I.o.s.

PARTICLE CELL
CALIBRATION UNIT
MANUA.L
P.I.WALLIN

[This document should not be cited in a published bibliography, and is supplied for the use of the recipient only].

Wormley, Godalming,
Surrey GU8 5UB
(042-879-4141)
(Director: Dr. A. S. Laughton, FRS)

Bidston Observatory,
Birkenhead,
Merseyside L43 7RA
(051-653-8633)
(Assistant Director: Dr. D. E. Cartwright)

Crossway,
Taunton,
Somerset TA1 2DW
(0823-86211)
(Assistant Director: M. J. Tucker)

PARTICLE CELL CALIBRATION UNIT MANUAT
P.I.WALLIN

1985

BACK PANEL

CONTENTS

DESCRIPION AND SPECIFICATION PAGE 1
OPERATION PAGE 2
CIRCUIT OPERATION PAGE 4
SETTING UP PROCEDURE PAGE 7
OSCILLATOR \& PULSE WIDTH ADJUSTMENTS PAGE 7
OFFSET ADJUSTMENTS PAGE 8
1V AND 100 MILLIVOLTS REFERENCE ADJUSTMENTS PAGE 8
LAMP OUTPUT PAGE 8
CALIBRATION PAGE 9
APPENDIX
COMPONENT LAYOUT PAGE 11
PRINTED CIRCUIT LAYOUT PAGE 12
CIRCUIT DRAWING PAGE 14
PARTS LIST PAGE 15
CALIBRATION DETAILS PAGE 18

Description And Specification

The unit is designed to give a calibrated output signal either pulsed or dc. The pulse is of fixed width 50 micro-seconds variable repitition rate of 1 to 500 pulses per second (pps). The output is of varible amplitude from 0 to 10.00 Volts to within 0.1% linearity of calibrated amplitude. The signal is referenced to -10.00 Volts (not zero volts). There are three ranges of calibrated amplitude;

Range 10 to 100 Millivolts
Range 20 to 1 Volt
Range 30 to 10 Volts
As well as the pulsed output the output can be switched to direct current (dc) with the same calibrated range.

The unit's output is switchable between calibrated mode and lamp mode. The lamp mode provides a -10.00 Volt reference voltage which is varied by the light received by photodiode from the the lamp.

The power supply should be a regulated $+15,0,-15$ Volt supply.

The unit is intended to be a calibration unit for the paricle cell of an instrument called FIDO (Fluxes In Deep Ocean). Under normal use it is connected to the instrument by means of a 6-way connector. All the other connectors are intended as test points to monitor the unit's operation, but the power supply points can be used as alternative supply inputs. The lamp drive test points can similarly be used to provide an extenal supply to the lamp which is normally 2.5 to 3.5 Volts. The output test point labelled "TP O/P" gives either the calibrated output or the lamp output depending on the switch selection.

The oscillator controls provide a pulsed or dc output in two ranges. Both continuously variable with in the ranges 1 to 22 pps or 22 to 500 pps by turning the black knob on the rear panel. The pulse width is internally set to 50 microseconds (see setting up procedure).

The range selection switch provides three ranges of calibrated output. Range 4 and in fact any other number apart from 1,2,or 3 will give a signal of 0 Volts amplitude referenced to -lo.00 Volts , which is purely for test and setting up purposes. When range 1,2 ,or 3 is selected this gives the maximum amplitude of the signal which can be adjusted by the dial referenced to -10.00 Volts. For example, if the dial is set to 126 ;

Range 1 gives 12.6 mV ref to -10.00 V which actually is -9.9874 V
Range 2 gives 0.126 V ref to -10.00 V which actually is -9.874 V
Range 3 gives l. 26 V ref to -10.00 V which actually is -8.74 V
Selecting Lamp gives -10.00 Volts output which is dependant on the brilliance of the lamp which in turn is controlled by the lamp drive voltage. If the lamp drive voltage drops the brillince of the lamp drops and so if the lamp voltage drops below 2.5 Volts the output voltage rises towards 0 Volts. This is a test for the particle cell lamp servo control which should try adjust the lamp voltage up again
to increase the brilliance of the lamp until the output is at -10.00 Volts. The lamp servo tries to maintain the -10.00 Volts output constant. This can be tested by removing the cover of the unit and partially obscuring the photo-diode or by moving the lamp bulb slightly.

Circuit Operation

The 4047B (IC8) is connected as an astable which by varying a 220 K ohm potentiometer Pl3 varies the oscillator frequency. The frequency range is altered by a switch which changes the capacitance and a trimming potentiometer for each range. The oscillator output signal goes into a 4047B (IC9) connected as a monostable which is set as non-retriggerable, leading edge triggered and pulse output of 50 microseconds width. This output is connected to a switch which can select pulsed or dc operation. For pulsed operation the output of the monostable is connected to the 4049B (ICl0) an inverting-buffer. For dc operation the switch connects +Vss (+15.0 Volts) to the inverting-buffer inputs. The outputs of the inverting-buffer are connected by screened leads to a 4066B (IC6) which is a CMOS quadruple bilateral switch array. Only two of the switches are used the unused switches have there control gates connected to 0 Volts. The outputs of the two switches are connected together. One of the switches is driven by an inverted signal from ICl0 the other by a non-inverted signal. The non-inverted signal switches the -10.00 Volts refence to the output in 50 microsecond pulses. The inverted signal switches 0 Volts to the output. So the resulting output consists of a 10.00 Volt pulse 50 microseconds wide referenced to 0 Volts. If dc is selected there is no pulse only 10.00 Volts dc. This is then connected to ICl a non-inverting unity gain buffer. The output of $I C l$ is connected to two l0K ohm potential dividers made of potentiometers P 6 and a 100 ohm resistor Rl8 and P7 and a 1 K ohm resistor R17. A signal of amplitude 10.00 Volts means the 1 K ohm resistor has a 1 Volt drop across it and the 100 ohm resistor has a 100 millivolts drop across it when the
potentiometers are set correctly. These voltage levels are connected to two switches of a 4066B (IC7), also the lo.00 Volts signal is connected to one of the switches and 0 Volts is connected to the fourth switch. The four switches are controlled by the Range selection switch on the front panel. Whichever range is selected by the switch results in the appropriate control gate being connected to Vss (+15V) and the required signal connected to IC2. This is another non-inverting unity gain buffer. The output of IC2 is connected by screened cable to the ten turn 10 K ohm potrntiometer P 12 which has a dial indicating the number times the potentiometer has turned. The other end of the 10 K ohm potentiometer is connected to 0 Volts and its wiper is connected by screened lead to the input pin 3 of IC3. This is another buffer and this signal is known of amplitude as set by the dial. Also connected to the input of IC3 are two 1 nano-Farad capacitors which just take off the squareness of any pulse which reduces any spikes. The output of IC3 is connected to pin 2 of IC4 an inverting unity gain buffer. The output of IC4 is now of calibrated amplitude but refenced to 0 Volts. IC5 is an inverting summing unity gain buffer. The inverted pulse is added to +10.00 Volts and the whole signal inverted to produce the output required. This is a calibrated amplitude pulsed or dc signal referenced to -10.00 Volts.

ICll is an inveting amplifer. The input to pin 2 is varied depending on the illumination of the photo-diode PDl by lamp Ll. The output to the Lamp or Calibrated select switch is dependant on the output of ICll pin6 and the potentimeter Pll. The maximum output of pin 6 is -15 Volts with the diode exposed to saturation by the lamp. So by adjusting potentiometer Pll the level can be set to -10.00 Volts. Then on the illumination level of the bulb dropping the output of pin 6 will rise towards 0 Volts and the -10.00 Volt output will
also rise towards 0 Vlots. This will indcate to the FIDO particle cell lamp drive servo, if connected, that the lamp drive voltage needs to be increased. This enables the servo drive to be tested.

Setting Up Procedure

Assuming the unit is to be set up from scratch.

Oscillator and Pulse width Adjustments
First the maximum freqency is adjusted. By connecting a frequency meter to test point A (TPA) the output frequency of IC8 a 4047B astable can be monitored. By setting the switch on back panel to a range 22 to 500 pps and turning the external black knob fully clockwise, the maximum frequency is obtained. To set this to 500 pps turning the adjusting screw of potentiometer P8 clockwise reduces the frequency. To set the minimum frequency to 1 pps select switch range to 1 to 22 pps and turn black knob fully anticlockwise. This can be set by turning the adjusting screw of potentimeter P9 clockwise which will reduce the frequency.

The pulse width is set to 50 micro-seconds. An oscilloscope can be connected to either the screened lead out of the 4047 B monostable to the select pulse or dc switch, or to the lead out of the switch to the 4049 B inverting buffer. Provided the switch is selecting pulsed signal. Then by adjusting potentiometer $P l 0$ the pulse width can be adjusted to 50 micro-seconds.

Offset Adjustments

For the offset adjustments to be made to null the op-amp offsets, range 4 must be selected on the front panel. The switch on the panel must be set to dc. The output of ICl should be 10.00 Volts which is the buffered reference voltage. This can be monitored at test point $T P B$, and adjusted by turning the adjusting screw of poteniometer Pl. The output of IC2 should be 0 Volts. This can be monitored at the point beside pin 6 which is connected by screened lead to the 10 turn potentiometer Pl2. By adjusting potentiometer P2 the offset can be nulled. Potentiometers P3 and P4 respectively are adjusted to null the offsets of IC3 and IC4 to 0 Volts. IC5 has an output of -10.00 Volts and by adjusting potentimeter P 5 any offset can be nulled.

1 Volt And 100 mV Reference Adustments

Potentiometers P6 and P7, set up the 1 Volt and 100 millivolts reference levels. Test point TPC is the monitoring point for the lVolt level and is set by adjusting potentiometer $P 6$ and $T P D$ is similarly for the 100 millivolt level and is adjusted by P 7 .

Lamp Output

With the selection switch on the front panel set to lamp the oscillator settings are not important. The output can be monitored at the yellow test point marked "TP O/P" on the front panel. The bulb must be positioned with the filament above the window of the photo-diode. The bulb should be driven at about 2.5 Volts either by connecting a varible power supply to the "TP Lamp Drive" terminals or through the 6 -way connector. By adjusting the potentimeter Pll the output should be set to -10.00 Volts. Adjusting the lamp voltage above 2.5 Volts
should result in no change in the output voltage which should remain constant. DONOT exceed 5 V and maintain the voltage above 3.5 Volts only for short peroids of time. On lowering the voltage below 2.5 Volts the output voltage should rise towards 0 Volts.

Calibration

Once the setting up procedure is completed the unit may be calibrated. For this the unit remains set to Calibrated dc output. An accurate digital voltmeter is connected to the "TP O/P" terminals. The dial is turned fully anticlockwise to check the zero.

If the dial does not zero at " 000 " but some other figure it is necessary to gently prise of the plastic knob off the dial . Loosen the allen headed screws with a lmm allen key. Then turn the potentiometer Pl2 fully anticlockwise, ensure the dial still reads zero and tighten up the screws.

If the reading is not exactly -l0.00 Volts refer to "Setting up section".

Voltage measurments at regular intervals in each range may then be made. In the 100 mililivolt range because the signal is referenced to -10.00 Volts, measurements can only be made to the nearest millivolt which is not very accurate. If a better measurement is required, remove the unit's cover and moniter the voltage at pin 6 of IC5. This is the non-inverted buffered signal before being referenced (summed) to -10.00 Volts.

For original calibration see appendix. There the results are tabulated after being analysised by a least squares fit program on a BBC model B micro computer.

The cause of any errors in the calibrated amplitude is due almost entirely to the non-linearity of potentiometer Pl2 and the noise
produced by Refl the 10.00 Volt reference voltage source.

8

6
10V Ref
!
9

10

R1

Particle Cell Calibration Unit

 O / pCal 5
$4 \xrightarrow[3]{ }$

11

OV

RANGE 1 CALIBRATION

DATE 10/4/85

LINEAR: $\quad \mathrm{Y}=\mathrm{A}+\mathrm{B} * \mathrm{X}$ WITH $\mathrm{A}=-9.99989092$

$$
\text { AND } B=9.974546828 \mathrm{E}-5
$$

COEFF. OF CORRELATION $=1.000034184$
COEFF. OF DETERMINATION $=1.000068369$

DIAL	VOLTAGE	Y-EST	DIFF	$\%$ DIFF
RDG.	O/P			
0.0000	-9.9999	-9.9999	0.0000	-0.0001
100.0000	-9.9899	-9.9899	-0.0000	0.0002
200.0000	-9.9799	-9.9799	-0.0000	0.0004
300.0000	-9.9699	-9.9700	-0.0001	0.0007
400.0000	-9.9600	-9.9600	0.0000	-0.0001
500.0000	-9.9501	-9.9500	0.0001	-0.0008
600.0000	-9.9401	-9.9400	0.0001	-0.0006
700.0000	-9.9302	-9.9301	0.0001	-0.0013
800.0000	-9.9200	-9.9201	-0.0001	0.0010
900.0000	-9.9101	-9.9101	-0.0000	0.0002
1000.0000	-9.9001	-9.9001	-0.0000	0.0005

RANGE 2 CALIBRATION

DATE 10/4/85
LINEAR: $\quad Y=A+B * X$ WITH $A=-9.99764093$

$$
\text { AND } \mathrm{B}=9.972636676 \mathrm{E}-4
$$

COEFF. OF CORRELATION $=0.9999997108$
COEFF. OF DETERMINATION $=0.9999994216$

DIAL	VOLTAGE	Y-EST	DIFF	O/P DIFF
RDG.				
0.0000	-9.9981	-9.9976	0.0005	-0.0046
100.0000	-9.8977	-9.8979	-0.0002	0.0022
200.0000	-9.7978	-9.7982	-0.0004	0.0040
300.0000	-9.6981	-9.6985	-0.0004	0.0037
400.0000	-9.5986	-9.5987	-0.0001	0.0014
500.0000	-9.4992	-9.4990	0.0002	-0.0020
600.0000	-9.3996	-9.3993	0.0003	-0.0034
700.0000	-9.3002	-9.2996	0.0006	-0.0069
800.0000	-9.1996	-9.1998	-0.0002	0.0025
900.0000	-9.1002	-9.1001	0.0001	-0.0011

RANGE 3 CALIBRATION

DATE 10/4/85

LINEAR: $\quad Y=A+B * X$ WITH $A=-9.975267269$

$$
\text { AND } \mathrm{B}=9.885163628 \mathrm{E}-3
$$

COEFF. OF CORRELATION $=0.9999995031$
COEFF. OF DETERMINATION $=0.9999990063$

DIAL	VOLTAGE	Y-EST	DIFF	OIFF
RDG.	O/P			
0.0000	-9.9797	-9.9753	0.0044	-0.0444
100.0000	-8.9847	-8.9868	-0.0021	0.0228
200.0000	-7.9947	-7.9982	-0.0035	0.0442
300.0000	-7.0063	-7.0097	-0.0034	0.0488
400.0000	-6.0200	-6.0212	-0.0012	0.0200
500.0000	-5.0342	-5.0327	0.0015	-0.0301
600.0000	-4.0470	-4.0442	0.0028	-0.0700
700.0000	-3.0615	-3.0557	0.0058	-0.1910
800.0000	-2.0655	-2.0671	-0.0016	0.0792
900.0000	-1.0790	-1.0786	0.0004	-0.0352
1000.0000	-0.0869	-0.0901	-0.0032	3.6389

