,

[
O[4]

]
= 4− 2ε,

d = 4− ε,
[
φ[1]

]
= 1 +

ε

2
,

[
φ[0]

]
= ε. (C.3)

Up to multiplicity factors, the 2- and 3-point functions are represented by the diagrams

presented in figure 1. All correlators may be evaluated using the integral∫
ddk

(2π)d
1

k2a|p− k|2b
= Cd,a,bp

d−2(a+b), (C.4)

where

Cd,a,b =
Γ
(
a+ b− d

2

)
Γ
(
d
2 − a

)
Γ
(
d
2 − b

)
(4π)d/2Γ(a)Γ(b)Γ(d− a− b)

. (C.5)

Immediately, we then find

〈〈O[3](p)O[3](−p)〉〉reg = 6C4−ε,1,1C4−ε,1, ε
2
p2−2ε

= − 3p2

256π4ε
+

3p2

256π4

[
ln p2 + γE − ln(4π)− 13

4

]
+O(ε). (C.6)

The counterterm

S
(2)
ct = a(ε)

∫
ddx φ[1]�φ[1]µ

−2ε (C.7)
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Figure 1. Feynman graphs representing 〈O[3]O[3]〉 and 〈O[4]O[3]O[3]〉 for a free scalar Φ with

O[3] = :Φ3 : and O[4] = :Φ4 :.

can be added to the action to yield a finite renormalised 2-point function

〈〈O[3](p)O[3](−p)〉〉 =
3

256π4
p2 ln

p2

µ2
. (C.8)

We have chosen subleading terms in the renormalisation constant a(ε) in such a way that

the ultralocal portion of the 2-point function vanishes. This choice of renormalisation

scheme will simplify subsequent expressions, although other choices of scheme are possible.

The 3-point function is given by the Feynman integral

〈〈O[4](p1)O[3](p2)O[3](p3)〉〉reg = 216 I(p1, p2, p3), (C.9)

where

I =

∫
ddk1

(2π)d
ddk2

(2π)d
ddk3

(2π)d
1

k2
1k

2
2k

2
3(k1 − k2 + p3)2(k1 − k3 − p2)2

. (C.10)

After dimensionally regularising to regulate the nested divergences, the integrals over k2

and k3 can be calculated using (C.4) leading to the result

I = C2
4−ε,1,1

∫
d4−εk1

(2π)4−ε
1

k2
1|k1 + p3|ε|k1 − p2|ε

. (C.11)

The integral on the right-hand side can be re-expressed as a triple-K integral according to

equation (A.3.17) in [7]. This gives

I =
22+ ε

2C2
4−ε,1,1

(4π)2− ε
2 Γ2

(
ε
2

)
Γ(3− 2ε)

I1− ε
2
{2− 3ε

2
,1−ε,1−ε}(p1, p2, p3). (C.12)

The divergent part of this expression can then be extracted through the method presented

in section 4.3.1, giving

〈〈O[4](p1)O[3](p2)O[3](p3)〉〉reg = − 9

256π6ε2
(p2

2 + p2
3) (C.13)

+
9

512π6ε

[
−p2

1 + 3p2
2 ln p2

2 + 3p2
3 ln p2

3 + (p2
2 + p2

3) (−10 + 3γE − 3 ln(4π))
]

+O(ε0).
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The form of the counterterm action is given by (4.122), up to factors of the renormalisation

scale. Taking into account the choice of the regularisation (C.3) used here, we have

S
(3)
ct =

∫
d4−εx

[
a0φ[0]φ[1]O[3]µ

−ε + (a1φ[0]φ[1]�φ[1] + a2φ
2
[1]�φ[0])µ

−3ε
]
. (C.14)

The counterterm contribution following from this action is then

〈〈O[4](p1)O[3](p2)O[3](p3)〉〉ct =−a1(p2
2 + p2

3)µ−3ε − 2a2p
2
1µ
−3ε (C.15)

− a0µ
−ε[〈〈O[3](p2)O[3](−p2)〉〉reg+〈〈O[3](p3)O[3](−p3)〉〉reg

]
.

To cancel the divergences, the counterterm constants must be

a0 =
9

2π2ε
+ a

(0)
0 , (C.16)

a1 =
9

512π6ε2
+

(−9 + 24π2a
(0)
0 )

2048π6ε
+ a

(0)
1 , (C.17)

a2 = − 9

1024 π6ε
+ a

(0)
2 , (C.18)

where a
(0)
0 , a

(0)
1 , a

(0)
2 are ε-independent undetermined constants. (In fact, as we saw in sec-

tion 5, a
(0)
0 and a

(0)
2 are related to each other by the special conformal Ward identity (5.20).)

From the counterterms we can now read off the beta function and anomaly as follows.

The renormalised source φ[1] is related to the bare source via

φbare
[1] = φ[1] + a0µ

−εφ[0]φ[1], (C.19)

which after inverting yields the beta function

βφ[1]
= lim

ε→0
µ
∂φ[1]

∂µ
= a

(−1)
0 φ[0]φ[1] =

9

2π2
φ[0]φ[1]. (C.20)

Comparing this equation and (C.6) with (4.129) and (4.124), we find

c
(−1)
3 v =

3

256π4
, c433 =

27

256π6
. (C.21)

From (C.15), we also have

µ
∂

∂µ
〈〈O[4](p1)O[3](p2)O[3](p3)〉〉 = lim

ε→0
µ
∂

∂µ
〈〈O[4](p1)O[3](p2)O[3](p3)〉〉ct

=
27

512π6

[
− p2

1 + p2
2 ln

p2
2

µ2
+ p2

3 ln
p2

3

µ2
+

(
γE − ln(4π)− 7

2
+

4

9
π2a

(0)
0

)
(p2

2 + p2
3)

]
, (C.22)

which agrees with (4.131) on setting

a′0 =
27

1024π6

(
− γE + 4 + ln(4π)− 4

9
π2a

(0)
0

)
. (C.23)

The anomaly is then

A433 =
27

512π6

[
− p2

1 +

(
γE − ln(4π)− 7

2
+

4

9
π2a

(0)
0

)
(p2

2 + p2
3)

]
, (C.24)

in accord with (4.132). As we saw earlier, only the coefficient of p2
1 is physical, with the

remainder of the anomaly depending of the choice of scheme through the constant a
(0)
0 .
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Finally, one can evaluate the triple-K integral in (C.12) using the reduction scheme

described in [7, 33] along with a suitable change of regularisation scheme. Using (C.9) and

adding in the counterterm contribution (C.15) to cancel the divergences, on taking ε→ 0 we

recover our earlier result (4.130), normalised according to (C.21). The scheme-dependent

constant a′0 is as given in (C.23) while

a′2 = − 9

2048π6

(
29 + 6 log(4π)− 6γE

)
− 2a

(0)
2 . (C.25)

The value of a′1 can be retrieved as well, but its expression is longer and not particularly

illuminating. As we saw in section 5, the scheme-dependent constants a′0 and a′2 are related

by (5.28), which followed from the special conformal Ward identity (5.21). In terms of the

present calculation, the scheme-dependent constants in (C.16) and (C.18) are therefore

related by

a
(0)
2 =

3(21− 8π2a
(0)
0 )

4096 π6
. (C.26)

Notice that throughout the evaluation we have worked consistently with regulated

quantities. The procedure presented above highlights the fact that the 3-point function

〈O[4]O[3]O[3]〉 can be renormalised by adding the counterterms (C.7) and (C.14) to the

regularised action. In particular, the sequence of integrals in (C.10) is finite for a small

non-zero ε, and can in principle be evaluated in any order. While superficially different, the

approach we present is however ultimately equivalent to the standard Feynman diagram

calculus in which divergences are removed loop by loop.

From the point of view of Feynman diagrams, the first term in the counterterm ac-

tion (C.14) can be interpreted as the renormalisation of the cubic vertex φ3. Indeed, after

adding to the free field the couplings to the operators φ3 and φ4, the total action is

S =

∫
d4−εx

[
1

2
(∂φ)2 + φ[1]Z1φ

3 + φ[0]Z0φ
4

]
, (C.27)

where the renormalisation factors Zj depend on couplings φ[1] and φ[0]. As one can read

from (C.14),

Z[1] = 1 + a0φ[0]µ
−ε +O(φ2

[0]), Z[0] = 1 +O(φ[0]). (C.28)

The renormalisation of the cubic vertex can be then expressed diagrammatically as in

figure 2. The loop integral in the figure is divergent and requires renormalisation. Evalu-

ating this integral in the dimensionally regulated theory, we find

Isub(q) =

∫
d4−εk

(2π)4−ε
1

k2|k − q|2
= C4−ε,1,1q

−ε. (C.29)

The divergence as ε→ 0 can be removed by adding an ultralocal counterterm and defining

the finite integral

Iren
sub(q) = Isub(q) +

(
− 1

8π2ε
+ c1

)
µ−ε, (C.30)

where c1 is an arbitrary scheme-dependent constant. It is easy to check that the ε → 0

limit exists.
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Figure 2. The leading Feynman diagrams contributing to the renormalisation of the φ3 vertex.

This renormalised cubic vertex can now be used in the evaluation of the full 3-point

function in figure 1. After the renormalisation of the nested divergences has been carried out

according to (C.30), one can use this expression in (C.4). The corresponding integral reads

I ′ =

∫
d4−εk1

(2π)4−ε
1

k2
1

Iren
sub(k1 + p3)Iren

sub(k1 − p2). (C.31)

This integral remains quadratically divergent, but its divergence is purely ultralocal. One

can verify this claim by expanding Iren
sub and comparing with our previous result (C.13).

The logarithmic terms of order 1/ε cancel due to the subtraction of the nested divergence

in (C.30) and the divergent part of the integral reads

216I ′ =
9

512π6ε2
(p2

2 + p2
3)− 9

2048π6ε

[
4p2

1 + (1 + 96c1π
2 + 6 log µ2)(p2

2 + p2
3)
]

+O(ε0)

=
9

2048π6
(p2

2 + p2
3)µ−3ε

[
4

ε2
− 1 + 96c1π

2

ε

]
− 9

512π6ε2
µ−3εp2

1 +O(ε0). (C.32)

The expression in the last line is ultralocal, with the renormalisation scale µ ensuring the

appropriate dimension.

The conformal 3-point function represented by the Feynman diagram in figure 1 can

thus be computed in the usual perturbative manner, by removing loop divergences at each

step of the calculation with the aid of ultralocal counterterms. This renormalisability of

Feynman diagrams is an important feature of perturbative QFT. In the present paper, how-

ever, we achieve the renormalisation of a general CFT 3-point more directly by introducing

counterterms for the triple-K representation and showing that these counterterms remove

all divergences. At least as far as CFTs are concerned, our approach is the more general

since not all CFTs are perturbative. In particular, there are divergent 3-point functions

that cannot be represented by a massless 3-point function of operators in a free field theory

of spin-0 or spin-1/2.

Example 15: d = ∆1 = ∆2 = ∆3 = 3.

Let us now consider a free scalar field Φ in d = 3 dimensions and evaluate the 3-point

function of the operator O[3] = : Φ6 :. We will dimensionally regulate in the same fashion

as above, so that

[Φ] =
1

2
− ε

2
,

[
O[3]

]
= 3− 3ε,

[
φ[0]

]
= 2ε, d = 3− ε, (C.33)

with φ[0] the source for O[3] (labelling according to the bare dimensions for brevity).
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The corresponding Feynman diagrams are shown in figure 3. For the 2-point function,

〈〈O[3](p)O[3](−p)〉〉reg = 6! p3−5ε
5∏
j=1

C3−ε,1,1+ 1
2

(j−1)(ε−1) =
15

1024π4
p3 +O(ε), (C.34)

with Cd,a,b as defined in (C.4). As this result is finite no counterterms are required.

The 3-point function is given by the integral

〈〈O[3](p1)O[3](p2)O[3](p3)〉〉reg = 1728 I(p1, p2, p3), (C.35)

where

I =

9∏
j=1

∫
ddkj
(2π)d

1

k2
j

δ(p2 +k1 +k2 +k3−k4−k5−k6)δ(−p1−k1−k2−k3 +k7 +k8 +k9).

(C.36)

A series of 1-loop integrals can then be done by means of the formula (C.4) and the result

recast as a triple-K integral using equation (A.3.17) of [7],

I = C3
3−ε,1,1C

3
3−ε,1, 1

2
(1+ε)

∫
d3−εk

(2π)3−ε
1

k2ε
|k − p1|2ε|k + p2|2ε

=
2

1
2

(3ε−1)π
1
2

(ε−3)

Γ3(ε)Γ(3− 4ε)
C3

3−ε,1,1C
3
3−ε,1, 1

2
(1+ε)

I 1
2
− ε

2
{ 3

2
− 5ε

2
, 3
2
− 5ε

2
, 3
2
− 5ε

2
}. (C.37)

In this way we arrive at a representation of the 3-point function in terms of the triple-K

integral I 1
2
{ 3

2
3
2

3
2
} regulated in the scheme with (u, v) = (−1

2 ,−
5
2). This triple-K integral

can be evaluated by starting first in the regularisation scheme v = 0 for which the Bessel-K

functions have half-integral indices and reduce to elementary functions. After evaluating

the triple-K integral in this scheme, we can then change to the scheme above with (u, v) =

(−1
2 ,−

5
2) as described in section 4.3.2. The regulated 3-point function thus reads

〈〈O[3](p1)O[3](p2)O[3](p3)〉〉reg

=
9

213π6 ε
(p3

1 + p3
2 + p3

3) +
9

212π6

[
− p1p2p3 + (p2

1p2 + 5 perms.)

− (p3
1 + p3

2 + p3
3) ln(p1 + p2 + p3)− 5

2
(p3

1 ln p1 + p3
2 ln p2 + p3

3 ln p3)

+
1

12
(86− 21γE + 60 ln 2 + 21 lnπ)(p3

1 + p3
2 + p3

3)

]
. (C.38)

The counterterm action removing the divergence is

Sct = a(ε)

∫
d3−εxµ−2εφ2

[0]O[3], (C.39)

where

a =
3

80π2ε
+ a(0) +O(ε), (C.40)

– 64 –



J
H
E
P
0
3
(
2
0
1
6
)
0
6
6

Figure 3. Feynman graphs representing 〈O[3]O[3]〉 and 〈O[3]O[3]O[3]〉 for a free scalar Φ with

O[3] = :Φ6 :.

with a(0) a scheme-dependent constant independent of ε. The fully renormalised 3-point

function then reads

〈〈O[3](p1)O[3](p2)O[3](p3)〉〉 =
9

212π6

[
− p1p2p3 + (p2

1p2 + 5 perms.)

− (p3
1+p3

2+p3
3) ln

p1+p2+p3

µ
+ a′0(p3

1 + p3
2 + p3

3)

]
, (C.41)

where

a′0 =
3

214π6

(
19− 6γE + 24 ln 2 + 6 lnπ − 160π2a(0)

)
. (C.42)

This expression matches our previous result (4.117) exactly upon setting

c333 =
27√

221π15
, b(0) = −a

′
0

6
. (C.43)

As in the previous example, an alternative to the renormalisation procedure we have

just presented would be to proceed via the renormalisation of Feynman diagrams. The

counterterm action (C.39) represents a first quantum correction to the vertex operator φ6

and removes the nested subdivergences in diagram 3. As previously, the remaining singu-

larity of the diagram then becomes ultralocal. Our renormalisation procedure, however, is

more general since it applies to any conformal field theory and does not require a Feynman

diagram realisation of the 3-point function.

D Triple-K integrals and AdS/CFT

Triple-K integrals appear naturally in the context of AdS/CFT since propagators in

Poincaré coordinates, when transformed to momentum space, are expressible in terms

of modified Bessel functions. A scalar 3-point function in the supergravity approximation

arises from a cubic interaction term of the bulk action and is usually represented by a Wit-

ten diagram as per figure 4 (see page 67). In this section we will discuss triple-K integrals

in a holographic context, and illustrate the holographic renormalisation procedure for the

3-point function of a marginal operator in three dimensions.
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D.1 Set-up

We consider a real scalar field Φ with a cubic interaction,

S =

∫
dd+1x

√
g

[
1

2
gµν∂µΦ∂νΦ +

1

2
m2Φ2 − λ

3
Φ3

]
, (D.1)

on a fixed Euclidean AdS background in Poincaré coordinates,

ds2 =
1

z2

[
dz2 + dx2

]
. (D.2)

As usual, the mass of the field is parametrised as m2 = ∆(∆ − d), where ∆ denotes the

conformal dimension of the dual CFT operator. Throughout this section we will assume

∆ > d/2. (For cases where d/2− 1 ≤ ∆ < d/2 see [46] and appendix B.)

The equation of motion −�gΦ +m2Φ = λΦ2 can be solved perturbatively in λ. For 2-

and 3-point functions we only need the first two terms, Φ = Φ{0} + λΦ{1} + O(λ2), which

satisfy

(−�g +m2)Φ{0} = 0, (−�g +m2)Φ{1} = Φ2
{0}. (D.3)

For the CFT analysis in momentum space we Fourier transform along all directions

parallel to the conformal boundary at z = 0. Writing the Fourier transform of Φ(z,x) as

Φ(z,p), the free field equation (D.3) becomes Ld,∆(z, p)Φ{0}(z,p) = 0, where

Ld,∆(z, p) = −z2∂2
z + (d− 1)z∂z +m2 + z2p2. (D.4)

This equation can be solved in terms of modified Bessel functions.

The equations of motion for Φ{n}(z,p) with n > 1 can then be solved in terms of the

bulk-to-boundary and bulk-to-bulk propagators. These are uniquely fixed by asymptotic

boundary conditions at z = 0, together with regularity requirements at z =∞.

The bulk-to-boundary propagator Kd,∆ is defined by
Ld,∆(z, p)Kd,∆(z, p) = 0,

limz→0[z−(d−∆)Kd,∆(z, p)] = 1,

Kd,∆(∞, p) = 0.

(D.5)

while the bulk-to-bulk propagator Gd,∆ solves
Ld,∆(z, p)Gd,∆(z, p; ζ) = ζ4δ(z − ζ),

limz→0[z−(d−∆)Gd,∆(z, p; ζ)] = 0,

Gd,∆(∞, p; ζ) = 0.

(D.6)

The unique solutions to these equations are

Kd,∆(z, p) =
2
d
2
−∆+1

Γ
(
∆− d

2

)p∆− d
2 z

d
2K∆− d

2
(pz) (D.7)
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Figure 4. (a) Witten diagram for the evaluation of the scalar field Φ at a point x in the bulk; (b)

taking x to a point x3 on the boundary, the diagram now represents a 3-point function.

for the bulk-to-boundary propagator and

Gd,∆(z, p; ζ) =

{
(zζ)d/2I∆− d

2
(pz)K∆− d

2
(pζ) for z ≤ ζ,

(zζ)d/2I∆− d
2
(pζ)K∆− d

2
(pz) for z > ζ,

(D.8)

for the bulk-to-bulk propagator. The solution to the equations of motion (D.3), with the

boundary value of Φ(0) set to φ0, are then

Φ{0}(z,p) = Kd,∆(z, p)φ0(p), (D.9)

Φ{1}(z,p) =

∫ ∞
0

dζ

ζd+1
Gd,∆(z, p; ζ)

∫
ddk

(2π)d
Kd,∆(ζ, k)Kd,∆(ζ, |p− k|)φ(0)(k)φ0(p− k)

=

∫
ddk

(2π)d
φ0(k)φ0(p− k)

∫ ∞
0

dζ

ζd+1
Gd,∆(z, p; ζ)Kd,∆(ζ, k)Kd,∆(ζ, |p− k|)

(D.10)

provided the integral converges. A diagrammatic representation of solution (D.10) is pre-

sented in figure 4.

D.2 3-point functions

The 1-point function in the presence of sources for the operator O dual to the bulk scalar

Φ reads [48, 49]

〈O〉s = −(2∆− d)Φ(∆) +X[φ0], (D.11)

where Φ(∆) denotes the coefficient of z∆ in the near-boundary expansion of Φ, and X[φ0]

is a functional whose contribution to correlation functions is at most local.

In order to extract the 3-point function, we need to identify the piece of Φ which

depends quadratically on the source φ0. This piece is given by (D.10), after evaluating the

integral on the right-hand side. When this integral diverges, we can introduce a cut-off at

z = δ,

Iδd,∆(z,p,k) =

∫ ∞
δ

dζ

ζd+1
Gd,∆(z, p; ζ)Kd,∆(ζ, k)Kd,∆(ζ, |p− k|). (D.12)
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The 3-point function of O then follows from this integral, with any divergences that may

be present removed by holographic renormalisation of the supergravity on-shell action. (A

complete example of this procedure for a marginal operator will be presented shortly in

section D.3; for a related discussion of holographic renormalisation for irrelevant operators

see [50, 51].) From (D.11), we have

〈〈O(p1)O(p2)O(p3)〉〉 = −λ(2∆− d) lim
δ→0

[
Iδd,∆(z,p1,p2) + Iδd,∆(z,p1,p3) + Iδct(z)

]
(∆)

+
δ2X(p1)

δφ0(−p2)δφ0(−p3)

∣∣∣∣
φ0=0

, (D.13)

where Iδct is a suitable counterterm and (. . .)(∆) denotes the coefficient of z∆ in the near-

boundary expansion. As we will now show, the first part of (D.13) can be re-written as a

triple-K integral.

Firstly, the piecewise form of the bulk-to-bulk propagator in (D.8) splits the inte-

gral (D.12) into two regions: a near-boundary region ζ ≤ z and an inner region ζ > z.

Denoting the corresponding integrals as Iδ,<d,∆ and I>d,∆, we then have

Iδd,∆ = Iδ,<d,∆ + I>d,∆, (D.14)

where only the near-boundary integral depends on the regulator δ.

In the near-boundary region ζ ≤ z, the integral reads

Iδ,<d,∆ = z
d
2K∆− d

2
(pz)

∫ z

δ
dζ ζ−

d
2
−1I∆− d

2
(ζp)Kd,∆(ζ, k)Kd,∆(ζ, |p− k|). (D.15)

As we have discussed, the integral will diverge as δ → 0 and these divergences can be

removed by holographic counterterms. To compute the 3-point function we now only need

to extract the coefficient of z∆. By power expanding the integrand, one finds that an

appropriate term exists only if an independent choice of signs can be found such that

d

2
± β ± β ± β = −2k, β = ∆− d

2
, (D.16)

where k is a non-negative integer. This is exactly our fundamental condition (4.19) for all

βj = β: when satisfied, the near-boundary integral produces a contribution to the 3-point

function. While such a contribution is local (see the discussion in section A.3), it is crucial

in order for the 3-point function to have the correct symmetry properties, as we will see in

the next section.

Consider now a contribution to the 3-point function from the inner region ζ > z. Since

the expansion of the bulk-to-bulk propagator reads

Gd,∆(z, p; ζ) =
z∆

2∆− d
Kd,∆(ζ, p) +O(z∆+2) for ζ > z, (D.17)

the integral gives

I>d,∆ =
z∆

2∆− d

∫ ∞
z

dζ ζ−
d
2
−1Kd,∆(ζ, p)Kd,∆(ζ, k)Kd,∆(ζ, |p− k|) +O(z∆+2). (D.18)
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When the expression (D.7) for the bulk-to-boundary propagator is substituted, this integral

is proportional to a triple-K integral with a lower cut-off. To extract the coefficient of z∆

for the complete right-hand side, we simply have to strip off the overall prefactor of z∆

then evaluate the z-independent piece of the integral. To find this z-independent piece, it

is tempting to send z → 0 leaving us with a genuine triple-K integral. We know, however,

that when (D.16) is satisfied this triple-K integral diverges, since (D.16) is equivalent to

the singularity condition (4.19) with all βj = β.

Thus, provided the condition (D.16) is not satisfied, the contribution to the 3-point

function from the near-boundary part of the integral (D.15) vanishes, while the contribution

from the inner region (D.18) reduces to a finite triple-K integral upon sending z → 0.

(Diagrammatically, we can think of this as moving the internal point in the Witten diagram

to the boundary as shown in figure 4.) As the local functional X[φ0] in (D.13) moreover

vanishes, the complete correlation function is then given by this triple-K integral,

〈〈O(p1)O(p2)O(p3)〉〉 = −2λ

(
2
d
2
−∆+1

Γ
(
∆− d

2

))3

I d
2
−1{∆− d

2
,∆− d

2
,∆− d

2
}(p1, p2, p3), (D.19)

as follows by expanding the propagators in (D.18). This triple-K integral is finite, although

in some cases it may be necessary to use analytic continuation to define its precise value

(as in example 3 on page 15).

If, on the other hand, the condition (D.16) holds, one still expects to obtain the

non-local part of the correlation function from the inner region in (D.18). This non-local

contribution corresponds to the finite order z0 piece of the integral as z → 0, and so

is equivalent to a triple-K integral up to local terms. (The overall correlator therefore

receives local contributions from both (D.15) and (D.18).) We will illustrate this case with

an example in the following section.

Notice however that the procedure of holographic renormalisation is not equivalent to

shifting the α and β parameters in the triple-K integral in (D.19). Instead, holographic

regularisation amounts to the introduction of a cut-off on the integration variable in the

triple-K integral; in the complete holographic renormalisation scheme, one then has to

include additional local contributions from (D.15) and the functional X[φ0] in (D.13).

D.3 Marginal operator in d = 3

To illustrate the general discussion above, we now discuss the complete holographic renor-

malisation of the 3-point function for a marginal operator in d = 3 dimensions. This case

satisfies the condition (D.16) with a single plus sign and k = 0.

The near-boundary expansion for the solution to the equations of motion reads

Φ = (φ{0}(0) + λφ{1}(0)) + z2(φ{0}(2) + λφ{1}(2)) + z3(φ{0}(3) + λφ{1}(3))

+ 2λ ln z
[
ψ(0) + z2ψ(2) + z3ψ(3)

]
+O(z4, λ2), (D.20)

where we have labelled the φ coefficients in this expansion with round brackets to indicate

the power of the radial variable z and curly brackets to denote the power of the coupling
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constant λ. (As we will not need such an expansion for the ψ coefficients, however, we will

omit the curly bracket label for these variables.)

The boundary source is then φ0 = φ(0) = φ{0}(0) + λφ{1}(0) +O(λ2), although to begin

with we will switch off all the subleading coefficients by setting φ{n}(0) = 0 for n > 0.

(Later, we will see however that these subleading contributions must be reintroduced, and

so we will retain them explicitly in the following.) The ‘vev’ coefficient φ(3) = φ{0}(3) +

λφ{1}(3)+O(λ2), with the equations of motion implying that φ{0}(3) is linearly dependent on

the source φ0, while φ{1}(3) has a quadratic dependence, etc. All the remaining coefficients

can be expressed locally in terms of φ(3) and φ0, e.g.,

ψ(0) =
1

6
φ2
{0}(0),

φ{0}(2) =
1

2
∂2φ{0}(0),

φ{1}(2) =
1

2
∂2ψ(0) +

1

2
φ{0}(0)∂

2φ{0}(0) +
1

2
∂2φ{1}(0),

ψ(2) =
1

2
∂2ψ(0),

ψ(3) = −1

3
φ{0}(0)φ{0}(3). (D.21)

To regulate the action (D.1) we impose a cutoff z ≥ δ. The divergent part of the

regulated action is then

Sdiv =
λ

6

∫
z≥δ

dzd3x
√
gΦ3 − 1

2

∫
z=δ

d3x
√
ggzzΦ∂zΦ,

= −
∫
z=δ

d3x
√
γz

[
1

2
(φ{0}(0) + λφ{1}(0))∂

2(φ{0}(0) + λφ{1}(0))+

+ λ

(
1

9
φ3
{0}(0) +

1

2
z2φ2
{0}(0)∂

2φ{0}(0) +
1

3
z2 ln z φ2

{0}(0)∂
2φ{0}(0)

)]
, (D.22)

where γz is the induced metric on a slice of constant z, i.e., (γz)ij = z−2δij . It is easy to

check that these divergent terms can be repackaged into a local functional of the bulk field,

allowing us to write the following counterterms,

Sct =

∫
z=δ

d3x
√
γz

[
1

2
Φ�zΦ + λ

(
1

9
Φ3 +

1

3
Φ2�zΦ

)]
, (D.23)

where �z is the Laplacian for the metric (γz)ij on the slice of constant z. When these

counterterms are added to the regulated action, the variation of Ssub = Sreg + Sct gives

δSsub

δΦ
= −3

(
φ{0}(3) + λφ{1}(3)

)
+ λ

(
4

3
φ{0}(0)φ{0}(3) + 2φ{0}(0)φ{0}(3) ln δ

)
. (D.24)

The logarithmically divergent piece cancels against the functional derivative of the bulk

field with respect to the source when we compute the 1-point function,

〈O〉s =
1

√
g(0)ij

δSren

δφ0
= lim

δ→0

1
√
γδ

∫
d3x
√
γδ
δΦ

δφ0

δSsub

δΦ

= −3
(
φ{0}(3) + λφ{1}(3)

)
+

4

3
λφ{0}(0)φ{0}(3), (D.25)

leading, as expected, to (D.11) with a specific non-vanishing X[φ0].

– 70 –



J
H
E
P
0
3
(
2
0
1
6
)
0
6
6

By taking a single derivative of the above expression with respect to the source φ0 =

φ{0}(0) we obtain the holographic 2-point function

〈〈O(p)O(−p)〉〉 = 3 [K3,3(z, p)](3) = p3, (D.26)

where [K3,3(z, p)](3) denotes the coefficient of z3 in the near-boundary expansion of the

bulk-to-boundary propagator, as follows from (D.20).

We are now in position to evaluate the 3-point function as given in (D.13). All propaga-

tors are elementary functions (e.g., K3,3(z, p) = e−zp(1 + zp)) allowing exact computations

to be performed. Evaluating the triple-K integral with a cut-off in (D.12), we find

Iδd,∆(z, pj) =
1

9

[
1 + 3 ln

(z
δ

)]
K3,3(z, p1)− 1

12
z2
[
p2

1 + 3(p2
2 + p2

3)
]

+

− 1

9
z3

[
p1p2p3 − (p2

1p2 + 5 perms.) + (p3
1 + p3

2 + p3
3) ln ((p1 + p2 + p3)z) +

+ (γE − 1)(p3
1 + p3

2 + p3
3)− 2

3
(p3

2 + p3
3)

]
. (D.27)

Naively this integral, and hence the 3-point function, is divergent as δ → 0. However,

via (D.10), this divergence in (D.12) leads to a corresponding divergent contribution to

Φ{1}, and one can check that this divergent contribution satisfies the homogeneous free field

equations. It can therefore be cancelled by turning on a subleading order λ contribution

to the source, namely φ{1}(0), since this also obeys the homogeneous free field equations

and contributes to Φ{1}. For consistency, we should then regard the full expansion φ(0) =

φ{0}(0) + λφ{1}(0) + O(λ2) as the source φ0 for the dual operator O, rather than just the

leading piece φ{0}(0) as earlier when φ{1}(0) was switched off.

To cancel the divergence in this fashion requires setting

φ0 = φ(0) = φ{0}(0) −
1

9
λ [1− 3 ln (δµ)]φ2

{0}(0) +O(φ3
{0}(0)), (D.28)

where µ is a renormalisation scale introduced on dimensional grounds. Equation (D.25)

does not change to this order in λ, but φ{1}(3) — and hence (D.13) — receives an additional

contribution cancelling the divergence. The final holographic 3-point function then reads

〈〈O(p1)O(p2)O(p3)〉〉 = −2

3
λ

[
− p1p2p3 + (p2

1p2 + 5 perms.)

− (p3
1+p3

2+p3
3) ln

(
p1+p2+p3

µ

)
+(1−γE)(p3

1+p3
2+p3

3)

]
. (D.29)

Note that the local functional X[φ0] in (D.13) makes a contribution of 4(p3
2 + p3

3)/9 to this

expression: this contribution is crucial for the final 3-point function to be symmetric under

any permutation of momenta.

From the perspective of the dual CFT, the redefinition of the source (D.28) introduces

a beta function. Identifying φ{0}(0) as the bare source (independent of µ) and φ0 = φ(0)

in (D.28) as the renormalised source, then

βφ0 = µ
∂φ0

∂µ
=

1

3
λφ2

0 +O(φ3
0). (D.30)
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These results are in complete agreement with our earlier discussion in example 8 on page 30.

The form of the 3-point function in (D.29) agrees with (4.117) on setting the theory-

dependent normalisation constant to

c333 = −2λ
(π

2

)−3/2
(D.31)

and the scheme-dependent constant a(0) = (γE − 1)/6. Moreover, with the beta function

as in (D.30), the Callan-Symanzik equation (4.118) is satisfied. Further discussion of the

Callan-Symanzik equation in a holographic context may be found in [51].

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[24] R. Armillis, C. Corianò and L. Delle Rose, Conformal Anomalies and the Gravitational

Effective Action: The TJJ Correlator for a Dirac Fermion, Phys. Rev. D 81 (2010) 085001

[arXiv:0910.3381] [INSPIRE].
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