Approaches to Transient Computing for Energy Harvesting
Systems: A Quantitative Evaluation

Alberto Rodriguezf, Domenico Balsamof, Anup Das',
Alex S. Weddell", Davide Brunellit, Bashir M. Al-Hashimit, Geoff V. Merrettt
tDepartment of ECS, University of Southampton
‘Department of Electronics, University of Trento
Hara1g13, db2a12, a.k.das, asw, bmah, gvm}@ecs.soton.ac.uk,
tdavide.brunelli@unitn.it

ABSTRACT

Systems operating from harvested sources typically integrate
batteries or supercapacitors to smooth out rapid changes
in harvester output. However, such energy storage devices
require time for charging and increase the size, mass and
cost of the system. A recent approach to address this is to
power systems directly from the harvester output, termed
transient computing. To solve the problem of having to
restart computation from the start due to power-cycles, a
number of techniques have been proposed to deal with tran-
sient power sources. In this paper, we quantitatively evalu-
ate three state-of-the-art approaches on a Texas Instruments
MSP430 microcontroller characterizing the application sce-
narios where each performs best. Finally, recommendations
are provided to system designers for selecting the most suit-
able approach.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complezity mea-
sures, performance measures

General Terms

Transient Computing, Energy Harvesting, Wind Turbines,
Photo Voltaic Cells

Keywords
Checkpoint, Hibernus, IoT, Mementos, QuickRecall

1. INTRODUCTION

The Internet-of-Things (IoT) is the interconnection of bil-
lions of things. Each IoT device could be considered as an
ultra-low power and resource-constrained sensor elaboration
platform. Power management of these devices is emerging as
a primary challenge for system designers as they typically

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

a) micro-wind turbine

Voltage (V)
j=]
f=]

Time (seconds)

< 440.0 b) photovoltaic module
2 390.0
E 00 ﬂ_,fl_
g 2900
00:00:00 12:00:00 00:00:00 12:00:00 00:00:00

Time (hh:mm:ss)

Figure 1: Harvester output from (a) micro-wind tur-
bine and (b) photovoltaic module

have to last for few years without intervention to charge
or replace batteries. Energy harvesting (EH) is an efficient
solution to power sensor nodes present in these connected
devices. EH sources harvest electric power from ambient
sources or human motion including light, vibration, or tem-
perature differences [2, 8, 11]. This harvested energy is con-
verted into a DC signal (voltage and current) that is used
to power up sensor devices. EH power sources are typically
intermittent due to temporal variation in the environmental
parameter (e.g., time of day, weather condition and avail-
able light). 1 shows an example of the harvested power
from a micro-wind turbine and a photovoltaic module. The
voltage of the micro-wind turbine varies between -4V to 4V.
The frequency of the power-cycle is dependent on the wind
velocity. Similarly, the output from the photovoltaic cell,
used in this example, changes depending on the intensity of
the light source. An application executed on the sensor node
powered by these EH sources can potentially be interrupted
depending on the harvested power availability. To overcome
this limitation, sensor nodes typically integrate energy stor-
age in the form of supercapacitors to buffer energy in order
to sustain computation at times of power unavailability.
Energy storage devices require time to power on and in-
creases system size, mass and cost. An alternative solution is
to power a system directly using the harvested source, elim-
inating the need of an energy storage device. However, to
sustain computation with transient sources, the common ap-
proach is to checkpoint the system state to save it into a non-

<
3
5

Q
o
S /’\
e H H
2 Restore Restqre / \Restore
E VMESTTSRIIEy T T SRR
= V SO, SRS SR | (SR 5. S PRSI AR T R
5 Y% < NS
§ ™ C'point N C'point ~ Cpoint
Q
=
Active [Hibernating [Active [Hibernating| Active __[Hiber.[Active

Time

Figure 2: Checkpointing and restore to sustain op-
eration with transient energy harvester outputs.

volatile memory. Later when the supply is restored, the last
checkpoint saved before power loss is restored and the oper-
ation is continued from the point where it was halted. Three
prominent techniques — Mementos [10], QuickRecall [5] and
Hibernus [1] have been proposed based on the checkpointing
concept, differing in the checkpointing approach leading to
different timing/power overheads. This work studies these
three approaches and evaluates them theoretically and ex-
perimentally on a common platform — the Texas Instruments
MSP430FR microcontroller. The objective is to identify sce-
narios where one approach outperforms others.

The remainder of this paper is organized as follows. A
brief background on the related works is provided in Sec-
tion 2. This is followed by a description of the three ap-
proaches in Section 3. The quantitative evaluation of these
approaches is provided in Section 4. Finally, the paper is
concluded in Section 5 with recommendations for system
designers.

2. RELATED WORKS

A new paradigm, which addresses the presented challenges,
is of ‘transiently-powered computing’ [7] allowing systems to
operate reliably from intermittent or limited sources such as
energy harvesting. This borrows from the concept of check-
pointing, which has been used in large-scale computing for
decades to provide robustness against errors or hardware
failure [3]. This technique involves systematically saving
data to non-volatile memory (NVM). To recover from a fail-
ure, systems roll back to the previous valid checkpoint, be-
fore continuing operation. State-of-art embedded systems
use a variety of classic and advanced NVM structures to
save their state. Examples of memories used for state reten-
tion are Flash or battery-backed SRAM memories [6]. How-
ever, a drawback of checkpointing is that it is impossible to
predict the exact time of failures, so computation time and
energy will be wasted by (1) taking unnecessary checkpoints,
and (2) rolling back by the period between the checkpoint
and failure. Attempts have been made to address these prob-
lems, for example by assuming different failure distributions.
Moreover, system shut-down and wake-up have significant
time and energy cost, and they must be minimized.

Recently, the checkpointing concept has been applied to
embedded devices with unstable power supplies, to avoid
power-cycling causing the loss of data and to enable long-
running computations across several power cycles. This is
enabled by systems saving their state so that, when their
power supply fails, they can resume operation when it re-
covers. Figure 2 shows the output voltage of an energy har-
vester, which is used to power a microcontroller. Whenever,
the supply voltage crosses the checkpoint threshold V., a

checkpoint is stored in the NVM. On the other hand, when-
ever the supply voltage crosses the restore threshold Vg, a
checkpoint is restored. As shown in Figure 2, this allows
computation to continue across several power-cycles, which
would conventionally have caused a system to reset repeat-
edly. A few recently published papers show that the time
and energy cost of distributed state-retentive logic elements
can be lowered by orders of magnitude with respect to tradi-
tional Flash-based approaches using alternative non-volatile
memory technology, such as FRAM [4]. Some more ad-
vanced technologies are currently under development, such
as ReRAM [9], which could further reduce NVM storage
energy and cost.

Prominent works in this area include (1) Mementos [10],
which uses checkpoints placed at compile-time to save pe-
riodic snapshots of system state to NVM; (2) Hibernus [1],
which monitors the external voltage to store RAM and regis-
ter contents in NVM when a power failure is imminent and
(3) QuickRecall [5], a refinement of Hibernus, which uses
NVM as a a unified memory; and these three techniques are
discussed in more details in the subsequent section.

3. TRANSIENT COMPUTING METHODS

In this section, we describe the three transient computing
techniques in details.

3.1 Mementos

The first presented solution is Mementos [10], which uses
checkpoints placed at a compile-time. It saves periodic snap-
shots of system state to non-volatile memory (NVM), which
enables it to return to a previous checkpoint after a power
failure. Mementos uses the following three different heuris-
tics to insert checkpoints and verify the input voltage level.

e The first heuristic is the loop-latch mode. Here, Me-
mentos inserts a trigger point for every loop of the
program in order to check the input voltage level at
each iteration.

e The second heuristic is the function-return mode. In
this mode, Mementos inserts trigger points after every
function call in order to check the input voltage level
when the program returns from a function call.

e The third heuristic is the timer-aided mode. This
heuristic works in conjunction with the two previous
heuristics. Here, Mementos inserts a timer interrupt
that sets a flag at predefined execution intervals. At
the trigger points, the voltage level is checked only if
the flag is set. This heuristic avoids frequent check-
pointing, saving energy. We will not consider in the
quantitative evaluation section this last technique.

Mementos also has the option of inserting trigger points
manually in any position of the program or forcing a snap-
shot without checking the input voltage level. In order to
predict a possible power failure, Mementos compares the in-
put voltage against a threshold by using an analog-to-digital
converter (ADC). For Mementos, the checkpoint threshold
can be calculated considering a constant current draw [so
that the time At between two voltage levels V and Vinin
is At = C (V-Vin)/I. However, a factor complicates the
task of checking: Mementos’s ability to precisely complete
a checkpoint depends on the frequency of trigger points.

This is the main reason why we decided to fix Vi,in big-
ger than necessary (Vmin = 2.4V), assuming that no en-
ergy will be harvested between a trigger point and a power
failure. When the supply voltage reaches this threshold,
the system considers an imminent power failure and starts
checkpointing. Mementos uses two memory blocks and al-
ternates between saving to each of them in order to have
always a state-saved start. When power is available again,
Mementos looks for a valid checkpoint and copies its content
into RAM and registers to continue the program execution
from the point it was stopped. The main application of Me-
mentos is on RFID-scale devices powered by a RF-harvesting
source, which stores the energy in a capacitor.

Disadvantages of this approach include the fact that many
checkpoints will be taken (most of which will be redundant)
and that space must be reserved in non-volatile memory
for two complete checkpoints in case a power interruption
occurs whilst one is being taken.

3.2 Hibernus

Hibernus is the second presented solution, a refinement
to Mementos technique for sustaining computation powered
by intermittent sources. Hibernus stores a snapshot before
a power failure without inserting trigger points in the main
program [1]. This technique allows to save only one snap-
shot every power failure. Hibernus has two states: Active,
when the input voltage level is over a restore value (Vr).
Hibernating when input voltage is below a threshold (Vu).

Hibernus is implemented on a TT MSP430FR5739 micro-
controller which has an internal comparator that was used
to send an interruption when the input voltage level crosses
either hibernate or restore thresholds. This method uses
the FRAM as a non-volatile memory. In order to save a
snapshot, Hibernus uses the energy stored in the decoupling
capacitance of the microcontroller. This allows to have a
low Vu value which increases the active period of the main
program. Vu is determined considering the time required to
charge the decoupling capacitor in order to have enough en-
ergy for saving a snapshot before a power failure. In order to
obtain the threshold value, first, it was calculated the energy
required to save a snapshot, which is obtained as follows [1]:

Es =noFEo + n@E@ (1)

Where n,, is the number of bytes of the RAM, ng the number
of bytes used by registers, F, and Eg are the energy required
to copy RAM contents and the registers respectively. The
microcontroller works in a range of voltage between Vmin
and Vmax. Given the total capacitance (3, C'), the energy Es
stored in the decoupling capacitor between a given voltage
V and Vinin is calculated as follows [1]:

V2 - ‘/’I?Lin
By = ——- Y ¢ (2)

Inspecting the parameters of the microcontroller [4], it was
obtained that the total capacitance is 16uF, and the size in
bytes of the RAM and core registers is 1024 and 512 bytes
respectively. 4.2nJ energy is needed to save a byte into RAM
(E«) and 2.7nJ in case of FRAM (Ej3). Substituting these
values in (1) it is obtained that to save a snapshot con-
sumes 5.7 uJ (Es). To save a complete snapshot requires
that £, < Es. The microcontroller works in a range from
Vnin=1.9V to Vmax=3.6V and the obtained threshold, con-
sidering E, = Fs, to save a complete snapshot is 2.17V. In
order to add hysteresis, Vr was set higher to allow V.. to

be over Vu. An internal comparator is checking the voltage
level and when it is below Vu, the comparator generates an
interrupt. Inside the interrupt handler a function is called
to save the snapshot into FRAM, the checkpointing is set
and then, system enters in low-power mode. Whether the
input voltage is never lower than 1.9V and its value rises
again over VR, the system exits from low-power mode and
continues where it was stopped without restoring the whole
system. In the case that the input voltage goes below 1.9V,
the microcontroller is turned off. When the energy is avail-
able again, the system first checks the flag. If the flag is
set means that a snapshot is saved. Therefore, Hibernus re-
stores the RAM’s contents and the registers’ values. Then,
it resets the flag and the program continues where it was
interrupted. Hibernus is transparent to the programmer.
It just need to include hibernus.h file that contains all the
functionality and call the routines initialise(), hibernate()
and restore().

3.3 QuickRecall

The last proposed solution is QuickRecall [5], which is
similar to Hibernus but it allows FRAM to be also utilized
as RAM, enabling the system to work as an "unified memory
system”. In this way, only the FRAM is used as a unified
memory while the system’s RAM is not used. In order to
check the voltage level, the system uses an external compara-
tor, which is connected to the GPIO pins of the microcon-
troller. This comparator is configured with a trigger voltage
(Virig) and sends a signal output when the input voltage
level (Ve.) is smaller than Vi;4. The value of trigger voltage
is not required to be relative high, unlike Mementos, because
it just needs to back up peripherals, program counter, stack
pointer, status register and general purpose registers (GPR)
before a power failure occurs. Thus, it requires a value of
2.0003V. QuickRecall uses a flag which is set during check-
pointing. This flag is used by system to know whether there
is a stored checkpoint or not after a power failure. If flag
is set, all peripherals are initialized; a check is performed to
determine if V.. > Vipig: if so, core registers are restored,
the flag is cleared and the main program is executed. A
possible disadvantage of QuickRecall is that it relies on the
use of a processor with a unified FRAM memory.

4. QUANTITATIVE EVALUATION

In this section we first evaluate the three techniques math-
ematically, establishing the scenario where one technique
outperforms the others. Later we validate the same using a
signal generator on a common microcontroller platform.

4.1 Mathematical Evaluation

4.1.1 Execution Time Comparison

The total time, Thibernus, t0 execute a test algorithm with
Hibernus is given by (3), where T, is the CPU time required
to execute the algorithm, n, is the number of power inter-
ruptions (where Voo < Vmin) per algorithm execution, T is
the time required to save a snapshot to NVM, T;. is the time
required to restore from NVM memory, and T} is the average
time spent sleeping (after a snapshot has been saved but be-
fore Vee = Vinin, and on power-up when Viin < Vee < VR).
The absolute limit of supply interruption frequency, f., is
1/(Ts+T:). The execution time of the QuickRecall is similar
to that of the Hibernus and is therefore given by Equation 3.

Algorithm Save snapshot Sleep

~ = ~ = ~
THibernus,QuickRecall = Tu + n, (Ts + Tr + T,\) (3)
~— ~—

No. interruptions Restore snapshot

Total execution

The total time, Tmementos, t0 execute an algorithm with
Mementos is given by (4), where n, is the number of check-
points per complete execution of the algorithm, 7, is the
time taken for an ADC reading of Ve, and p; is the propor-
tion of checkpoints resulting in a snapshot, taking 7.

Algorithm Restore snapshot Monitoring and save snapshot

=~ =~ T, —_——
Trmementos = Lo + M (T +) + Nim (T'm + psTs)
—— N~~~ 2Mm
Total execution No. interruptions
Backtrack

(4)

Hence7 Thibernus < Tmementos pTOVided n, (Ta/Qnm)+anm+

(Mmps — n,)Ts > n,Tx; that is, Hibernus spends less time
sleeping than Mementos spends on backtracks (re-running
code that was executed between a snapshot and a power
interruption), sampling Vec, and redundant snapshot saves.
This is evaluated experimentally in the next section.

4.1.2 Comparison of Energy Consumption

Let Pr and Pr denote the average power consumption for
accessing the FRAM and RAM, respectively. Usually, Pp >
Pr. In QuickRecall, both the application code and dynamic
data structures are stored in FRAM, while in Hibernus, the
application code resides in the FRAM while the dynamic
data structures in the RAM.

When the system is powered using a time varying source,
e.g., a sinusoidal signal, both Hibernus and QuickRecall ap-
proaches behave similarly by storing and restoring check-
points. The energy overhead for checkpoints in the two ap-
proaches can be evaluated as follows.

The energy consumed by Hibernus, Eripernus, depends on
the size of the volatile memory and the energy consumption
for copying each byte.

Ehrivernus = NaFo + TlﬁEﬁ (5)

Here, no and ng are the sizes of the RAM and registers
(in bytes) respectively. Fo and Fg are the energy required
to copy each RAM and register byte to NVM (J/byte).

The energy consumed by QuickRecall is given by

Equick:recall = nBEB (6)

Clearly, Fquickrecail < Enibernus. As can be seen, the en-
ergy for checkpointing and restore for QuickRecall is lower
than that of Hibernus. However, for a system powered
by a DC source, the energy consumption of Hibernus is
lower than that of QuickRecall. We are interested in find-
ing the crossover frequency where one technique outper-
forms the other. To do so, it is important to note that,
in each power cycle, the system will hibernate and restore
once. Assuming f is the frequency of input source, the en-
ergy overhead of checkpointing and restore for Hibernus =
Ehivernus — Equickrecatr. The crossover frequency is given by

(Pr — Pr)
(Ehibe'rnus - Equick'recu,ll)

(7)

It is important to note that Pr and Pr depend on the
application code and hence the crossover frequency is de-

f_cross =

S1 py S2 MSP430FR Evaluation Board
——Ds 3
E Ve :
Ener gy v 1 P :
Harvester E_EC HErocessor E

Figure 3: Experimental setup

N
=)

(%]
(=]

No. Checkpoints
= 8

e X
0 XX x

0 2 4 6 8 10
Supply Interruption Frequency (Hz)

-X-Hibernus —-Mementos(function)
= QuickRecall -+Mementos(loop)

Figure 4: Number of checkpoints of the three ap-
proaches.

pendent on the application being executed. This crossover
frequency is validated experimentally in the next section.

4.2 Experimental Validation

4.2.1 Experimental Setup

This section provides the experimental validation of the
three approaches implemented on a TI MSP430FR5739 mi-
crocontroller. This platform has 1KB of RAM and 16KB
of FRAM. To perform the required experiments, a signal
generator is used to power the system, and a DC power an-
alyzer is used to record power consumption. Figure 3 plots
the experimental setup used for Hibernus, QuickRecall and
Mementos. As shown in this figure, the microcontroller is
powered using an energy harvester through the diode. C
represents the total on-board decoupling capacitance. The
internal voltage comparator of the MSP430FR platform is
used for voltage comparison for all the three approaches.

4.2.2 Application Scenarios

The microcontroller’s clock is configured to run at SMHz
executing the FFT application, which analyses three arrays,
each holding 128 8-bit samples of tri-axial accelerometer
data. The system is powered with two different sources —
a 3.4V DC and Sinusoidal sources with 4+3.4V amplitude
operating at frequencies ranging from 2 Hz to 10 Hz.

4.2.3 Number of Checkpoints Executed

Figure 4 shows the number of checkpoints executed by the
three transient computing approaches during the execution
of the FFT. A range of supply frequencies (2-10 Hz, and

o
S

=

s

= 30

wn

z

)

=20

2

<

=

“ 10

=)

V4

0 ¢
0 2 4 6 8 10
Supply Interruption Frequency (Hz)

-X-Hibernus -+-Mementos(function)

= QuickRecall -+Mementos(loop)

Figure 5: Number of snapshots of the three ap-
proaches.

DC) were chosen to represent the intermittent power out-
put that may be expected from a high-power EH. As can
be seen, Hibernus and QuickRecall modulate the number of
times snapshots are taken as a function of the supply inter-
ruption frequency, while Mementos executes a static num-
ber of checkpoints (15 and 24 times), although some are
repeated when V.. < Vi, during a snapshot. Moreover,
Mementos (loop approach) operates unstably with frequen-
cies higher than 4 Hz due to the static and uneven place-
ment of checkpoints at compile time: checkpoints are only
inserted at function calls or loops. In cases where the sup-
ply is interrupted in the period between a restore and the
next snapshot being saved, the system can become ‘stuck’,
i.e. executes the same portion of code from the last saved
checkpoint before V.. < Vinin without reaching or being
able to save a snapshot at the next checkpoint.

4.2.4 Number of Snapshots Executed

Figure 5 shows the number of snapshots saved by the three
approaches. Hibernus and QuickRecall saves a snapshot ev-
ery time the hibernate routine is executed, while Memen-
tos saves a snapshot only when V.. < Vinin. The number
of snapshots with Mementos is therefore correlated to each
checkpoint placement, the value of V,,;, and the supply in-
terruption frequency, while for Hibernus and QuickRecall
this depends on the supply interruption frequency only.

4.2.5 Number of Restores Executed

Fig. 6 shows that Hibernus and QuickRecall complete ex-
ecution of the FFT application over the same number of
power interruptions while Mementos takes for both loop and
function approaches a bigger number of cycles.

4.2.6 Time Overhead

Figure 7 plots the time overhead of the three approaches
for different interruption frequencies while executing the FFT
application. As established mathematically earlier in this
section, the time overhead of Mementos is much higher than
that of QuickRecall and Hibernus. This is also validated in
the figure. It is important to observe that as the supply
interruption frequency increases, the execution time over-
head of Mementos in the function mode increases rapidly,
increasing to over 100% overhead (2x execution time) for an

N

No. Sys Restores
o
)\ \
\
(-

v//
— gl
2 X
//‘/
(/
0
0 2 4 6 8 10
Supply Interruption Frequency (Hz)
-X-Hibernus —-+-Mementos(function)

—= QuickRecall -=Mementos(loop)

Figure 6:
proaches.

Number of restores of the three ap-

160

—_
[3~]
(=}

Time O/head(%)
s S

/
0/‘”\“/‘

0 2 4 6 8 10
Supply Interruption Frequency (Hz)

-X-Hibernus —-+-Mementos(function)
—= QuickRecall -«Mementos(loop)

Figure 7: Time Overhead of the three approaches.

interruption frequency of 10 Hz. Finally, the time overhead
for QuickRecall is similar to that of the Hibernus approach.

4.2.7 Current Consumption

Figure 8 reports the current consumption of QuickRecall
and Hibernus using a low-frequency input source while exe-
cuting the FFT application. The current peaks in the figure
correspond to the time when the microcontroller is on. At
other times, the current is very close to zero. This is because
at these times, the microcontroller is in hibernate state and
does not consume any current. It is important to note that
the current consumption of Mementos is similar to that of
Hibernus and is therefore not included. As can be seen from
the figure, the current consumption of QuickRecall is higher
than that of Hibernus.

4.2.8 Hibernus vs QuickRecall as a function of In-
terruption Frequencies

Figure 9 plots the energy results for QuickRecall and Hi-
bernus as a function of the supply interruption frequency
while executing the FFT application. The system is powered
using a square wave generator to simulate the interruption
behavior. An interruption frequency f signifies that the sys-
tem is interrupted f times per second. In other words, the
system is interrupted every 1/f seconds. The interruption
frequency reported in the figure covers the typical scenarios

<
g
E
3
0.2 04 0.6 0.8 1 1.2
Time (s)
—QuickRecall --—Hibernus
Figure 8: Current comparison
1400
1200
~ 1000
e
~ 800
&;
g 600
=
=400
200
0
0 5 10 15
Frequency (Hz)
--QuickRecall -+-Hibernus
Figure 9: Energy Comparison of Hibernus and
QuickRecall

encountered in real energy harvesters such as photovoltaic
cell and wind turbines. As seen from the figure, the energy
consumption of QuickRecall is higher than the Hibernus at
lower interruption frequencies (less than 7Hz). As the fre-
quency is increased beyond 7 Hz, the energy consumption
of Hibernus increases. Thus, for the FFT application, it is
energy efficient to use Hibernus for interruption frequencies
lower than 7Hz, while for higher interruption frequencies,
QuickRecall is more energy efficient.

5. CONCLUSIONS

In this paper, we provided a quantitative analysis of three
transient computing methods. These approaches are first
evaluated theoretically, and then validated with experimen-
tal measurements on the same microcontroller platform with
standard FFT application. The objective is to evaluate and
to compare them to identify in which conditions or scenarios
one outperform the others. In particular, Mementos is use-
ful when an application is known a priori, as it is possible
to place checkpoints near critical sections (loop or function
calls are just a few examples of possible strategies), enabling
systems to restart execution at the beginning or after these
sections. On the other hand, Hibernus and QuickRecall are
completely application agnostic and they introduce a smaller
time and energy overhead. However, QuickRecall can only
be used with unified memory systems while Hibernus is more
platform agnostic and can be used with different kind of
standard systems. Apart from this, Hibernus is more en-

ergy efficient at lower interruption frequencies, while Quick-
Recall is more energy efficient at higher frequencies. One of
the important limitations of these approaches is that they
are not adaptive to the dynamics of the energy harvesting
source. In future, we will investigate adaptive checkpoint-
ing approaches that takes system snapshots depending on
the dynamics of the energy harvesting sources.

6. REFERENCES

[1] D. Balsamo, A. S. Weddell, G. V. Merrett, B. M.
Al-hashimi, D. Brunelli, and L. Benini. Hibernus :
Sustaining Computation during Intermittent Supply
for Energy-Harvesting Systems. 7(1):1-4, 2015.

[2] S. Beeby and N. White. Energy harvesting for
autonomous systems. Artech House, 2014.

[3] P. A. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency control and recovery in database systems,
volume 370. Addison-wesley New York, 1987.

[4] Datasheet. MSP430FR5739, 2012. [Online] Available:
http://www.ti.com/lit/ds/symlink /msp430{r5739.pdf.

[5] H. Jayakumar, A. Raha, and V. Raghunathan.
QUICKRECALL: A low overhead HW/SW approach
for enabling computations across power cycles in
transiently powered computers. Proc. IEEE Int. Conf.
VLSI Des., pages 330-335, 2014.

[6] H. Kim, E. Kim, J. Choi, D. Lee, and S. Noh.
Building fully functional instant on/off systems by
making use of non-volatile ram. In Consumer
Electronics (ICCE), 2011 IEEE International
Conference on, pages 675-676, Jan 2011.

[7] K. Ma, Y. Zheng, S. Li, K. Swaminathan, X. Li,

Y. Liu, J. Sampson, Y. Xie, and V. Narayanan.
Architecture exploration for ambient energy harvesting
nonvolatile processors. In High Performance Computer
Architecture (HPCA), 2015 IEEE 21st International
Symposium on, pages 526-537, Feb 2015.

[8] P. Mitcheson, E. Yeatman, G. Rao, A. Holmes, and
T. Green. Energy harvesting from human and machine
motion for wireless electronic devices. Proceedings of
the IEEE, 96(9):1457-1486, Sept 2008.

[9] S. Onkaraiah, M. Reyboz, F. Clermidy, J. Portal,

M. Bocquet, C. Muller, H. Hraziia, C. Anghel, and
A. Amara. Bipolar reram based non-volatile flip-flops
for low-power architectures. In New Circuits and
Systems Conference (NEWCAS), 2012 IEEE 10th
International, pages 417-420, June 2012.

[10] B. Ransford, J. Sorber, and K. Fu. Mementos: System
support for long-running computation on RFID-scale
devices. ACM SIGPLAN Not., pages 159-170, 2011.

[11] G. Rebel, F. Estevez, P. Gloesekoetter, and J. M.
Castillo-Secilla. Energy harvesting on human bodies.
In Smart Health, pages 125-159. Springer, 2015.

