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1 Introduction

It has been a long standing conjecture that every unitary scale invariant quantum field
theory (SFT) in four spacetime dimensions is automatically conformally invariant. While
in d = 2 spacetime dimensions scale invariance together with unitarity implies conformal
invariance [1, 2],! the problem has remained open in higher dimensions. Evidence that the
conjecture may hold in four dimensions was presented in [4] while candidate counterex-
amples [5-7] were shown to actually be CFTs in [8, 9]. As in the two-dimensional case,
there is a connection between RG-flow and properties of the Wess-Zumino action [10, 11]
(see also [12, 13]), the a-theorem, [14, 15], and the scale vs conformal invariance problem.
The conjecture is known to hold under some additional assumptions, for example for any
scale invariant theory which is obtained by weakly coupled renormalisation group (RG)
flows [8, 13]. On the other hand, the conjecture does not hold for non-unitary theories as
there are counterexamples [16]. A less known counterexample is that of topological quan-
tum field theories [17]. Such theories however do not have local degrees of freedom. There
are other counterexamples but all of them are somewhat special: theories without a stress
energy tensor [4], free (d — 2)-forms in d-dimensions,? Maxwell theory in d # 4 [20, 21],
free high-spin theories [19]. Discussions of the conjecture in dimensions other than four
can be found, for example, in [20, 21]. Early literature on this topic includes [22, 23] and
for recent reviews (and a more comprehensive list of references) we refer to [20, 24].
Recently, two papers [25, 26] argued that the conjecture holds in four spacetime di-
mensions.? In [26] the structure of the scale anomaly in the 3-point function of the trace of
the stress energy tensor was analysed and argued that such anomaly is not consistent with
OPEs. We will revisit this argument here and show that the inconsistency disappears after
including possible contributions from semi-local terms. In [25] the authors argued that in
SFTs obtained by RG flows an infinite number of matrix element must vanish in a suitable
kinematical configuration. The vanishing of these matrix elements is a necessary condition
for conformal invariance and the authors argued that it is also a sufficient condition. We
attempted to strengthen this argument by combining it with the structure of anomalies.
The 4-point function of the trace of stress energy tensor has a non-trivial anomaly which
is non-vanishing in the on-shell forward scattering limit. If one were able to show that the
4-point function of the trace of stress energy tensor, including semi-local terms, vanishes in
this kinematical limit or that the anomaly cannot be supported by semi-local terms alone
then one would conclude that the scale anomaly coefficient must vanish and (as we will
argue in detail later) this would imply that the SFT is a CFT. However, the vanishing of
the dilaton amplitudes only implies that the 4-point function of the trace of stress energy

!'See however [3] for a counterexample where some of assumptions of [2] do not hold.

2Such a form can be dualized to a free scalar ¢ with a shift symmetry ¢ — ¢+ const. The improvement
term, [ R¢?, that would make the theory a CFT is not compatible with the shift symmetry and thus these
theories are scale but not conformally invariant.

3In this case there is a Weyl invariant extension [18] but the model is not gauge invariant.

4 Note added: [26] was withdrawn after our paper appeared on the arXiv (for the reasons we explain in
this paper, see also [27]). We will however leave the reference to [26] as this provides the context of some
of our discussions.



tensor is semi-local (in the on-shell forward scattering limit) and moreover it turns out that
the anomaly can be supported by semi-local terms alone so one cannot conclude (based on
these considerations alone) that the SFT is a CFT.

This paper is organized as follows. In the next section we discuss in more detail
the conclusions one can draw for the scale vs conformal problem from the structure of
scale anomalies. The rest of the paper is devoted to the derivation of the structure of
scale anomalies. In more detail, after a discussion of the setup in section 3 we proceed
in sections 4, 5, 6, 7 to analyse the anomaly in 2-, 3-, 4- and higher point functions. In
particular, we calculate the most general form of the scale violation in the following 3- and
4-point functions: (I'TT), (TTOs), (ITTOy), (ITTTT), where Oy and O4 denote operators
of dimensions two and four respectively. Since T' = —9,,V*, where V# is the virial current
(defined in (2.1)), one can compute these correlation functions in two different ways: either
directly or by calculating corresponding correlation functions involving the virial current.
By comparing the results obtained by the two methods, one can impose strong conditions
on the structure of the SF'T. We conclude in section 8.

We relegate many results which are of technical nature and alternative derivations to
four appendices. In appendix A we discuss subtleties in the relation between the short-
distance/large momentum limit and OPEs in momentum space, in appendix B we present
an alternative derivation of the scale anomaly for the 3- and the 4-point function which
does not use the Wess-Zumino action and in appendix C we compute the anomaly in 3- and
4-point functions using a different parametrisation for the dilaton. This parametrisation
has the feature that the contribution of the Wess-Zumino action vanishes and the entire
contribution to the scale anomaly is manifestly due to semi-local terms. In appendix D we
discuss a generalisation of our results to the case of the theory containing multiple scalar
operators of dimension two and four.

2 Are unitary scale invariant theories conformal?

The standard approach to the problem of enhancing scale invariance to conformal invariance
is based on the analysis of improvement terms. In a scale invariant theory the Noether
current associated with scale transformations takes form

G =Tha" + V*, (2.1)

where T}, denotes the stress-energy tensor and V* is called the virial current. The con-
servation of the scale current implies 7' = —9,V#. It can be shown [2] that if the virial
current is a total derivative, i.e., if

VH =9, LM (2.2)

for some tensor L*%, then the stress-energy tensor may be redefined to be traceless, hence
implying that the theory is conformally invariant.

(Non-anomalous) scale invariance implies that the 2-point function of the trace of the
stress-energy tensor is determined up to a constant and is given by

(T(p)T () = (20)*3(p + P)2errp’, (2.3)



where epr is a constant (the factor of 2 is for later convenience). This correlator however
is local and may be removed by a local counterterm (see below). A non-trivial example
of a SF'T exhibiting this behavior is given by topologically twisted N = 2 SYM in four
dimensions [17]. After the topological twist the stress-energy tensor is BRST-trivial ex-
plaining the triviality of (2.3) (actually all correlation functions of the stress-energy tensor
are trivial). Topological QFTs are special as they do not have local degrees of freedom. In
the remaining of this paper we will focus on theories with local degrees of freedom.

In order to obtain a SE'T with local excitations and non-zero 1" (if such a theory exists)
the scale transformations must be anomalous. The form of the 2-point function is uniquely
fixed by (the now anomalous) scale invariance and it may be obtained by dimensionally
regularising (2.3), d = 4 — ¢, and taking epp to be singular in €, epp — epp/e. Expanding
in €, the regulated expression reads

2errp?

<ﬂmﬂﬂm%=mm%@+ﬂﬂ Cermlog 2100 (24)

The 2-point function now requires renormalisation and the divergence may be removed by

Set = (eiT + e(TO%> /d4ecc316R2u6. (2.5)

The value of the divergent term is directly related to the normalisation constant of the

the counterterm

2-point function while the value of the finite piece may be adjusted as will. This leads to
the renormalised correlation function

2
p
(TOIT() = (20)'5(p -+ ) | ~exrotlog Ty + 5o’ (2.6
where €%5.(11) is a scheme dependent constant.
The scale (or dilatation) symmetry may be gauged and the resulting theory becomes
classically Weyl invariant. The counterterm (2.5) is not Weyl invariant and requires the
addition of appropriate terms. The Weyl invariant form of the counterterm is

Set = <6T6T + eg‘?%) /d‘*‘% (LR + VaC® = CaC®)* (2.7)

where C), denotes the source for the virial current V# and under Weyl transformations one
has 6,Cy, = 0,0. At the quantum level the Weyl symmetry is anomalous.

The anomaly can be represented in terms of the Wess-Zumino action, i.e., one can
divide the generating functional of connected graphs W into a Weyl invariant part Wy
and an anomalous part W4, W = Wy + Wa,

Wale* g, Cou + 0u0, ... ] = Walguw, Cuy - - .1 + Swzlguw, Cps - - -5 0] (2.8)

where the dots indicate sources for operators other than 7),,, and V#. The most general
parity-even form of the Wess-Zumino action involving the metric and the gauge field C),



reads [8, 26],

Swz[guvs Cu; o] :/d4w\/§ {—a [0E4+ 4 (R’“’— 1g“”R> 0,00y0 — 4(90)*0o + 2(90)*

2
+ coW? —eoX? + faCWCW}, (2.9)
where o is the dilaton, E4 denotes the Euler density, W? is the square of the Weyl tensor and
Y= %R +Vv,.Cct—-C.CH, (2.10)
Cuw = 0,0, —0,C,. (2.11)

The coefficients a and ¢ are the standard conformal anomaly coefficients of a CF'T. The
coefficient f is also a standard CFT anomaly coefficient due to conserved currents. What
is new in SFTs that are not CFTs is the e anomaly.

We now want to relate the coefficients in the Wess-Zumino action with coefficients in
correlation functions. On one hand, the Wess-Zumino action may be related to the anomaly
in the Weyl Ward identity. With sources for operators other than the stress-energy tensor
and the virial current turned off, the identity reads

0 0
50’ - 50’ = d4 —2g"" -V, — | W
Swz / /90 ( 9 sgr “5%)

= /d41:\/§a<T+ V.V, (2.12)
where §,Swyz denotes the terms in Sywy that are linear in ¢. On the other hand, one finds

do(T(1)T (22)) = 80 (T (x1)T (2))+

-9 uu ) —9 . L
+mg ($1)59’”(w1) ( g(azz)gp ($2)5gpo(w2)5”SWZ>

The first term captures the classical scaling of the 2-point function (in a flat background

(2.13)

gpuzfsuu

(T(x1)T(x2)) ~ |21 — x2|~®) while the second term represents the scale violation of the
2-point function. By evaluating this expression in momentum space one finds that the
e-anomaly is equal to the normalisation constant (2.6) of the 2-point function (I7'T") in the
SFT, e = eprp.

While in conformal theories e = 0, in SFTs e may be a priori non-vanishing. The
converse also holds: if e = eppr = 0, then in unitary theories 7' = 0 and the scale invariant
theory becomes fully conformal. Thus, a sufficient and necessary condition for a SFT to a
CFT is that ey = 0.°

In this paper we analyse properties of the SF'Ts in momentum space. For correlation
functions of scalar operators Oy, ..., O, of dimensions A1,...,A, scale invariance implies

(01(epy) ... On(e7p,,)) = =1 27710, (p) ... O, (p,,)) + Anlo), (2.14)

5If the SFT has a dimension two operator Oz then the condition is, err = egT/em, where ear and eoo
are normalisation in the 2-point functions of 7" and Og, see (4.4) and (4.2). When this condition holds one
may improve 7' such that the new 7" vanishes, see the discussion in section 4.1.




as we will discuss in the following section. When expanded, the leading term in o consists
of two parts: a classical part and an anomalous part, as in (2.13). Since we are interested
in the anomalous term A, (0), we may remove the classical piece by defining infinitesimal
scale transformation

. d

56 (01(P) - Oulp,)) = — (e 2701 (e7p) .. On(e,)))

- 2.15
= . (215)

o=0

which picks up the leading term in o from the anomaly A, (o). If no anomalies are present,

65(01(py) - - On(py)) = 0.

Using the relation between the Wess-Zumino action and (2.13) it was argued in [26]
that epr = 0 in any SFT, due to the consistency between the Wess-Zumino action and the
OPE of the stress-energy tensor. As we will show in section 5.1, the scale violation of the
3-point function of the trace of the stress-energy tensor is uniquely determined and reads

~

00 (T(p1)T(po)T(p3)) = (27)*6(py + Py + P3) X 20er7J, (2.16)

where
J? = —pt — p3 — p§ + 2pip3 + 2pip; + 2p5p3. (2.17)

In deriving (2.16) we used the fact (derived in section 4.2) that one can always add an
appropriate improvement term such that all off-diagonal 2-point functions of the trace of
the stress-energy tensor and scalar operators Os, O4 of dimensions two and four vanish,

(T(p)O2(p)) = (T(p)O4(p)) = (O2(p)O4(p")) = 0. (2.18)

In [26] the following OPE argument was used to argue that such a scale violation in
the 3-point function is not possible in any SFT. The argument is based on the observation
that in position space the OPE implies that for ; — 2,

1 H M

(T(@1)T ()T (w3)) ~ (O(@)T(25)) + — 2 (K, ()T (25)) + ...
(2.19)

where O and K, are the scalar and vector operators of the lowest dimension contributing to

‘5171 _ $2|8—Ao ‘5131 _ $2|9—AK

the OPE. Then the Fourier transform of this expression is compared to the large momentum
limit p; = pa > ps of (2.16). It is argued that the momentum dependence obtained via
the OPE is such that the scale violation of (IT'T'T") cannot match (2.16) and thus ez must
be equal to zero. Hence the theory is conformal.

The critical flaw in this argument is the assumption that the large momentum limit
q = p1 = p2 > p3 = p follows directly from the Fourier transform of the leading 1 — a2
behaviour in (2.19). In appendix A we argue that the correct large momentum expan-
sion reads

qA1+A27A37dp2A37d (1 + O(p/q)) if Ag <
(01(q)O02(—g + p)O3(—p)) o (2.20)

gArTRetRs2d (1 4 o (p/q)) if Az >

[N ESUN V) SH



up to proportionality factors. In special cases such as 2A3 = d, logarithms can appear
as well. We will not list all possibilities since we are interested in explaining why the two
forms appear in the generic case.

The behaviour presented in the first line of (2.20) will be called a naive OPE behaviour,
since it follows directly from the Fourier transform of the appropriate OPE term. Indeed,
if the OPE reads

C1a3
‘wl — w2|A1+A2_A3

01(1131)02(:132) ~ 03(502) =+ ... (2.21)
then it would be natural to expect that the leading large-momentum behaviour follows
from the Fourier transform of the leading &1 — x5 behaviour of the 3-point function

Ci23

(O1(21)O2(x2) O3(x3)) ~ ENEm v (O3(22)O3(x3)). (2.22)

|1 — a2

The Fourier transform of this expression leads to the first line of (2.20), since

d/20d—2AT (d—2A
Al o 1P L /2207287 (B228) L\, (2.23)
228 T(A) P ‘

This reasoning however is incorrect in general. While there is an interplay between
the large momentum limit p;,p2 > ps and the coincident limit &1 — x2, it is not as
straightforward as suggested by the naive OPE argument. Nevertheless, observe that the

A1 +A2+A372d

term ¢ in the second line of (2.20) is semi-local, i.e., up to a constant it is a

Fourier transform of the expression

5(@_963)]1;1_w3‘A1+A2+A3—d e

and hence it is a Fourier transform of the distribution supported on the set of coincident
points. As was pointed out in [28] (and we discuss in detail in appendix A.3), the first
line of (2.20) represents the first non-local term in all cases, i.e., the term that in position
space is not supported on a set of coincident points.

Returning to the anomaly, notice that all terms in (2.16) can originate from Fourier

transforms of semi-local expressions, for example

1 F
(2 — ms)m ——  pilogpi,
Oyd(2s — m5)———— L5 p2pllogp’ 2.25
250 (@2 w3)|m1_$3|6 ——  pipylogpi. (2.25)

Including such semi-local terms one finds that the Weyl variation of (I'TT) can indeed
match the anomaly obtained from the WZ action and one cannot conclude that epp = 0.

A different approach to the problem of enhancing scale invariance to conformal invari-
ance was undertaken in [25]. The authors analysed dilaton amplitudes defined as

oW

(2.26)



where ¢ is the scale mode of the metric, g, = (1 —|—90)25W. The dilaton ¢ is a source for the
trace of the stress-energy tensor in the sense that it couples to T, Sine = — [ ¢T + O(¢?).
Then they argued that the imaginary part of these amplitudes must vanish in an on-shell
p? — 0 and forward kinematics limit. Using the optical theorem they then concluded
that the entire amplitudes A, must vanish in this kinematical limit (assuming this limit
exists, see [8] and [13] for a discussion of this point for A4)%. This then suggests that
the interaction terms between the dilatons can be removed by a field redefinition and this
would be possible if there exists a local operator Oy such that T} = 0O, concluding that
the SFT is a CFT.

While this argument is very suggestive it would be preferable to have a more clear-cut
proof. As mentioned earlier, a necessary and sufficient condition for a SE'T to be a CFT
is that the anomaly coefficient epp vanishes, so one may wonder whether the vanishing of
the dilaton amplitudes can be used to show that epp = 0. The imaginary part of A, in
the SFT should come from logarithmic terms. Thus if there is a non-trivial scale anomaly
which is proportional to epp one may hope that the vanishing of the imaginary part of A,
would imply err = 0.

We show in section 7 that there is no anomaly for connected 5- and higher point
functions of T'. Furthermore, 3-point functions are trivial on-shell. Thus, we are left to
discuss 4-point functions. It turns out the anomaly for 4-point function is non-trivial and
is given by

ST IT )T T (o) = 8 (err + jcdean)

X [(p1 - P2)(P3 - Pa) + (P1 - P3)(P2 - Pa) + (P1 - P4) (P2 - P3)] - (227)

The constant ego is the normalisation of the 2-point function of an operator Oy of dimension
two and ¢y is a constant appearing in coupling of O with the dilaton and C,,, see (4.2)
and (6.1). In particular, ess > 0 in any reflection positive theory and hence for the scale
violation in the 4-point function to vanish, one necessarily needs err = 0. Here again
we used the fact that the off-diagonal 2-point functions in (2.18) may be set to zero by
adding improvement terms. Note that this anomaly is non-vanishing in the on-shell forward
kinematics limit.

We now explain that despite the fact that the dilaton amplitude A4 vanishes, one
cannot conclude that err = 0. Recall that the trace of the stress-energy tensor is the

operator defined as

7= 2w 05 (2.28)

N

SThese papers used OPEs in order to control the behavior of the amplitude in momentum space. This

raises the question of whether the subtleties we uncover in the relation between OPEs and limits in momen-
tum space would affect their argument. While answering this question in full requires additional study we
note that the potentially dangerous contributions come from operators of dimension A < d/2 = 2 and for
those the naive OPE behavior provides the correct large momentum limit in 3-point functions, see (2.20)
(as noted above A = 2 is special).



and hence it is a functional of the metric and other sources as well. In particular,
oW
op(x1)...0p(xy,)

and the semi-local terms cannot be disregarded as explained in section 6.2. It follows

(T'(x1)...T(xp)) = (—1)" + semi-local terms, (2.29)

that the vanishing of the dilaton amplitude in this kinematical limit only implies that
the correlators are purely semi-local (in this kinematical configuration). Moreover, the
anomaly (2.27) can be completely accounted by semi-local terms, as it is clear from the
computation in appendix C where all contributions come from semi-local terms.

While our analysis does not invalidate the reasoning of [25], we did not manage to
provide additional support for it. Of course, if one accepts that 7' = [JOy then it suffices
to look at the anomaly of the 3-point function to conclude err = 0. This is so because
for the anomalies to match the 3-point function of Oy would need to have a non-local
scale anomaly.

3 Set-up

3.1 Notation and kinematics

In the paper we work in Euclidean signature. We use bold letters to denote vectors, e.g.,
x, p and we define x = |z|, p = |p| and so on. Due to the momentum conservation,
any correlation function in momentum space carries a delta function. We use the double
bracket notation ((—)) to denote the omission of this delta function, i.e.,

(O1(py) - Oulpy)) = (21)%5 | D_p; | (O1(p1) - On(p,,))- (3.1)
j=1

Despite the fact that the n-point function has n momenta listed as its arguments, only
n — 1 momenta is independent, since Y 7_, p; = 0.

Due to Lorentz invariance, every 3-point function can be regarded as a function of
magnitudes of the three momenta p; = ]pj|, j = 1,2,3. We will often encounter the
following combination of momenta,

J? = —pi — p3 — P+ 2p3p3 + 2pip} + 2p3p3 = 4 - Gram(py, p,), (3.2)

where Gram is the Gram determinant. For physical momentum configurations obeying the
triangle inequalities we have J? > 0, with J? = 0 holding if and only if the three momenta
are collinear.

In the case of 4-point functions in d > 4 spacetime dimensions, the correlators depend
on six scalars, which may be taken to be the scalar products p;; = p;p;, 4,5 = 1,2, 3,4, and
i # j. While such a parametrisation is the most symmetric one, one can consider other
variables, for example four squares of momenta, pjz, j = 1,2,3,4 and two Mandelstam
variables, say s = (p; +py)? and t = (p; +p3)?. Such variables turn out to be useful, since
the calculations simplify significantly in the forward scattering limit

t—0, p; =0, j=1,234. (3.3)



3.2 Generating functional

In this paper we consider a reflection positive SE'T. The set of operators that can mix with
the trace of the stress-energy tensor are the virial current V# and scalar operators Oy and
Oy, of dimensions two and four, respectively. By the unitarity bounds in SFT [26, 29], the
dimensions Ag of operators of spin s are bounded from below by

1 for s =0,
Ag >4 2 fors=1, (3.4)
3 for s =2

Furthermore, a scalar operator ® of dimension one is necessarily a fundamental scalar
field, since its 2-point function satisfies Oz (®(x)®(y)) = 0. Since we can always decouple
a free theory (and moreover a free theory can be improved to be conformal) we assume that
Ag > 1 for all scalar operators. In general the dilatation operator may not be diagonalizable
due to renormalization effects.

The SFT may be coupled to sources: the metric g"”, the source C,, for the virial
current, and scalar sources ¢2 and ¢q for the operators Oy and Oy, respectively, and this
has the effect of gauging the scaling symmetry. In particular, under Weyl transformations

SoGuv = 20 G, O6bd—n = —(d — A)opg_na, 0oCy = 0y0. (3.5)

The subscript on the scalar sources denotes their scaling dimensions. The source C}, couples
to the dynamical objects via covariant derivatives,

9,0 = D, 0 = (9, + AoC,) O, (3.6)

where Ap is a scaling dimension of the operator O. The transformation property of the
gauge field C, implies that D, is a covariant derivative for scale transformations and thus,
for example, D, O transforms as a field with weight Ap under Weyl transformations.

In this paper we assume that the dilatation operator is diagonalizable and the Weyl
transformation rules are given by (3.5). As discussed in [2] in general dilatations may not
be diagonalizable and the most general local transformations that are consistent with the
Wess-Zumino consistency condition may contain additional terms [11, 13]. It would be
interesting to extend our analysis to the general case.

In [8, 26] the most general form of scaling anomalies in the stress-energy tensor and the
virial currents in a SF'T was obtained. If W denotes the generating functional of connected
correlators for the SE'T with gauged scaling symmetry, then its Weyl transformation 6, W
can be expressed as a variation of the local Wess-Zumino action d,Swz. In this paper
we need to include operators of dimension two and four and such operators contribute to
scaling anomalies [11, 30].

We are interesting in computing the anomaly of the following correlation functions:

e 2-point functions of the trace of the stress-energy tensor T, the longitudinal part of
the virial current V* and scalar operators of dimensions two and four.

,10,



e 3-point functions of 7" and the longitudinal part of V# with up to a single insertion
of the scalar operators.

e 4-point functions of 7" and the longitudinal part of V# only.

An analysis of 2-point functions analogous to the one in section 2 implies that there are
scale anomalies in all possible 2-point functions. This implies that we should include all
possible dimension 4 terms that are quadratic in the sources with arbitrary coefficients. The
values of these coefficients are related to the normalisation constants of 2-point functions,
as we will discuss in section 4. Turning to cubic coupling now, we note that we are only
interested in 3-point functions with a single insertion of a scalar operator, thus the relevant
cubic couplings should be at most linear in ¢g or ¢». By dimensional analysis the relevant
terms in the Wess-Zumino action read

0o SWz = /d4$\/§0 [(—err + earr o) R* — epaagoEs

— 622¢% — 644(D¢0)2 + 2e97Po R + 2e94p200pg + 2e47 ROgg + . . ] .
(3.7)

Since we are interested in the correlation functions of the trace of the stress-energy tensor
rather than the entire stress-energy tensor, the square of the Weyl tensor may be omitted.
Furthermore, since the Euler density is a topological term, it does not contribute to the
2-point function of T

By introducing the gauge field C),, one can gauge the Weyl transformations and extend
the action (3.7) to be fully Weyl-invariant. To this end let us define,

~

R=6% =R+ 6V,C0% — 6C,C?, (3.8)
Ry = R +2V(,C) + 9 VaC + 20,0, — 29,,CoC, (3.9)
0=0-20V, (3.10)

and note that these objects transform homogeneously under Weyl transformations,
6,R=—20R,  0,Ru =0,  3§,(0f) = —2000f + (6, f). (3.11)

It follows that one can produce gauge invariant quantities by replacing un-hatted by hatted
quantities in (3.7). In particular, the gauged Euler density reads

. A 2 .
Ey=W?-2R, + gRQ, (3.12)

where W2 is the usual square of the Weyl tensor, which transforms homogeneously un-
der Weyl transformations without any gauging. The gauged Weyl-invariant Wess-Zumino
action relevant for our analysis is then equal to

0o SWz = /d493\/§0 [(_eTT + earrdo) R — epaadoEy

— 9003 — eqq(0do)? + 2ea7do R + 2e04¢201d0 + 247 ROpo + ... .
(3.13)
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Due to the homogeneity of each separate term this action satisfies the Wess-Zumino con-
sistency condition trivially (for example 50(\/§R2) = 0 by construction.) We note how-
ever that there may exist a more general solution of the Wess-Zumino consistency con-
dition which involves adding additional terms in the transformation rules (3.5) and the
action (3.13). One may analyze this question by expanding the general solution of the
Wess-Zumino consistency condition in [11, 13] around a fixed point that is a SFT and
collecting all terms that are cubic in the sources. We leave such analysis for future work.

In the following sections we will consider higher-point correlation functions as well.
When (3.13) is restricted to the metric and the gauge field C), only, one recovers (2.9), and
hence it contains all terms relevant for computation of scale anomalies in the correlation
functions that involve T" and V# only.

3.3 Correlation functions

In this paper we are mostly interested in correlation functions of the trace of the stress-
energy tensor, the virial current and scalar operators of dimensions two and four. These
operators, after coupling to background fields, are defined by

" = 55525” , T = ¢"T,,, (3.14)
szjﬁg’ A:\}géqudi’ (3.15)
Their 1-point functions with sources turned on are then defined as
Tl =2 (T)s = 0" Ty (3.16)
(Vi) = \}gggi, (Oa)s = \}ﬁéjﬁji : (3.17)

where the subscript s denotes the fact that the operators and their correlation functions
are considered with sources turned on. If the subscript is absent, then the correlation
function and the operator is considered in the theory with the sources turned off. For
example (7),,) = 0 since the expectation values of 1-point functions vanish in a SFT, while
in general (7),,)s # 0 due to the sources.

The theory with sources turned on is Weyl invariant, up to anomalies, when one
transforms both the elementary fields and the sources. Let ® be the elementary fields (we
suppress spacetime and internal indices) transforming under Weyl transformations as

5, = —Ago® (3.18)

Then (anomalous) Weyl invariance implies

1 5L
PR < / 4z, /g (—QTwéog’“’ —VH5,C, — Opdoban — 5@50@) >

0L

= < /dda:\/ga (T + VMV” +(d—A)pg—aOa + A(I)(I)cs(I)> >8 (3.19)
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where L is the Lagrangian (including the couplings to sources). This identity should hold
for any o and we deduce the scale Ward identity,

ow
<T>5 + <V#V”>3 + (d — A)¢d—A<0A>s = A@@E + A. (3.20)
where A is the scale anomaly.
The field equation terms are due to the fact that the elementary fields transform non-
trivially under scale transformations. One may remove these terms by defining rescaled
elementary fields [31],

U = ®(det g)>/?? (3.21)

which are Weyl invariant, §,¥ = 0. The stress energy tensor will now receive additional
contributions from the variation of the factors of (det g)®/?¢ and the Ward identity will
not contain any field equations terms which now reads

(T)s + (V. V") + (d — A)pg_n(On)s = A. (3.22)

The stress energy tensor used in this paper is the one obtained after this redefinition of the
elementary fields.

Now, let us take a second Weyl variation of Sywyz and then set the sources to zero.
Using the fact that the Wess-Zumino action satisfies the Wess-Zumino condition and that
1-point functions vanish in a SF'T we obtain,

0= / A1 /Go (1) / Qo /Goa () (T + 0, V") (@) (T + 0,V )(ws))  (3.23)
Since this relation should hold for any o1 and o9 it follows that
(T + 0, V) (1) (T + 0,V")(22)) =0 (3.24)

and therefore in a unitary SFT,
T+ 0,V =0, (3.25)

as an operator equation. This implies that we can compute correlation function of T" either
by turning on a source for T" or by turning on a source for V#, compute the V# correlators
and then act by d,. This provides consistency conditions that fix some of the semi-local
terms that appear in the correlators.

The correlation functions of the trace of the stress-energy tensor may be computed by
fixing the background fields to

G =€ 0, C, =0, bg_n = 0. (3.26)
Indeed, one has
b b 6S
2 —— = — T =el" =, 2
T sgm = o1 < or (3.27)

We will also introduce a different parametrisations of the metric given by 2 = ™7 and
Q) =1+ ¢. The correlation functions of the virial current can be computed by fixing the
metric g, = 0, In terms of the variable 7 the Ricci tensor in arbitrary dimension d reads

R[e™*76,,] = (d — 1)e*" [20°T — (d — 2)(07)?] , (3.28)

which allows to express the generating functional in terms of 7.
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Since T}, is a functional of the metric and other sources, the functional derivatives

oT, . . . . . .
such as 59;‘(’; do not vanish in general. The derivative may remain non-zero with sources

turned off, allowing us to define under expectation values

oT det / 0T OVH def /OVH
o) = .. L) = .. 2
< 5gp0' > < 59'00 >sources:0 < 601’ > < 60'/ >sources=0’ (3 9)

where ‘. ..” denote arbitrary operators and similarly for other operators.

In order to keep track of all terms with functional derivatives, we may package them
into an interaction action. In four dimensions, up to second order in the dilaton 7 and the
gauge field €', and to linear order in ¢2 and ¢y the most general form of the action for any
four dimensional reflection positive SF'T reads [26],

St = /d4az [TT + CLVF 4 ¢9O0s + ¢p9O4 + ...

| —

1
+ 72 (CTT + 6/26202 + 04(94) + 562(87’)202

N = o

+ éQCMCuOQ + ... (3.30)
For clarity we consider here the case the SF'T contains one operator of dimension two and
one operator of dimension four. A generalisation to the case of multiple scalar operators is
presented in appendix D. Other fields are excluded either by the unitarity bounds (3.4), or
can be connected to the terms present by integration by parts. This form of the interaction
action is valid in four spacetime dimensions and for reflection-positive theory only. In
particular one finds

5T(ac1) 5251111;
= 4T — - 31
57(x2) N o o (3:31)
5‘/”(%1) _ s s
50,/(582) = 625 02(5(2171 :IZQ), (332)
where
5% Sint
m _ T / 02 .
—57(331)57(332) [CT + 50702 + 0404} (5(%1 wg)
— [8u028“5(m1 —x9) + (92825(931 — 1:2)] , (3.33)

and the derivatives are with respect to ;.

3.4 Scale violations

Classically, every field in a SFT transforms under dilatations @ +— e« in a specific way
determined by its scale dimension. For a scalar field O of dimension A the transformation

property reads
e 270(e %x) = O(x), (3.34)

for any constant o. In the quantum theory, however, scale invariance may be violated by
logarithmic terms emerging from the renormalisation procedure. The failure of a given
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n-point function to be scale invariant is encoded in the anomaly term A,. For correlation
functions of scalar operators O, ..., O, of dimensions A1, ..., A, this implies

An(0) = e” i 2=V e 40, (7)) L 04(e7p,)) — (O1(py) - Oulp,))  (3.35)
or infinitesimally, to leading order in o,

. d

5o (O1(P1) - Onlpy)) = — (7B 8=V, (e7py) . Ou(e7p,)) )

. (3.36)
o=0

This variation represents the anomalous contribution. It is equal to the scaling transfor-
mation d, up to the classical contribution,

65(O1(py1) - On(pn)))s = 50 + Z Aj—(n—=1)d | o] (Oi(p1) ... On(py))s- (3.37)

This follows from the definition (3.15), the Fourier transform, and the simple fact

1 1) Ao
o <\/§ 5<Z>d—A> NN (3:38)

where A denotes the dimension of the operator sourced by ¢4 _aA. In particular, since
0o acts on momenta or coordinates rather than sources, the variation d, commutes with
functional derivatives with respect to the sources,

~ 5”
05 (O (1) ... Op(w,)) = 561 o

(6eW). (3.39)
This implies that the scale violation in the n-point function may be calculated by turning
the sources off before the variation 50 is calculated.

The discussion above leads to the conclusion that d,(O1(py) . .. On(p,)) = 0 if anoma-
lies are absent; otherwise logarithmic terms in the n-point function appear. In this paper
we are mostly interested in correlation functions of the trace of the stress-energy tensor. It
follows from the Wess-Zumino action that the only scale violating terms that can appear
have a single logarithm of a general form

P(p17~- . 7pn)

e , (3.40)

F(pla s 7pn) IOg

where I is a homogeneous polynomial of degree Z;”:l Aj — (n — 1)d, where A; are the
scaling dimensions of the operators entering the correlator, P is a homogeneous polynomial
of degree two and p is a renormalisation scale. Hence from (3.36) we find

05 (O1(p1) - - - On(py))) = —Gui<(01(p1) - On(pp))- (3.41)
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4 2-point functions

In this section we analyse the structure of 2-point functions in a SFT. We are mostly
interested in correlation functions of the stress-energy tensor 7),,, the virial current V#,
and scalar operators Oy and Oy of scaling dimension two and four. The form of the 2-point
functions is uniquely determined by (the anomalous) scale invariance. The diagonal part
of the matrix of the 2-point functions is

(T(p)T(—p)) = —errp*logp® + €5 (1)p?, (4.1)
(O2(p)O2(—p)) = —exzlogp® + €55 (),
(Os(p)Os(—p)) = —easp™ logp* + el (1)p",

while the off-diagonal part reads

(T(p)Oa2(—p)) = earp® logp* + e (n)p*, (4.4)
(T(p)Os(—p)) = earp™ logp® + el (n)p*, (4.5)
(O2(p)O4(—p))) = e2ap® log p* + ek (u)p. (4.6)

The normalisation constants defined here correspond to the constants featuring in the
Wess-Zumino action (3.13). Indeed, by taking two derivatives of the generating functional
with respect to the dilaton 7, (3.26), one finds,

2w
07 (1)o7 (22)

Note that such a simple expression holds only after the sources are turned off.

(T'(@1)T (22)) = (4.7)

The local, scheme dependent part of each correlation function can be adjusted by means
of finite local counterterms. In a reflection positive QFT the matrix of the normalisation
constants must be non-negative. Furthermore, if one of the eigenvalues vanishes, then the
corresponding operator is null. In particular if epy = 0 (after we set to zero the off-diagonal
terms as discussed in the next subsection), then 7' = 0 and the scale invariant theory is
fully conformally invariant.

Furthermore, scale invariance requires that the source C), for the virial current appears
in a correlated way with the metric. Therefore, the normalisation constants of the 2-point
functions of the virial current with other operators are related with the corresponding
correlation functions of 7T'. In particular,

(Oa(p)VH(—p))) = —iearp” log p* + iekiip”, (4.8)

(T(p)V*(=p))) = terrp’p* log p* — ieRy (u)p°p", (4.9)
(Ou()VH(=p))) = iearp®p log p* — el (n)pp", (4.10)
(VEP)VY (=p)) = —errp™p” logp? + €5 (u)pHp” + transverse part. (4.11)

The transverse part of the 2-point function of the virial current is proportional to 7" =
§HY —pHp¥ /p? and is not relevant for our discussion (which involve checking the implications
of the relation T = —0,,V#) because p, 7" = 0. Furthermore in this paper we are interested
in calculating scale violations in the correlation functions so from now on we will neglect
the local parts.
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4.1 Improvement term

Consider a SFT with epp > 0 and at least one scalar operator O of dimension two with
e22 > 0 in the interaction action (3.30). The case of multiple scalar operators of dimensions
two and four is discussed in appendix D. The improvement term

AS = g / d*z\/gRO; (4.12)

can be added to the action in such a way that the improved stress-energy tensor becomes
traceless. The improvement term does not alter the charges associated with the stress-
energy tensor and modifies the correlation functions only locally. The trace of the improved
stress-energy tensor reads

T+ Timp = T + £0%0s. (4.13)

Clearly, if T = c0?O, for some constant ¢, then for & = —c the trace of the improved
stress-energy tensor vanishes. Otherwise, the 2-point function of the improved stress-energy
tensor reads

(Thtap (P) Thenp (—p)) = (T(P)T (=) —260* (T(P) O2(—p)) +E*p" (O2(p) O2(~p))). (4.14)

By using (4.1)—(4.6) we find that the 2-point function of the trace of the improved stress-
energy tensor vanishes if £ satisfies the equation

err + 2€ear + §2622 = 0. (4.15)

A solution exists if and only if
G%T — e7T€ Z 0. (4.16)

Now we will show that such a condition can hold in a reflection positive theory if and only
if T is proportional to 9?Os. To do it, consider the state |¥) defined as

|T) = aT'(x)|0) 4+ B0*Oo(x)|0), (4.17)

where o and [ are arbitrary complex numbers. Reflection positivity implies that the norm
(¥|W) must be non-negative. Poincaré invariance, together with the fact that complex
conjugation in an Euclidean setting corresponds to time reversal leads to the conclusion that

e%T — e7T€ S 0, (4.18)

in any reflection positive QFT. Therefore (4.16) and (4.18) are compatible (and then the
improvement term exists) if and only if e%T — epregy = 0. In this case (4.17) implies that
states T'(z)|0) and 9?Oq(z)|0) are linearly dependent, and so T = cd?Oy for some c, and
the theory is conformal. We therefore assume from now on that

e%T — epregy < 0. (4.19)
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4.2 Diagonalising the 2-point functions

We just argued that when (4.19) holds one cannot improve 7. However, one can use the
improvement terms in order to fix the off-diagonal 2-point functions (4.4)-(4.6) to zero.
This is motivated by conformal field theories, where such correlation functions vanish. To
do it, consider a general form of the improvement term

AS = / V7 [5022 + € 0uC10 + 5”¢0T} . (4.20)

The first term contains the previously considered improvement term (4.12), now written
in a Weyl invariant way. The existence of the improvement terms follows from the fact
that the dimension of the source for the operator Os is the same as for the operator itself.
Therefore, one can introduce the improvement terms simply by exchanging one ¢5 in favour
of Oy in the Wess-Zumino action (3.13). The improvement term modifies the operators in
the theory as follows,

Timp = T + £0*0s, (4.21)
Vit = V¥ = £0,02, (4.22)
O™ = Oy + £0°0q + €'T. (4.23)

The off-diagonal 2-point functions of the improved operators vanish if the following system
has a solution

0 = eopr + Eepr, (4.24)
0= e+ exn + ear, (4.25)
0 = esr — eop(&' +€€") — Eeas — ey — £ . (4.26)

The solution exists if epress # e%T and reads

eor
-2, (4.27)
€2TeqsT + €24€7TT
¢ = = (4.28)
€2€eTT — €51
n _ €24€21 + 62264T_ (4.29)

2
€22€TT — €5

As argued in the previous section the denominators of these expressions are non-vanishing
in any reflection positive QFT containing an operator of dimension two. Therefore we
have shown that in such a case one can always add an improvement and from now on
assume that

€T = €94 — €yT — 0. (430)

If the operator of dimension two is absent in the theory, then already esg = €94 = eor = 0.
In this case the theory can be improved to e4r = 0 by a simple shift given by £”. Therefore,
from now on, we assume that (4.30) holds.

Furthermore, if multiple scalar operators of dimension two and four are present in the
theory, one can generalise the procedure and show that all off-diagonal correlation functions
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vanish. We discuss the general case in appendix D. For clarity, in the main text of the
paper we assume that the theory contains at most one operator of dimension two and four
(other than the trace of the stress-energy tensor).

5 3-point functions

In this section we will analyse the structure of scale violating terms in the 3-point functions
(TTT), (TTO2) and (TTO,). We will compare the scale violations following from the Wess-
Zumino action (3.13) with possible scale violation in the analogous correlation functions
involving the virial current. Then the two expressions can be compared by means of the
relation T'= —9,V*.

5.1 (TTT)

The correlation functions of the stress-energy tensor are defined as correlation functions
of the operator defined in (3.14). In particular, the relation between the actual 3-point
function of the trace of the stress-energy tensor and the triple functional derivative of
the generating functional with respect to the metric involves semi-local terms, i.e., terms
that in position space are supported on the set of coincident points. In all expressions
we can omit contributions from 1-point functions, since after turning off the sources they
vanish. However, we will carefully account for all 2-point functions including terms with
functional derivatives.

Using the parametrisation of the metric as g, = e 2"

— (T @)@ T(@). ~ =) (ST @), + 2 pormutations|

uv one finds,

+ 1-point functions.  (5.2)

Carrying out the derivatives on the left hand side, using (3.31) and then turning off the
sources we find

2 57(:;;1)5?(‘;2)57(23) 2
- (i) * (") * (samsran” )

where the interaction action Siy is given in (3.30). Due to the improvement terms intro-

(T(21)T (x2)T(x3)) = —

(5.3)

duced in section 4.2, the only contribution to the 2-point functions comes from the %TQCTT
term in the interaction action. Therefore,

BW
57‘(331)57‘(332)57‘(333)

(T(x1)T (x2)T(23)) = —

+ er|6(x1 — 22)(T(x2) T (23)) + 0(22 — 23)(T(23)T' (1))

+0(xz — 1) (T (x1)T(2)) |- (5.4)
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The scale violation in the 3-point function can be computed from the Wess-Zumino action
and the expressions for 2-point functions. The result is

00 (T (p1)T(p2)T (p3))) = 20errJ* — 20crerr(pt + p3 + p3), (5.5)

where J? is defined in (3.2).

Next we can compare the scale violation (5.5) with the scale violation following from
the virial current. We follow the same procedure. First we expand the triple derivative of
the generating functional with respect to the source C,

W
— = (VI () V2 (xo)VH3 (23)) s
5C, (21)0C, 1y (22)0C, 5 (3) (VI (@1 )V72 (2) VI (25))
ovm (acl) > . .
— — V2 (g + 2 cyel. perm.| + 1-point functions. 5.6
(G v(e) +2ardp D (5.6)

The functional derivatives can be read off from the action (3.30) using (3.32) and the scale
violation can be calculated by means of the Wess-Zumino action. In total one finds

05 (V* (p1)V*2 (o) VI (p3)) = —derra [p 6242 4 ph>6#14s 4 phPgrare). (5.7)
Using T' = —0,V#* we find

6o (T ()T (P2)T (p3)) = 2er70J°. (5:8)

By comparison of (5.5) and (5.8) we find that either epp = 0 and the theory is
conformal, or ¢ = 0. Therefore, from now on we assume cp = 0.

Finally, we note that the most general form of the scale violation in the 3-point function
of the virial current can be derived using Lorentz and scale invariance and the fact that
anomalies are local. We present this alternative derivation in appendix B.

5.2 (TTO,)

In the forthcoming analysis of the 4-point functions we will also need to explore the conse-
quences of the relation between (T'T'Oz) and (V#V"O3). Following the procedure described
in the previous section the scale violation in the virial current leads to

0o (V' (p1)V" (p2)O2(p3))) = —20¢ae026M, (5.9)

which results in

6o (T(p1)T (p2)O2(p3))) = 20€22C2p1 - Py. (5.10)

On the other hand the scale violation in the correlator involving the trace of the
stress-energy tensor can be computed directly from the Wess-Zumino action. In this way
one finds

e (T (p1)T(P2)Oa(p3)) = 20€22(capy - Py — chp3). (5.11)

Using the relation p; - py = %(pg —p? — p3) we can rewrite the correlation function in terms
of the three independent magnitudes of momenta p;,p2 and ps. It follows that (5.10)
and (5.11) agree only if

ch =0, cy = Ca. (5.12)
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5.3 (TTOy)

In this subsection we compute (T'TO4) and (VFVVQ,), where O4 denotes the operator
of dimension four, and find that the coefficient ¢4 in (3.30) must vanish, ¢4 = 0. This
3-point function receives a contribution from the term espp f \/§¢022 in the Wess-Zumino
action (3.13).

Taking three derivatives of the generating functional with respect to appropriate
sources we find

B »Bw
07 (21)07(22)dd0 (23)

+ (™) + Sy @) + (G 0o

The operator §7/5¢o has dimension four and hence can be written in a basis of such

(T'(21)T (w2)O4(3)) = (5.13)

operators. However, the only operator in such expansion that can produce a non-zero
answer is the trace of stress the energy tensor (since we arranged for all off-diagonal 2-
point functions to be equal to zero). Therefore, using the Wess-Zumino action, one finds

05 (T (p1)T(p2)O4 (P3)>> = —2064TTP%]0% —20Cerr (19411 +p§) —4ocpag J?— 2004644p§> (5. 14)

where C' is some numerical constant.
On the other hand, a similar calculation can be carried out using the virial current.
By taking three functional derivatives one finds

(VM (x1) VY (22)O4(x3))
FW
0C,(21)0C, (22)0¢0(x3)

5.15

The functional derivative of the virial current with respect to ¢ is an operator of dimension
three and hence we can write its most general form

SVH(x)
ddo(y)

= 5(:13 - y) [Z akj,‘; + 00" Oy | + COQ@“(S(iB - y), (5.16)

k

for some constants ag, b, ¢, where j,‘: is a set of currents of dimension 3 including possibly
V#. This leads to

05 (T (p1)T(P2)Oa(p3))) = —20earrpips — 4ocpast” — 20ev;(p] + p3), (5.17)

where ey ; is a total normalisation constant following from the sum of all 2-point functions
(j4V¥). Since the coefficient of pj vanishes in this expression, by comparing with (5.14)
we obtain either ey = 0 or ¢4 = 0. If eq4 = 0, the operator Oy is null and may be set to
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zero. Otherwise, ¢4 = 0. In any case, in the computations to follow only the product eqqcy
appears and this vanishes in both cases.

This cancellation can be explained as follows. Since T' = g"”T},,,, where T},, is the full
stress-energy tensor with sources turned on, the only term containing the metric and the
operator Oy in T),, can be g,,04. However, now T' = 40, and the functional derivative
with respect to the metric vanishes, hence ¢4 = 0.

6 4-point functions

In this section we follow the same procedure as before applied to connected 4-point func-
tions. We will compare the scale violations in the 4-point function of the trace of the
stress-energy tensor with the scale violations in the virial current.

In the previous section we found a series of conditions relating various coefficients in
the functional derivative terms and the interaction action (3.30). With all these conditions,
the action reads now

Sint = /d4as [TT + CMV“ 4+ 209 + poOy + . ..
1 9 1
+ 562(87’) Oy + §CQCM0H02 —+ ... (6.1)

with an undetermined value of cs.

6.1 (Vul VB2 K3 V““)

We start by computing the scale violating terms in (V#1VH2VHE3VH4)  Since the total
dimension of this correlation function in momentum space equals zero, the scale violating
terms must be proportional to the unique symmetric tensor of dimension zero,

SH1N2H3M4 — 5#1#25#3#4 + 5,“/1#35,“2/14 + 6”1#45/‘2#3‘ (62)

As in section 5.1, we first obtain the relation between derivatives of the generating
functional and the 4-point function:

(VI (1) VI (22) VI (23) VI (24))

B %

00, (21)5C, (22)0C, 4 (223)0C,, (1)

[ ovm (1131) 3 4 .

+ _<6CM2($2)V“ (x3)VH (:1:4)> +5 permutatlons]

[ 5vu1 (:131) 5v,u3 (.’133) (5V‘“1 (:131) 5v,u2 (:132) 5vu1 (2131) 5v,u2 (:132)
) < 5Cys(2) 5Ci, () > i <60M3<w3> 5C), () > i <60M4<a:4> 5C)y (3) >}
-< 52‘/“1 (acl)
L\ 6C, (22)6C 5 (23)

V“4(m4)> +3 permutations] . (6.3)

The second functional derivative of the virial current with respect to C), has dimension one
and hence it vanishes. By using equations (6.1) and (5.10) and the Wess-Zumino action
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one finds the scale violation

. 1
SV VP (02) VP p3) V() = ~So5700 (erp + GBem ). (0

Therefore the scale violation in the 4-point function of the trace of the stress-energy ten-
sor reads

~

0o (T'(p1)T (p2)T (P3)T(P4))

1
=80 <€TT + 4c§e22> [(P1 - P2)(P3 - Pa) + (P1 - P3) (P2 - Pa) + (P1 - Po) (P2 - P3)] -
(6.5)
Note that this is an exact result and it is non-vanishing even in the forward scattering

limit (3.3),

50<<T(p1)T(p2)T(p3)T(p4)>> 22—0.4=0 = —dos® <6’TT + i05622> . (6.6)

This suggests that 7" may be a non-trivial operator in a SE'T.

6.2 (TTTT)

In this subsection we carry out the computation of the scale violating terms in the 4-point
function of the trace of the stress-energy tensor directly from the Wess-Zumino action.
The calculation is long but otherwise straightforward. As in previous sections, we start
by evaluating four functional derivatives of the generating functional with respect to the
dilaton. After turning off the sources one finds

() (" stan) " ata) (i)

= (T(x1)T (22)T (x3)T(24)) — K&T( )T(:cg)T( )>+5permutations}

o =
(e rian) "

)

& - é s :ﬁ>+]<ifézfif§§3>}
T(z1) T(ar:4 3 permutations

+d (@, T

07 (x2)07(23)

{5( )< (z)) (@ )>+3permutat10ns} (6.7)

The left hand side can be expanded and the result is then expressed in terms of functional
derivatives of the interaction action (6.1) using (3.31). Most terms cancel and one finds

%
07 (x1)07(x2)07(23)07(24)
525’int

+ [ (WWT($3)T(SB4)> + 5 permutations

(T(@1)T (@2)T (3)T (24)) =
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- 52511“ 525’“ + 2 permutations
57 (21)07 (x2) 07 (223)07 (1) P

_ [<5T(w1) gjicﬁ) — (w3)T(x4)> 43 permutations] .
(6.8)

The scale violation of the first term on the right hand side follows from the Wess-Zumino
action and reads

R 54 Swz
767 (py)0T(ps)07(p3)67(Dy)

= —8oerr [(p1 - P2)(P3 - Pa) + (P1 - P3) (P2 - Ps) + (P1 - P4)(P2-P3)].  (6.9)

As we see that the scale violation from the Wess-Zumino action already matches the first
term in (6.5).

In order to proceed we need to first analyse the term with three 7-derivatives. This
term receives contributions from terms cubic in the dilaton in the interaction action and
these terms are not listed in (6.1). However, since the third derivative of the action appears
in (6.8) under the expectation value with the trace of the stress-energy tensor, the only

relevant term in the interaction action is [ %T3cg§ 7. By taking three derivatives one finds

N 6SSint _ 00(3)6 4
b mirtairiay ) = 2 errok (6.10)

The remaining computations are straightforward. The result reads

5 (T )T T T )

= 8o (6TT + icgem) [(P1 - P2)(P3 - Pa) + (P1 - P3) (P2 Ps) + (P1 - P4) (P2 - P3)]

3
— 20V ery (p} + i+ ph + pi) - (6.11)

By comparing with (6.5) we see that the leading term involving err and ege matches
exactly and then one is forced to take cé? ) =0.

To summarize, the anomaly in the 4-point function is given by (6.5) and the following
relations among the second order coefficients in the interaction action (3.30) hold,

cr = 52 = C4 = 0, 52 = C2. (6.12)

Note that while the total scale violation of any correlation function is invariant under
parametrisations of the metric, the source of the various contributions do depend on such
parametrisations. With g,, = 6_275,“, we have found a non-zero contribution from the
Wess-Zumion action given by (6.9). Such a contribution does not vanish in the forward
scattering limit (3.3). On the other hand, if one parametrises the metric as g,, = Qzéuu,
then one finds

54
682(p1 )2 (p2)02(p3)6S2(py)

(6-Swz) = —120er7 Y pip}. (6.13)
1<i<j<4
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In this parametrisation of the metric the contribution from the Wess-Zumino action van-
ishes in the forward scattering limit with pjz =0, 7 =1,2,3,4. Nevertheless, the semi-local
terms contribute non-trivially to the correlation function in such a way that one recov-
ers (6.5) exactly. Note also that (6.12) is valid only in the parametrisation g,, = e~ *7d,,.

In order to check our results we have carried out all calculations in the parametrisation
of the metric g, = 925#,, as well. We present the computation in appendix C. All results
including (5.8) and (6.5) are confirmed.

7 Higher-point functions

We show in this short section that there is no scale violation in all connected higher point
correlation functions of the trace of the stress-energy tensor. This is a consequence of the
fact that anomalies are local and the scaling dimension of the n-point function of the virial
current equals A = (d—1)n— (n—1)d = d —n and becomes negative for n > d. Therefore,

A~

O (VHL L VY =0, n>d (7.1)
and hence
o (T ... T)=0, n>d (7.2)
—
as well.

8 Conclusions

In this paper we analysed the structure of the scale anomaly in four dimensional unitary
scale invariant theories. We found that 2-, 3-, and connected 4-point functions of the
trace of the stress-energy tensor 7T are anomalous while the anomaly in all connected
higher point functions vanishes. The 2-point function of 7' is non-trivial if and only if
scale transformations are anomalous. It follows that a unitary SFT is a CFT iff the scale
anomaly vanishes’ (since then 7' = 0 and this implies that the theory is conformal).

One of our main results is the explicit form of the anomaly in 3- and 4-point functions.
The explicit expressions are given in (5.8) and (6.5) and were derived using the Wess-
Zumino action and a careful treatment of semi-local terms (terms with support on a set
that contains both coincident and separated points). We also obtained the form of the
anomaly both for 3- and 4-point functions by an independent computation using only
Lorentz invariance, scale invariance and the fact that the anomaly is local. This is presented
in appendix B

To obtain the semi-local contributions we computed all couplings of sources to op-
erators that contribute up to 4-point functions. These terms are is given in (6.1) or in
alternative parametrisation in (C.4) and (C.5). The non-linear terms in sources encode the
semi-local contributions to correlation functions. We emphasise that only after including
all semi-local contributions the final answer is independent of the parametrisation of the

If the theory contains dimension 2 operators one may need to improve 7T first.
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sources. For example, if one uses 7 (g, = €7278,,) as the source for T then there is a
contribution to the anomaly of the 4-point function that comes from the Wess-Zumino
term, even in the on-shell forward scattering limit. On the other hand, if one uses ¢
(9w = (1 + ¢)?6,,) as the source for T, the contribution from Wess-Zumino term in
the on-shell forward scattering limit vanishes and there are additional contributions from
semi-local terms, leading to the same answer.

In [26] it was argued that the structure of the anomaly of the 3-point function is not
compatible with OPEs and this then implies that the coefficient of the scale anomaly must
vanish and thus all unitary SFTs are CFTs. We discussed here a subtlety in the relation
between OPEs and the large momentum limit which invalidates this argument. While the
OPE controls the leading non-local contribution in the large momentum limit, there are
semi-local contributions which dominate over the OPE contribution in the relevant case. A
detailed discussion of this subtlety is presented in appendix A. Taken the semi-local terms
into account one can no longer conclude that the scale anomaly coefficient must vanish.

In [25] it was argued that all dilaton amplitudes vanish in an on-shell forward scattering
limit. As just reviewed, we find that the scale anomaly of the 4-point function is non-zero
in this limit. Nevertheless one cannot conclude (without additional assumptions) from the
vanishing of the amplitudes that the coefficient of the scale anomaly must vanish. One can
only conclude that the 4-point function is semi-local in that limit. Of course, this by itself
is a very strong constraint on the structure of the SFT.

All in all, additional work is required in order to either prove that four dimensional
unitary SF'Ts and CF'Ts or find a counterexample.
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A Large momentum limit and OPEs

In this section we argue that in general

qA1+A2_A3—dp2A3—d (I+o(p/q)) if Az<

(01(q)02(—gq + p)O3(—p))) x (A1)

(N SHE V)RS

gA AR (1 4 0 (p/q)) if Ay >
in the limit ¢ > p. As mentioned in the introduction, the behaviour presented in the first

line of (A.1) will be called a naive OPE behaviour, since it follows directly from the Fourier
transform of the appropriate OPE term.
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In the following subsections we analyse the limit ¢ > p in the context of CFTs. In
the first subsection we present an example that demonstrates (A.1) for both cases. The
example also illustrate that the semi-local terms cannot be removed by local counterterms
(as expected) and thus cannot be ignored. In subsection A.2 we explain the difference
between the two cases in (A.1) by direct Fourier transform of the 3-point function of three
scalar operators and in subsection A.3 we prove (A.1) using the triple-K representation of
CFT 3-point functions [32]. These results show that (A.1) is valid in the conformal case
and we expect that it would also hold in unitary SF'Ts, if such theories exist.

A.1 Example

Our aim in this subsection is to demonstrate (A.1). The example is chosen such that

the 3-point functions are given by simple expression in momentum space. Consider the

correlation functions of scalar conformal primaries O35 and Os 5 of dimensions A = % and

A= %, respectively, in a four dimensional CFT. The correlation functions are given by
Cs/2

<<03/2(P1)O3/2(P2)03/2(P3)>> = p1p2p3\/m’ (A.2)

C
<<05/2(P1)O5/2(P2)O5/2(P3)>> = \/ﬁ7

where U35 and Cj5/; are constants. These expression can be obtained by starting from the

(A.3)

triple-K representation of the correlators given in [32] and then carrying out the remain-
ing integral.®
It follows that in the large momentum limit, the first correlation function yields

s/
(03/2(0)Os2(—q + P)O3)o(—p)) = —Lo + ..., (A.4)
V2¢2p
consistent with the first line of (A.1), since 3 < %, while
Cs )2
(O5/2(@)Os)5(—q + P)Os o (—P)) = —L2 + .. (A.5)

V2q
5

which is consistent with the second line of (A.1), since in this case 5 > %. Note, however,

that the leading term is local in the sense that up to a constant

) i . 1 1
/d4x1d4w2d4w36lpl-:lzlepo'EQelps'il:S75(:1:1_3:2) e 5(p1+p2+p3)\/ﬁ (AG)

|z1 — @32
Nevertheless, it cannot be removed by any local counterterm.? This is so because this term
has support at ©1 = x2 # x3 (terms with support at €1 = @2 = x3 are analytic in all
momenta and (A.6) is non-analytic in p3) and the contribution from any local counterterms
would have support at €1 = s = x3. Only ultra-local terms can be removed by local
counterterms and this is an example of a semi-local term.

8The triple-K integral is elementary because for operators with half-integer dimension the corresponding
K Bessel functions reduce to elementary functions.

9Actually in this case there are no local terms of dimension 4 that one can construct using the source
¢o associated to the operator O/, since ¢o has dimension 3/2.
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A.2 The Fourier transform

In this subsection we show how (A.1) emerges by taking a direct Fourier transform of the
3-point function of scalar conformal primaries.

Let us consider three scalar conformal primaries Oy, Oy, O3 of dimensions A1, Ay, Ag
respectively. The exact 3-point function in position space reads

B C123C33
<01($1)O2($2>O3(x3)> - ’5131 — $2‘A1+A2_A3’$2 — .’B3‘A2+A3_A1‘:B3 —x Az tA1—Ay?

(A.7)

where (33 is a normalisation of the 2-point function

Css3
(O3(21)O3(22)) = m (A.8)
and C'a93 is the OPE coefficient
C

01 (1) Os(@5) ~ ~ Os(@2) + .. (A.9)

‘xl _ x2|A1+A2—A3

Now one can carry out the Fourier transform of (A.7) in the large momentum limit py, pg >
p3. As we will see, it does not invalidate the statement that the leading momentum
behaviour comes from the region where a; is close to @2: instead it shows that an additional
contribution to the singularity at &1 = @2 may appear when the Fourier transform over a3
is carried out.

The Fourier transform is given by

(O1(p1)O02(p2)O3(p3))
C C e*ipl'ml e*iPQ‘iBQQ*in'mS
_ d,, 3d.. 1d 123033
- /d z1d"w2d T ’wl — {BQ‘A1+A2_A3’{E2 — w3‘A2+A3—A1‘w3 — xp|AstAI—A
C123C33e7Pr@1e—1Py @2
o d d 12333
= /d x1d%xs 21— oy AR F(x; — x2,p3), (A.10)
where in the second line the integral over a3 was carried out,
J efip3-a:3
F(x — $2’p3) = /d 3 |y — a;3|A2+A3_A1|$3 _ w1|A3+A1—A2 ’ (A.11)

Note that the factor |z — @o|~(A1+82-43) in (A.10) is exactly equal to the factor in
OPE (A.9). Therefore, the naive OPE is valid if F' is regular at &; = x3. Otherwise, F
contributes an additional singularity to the integrals over x; and xs.

We can find out what is the leading behaviour of F' with respect to |z; — 2| and ps.
Taking 1 = x5 in (A.11) we find
e~ 1P3®3

273
T3

F(0,p3) = / d%z o pats—d, (A.12)

which converges if 2A3 < d. Therefore, we have shown that the naive OPE expansion is
valid only if Aj < %,

(01(q)O2(—q + p)O3(—p))) ox p*Re~dgAriz=Ra=d (1 4 o (p/q)). (A.13)
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On the other hand if 2A3 > d, then F(0,p;) = oo, or in other words F(x; — x2,p3)
is singular at @y = x9. This means that the integral over a3 contributes an additional
singularity at @1 = @2 and this modifies the large ¢ limit. To obtain the answer in this
case we need to start from the 3-point function computed directly in momentum space and
we do this in the next subsection.

A.3 Proof of (A.1)

We can obtain the large momentum limit (A.1) in all cases by starting from the momentum
space representation of the correlators derived in [32]. The 3-point functions of scalar
operators in any CFT can be represented by the triple-K integral

(O1(p1)O2(p2) O3(p3))

d A,_d Ag*%

Ap— o d_
= Ciapy *py ps /0 dz 22 1KA17g(P1l’)KATg(Pzﬂf)KAgfg(mx),
(A.14)

where K, (p) is a modified Bessel function of the second kind (or Bessel K function, for
short) and C1a3 is an overall undetermined constant. Using such a representation it is easy
to consider the large momentum limit ¢ = p; = pa > ps = p. To do it, fix the value of ¢
and expand the integrand in (A.14) as a power series in p, according to

P K, (pz) = [T()2" 2™ + O(p?)] + [P T(-v)27" e + O(p™*?)] . (A.15)

Since v = Az — g, we can see that the form of the leading term in p/q depends on whether
2A3 < d or 2A3 > d. One can combine the two cases by writing

P’ K, (pz) = D(jp])2W— g Wlp2 o) o (A.16)

where 6 denotes the step function: #(xz) = 1 for x > 0 and #(z) = 0 for z < 0. The
remaining integral can be evaluated explicitly by means of the formula

/ dz :Ua_lKH(q:L‘)Kl,(qw)
0

203 a+pu+v a+pu—v a—pu+v a—pu—v
= r r r 'f——mm—— A7
et () (7 ; )
see [32] for details. The dichotomy in the expansion (A.15) is the primary reason for the oc-

currence of the two cases in (A.1). By substituting (A.16) into the triple-K integral (A.14)
and using (A.17) one finds

lim (O1(q)O2(~q +p)Os(~p))

= C123Co (A, d)quJrAQHAg_E 7p(2A3_d)€(g_A3) (1+o(p/q), (A.18)

where Cy(A;, d) is a specific numerical constant. This expression coincides with (A.1) when
the step function and the absolute value are resolved into particular cases.
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Assume now v = Az — % > 0. As pointed out in section 2, the leading term in the large
momentum expansion is in this case semi-local, i.e., it is a Fourier transform of a position
space expression supported on the set of coincident points, for example

1 F _
S —ws) o 0 M (o)) (A19)

Using the triple- K integral representation one can show that all subleading terms up to, but

A1+As—A3—d, 2A3

excluding, ¢ 22374 are semi-local in the large momentum limit. This follows

from the Taylor expansion (A.15), which in general takes form

o0 oo
P’ K, (pxr) =x"" Zaj(p:c)Zj + p*a” Z b (pz)¥, (A.20)
j=0 j=0
where the series coefficients a; and b; are known, see e.g., [33]. By substituting this result
to (A.14) and using (A.17) one finds the expansion of the triple-K integral in the large
momentum limit,

o)
%g;})«ol (q)OZ(_q + p)(93( 012 Z . A1+A2+A3_2d_2jp2j
—0
+ ZDJ(Aud)qu+A27A37d72jp2A3,d+2j |

j=0
(A.21)

where C; and D; represent some numerical constants explicitly computable by means
of (A.17). As one can see, the first series contains only even powers of momentum p. In
position space all such terms are semi-local, i.e., they are Fourier transforms of the form

; 1 F Ay+Ag+Az—2d—25 2
ngii(s(xl_wg)’a;l_$2‘A1+A2+A3_d_2j = q 1Bt A J J( +0(p/q)> (A22)

in the large momentum limit, up to a multiplicative constant. Aslong as j < 2v = 2A3—d
these terms are more leading than the terms in the second series in the expansion (A.21).
As one can see the terms featuring in the second power series are not semi-local and the
leading Dy term reproduces the naive OPE term in (A.1).

B Alternative derivation of the anomaly

In this appendix we show how to obtain the form of the scale violation (5.8) and (6.5)
directly from Lorentz and scale invariance (plus the locality of anomalies) applied to the
3- and 4-point functions of the virial current.

Let us start with the 3-point function. Following [32] we find that the most general
tensor decomposition of (VA1 VH2VH3) is given by

IV (p) V2 (p2) V2 (p3))) = oy (P1) 73 (P2)mhs (3) T2

+ p1 —5mh2(po)mhE (p3) T4 + 2 permutations
P
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Py’ ps°
=237kl (py)T5" + 2 permutations
P D3

H1o 2 H3

Py PP

+ L2237 (B.1)

py Py D3
where 7h (p) = 65 —ptpa /p? is a transverse projector and the tensors Ty through 7} are built
using the metric J,,, and the momenta. Due to momentum conservation p; + py + p3 =0
only two of the momenta are independent but we may choose different momenta for different

indices. The following choice is convenient [32],

Py, Py for ag, Do, 3 for as, p3, p; for as. (B.2)

With this rule all possible tensor forms in, for example, 752 are

0% PPl ptpsts PRtRYY, pepst (B.3)
However, since p®mh(p) = 0, the contraction of the last three tensors with the prefactor
in (B.1) vanishes. Hence only the first two tensors listed above may appear in 752",
By carrying out the analysis for the remaining factors we find the most general parity
even decomposition of the 3-point function to be

(VA (p)VE2 (p2) VI (p3))

1

= mh1 (p1)mh3 (P2)hs (P3) [A1p5' P52 pT?
+ (A1phy" 6924 4 Agop?6°14% 4 Apap(?°1°2))]
I
p
+ p%ﬂﬁi (P2)mhi(ps) (Biips®py™® + B2102%)
1

H2
p
+ p%ﬁﬁi (p1)7h5 (p3) (Bi2ph ' py® + B22d ™)
2
pﬂs
+ p%ﬁﬁ}(m)ﬂéi (P2) (Bispy ' p5® + B23d™*?)
3
H2 13 M1, M3 [, M2
Py P3 1551 (o3} Py D3 n2 (eD] Py Dy n3 a3
+ =5 =5l (p1)Cipy" + =5 =5 Th2(p2) Caps® + —5 =5 mh3 (p3)Cap
pd p3 TRt p2 e Soop?opdt !
1o p2 o f3
b1 Py P3
+ 555D, (B.4)
Py D3 D3

where the form factors, Ay, Asj, Bi;j,Cj, D (j=1,2,3,i=1,2), are scalar functions of
the momenta magnitudes p; = \pj\. With this decomposition it follows that
(T(p1)T(py)T(p3)) = D due to the relation 7" = —0,V*. Furthermore, if the virial
current is of the form (2.2) then the 3-point function should be purely longitudinal, i.e. all
form factors other than D must vanish or be at most local. Therefore, the problem of scale
vs conformal invariance can be restated as the question of whether it is possible to have a
non-conserved current of dimension A = 3 in a scale invariant theory which has at least
one non-local form factor among A, B and C.
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Each form factor in (B.4) has a specified scaling dimension, up to anomaly. Since
the dimension of the entire correlation function equals Ay = 3A — 2d = 1, one finds the
following scaling dimensions for the form factors in momentum space,

A(A)) = -2, A(Azj) = A(Byj) =0, A(Byj) = A(Cj) =2, A(D) =4. (B.5)

The form factors are not independent as they carry a representation of the permutation
group. The symmetry properties follow from the symmetry of the 3-point function,

(Vi (p)VF2 (p2) V2 (p3)) = (VFO (D) )VH P (Dy(2) )VH® (D (3))) (B.6)

for any permutation o of the set {1,2,3}. The action of the permutation ¢ on a given form
factor F' is

F = F(p,(1), Po(2) Po(3))- (B.7)

By applying the symmetries to the decomposition (B.4) and requiring the invariance of the
entire correlation function, we find

Ay =0, D = D)
A2j = (—1)”/1&?@)7 C] - (_1)00((3),
Byj =B, (B.8)

where (—1)7 denotes the sign of the permutation o. The vanishing of the form factor A;
is related to the well-known fact [34] that a 3-point function of any Abelian conserved
current in a CFT vanishes. Here, however, the current is not conserved and the theory is
only assumed to be scale invariant. Hence, the remaining parts of the correlation functions
can be non-vanishing.

The decomposition (B.4) can be expanded into a basis of simple tensors such as
P phPpl®, oFk2plt ete. As discussed before, we may choose two out of three independent
momenta to appear under each Lorentz index. We stick to the rule (B.2), now applied to
Lorentz indices p; instead of aj, j = 1,2, 3. In this case it is relatively easy to connect the

form factors appearing in (B.4) to the coefficients of simple tensors. In particular we find

IV (p1)VH2 (p2) V2 (p3))
=0 x py'p5*py" + Agsd2py®

;20 5 B+ a2 - 2+ 2)
p3 2
ph' 5>’ [
P3
5 ph* s’

2p3p3

+ B3 + Agy — Agi]

[2(C1 + Bay — Bag) + (Biz + Az)(p5 + p3 — pi)

+ (Bi2 + A9y — AQS)(P% - p% —|—p§)}

pmpuzpm, ) ) )
5255 [AD + 2(C1 + Baa)(pT + p3 — 13)

Ap2p3p3
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+ 2(Ca + Ba3)(p + p3 — p7) + 2(C + Bar) (p] + 13 — p3)
+ (A2t + Bi2)(p} + p3 — p3) (01 — P35 + 13)
+ (Agz + Bus)(—pt +p3 + 13)(PT + 3 — 13)
+ (Ags + Bi)(—pt + p3 + p3) (p] — P35 + p3)]
+ ... (B.9)

where the omitted terms do not contain the tensors listed explicitly. The only terms
that may contain scale violating expressions are terms of non-negative scaling dimension,
as follows from the locality of anomalies. Since the total dimension of the correlation
function is A¢ot = 1, such terms cannot appear in front of a tensor containing three
momenta. Therefore, while the coefficients Bis, As; and Ass may contain logarithms,
the combined coefficient of p5*p5*ps® cannot. Hence the third line of (B.9) requires that
SoB13 = 0yA91 — 85 As. One can substitute this result back to (B.9) and read off the
equation following from the requirement that the coefficient of ph'ph>ph? is scale invariant.
Using the symmetry properties (B.8) one finds
: g g Lo, o 9%

0,01 = 6,Bo3 — 05 Bag — §(p2 + p3 — pl)éo—AQl- (B.l())
Finally, this result together with the requirement that the coefficient of pj ph*p5* in (B.9)

is scale invariant leads to

R 1 R . .
05D = 5 |} = 13 — P3)0s Bar + (93 = pT — P3)0s Boa + (95 — T — p3)0s Bas| - (B.11)

We can further constrain the form of scale violating part of the form factors Ba; by looking
at the symmetry properties (B.8). Specifically, consider the form factor B3, which is
antisymmetric under the exchange p; <+ po. From (B.5) one sees that its scaling dimension
equals two and hence its most general scale violation is

0y Baz = cp? + 1(p3 — pd), (B.12)

where ¢ and ¢; are two undetermined constants. The scale violations 50321 and SO—BQQ
follow from (B.12) using (B.8). By substituting back to (B.11) one finds that the terms
with ¢; cancel out and the most general form of the scale violation in the 3-point function
of the trace of the stress-energy tensor is,

1

00 (T(P1)T (p2)T(P3)) = 65D = —§CJJ2, (B.13)

where J? is given by (3.2). Our analysis shows that the scale violating terms in the 3-
point function of (T'T'T") in any scale invariant theory in d = 4 is constrained to take the
form (5.8). The value of the undetermined coefficient ¢ (i.e. that it is equal to -depr)
cannot be determined without further input, such as the Wess-Zumino action.
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A similar method can be applied to the 4-point function of the virial current. In this
case, however, the computation is much simpler. This is due to the fact that the total
dimension of (VH1VH2V/H31/H4)) in momentum space equals zero and hence the only scale
violating form factors are those multiplying simple tensors containing metrics only. Due
to the symmetry of the correlation function, there exists a unique tensor (6.2) with such
properties and the scale violation must take the form

~

50 <<VN1 (pl)vuz (p2)V“3 (pg)V’M (p4)>> = co (5#1#2 GH3H4 4 SHIH3 §H2B4 4 5#1#45#2#3) ,
(B.14)
for some numerical constant ¢. Therefore, based on Lorentz and scale invariance as well as
the locality of anomalies one can deduce that the most general form of the scale violation
in the 4-point function of the trace of the stress-energy tensor reads

~

50—<<T(P1)T(p2)T(P3)T(p4)>>
= co [(p1 - P2)(P3 - P4) + (P1 - P3) (P2 - Py) + (P1 - P4) (P2 - P3)] - (B.15)

This form of the 4-point functions was confirmed by direct calculations in sections 6.1
and 6.2. The value of the undetermined coefficient c (i.e. that it is equal to -8(epr+c3ezn/4))
cannot be determined without further input, such as the Wess-Zumino action.

C Calculations with g,, = (1 4 ¢)?d,.

In this section we outline the result of calculations of the 3- and 4-point functions in the
representation of the metric

G = %6, Q=1+¢ (C.1)
In this representation the Ricci scalar reads
R[Q?5,,] = —(d — 1) [22730%Q + (d — 4)Q*(09)?] (C.2)
and for the trace of the stress-energy tensor we find
0 0 o 0 -1 45
O — _9gv — = = ——. C.3
50 I S 50 5p Q4150 (C3)
Furthermore, the interaction action (3.30) may be parametrised as
Sint = /d4w[—(pT+CMV“+¢QOQ + PpoOs+ ...
1 1
+ igoz (c%T + 0/2“’82(’)2 + Cf@z;) + §c§(8¢)2(’)2
1 1
+ 5&5(7#0“02 + 6¢3c§§)‘” +.... (C.4)
By expanding ¢ = —7 + 372 — %7’3 + O(7%), one finds
c§ =c5 =co, & =cf =0, o =1, cgé)(p = -2. (C.5)

These results can be recovered by independent calculations following the same lines as in the
main text. Furthermore, since the reparametrisation of the metric does not alter other cou-
plings, the result for correlation functions involving the virial current remains unchanged.
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C.1 (TTT)
We follow the same steps as in section 5.1. In the new parametrisation

5T(1¢1)
dip(x2)

52Sint
dp(x1)dp(x2)

= —(d — 1)(5(.’131 — wg)T —

and hence the counterpart of (5.4) reads
BW
dp(@1)dp(2)0p(3)
+ C?w 5(3:1 - 332)<T(:B2>T(.’E3)> + (5(%2 - x3)<T(w3)T(w1)>

(T'(@1)T (w2)T (23)) =

+ (s — w1)<T(m1)T(x2)>} . (C.7)

The scale violation from the Wess-Zumino action, however, is different in the new
parametrisation of the metric. In total one finds,

0o (T (P1)T (po)T(3))) = 20e7J* — 20(cf — Verr(pi + v +13), (C.8)

where J? is defined in (3.2). By comparison with the result obtained by means of the
correlation function involving the virial current, one comes to the conclusion that c% =1,in
agreement with (C.5). The change in the value of ¢, is directly related to a different form of
the contribution from the Wess-Zumino action (3.13) as the effect of the reparametrisation
of the metric.

C.2 (TTTT)

In case of the 4-point function, the counterpart of the expression (6.8) reads
sw

op(@1)dp(w2)0p(x3)0p(T4)

[ 62Sint > :|
+ ———T(x3)T'(x + 5 permutations
(S T +50

-< 52Sint 6251nt

L\ dp(x1)0p(x2) dp(23)dp(Xs)

(T'(@1)T (22)T (23)T (24)) =

> + 2 permutations]

+ < 63Sint
[\ dp(@1)dp(w2)dp(x3)

T(cc4)> +3 permutations} .
(C.9)

As we can see the only difference between this expression and (6.8) - apart from the
reparametrisation of the interaction action (C.4) - is the change in the sign of the last
term. However, the contribution from the Wess-Zumino action reads now
54
0p(P1)3p(P2)d(P3)d(ps)

(60Swz) = —120epr Z p?p?. (C.10)

1<i<j<4

This expression vanishes in the on-shell limit as noticed in [25]. Therefore, by the optical
theorem, one could argue that the 4-point function in (C.9) becomes semi-local in the
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forward scattering limit. Nevertheless, due to a non-zero value of the constant ¢%. in the
action (C.4), the local terms in (C.9) contribute non-trivially to the scale violation. In
particular, with c? = 1 as found in the previous section,

o (1) )

= —20(05)2622(191 " P2)(P3 - Py) + 20e7T X

X [—(py +p2)? — P — ph + 2(py + )P} + 2(py + po)*3 + 20303]

(C.11)
2 52 Sint 5% Sint ~ o b e | |
5O<<590(P1)5<P(P2) 5<P(P3)5<P(P4)>>_ 20err(py +P2)" — 20(c5) e22(py - P2)(Ps - P4,

(C.12)
) 0% Sine S WO ) B
50<<5@(191)5@(192)5@(193)T(p4)>>_ 2¢r " eTTPI: (C.13)

When combined, one finds

ST T T )T (R0) = S0 (err + jedean)

X [(p1 - P2)(P3 - Ps) + (P1 - P3)(P2 - P4) + (P1 - P4) (P2 - P3)]

1
— doepr (1 + 2c§,§)“’> x (pf +p3 + P35 +pi) - (C.14)
For this expression to agree with (6.5) one needs cg;’ Yo = —2, in agreement with (C.5). This

calculation confirms the result in the main text.

D Multiple scalar operators

In this appendix we discuss the case of multiple scalar operators of dimension two and
four. Consider a theeory with n scalar operators O, i = 1,2,...,n of dimension two
and N scalar operators Oi , I =1,2,... N of dimension four (in addition to the trace of
the stress-energy tensor). All normalisation constants introduced in (4.1)—(4.6) carry now
additional indices, e.g., e, el and so on.

First we will argue that by adding an appropriate improvement term one can make all
off-diagonal 2-point functions of the trace of the stress-energy tensor and scalar operators
of dimension two and four vanish. To show this let us consider the (n+ N + 1)-dimensional
vector space spanned by the independent vectors ordered as follows

{0°05,0%°0%,...,0°0%, T, ©},03%,...,0V}. (D.1)
Introduce a scalar product given by the matrix of the 2-point functions
¢y Chp €5

M = e;T err ejp | - (D.2)

gl 1 1J
€4 C47 €44
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The matrix M is symmetric and non-negative defined, due to reflection positivity applied
to the state

|¥) = o' Of(2)|0) + 5'004()|0) ++T()[0), (D.3)

for arbitrary af, ' and v. If M has null vectors, then some of the operators in the
basis (D.1) are linearly dependent. The operator given by such a linear combination essen-
tially vanishes, due to the reflection positivity condition on its 2-point function. Therefore,
we may remove all null operators and assume that M represents a non-degenerate scalar
product. Hence, by the Gram-Schmidt orthogonalisation procedure one can find an or-
thogonal basis

{0208 0202, ... 00, T, OF, 02, ..., 0 (D.4)

related to (D.1) by the lower-triangular matrix with ones on the diagonal,

0204 A0 0 [820]
T |=]4 10 T |, (D.5)
o Al Ay AL of

where Aé and A{, are lower-triangular square matrices satisfying A% = Af =1and A; and
Ay are some vectors. Therefore, when the matrix in (D.5) is applied to the set of operators
{0%, T, 01} the resulting operators {O%, T, O] } have their off-diagonal 2-point functions
vanish by definition, so indeed we could assume

i cij i 1J _ sIJ I iJ _ i T
€39 = 0" €5y, ey =0 ey, egq = a7 = ey = 0, (D.6)
where e, and e}, are positive constants for any i =1,...,nand I =1,...,N.

This construction works in any reflection positive QFT. We now want to show that
the orthogonalised operators can be realised by using the following improvement term,
generalising (4.20),

AS= / dlay/g | YOS+ €000+ D €T + D 07605+ Y i a0 |
i il 1 ij I,J

(D.7)

where gbé and ¢} denote sources of the original operators O} and 0. The two additional

11J

terms involving the parameters n” and 7'// are responsible for the mixing among the

operators of dimension two and four. In this case equations (4.24)-(4.26) generalise to

é imp 77ij + 5ij 0 0 O%
Tmp | = ¢o9r 1 0 T |. (D.8)
Oz{ irop g/i]aQ 5//[ 77/IJ 4 5IJ OZ{

By comparing this expression to (D.5) we see that we can choose &, ¢ ¢" nJ and n'!/
such that we implement the Gram-Schmidt procedure.
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The remaining calculations presented in this paper remain valid with obvious changes.
The interaction action (3.30) reads

Sing = /d4a: [TT + O VH + ¢505 + $LO5 + ...
1 ) ) 1 . )
+ 577 (erT + 0% 03 + ¢01) + 5c3(07)* 0
1 . .
+ 5BCUCH O+ (D.9)

with all ¢ constants acquiring respective indices. Then the following changes follow:

e In sections 5.2 and 5.3 we discussed 3-point functions involving a single scalar op-
erator. All results remain valid when the appropriate indices are introduced. In
particular one finds

d=0 d=0  &=2& (D.10)

fori=1,2,...,nand I =1,2,..., N.

e The scale violation (D.11) in the 4-point function of the trace of the stress-energy
tensor receives a contribution from all operators of dimension two according to,

Sa<<T(P1)T(P2)T(p3)T(p4)>>
= 8o (eTT + % Z(c§)2eé2> X
=1
x [(p1 - P2)(P3 - Ps) + (P1 - P3) (P2 - Py) + (P1 - Py) (P2 - p3)] . (D.11)

Therefore all conclusions we reached in section 6.2 remain valid.
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