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1. INTRODUCTION 

The aim of this report is to describe and evaluate the quality of the meteorological 
data for the BOFS (Biogeochemical Ocean Flux Survey) experiment &om jgRS Darmh 
cruises CD 46 (28th April to 22nd May 1990, day number 118 to 142), and CD 47 (25th 
May to 17th June 1990, day number 145 to 168). 

The next section will describe the sensors used and their calibration; section 3 
presents the time series data, and discusses the editing required for the removal of spikes. 
Section 4 investigates the quality of the temperature data, considering the errors in the 
psychrometers and the corrections needed to overcome these biases, and the eSects of 
fmmel exhaust on the psychrometers with respect to wind direction. The difference between 
the temperature data from the forward mast and the starboard and port psychrometers is 
shown to be dependent on insolation, wind speed and relative wind direction, To further 
analyse this difkrence a statistical investigation of correlation was performed between one 
dependent variable (temperature digerence between the dry bulb starboard psychrometer 
and the dry bulb forward psychrometer) and three independent variables: shortwave 
radiation, wind velocity and wind direction. Section 5 quantifies the errors in the 
anemometer readings due to the different heights of the anemometers on the brward and 
main masts. Section 6 compares the short wave solar radiation data between the starboard 
and port sensor. The conclusions are summarised in section 7. ./^pendix I describes in 
more detail the statistical analysis presented in section 4. Appendix II shows the calibration 
certiBcates for the psychrometers and anemometers. 

2. SENSORS 

2.1 Sensor Positions 

The sensors were situated on the forward mast, main mast, and on the port and 
starboard side of the wheelhousetop (figure la). The forward mast (figure lb) carried a 
propeller vane anemometer (R.M.Young serial number (S/N) 6692) situated on the forward 
platform, 1 metre to port of the upper foremast and 2.6 metres above the platform 
(approximately 15 metres above the sea), An aspirated psychrometer (Vector instruments 
(VI) S/N 1066) was situated just below and forward of the anemometer. The short wave 
radiation sensors were situated to the far port and starboard side of the for^rard mast 
platform (Kipp and Zonnen S/N 1058 and 0607). The long wave radiation sensor (Eppley 
S/N 6207) was situated at the top of the upper foremast. On the wheelhousetop there was an 
aspirated psychrometer C'/I S/N 1071) situated to the port side, and also to the starboard 
side (VI S/N 1070), in each case just aft of the ladder and approximately 1.8 metres above 
the deck. The main mast carried an anemometer (VI S/N 1892) and a wind direction sensor 
(VI S/N 2118) situated at the mast top. 



2.2 Sensor Calibration 

Wind direction and wind velocity sensors were calibrated by lOSDL stag at the BrackneU 
Meteorological OSce wind timnel; the manufacturers calibration was used for the solar 
radiation sensors: psychrometers were calibrated in the lOSDL temperature bath both 
before and aAer the cruise. Table 1 gives the calibration coeScients based on the pre-cruise 
calibration: 

Table 1: Pre Cruise Calibration Coefficients 

VARIABLE CHANNEL C(1) C(2) C(3) C(4) 

LW (1) 233 .6450 0 

SWg (2) 206 .6120 0 

SWp (3) 221 .2390 0 

(4) 7 2 0 

TWg (5) -20.2983 -1.9838E-4 9 . 6 3 2 2 E - 6 3 .5245E-10 

TDs (6) -21.0918 -1.5693E-4 8 . 9 8 7 7 E - 6 3.0117E-10 

TWp U) -21.2974 1.6523E-3 8 . 6 5 8 0 E - 6 4 .9633E-10 

TDp (8) -20.9362 8.2597E-4 8 . 3 8 0 6 E - 6 4 .3652E-10 

(9) -20.1399 3.4150E-4 9 . 1 0 0 4 E - 6 4.2651 E-10 

(10) -21.5903 1.4466E-3 8 . 1 2 5 0 E - 6 4.2651 E-10 

SST (11) -1776.4715 2.7979 - 1 . 4 8 6 3 E-3 2 .7145E-7 

(12) 1 .1982 0 

(13) 0 .0980 0 

(14) 1 0 

DDsHIP (15) 1 0 

LW = wave s'oJar racka/ioa SWg = gfanboard wave radzaf/oA SWp 

porf aAozf wave radfafjoz;, = wind direcfibzi Ae ±)nvard jezigor, TWg = 

.s/arboard dry jbuib /emperafure, TWp = porf wef .g/arboard wef /en]perafure, T! 

jbuib ^emperafure, TDp - porf d ry AuTb femperafure, T W p ^ - Airward ma.?f we/ jbuib 

/empera/ure, T D p ^ = 6 r w a r d majf dry jbu2b fempera/ure, SST = .sea .^urAce femperafure, 

W p ^ = wzbd .gaeed Ae forward ma?/ .seogor, = wmd ^ e e d (Ae azajn magf 

gea?or, direcAbrz 6'om mam jnasf gea^or, DDgyg) - j#3.s^eadmgr, 

The calibration details for the psychrometers and anemometers are listed in 
Appendix II and contain pre-cruise and post-cruise figures for both instruments. These 
calibration coeEcients are used in the following equations (where g = geophysical value, s 
= sensor value): 



A, Analogue channels (channel numbers:!, 2, 3, 4) 
g=((8190-s)/819)*C(l) 

B, frequency channels temperatures (channel numbers: 5, 6, 7, 8, 9, 10, 11) 
g=C(l)+s*C(2)+s*C(2)+s*C(3)+s*C(4) 

C, frequency channels wind speeds (channel numbers: 12, 13) 
g=s*0,02*C(l)+C(2) 

D, Digitalchannelsdirections(channelnumbers:14, 15) 
g=s*C(l)+C(2) 

Using pre and post-cruise calibrations, the air temperature diferences were found 
to be negligibly smaH (Appendix 11), Differences in pre and post-cruise wind speeds for the 
Young anemometer on the forward mast were also found to be small; but significant 
diSerences were found for the anemometer on the main mast, This will be discussed further 
in section 5. 

2.3 Thermometer calibration correction 

Following the cruise it was discovered that the standard thermometer, used as a 
calibration standard b r the thermometers, was programmed with the wrong calibration 
coeScients. The error (Table 2) amounts to about 0,2''C to 0,3°C for the range of 
temperatures experienced during the BOFS cruises, The correction formula is: 

Tcorr = 0.00247 (Tcaic)̂  + 0,9757 (Tcaic) - 0,0271 

Where Tcon- the correct value ("C) and Tcaic the value calculated with the incorrect 

standard thermometer calibration. This correction has been applied to the data Sles for 

these cruises, however it had not been applied when Figures 2 and 3 were produced. The 

reported comparisons between diBerent thermometers will not be signiBcantly in error since 

all thermometers had been calibrated to the same standard. 

Table 2. Correction values to allow for the error in the standard thermometer. 

T for -̂ corr I J Correction (°C) 

0 -0.03 
5 -0.14 
10 -0.25 
15 -0.34 
20 -0.41 
25 -0.48 
30 -0.53 
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3. TIME SERIES DATA 

3.1 Introduction 

Figures 2 and 3 are plots of all the variables against the day number JDAY) for 
cruises CD 46 and CD 47 respectively. These data have been 'despiked' (section 3.2). The 
plots show successive 5 day intervals. Figures 2a, c, e, etc. show the wind direction &om 
the main mast and forward mast and the corresponding relative wind speeds. The normal 
practice is to mount the wind vanes with 180° orientated to the ships bow to minimise 
occurrence of 0° to 360° changes in record. However for these cruises the Young propeller 
vane anemometer on the forward mast was inadvertently mounted with 0° towards the ships 
bow. Since this is logged on a conventional analogue channel erroneous wind directions 
will have occured due to averaging signals on either side of 360°. In contrast the Vector 
Instruments wind vane on the main mast was mounted with 180° toward the bow, and 
specially sampled to avoid incorrect averaging (Birch and Pascal, 1987). Thus the main 
mast wind directions should be used in preference to those from the foremast, The wind 
speed data will be compared later (section 5), 

Figures 2b, d, f, etc, show the radiation data, and the wet and dry bulb 
temperatures from the brward mast and wheelhouse top screens. Both port and starboard 
radiation sensor data are plotted, however on the scale shown these are normally 
indistinguishable (see section 6 for comparisons). The sea sur6ce temperature data, where 
present, is superimposed on the forward mast temperature plot. These SST data were 
collected between day number 125 to 141 br CD 46, and between day numbers 160 to 165 
on CD 47, although then only for short periods to the end of the cruise. 

3.2 Despiking 

The data originally had 'spikes' within it; probably caused by radio frequency 
interference. These have been removed using the pstar program, DSPIKE, An example can 
be seen in Figure 4 of the original LW (long wave radiation) for CD 47 with spikes; and the 
'despiked' longwave data in Figure 5. Although some small spikes remain the major errors 
have been removed. 

Table 3 shows the number of spikes removed for the relevant variables for CD46 and 
CD47 respectively. For any one variable, the maximum number of data records removed 
was 210 for CD 46 out of an original 32793, and 174 for CD 47 out of an original 31567 
(without taking into account sea surface temperature, which has exceptionally large 
number of missing or poor data values), 
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Table 3: N u m b e r of Sp ikes Removed 

VARIABLE NO.SPIKES NO.SPIKES 

(see Table 1 for key) CD 46 CD 47 

LW 120 40 

TWs 210 20 

TDs 11 0 

TWp 11 0 

TDp 11 91 

TWpM 12 0 

T D m 14 174 

SST 379 3 6 1 6 

Inspection of the original data plots indicated that the remaining variables did not 
require editing. 

4. OUALTTYOFTEMPERATUREDATA 

4.1 Introduction 

The psychrometer on the brward mast is weU exposed for most wind directions, 
those on the wheelhouse top are likely to be sheltered for some relative wind directions and 
more ejected by heat from the ship, Thus the forward mast psychrometer should normally 
be used to define the air temperature, However in view of the need to correct the dry bulb 
reading from that psychrometer (section 4,2), comparison between the different 
psychrometer readings is considered worthwhile, The results will also be of interest when 
using data from ships with less weU exposed psychrometers or screens, Cruise CD 47 data 
will be used for this comparison, 

Assuming a correctly calibrated psychrometer, there are two major potential 
sources of temperature error: heat from the ships engines and ventilation system, and solar 
radiation both by heating the psychrometers directly and, indirectly, through heating of 
the sh^s deck and superstructure, 

4.2 Psychrometer Calibration Errors 

In order to compare the readings from the different psychrometers the night time 
temperature data has been examined for cases where the ship was head to wind (ie, relative 
wind direction between 330 and 30 degrees. Figure 6), For these cases differences due to 
solar radiation and poor sensor exposure should be negligible and each senso: would on 
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average be expected to give the same reading. Table 4 shows the mean temperature and 
humidity di&rences b r CD 46 and CD 47, 

Table 4: CD 48 and CD 47 Mean Temperature Differences a n d Resulting Humidity 
Differences 

CD 46 CD 4 7 

N M(OC) S.D N M(OC) S.D 

T°FIV,-TDp 9 2 5 2 0 .463 0 .0005 7 8 8 4 0.450 0 .0008 

9 2 5 2 0 .442 0 .0005 7 8 8 4 0.399 0 .0010 

9 2 5 2 0 .007 0 .0006 7 8 8 4 -0 .057 0 .0009 

9 2 5 2 -0.025 0 . 0 0 0 4 7 8 8 4 -0 .050 0 .0007 

9 2 5 2 -0 .187 0 . 0 0 8 3 7 8 8 4 -0 .246 0.0011 

° F M " ° S 9 2 5 2 -0.210 0 . 0 0 0 4 7 8 8 4 -0 .218 0 .0007 

Where :N = Jiumjber o/dafa pomf.? M = mean va/ue 
S.D - .sfazzdard deMa/ib;] 0 = 5;peci&; Auniz'(±'/y a/ reVeyaa/ 
A]d Ae oAer varjabje mfâ zbzz a? is ujed m Tab/e ^. 

Compared to the port and starboard psychrometers the forward dry bulb 
temperature read high by about 0,45''C, and was corrected accordingly, The calibration 
certiBcates for the psychrometers (showing pre-cruise and post-cruise figures), show no 
significant changes in calibration kr the period of deployment (y^pendbc ID, Therefore the 
discrepancy of dry bulb temperatures on the foremast can not be accounted br by means of 
shiS in the calibration. It is possible that the frequency signal might have been miscounted 
at the logger, resulting in a lower value of temperature being recorded. The change in this 
error during the cruises showed a systematic trend (Figure 7), however the overall changes 
were negligible (<0,rC), 

The validity of applying a 0,45°C correction to the forward dry bulb can be'checked 
by recalculating the speciSc humidity diSerences, Table 5 shows the differences between 
the forward, port and starboard humidities for CD 46 and CD 47, Compared to values 
shown in Table 4, the specific humidity diSerences were much reduced as is expected (as 
the speciSc humidity is conserved over the ship), therefore conSrming the temperature 
correction. 

Table 5: CD 48 and CD 47 Recalculated Mean Specific Humidity Differences after 

CD 46 CD 47 

N IVI (g/Kg) S.D N M (g/Kg) S.D 

^FIVI"°P 

° F U ' ° S 

3 2 5 7 9 -0 .043 5.2*10-4 

3 2 5 7 9 -0 .035 3.5*10-4 

3 1 3 7 2 -0 .090 6 .2*10-4 

3 1 3 7 2 -0 .040 4 .1*10-4 

(For key. Fable 4) 
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4.3 Heat f rom Ship 

Figure 8 shows the diSerence in dry bulb temperature reading, AT, between each 
of the wheelhouse top psychrometers and that on the foremast. The data from the whole of 
Cruise 47 has been averaged for each ten degree relative wind direction sector, The egect 
of funnel smoke shows up clearly for the starboard psychrometer, ATg (= Tg-Tp )̂ k r relative 
wind directions of 200° to 250°, corresponding to the funnel being downwind of the 
psychrometer, This eSect is not clearly seen for the port psychrometer, ATp (= Tp-Tp )̂, The 
reason k r this is not known, 

4.4 Solar heating 

4,4,1 Diurnal Variation of Temperature DiGerences 

Figure 9 shows the mean diurnal variation of downward shortwave radiation during 
Cruise 47, The maximum occurs at about 1300 gmt (corresponding to noon local solar 
time). No phase shift can be seen between the peak of the mean diurnal temperature 
digerences ATg, ATp, and the peak of the mean diurnal short wave radiation, 

The temperature difference, ATg, is shown in Figure 10 as a function of the 
incoming shortwave radiation, ATg increases rapidly above 250W/m^, However at high 
incoming radiation values there is a decrease. This is explained by Figure 11, which shows 
that ATg is also a function of relative wind speed, and Figure 12 which shows that on 
average the occasions of high solar radiation corresponded, on Cruise 47, to a higher 
relative wind, 

4,4,2 Dependence on Radiation and Wind Speed 

A mathematical analysis was undertaken to explain how the temperature difference 

between the dry bulb starboard psychrometer and the dry bulb forward psychrometer is 

related to the wind speed and the shortwave solar radiation. Assume: 

AT̂  = function (W, RS) (1) 

where: ATg = dry starboard temperature - dry forward temperature, W = 'vvind velocity on 

the forward mast, RS = short wave solar radiation on the starboard sensor 

The required function can be investigated using the following two partial 
derivatives: 

9AT / gW where RS is constant (i) 

9AT_̂  / gRS where W is constant (ii) 

To investigate the dependence of AT on W (partial derivative (i)) the data set for CD 47 was 
divided into cases of low, medium and high solar radiation, where: 
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a) RS lay between 0 and 200 W/m^ 
b) RS lay between 200 and 400 W/m^ 
c) RS lay between 400 and 600 W/m^ 

Regression plots (Figure 13a) of the temperature diSerence against wind speed for a,b,c 
resulted in three diBerent linear regression equations, of the form: 

ATg = mW + c (2) 

where: m = gradient, c = y intercept (fumction of RS) 

Figure 13a shows for high values of solar radiation, there is a large change in temperature 
diSerence with wind speed. For low solar radiation, there is a much smaller change in 
temperature diSerence with wind speed. 

The gradients (m) were then plotted against the three mean values of solar radiation 
(ie: 100, 300, 500,) a linear relationship was found (Figure 14) of the form: 

m = gRS + h (3) 

back substitution in equation 2 gives: 

ATg = (gRS + h)W + c (4) 

The modulus of c (function of RS) is negligible compared to the modulus of the other 
variables, therefore the mathematical model shows that the temperature digerence is 
caused by the direct effect of radiation, with a modiEcation to take into account the relative 
wind. This model explained 17.6 % of the variance: 

AT = gWRS + hW (5) 

where if in equation 5: RS is measured in W/m^, W is measured in m/s, and AT is 

measured in °C: then: g = -0.0002, h= 0,0014 

To investigate the dependence of AT on RS (partial derivative (ii)) the data set for CD 

47 was divided into cases of low, medium, and high wind speed, where: 

d) W lay between 0 and 5 m/s 

e) W lay between 5 and 10 m/s 
f) W lay between 10 and 16 m/s 

Regression plots (Figure 13b) of the temperature difference against solar radiation for d,e,f 

resulted in three diBerent linear regression equations, of the form: 

AT = mRS + c 
s 

The gradients (m) were then plotted against the three mean values of wind speed (ie: 2.5, 
7.5, 13). The relationship is non linear (Figure 15). 



15 

4,4.3 Statistical Model 

A further indication of the importance of the two terms on the right hand side of 
equation 5 was obtained by the statistical analysis of starboard sensor data for BOFS 47, 
which investigated the correlation between one dependent variable (temperature difference 
between the dry bulb starboard psychrometer and the dry bulb forward psychrometer) and 
three independent variables: shortwave radiation, wind velocity and wind direction; in 
various combinations. Ten minute average values were calculated from the one minute 
recorded values and an analysis was undertaken as follows. 

From a linear model using a regression of ATg on all three available variables, 

Btted as : 

ATg = a + PDD +YW +ERS 

(where: ATg = dry starboard temperature - dry forward temperature, DD = wind direction. 

W = wind velocity on the forward mast, RS = short wave solar radiation on the starboard 

sensor, a, p, y ,E = constants) 

It was found that RS is the most significant variable in the model (see Appendix I). The 
exclusion of RS causes the correlation of the model to M rapidly. 

From the analysis the best Gt model was found to be: 

ATg = a + YW + eRS + (|,(W*RS) (model 1) 

(where: a = 0.0018, p = 0.00489, e = 0.00178, (|) = -0.000175) 

The correlation coefGcient of the model is too small for it to be used for prediction. This 
model explains 36.6% of the variance (compared to 17,6% explained by the mathematical 
model), of which 1,8% is explained by YW, 5.1% by a, 7,8%by(|)(VV*RS), and 21.9% 
by eRS. 

Only about 40% (square of the correlation coefBcient) of the original observed data 
was explained by a linear regression model containing shortwave radiation and wind speed 
(model 1). But the smoothed envelope data (data with diurnal variation removed) gave a 
better correlation than the original data, as the short period variance (noisy data) had been 
smoothed out (see Appendix I). 

4,4.4 E&ctive Lag CoeScient of Psychrometer 

It can be noted that the product of wind speed and solar radiation were prominent 

in both the statistical and mathematical models. 

From the statistical analysis, model (1) can be written 

AT = eRS + (|)(W*RS) + other terms (model 1) 

The temperature diSerence between the two psychrometers calculated from the energy 
balance equation is: 
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AT = X A RS / C (6) 

where: C is the heat capacity of the psychrometer, A. is the l a g coeScient, RS is the 

incident solar radiation (W/m^) and A is the area illiiminated. 

let X = Xg + function(VV) (7) 

Prom (6) and (7) 

AT = A.0 A RS /C + functionCW) A RS /C (8) 

comparing (model 1), (7) and (8) 

X = C(E + (̂ ) / A (9) 

where the dimensions of e and (() are dimensionally in terms of RS,. .A and W (where W is 

measured in m/s, RS is measured in W/m^, and A is .measured in 

Now: C = heat capacity - speciEc heat capacity mass 

SpeciGc heat capacity of psychrometer (steel) = 0.48*10^ J/Kg/°C, Mass of empty 

psychrometer = 0.87 Kg, Mass of psychrometer full of water = 1.48 Kg 

Therefore: C = 417.6 j/Kg/°C when psychrometer is empty 

and C = 0.87*0.48*10^ + 0.61*1*10^= 1028 J/Kg/°C w h e n psychrometer is 

full 

Area of psychrometer = 0.01 m^, e - 0.00178, 0 = -0.000175 

Substitution in (9) gives: 

A, = 67 seconds when psychrometer is empry. = 165 seconds when psychrometer is full 

This assumes the psychromeier is made from steel, whereas it is actually made from 

die-cast metal. The difference in specific heat capacities would not greatly eSect the time 

lag (A.). Therefore the effective time lag of the heating up of t h e psychrometer due to 

shortwave radiation for all wind speeds is in the order of a few nmnutes. 

5. ANEMOMETER ERRORS 

The pre and post-cruise wind speed values linearly inc reased as frequency 

increased. Regressing pre and post-crjise values for increasing frequencies resulted in the 

linear regression equation: 

Pg = -0.135656 + 0.96172?! 

where: = pre-cruise values, Pp = post-crjise values 

Thus the original pre-cruise calibrated data for the wind s p e e d A-om the main mast 

anemometer may need to be re-calibrated. Figure 16 shows the re are no obvious step 

changes in the din'erence between the main mast and foremast anemometer readings 

during the cruise, which suggests that the main mast post-cruise calibrations are valid. 

Figure 17 shows the relative mean wind speed of the main mast anemometer after 

post-cruise calibrations. In order to compare these readings with those from the forward 

mast it is necessary to allow for the change in the mean wind s p e e d with height, since the 
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anemometer on the main mast is higher than the forward mast (23.8 metres and 15.1 

metres respectively). 

Using CD 47 data and assuming neutral conditions (ie. a logarithmic wind proGle) 

M/u* = (1/k) In (z/zg) (10) 

where: M = mean wind speed, u* = friction velocity, k = 0.4, z = height, = 

aerodynamic roughness length = 10'^. Since u* is the same at each sample point, 

substituting values for the forward and main mast in (10) gives: 

Mg = Ml (]n(z2/zQ)/ln(zi/zJ) (11) 

siibstituting relevant anemometer heights in (11) then gives: 

M2 = 1.062 Ml (12) 

Therefore the height difference between the two anemometers would cause about a 6% 

digerence in wind speeds. 

Figure 18 shows the actiml diEerence between wind speed readings from the main 
and foremast anemometers as a function of wind speed; after post-cruise calibrations have 
been applied, and the aSects of the height difference between the two anemometers have 
been removed. Figures 17 and 18 show that when the wind is on the port bow (between 
270° and 30°), the main mast anemometer reads 4% higher than the foremast 
anemometer, probably due to the acceleration of the air flow over the ship. Between 90° 
and 130° the main mast anemometer reads higher than the foremast, due to sheltering of 
the foremast anemometer by the foremast; and higher between 130° and 210° due to 
sheltering by the ship. 

6. O r a U T Y OF RADIATION DATA 

Figure 19 compares the shortwave radiation reading from the starboard sensor with 
that from the port sensor for CD 47. The port and starboard sensors compare well except at 
high solar radiation values (over 350 W/m^), where the port sensor reads lower than the 
starboard sensor. This occurs mainly on two days of the cruise, day numbers: 164, 167 
(Figure 21, 22). When these two days are removed, the port and starboard radiation 
sensors compare wen (Figure 20). The cause of the sensor diEerence is unknown, but 
reasons suggested in discussion included temporary failure of the temperature 
compensation circuit or a sticking gimbal mount. 

z. sinviMaRY 

There was an error in the readings from the forward dry bulb temperature which 
read 0.45° high. The calibration certiScates for the psychrometers (showing pre-cruise and 
post-cruise figures), show no significant changes in calibration for the period of 
deployment. Therefore the discrepancy of dry bulb temperatures on the foremast can not 
be accounted for by means of shift in the calibration. It is possible that the firequency signal 
may have been miscounted at the logger, resulting in a lower value of temperature being 
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recorded . Funnel heat also caused spurious psychrometer r e a d i n g s ; the temperature 

diEerence between the forward and starboard psychrometers i n c r e a s e s when the relative 

wind direction was be tween 200° and 250°. This e^ec t is n o t clearly seen for the 

temperature diSerence between the forward and port psychrometers . The reason for this is 

not known. 

From a statistical analysis using starboard sensor data for C3D 47, it was found that 

the diSerences between temperature readings from the p s y c h r o m e t e r on the forward mast 

and those on the wheelhouse top tended to b e directly affected b y shortwave radiation, with 

a modiBcation to take into account the relative wind. Port sensor d a t a for CD 47 showed the 

same results. 

After post-cruise calibrations have been applied to the m a i n mast anemometer, and 

the eSects of the height di^erence between the two have b e e n removed , the main mast 

anemometer r eads higher than the forward mast anemomete r b y about O.Sm/s, thus 

implying there is speeding up over the ship. 

There is no signi&cant diSerence between readings from t h e port and starboard 

shortwave radiation sensors. 

8. RECOMMENDATIONS 

From the meteorological data for the BOFS experiment f rom the CAades Danvin 

cruises CD 46 and CD 47; the sensor recommendations in order t o calculate surface fluxes 

of heat and momentum would be: 

Variable Recommended sensor 

Dry bulb temperature 

Wet bulb temperature 

Wind speed 

Wind direction 

Solar radiation 

Long wave radiation 

foremast psychrometer (with 0.45°C correction) 

foremast psychrometer 

foremast anemometer 

main mast wind vane 

maximum of port and startxiard values 

only one sensor available 
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APPENDIX I: STATISTICAL ANALYSIS OF THE COMPARISON OF PSYCEROMETER 

READINGS 

I . l Statistical Analysis 

DiEerences between ten]perati:ire readings from the psychrometer on the forward 
mast and those on the wheelhouse top are expected to vary with relative wind direction, 
wind velocity, and solar heating. To determine the nati:ire of this dependence a statistical 
model was developed for B0FS47 data, which investigated the correlation between one 
dependent variable (temperature difference between the dry bu lb starboard psychrometer 
and the dry biHb forward psychrometer (ATgp)) and three independent variables; wind 
direction (DD), wind velocity (VV), and shortwave radiation (RS); in various combinations. 
The data was recorded at 1 Hz; 10 minute average values were calculated &om the 1 Hz 
values for the following analysis. 

1.1.1 Linear Model using Minitab 

The Brst model t:ised was a regression of ATgp on aH three available variables, Gtted 

as: 

ATSF = a + PDD +YW +ERS 

where: ATgp = dry starboard temperature - dry forward temperature, DD = wind direction, 

W = wind velocity on the forward mast, RS = short wave solar radiation on the starboard 

sensor, 0(,p,Y,E = constants 

Table LI shows the correlation coeSicients from regressing the above model using Minitab. 

Tablel . l : Correlation Coefficients (Rvalue) 

MODEL R value 

aDD+pVV+yRS 0.540 

pVV+yRS 0.534 

aDD+yRS 0.523 

aDD+pVV 0.290 

Examination of the r values concludes that excluding RS causes a considerable loss in the r 
value, and therefore the Rt of the model. From the r values it can be seen that so long as 
the model contains RS, the model is worthy of analysis: so the two most significant models 
are: 
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ATgp = a + pDD + yW +eRS +(|)variable 

ATgF = "yW +eRS +(|)variable 

(model A) 

(model B) 

Examination of the Minitab residual plots of the three variables (DD,W,RS), 
indicated that the model could be further reOned by the addition of terms in (as the 
residual plot of W tends to divergence) and/or RŜ  (as the residual of RS plot tends to 
convergence). Combinations of these variables were therefore added to the models A and B 
(^variable in the above models), Table 1.2 shows the correlation coeScients from regressing 
model A and model B, with the addition of combinations of W^/2 ^^d RS .̂ 

Table 1.2: Correlation Coefficients 

MODEL USED TERM ADDED 

MODEL NONE +\/vi/2 +RS2 +\/Vl/24.pg2 VV*RS 

A 0.540 0.564 0.560 0.577 0.616 

B 0.534 0.555 0.551 0.567 0.602 

MODEL VV*DD RS*DD VV2 RSl/2 VVl/2'Fls2 

A 0.542 0.540 0.550 0.559 0.548 

B 0.539 0.534 0.539 0.550 0.539 

The increase in the correlation coe5cient obtained by the addition of wind direction 
in model A was not great enough to merit the addition of the parameter in the model. Also 
the plot of residuals against wind direction showed a random plot thus helping confirm this 
assumption. Thus from the results the best model was found to be: 

ATgp = a + yW + eRS + 0(W*RS) (model 1) 

(where: a = 0.0018, p = 0.00489, e = 0.00178, (|) = -0.000175) 

But the r value for this model, even though it is the largest is stili relatively small, 
and the model caimot be accepted. The increase in the r value for new models compared to 
the original model, is due to the addition of another parameter or combination of 
parameters, rather than a signiOcantly better fit. The model explains 36.6 % of the 
variance, of which 1.8 % is explained by yW, 5.1 % by a, 7.8 % by (|)(W*RS), and 21.9 
% by eRS. Table 1.3 shows the variance explained by each term by the best Gt model 
(model 1). 

Table 1.3: Var iance Expla ined by each Var iable of Mode l 1 

variable variance 

a 

a+yVV 6.8 

a+eRS 26.9 

a+yVV+eRS 28.7 

a + yVV + ERS + (|)(VV'RS) 36.6 
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1.1.2 Non-Linear Model 

The next stage was to attempt a non linear 5t. Mer looking at plots of Agp against W, and 

also against RS, the plots showed an exponential tendency, s o the following non linear 

model was tried: 

ATgF = a + PexpCYW) + 5exp(eRS) 

where: o(,p,Y,8,E are constants of the regression 

An IMSL program was used to End the values of the unknown constants, but the 
program did not converge to any values for the coeScients. This non-convergence does not 
constitute proof of the model being invalid, but it is a strong indication. 

1.1.3 Analysisofsmootheddata 

From the data plots the data has an overall trend (envelope), and a diumal 
variation. The problem is that the correlation could be due only to the diumal variation, 
therefore the diumal variation needs to be removed. So using a data Sle of hourly averaged 
data and executing a 24 point moving average on the data, the obtained result is a smooth 
envelope plot; the residuals (daily variation) can be found by the subtraction of the 
envelope data from the original input data. The envelope data can now be analysed to see if 
there is any correlation between the variables. This was implemented using a Fortran 
program, and Table 1,4 shows the correlation coeScients from regressing the smoothed 
envelope data on model B using Minitab. 

Tablel.4: Correlation Coefficients (Envelope Data) 

MODEL USED TERM ADDED 

NONE VV'RS Vl/2 V2 V1/2*RS 

B 0.622 0.703 0.704 0.699 0.713 

The increase in the r value is due to the addition of another variable, as it is not a 

sufGciently large enough increase to warrant otherwise. Table 1.5 shows the correlation 

coeScients &om regressing the residual data on digerent models. 

Table 1.5: Correlation Coefficients (Residual Data) 

MODEL USED TERM ADDED 

NONE VV'RS V2 COS{VV) COS(RS) 

B 0.577 0.586 0.579 

a+yRS 0.577 

ot+pVV 0.182 

From the results, about 40% (r^ value) of the original observed data was explained 
by a linear regression model containing shortwave radiation and wind speed (model 1). The 
smoothed envelope data (data with diumal variation removed) gave a better correlation than 
the original data, as the short period variance (noisy data) had been smoothed out. 
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smoothed envelope data (data with diumal variation removed) gave a better correlation than 
the original data, ag the short period variance (noisy data) had been smoothed out. 

1.1.4 Removal of funnel effect 

The funnel of the ship causes warming of the starboard psychrometer, Table 1.6 
shows the correlation coefficients from regressing the envelope data with the funnel effect 
removed on model B, 

Table 1.6: Corre la t ion Coeff ic ients (Funnel Effect Removed) 

MODEL USED TERM ADDED 

NONE W A S 

B 0.607 0.676 

As can be seen from the above table, the removal of the funnel effect causes a 
decrease in the correlation coefRcient. When the wind direction is aligned with the 
direction between the funnel and the starboard psychrometer, the funnel gases warm the 
instrument, thus introducing a strong and spurious correlation for that wind direction; 
removal of this effect causes the correlation coefGcient to decrease. 

1,1.5 Port Data 

Using the port data instead of the siarboard, and the following model: 

ATpF = a + pOD +yW +5RS +(|)variable (MODEL C) 

where: ATpp = dry port temperature - dry forward temperature, DD = wind direction, W 

= wind velocity on the forward mast, RS = short wave solar radiation on the port sensor 

Table 1.7 shows the correlation coefRcients from regressing the port data on diSerent 

models. 

Table 1.7: Corre la t ion Coeff ic ients (Port Data) 

MODEL R 

0 0.420 

pDD+yVV 0.268 

PDD+8RS 0.416 

yVV+gRS 0.374 

From the r value it is evidem that again the exclusion of RS causes a considerable 
loss in the r value, and therefore the fit of the model. In this case it seems as though RS 
and DD are the most significant variables, rather than RS and W, as with the starboard 
data. But, as previously mentioned, r values for these two models are very similar and thus 
either model is worthy of analysis. 
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APPENDIX n : PRE AND POST CRUISE CALIBRATION DETAILS FOR THE 

PSYCHROMETERS AND THE ANEMOMETERS 

The following pre and post-cruise calibration coefScients a r e i:sed in the equations 

in section 2.2. 

n . l Cal ibra t ion Certif icate for p sychromete r VI1066 (Wet b u l b foremast 

t empera tu re ) Date Produced : 01-18-1991 

Pre- cruise Post- cruise 

CAL TW10190A CAL TW17190A 

C(0) -20.13991 

C(1) 3.41499E-04 

C(2) 9.100414E-06 

C(3) 4.265112E-10 

C(0) -22.31878 

C(1) 3.910506E-03 

C(2) 7.159736E-06 

C(3) 7.748193E-10 

Table n. 1: (Above) Calibration 
coeSicients. (Opposite) Calculated 
temperatures and temperature differences 
from pre (A) and post-cruise (B) 
calibrations corresponding to the 
frequencies shown: also the overall mean 
temperature difference. 

Freq T e m p A Temp B Diff 

1 4 0 0 - 0 . 6 5 -0 .6 8 0 . 0 3 

1 5 0 0 2 . 2 9 2 . 2 7 0 . 0 2 

1 6 0 0 5 . 4 5 5 . 4 4 0 . 0 1 

1 7 0 0 8 . 8 4 8 . 8 3 0 . 0 1 

1 8 0 0 1 2 . 4 5 1 2 . 4 4 0 . 0 1 

1 9 0 0 1 6 . 2 9 1 6 . 2 7 0 . 0 2 

2 0 0 0 2 0 . 3 6 2 0 . 3 4 0 . 0 2 

2 1 0 0 2 4 . 6 6 2 4 . 6 4 0 . 0 2 

2 2 0 0 2 9 . 2 0 2 9 . 1 9 0 . 0 1 

2 3 0 0 3 3 . 9 8 3 3 . 9 8 0 . 0 0 

m e a n diff 0 . 0 1 

n.2 Cal ibra t ion Cert if icate for p sychromete r VI1066 (Dry bulb foremast 

t empera tu re ) Date produced : 01-18-1991 

Pre- cruise Post- cruise 

Cal TD10190B CAL TD17190A 

C(0) -21 .59034 

C(1) 1 .44664E-03 

C(2) 8 .125E-06 

C(3) 4 . 8 6 1 8 9 9 E - 1 0 

C(0) - 23 .75074 

C(1) 4 . 9 5 9 1 3 9 E - 0 3 

C(2) 6 . 2 0 6 6 7 7 E - 0 6 

C(3) 8 . 3 2 7 8 7 6 E - 1 0 

Table II.2: (Above) Calibration 

coe2icients. (Opposite) Calculated 

temperatures and temperature differences 

from pre (A) and post-cruise (B) 

calibrations corresponding to the 

Grequencies shown; also the overall mean 

temperature difference. 

Freq T e m p A T e m p B Diff 

1 4 0 0 - 2 . 31 - 2 . 3 6 0 . 0 5 

1 5 0 0 0 . 5 0 0 . 4 6 0 . 0 4 

1 6 0 0 3 . 5 2 3 . 4 8 0 . 0 4 

1 7 0 0 6 . 7 4 6 . 7 1 0 . 0 3 

1 8 0 0 1 0 .17 1 0 . 1 4 0 . 0 3 

1 9 0 0 1 3 . 8 2 1 3 . 7 9 0 . 0 3 

2 0 0 0 1 7 . 6 9 1 7 . 6 6 0 . 0 3 

2 1 0 0 2 1 . 7 8 2 1 . 7 5 0 . 0 3 

2 2 0 0 2 6 . 0 9 2 6 . 0 7 0 . 0 2 

2 3 0 0 3 0 . 6 3 3 0 . 6 2 0 . 0 1 

m e a n diff 0 . 0 3 
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n - 3 Cal ibra t ion Cer t i f i ca te for p s y c h r o m e t e r VI1070 (Wet bu lb s t a rboard 

t empe ra tu r e ) Date P r o d u c e d : 01-18-1991 

Pre- cruise Post- cruise 

Cal TW10190A CAL TW17190A 

C(0) -20.29832 

C(1) -1.9838482-04 

C(2) 9.6321865-06 

C(3) 3.524534E10 

C(0) -22.99918 

C(1) 4.490582E-03 

C(2) 6.9916652-06 

C(3) 8.3995482-10 

Table n.3: (Above) Calibration 
coeBcients. (Opposite) Calculated 
temperatures and temperature differences 
from pre (A) and post-cruise (B) 
calibrations corresponding to the 
frequencies shown; also the overall mean 
temperature difference, 

Freq Temp A Temp B Diff 

1400 -0.73 -0.70 -0.03 

1500 2.27 2.30 -0.03 

1600 5.49 5.53 -0.04 

1700 8.93 8.97 -0.04 

1800 12.61 12.64 -0.03 

1900 16.51 16.53 -0.02 

2000 20.65 20.67 -0.02 

2100 25.03 25.04 -0.01 

2200 29.64 29.66 -0.02 

2300 34.49 34.53 -0.04 

mean diff -0.03 

n . 4 Cal ibra t ion Cer t i f i ca te for p s y c h r o m e t e r VI1070 (Dry bu lb s ta rboard 

t empera tu re ) 

pre- cruise Post- cruise 

Cal TD10190B CAL TD17190A 

C(0) -21.09177 

C(1) -1.5693522-04 

C(2) 8.9877472-06 

C(3) 3.0116812-10 

C(0) -23.5243 

C(1) 3.9446452-03 

C(2) 6.778277E-06 

C(3) 6.8737072-10 

Table n.4: (Above) Calibration 
coeEcients. (Opposite) Calculated 
temperatures and temperature differences 
from pre (A) and post-cruise (B) 
calibrations corresponding to the 
frequencies shown; also the overall mean 
temperature difference. 

Freq Temp A Temp B Diff 

1400 -2.87 -2.83 -0.04 

1500 -0.09 -0.04 -0.05 

1600 2.90 2.96 -0.06 

1700 6.10 6.15 -0.05 

1800 9.50 9.55 -0.05 

1900 13.12 13.16 -0.04 

2000 16.96 16.98 -0.02 

2100 21.00 21.02 -0.02 

2200 25.27 25.28 -0.01 

2300 29.76 29.77 -0.01 

mean diff -0.03 
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n.5 Ca l ib ra t ion Cer t i f i ca te for p s y c h r o m e t e r VII021 (Wet b u l b port t empera tu re ) 

Date P roduced : 01-18-1991 

Pre- cruise Post- cruise 

Cal TW10190A CAL TW17190A 

C(0) -21.29737 

0(1) 1.652338E-03 

C(2) 8.657969E-06 

C(3) 4.9633142-10 

C(0) -23.09244 

C(1) 4.886202E-03 

C(2) 6.813306E-06 

C(3) 8.365507E-10 

Table H.S: (Above) Calibration 
coeScients. (Opposite) Calculated 
temperatures and temperature differences 
from pre (A) and post-cruise (B) 
calibrations corresponding to the 
frequencies shown; also the overall mean 
temperature digerence. 

Freq Temp A Temp B Diff 

1400 -0.65 -0.60 -0.05 

1500 2.34 2.39 -0.05 

1600 5 . 5 4 5.59 -0.05 

1700 8.97 9.02 -0.05 

1800 12.62 12.66 -0.04 

1900 16.50 16.53 -0.03 

2000 20.61 20.63 -0.02 

2100 24.95 24.96 -0.01 

2200 29.53 29.54 -0.01 

2300 34.34 34.37 -0.03 

mean diff -0.03 

II .6 Cal ibra t ion Cer t i f i ca te for p s y c h r o m e t e r VI1021 (Dry b u l b por t t empe ra tu r e ) 

Date P roduced : 01-18-1991 

Pre- cruise Post- cruise 

Cal TD10190B CAL TD17190A 

C(0) -20.93618 

C(1) 8.259702E-04 

C(2) 8.380603E-06 

C(3) 4.365153E-10 

C(0) -23.67878 

C(1) 5.227892E-03 

C(2) 6.058437E-06 

C(3) 8.404015E.10 

Table n.6: (Above) Calibration 
coeScients. (Opposite) Calculated 
temperatures and temperature differences 
from pre (A) and post-cruise (B) 
calibrations corresponding to the 
frequencies shown; also the overall mean 
temperature difference. 

Freq Temp A Temp B Diff 

1400 -2.16 -2.18 0.02 

1500 0.63 0.63 0.00 

1600 3.63 3.64 -0.01 

1700 6.83 6.85 -0.02 

1800 10.25 10.26 -0.01 

1900 13.88 13.89 -0.01 

2000 17.73 17.73 -0.00 

2100 21.80 21.80 -0.00 

2200 26.09 26.09 -0.00 

2300 30.61 30.62 -0.01 

mean diff 0.00 
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n.Z Calibration Certificate for anemometers VI1892 (Main mast anemometer) 

Date Produced : 01-24-1991 

Pre- cruise Post- cruise 

CAL WS140789 CAL WS13090A 

0(0) 0.3840709 

0(1) 1.187526 

C(0) 0.2337457 

0(1) 1.142083 

TABLE n.7: (Above) Calibration 
coeScients. (Opposite) CalciHated wind 
speeds and wind speed differences from 
pre (A) and post-cruise (B) calibrations 
corresponding to the frequencies shown; 
also the overall mean wind speed 
diEerence. 

vane anemometer (Young)) Date Produced : 01-24-1991 

Pre- cruise Post- cruise 

Cal WW13090A CAL WW34090A 

C(0) 0 9.2677655-02 

0(1) 9.8394365-02 

C(0) 8.143723E-02 

0(1) 9.852437E-02 

TABLE n.8: (Above) Calibration 
coeScients. (Opposite) Calculated wind 
speeds and wind speed differences from 
pre (A) and post-cruise (B) calibrations 
corresponding to the frequencies shown; 
also the overall mean wind speed 
di^erence. 

Freq vel A vel B Diff 

1 1.57 1.38 0.19 

4 5.13 4.80 0.33 

7 8.70 8.23 0.47 

10 12.26 11.66 0.60 

13 15.82 15.08 0.74 

16 19.39 18.51 0.88 

19 22.95 21.93 1.02 

22 26.51 25.36 1.15 

25 30.07 28.79 1.28 

28 33.64 32.21 1.43 

mean diff 0.81 

YG6992 (Forward mast propeller 

1-24-1991 

Freq vel A vel B Diff 

1 0.19 0.18 0.01 

4 0.49 0.48 0.01 

7 0.78 0.77 0.01 

10 1.08 1.07 0.01 

13 1.37 1.36 0.01 

16 1.67 1.66 0.01 

19 1.96 1.95 0.01 

22 2.26 2.25 0.01 

25 2.55 2.55 0.00 

28 2.85 2.84 0.01 

mean diff 0.01 
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