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First look mooring study: To examine the feasibility of mooring PDAS 10 GB in 

200m or 750m of water to the North West of Cape Wrath. 

A general arrangement drawing for the buoy is given in Fig. 1. For other 

relevant information on mooring design for the DB series of buoys see Packwood 

(1982) which discusses buoy drag and proposes a mooring for 400m water depth in 

a different location. 

Environmental conditions for the area in question - NW of Cape Wrath 

Currents: Tidal 20-30cm/s, very flat tidal ellipse, major axis NE-SW 

50 year surge current 20-40cm/s 

Measured currents show episodic peaks of 90-lOOcm/s (Gould (1984)) 

Predominant current direction NE 

Wind: Maximum hourly wind speed @ 10m - 40m/s ... with 50 year return 

Waves: 50 year storm wave height (for storms longer than 12 hrs) - 35m; 

period ~ 16 sec. 

3 year storm wave height ~ 27m 

Tidal range: 2m 

(Most of the above was obtained from BS,6235, see refs) 

Assumptions 

... A depth average current of lOOcm/s. 

... 40m/s wind speed inducing an 80cm/s near surface current acting on 

the buoy hull. 

... The buoy is three point moored, for the purposes of the calculation 

it will be assumed that all the load is taken on one weather leg of 

the mooring, the remaining two legs being slack. 

... Only the drag of the top half of the two slack legs is transmitted 

to the buoy. 

... The drag coefficient of the braidline is 1.5. 



The drag coefficient of the chain is - 2.0 and the chain equivalent 

diameter is given by 4W where W = weight of chain per unit 

length in air and P is the density of the chain material. 

Guess that the super-structure drag is given by - O.GV^ (N) where V 

is the wind speed in m/s. 

Assume the braidline is elastic.with E = 3 x 10^ N/m^. (Very 

approximate figure). 

Assume a maximum surface elevation change frcm the design depth of 

+ 30m, due to wav6s and tide. 

Assume a near surface current + wave partical velocity drag of the 

form D = Vaw x 513 N based on DB1 hull drag and Saunders (1977) 

where V = steady current speed in (m/s), a is the wave amplitude in 

(m) and w is the radian frequency (guess 16 sec. period). 

Mooring configurations 

ODAS 10 GB is currently moored using 28m of 32mm stud-link chain (230 N/m in air 

~ 200 N/m in sea water, proof load 42 tonnes) as dropper chain from the buoy 

hull, followed by 100m of 81mm dia. nylon braidline (- 4 N/m in water, breaking 

load 138 tonnes) and approximately 250m of 32mm stud-link chain to a 1 tonne 

Bruce anchor. The same arrangement is used for each leg. See fig. 2 for a 

detail mooring layout of the present arrangement in the S.W. Approaches. 

Initially it will be assumed that the same components are suitable with 

differing amounts of braidline and ground chain. A minimum of - 30m of ground 

chain should be suspended above the sea-bed in still iwater. In the deeper water 

depths it would be more economic if a smaller diameter braidline could be used. 

The next size down is 72mm diameter which has a breaking load of 109 tonnes. 

Moorings were considered for both sites using 81mm and 72mm braidline as 

possible alternatives. 
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Mathematical model 

The lOS mooring catenary numerical model, described in Packwood (1985), was used 

to estimate the stretch in the braidline and the amount of ground-chain needed. 

The model takes the drag forces, described in the assumptions above, imposes the 

design current and calculates the forces on the buoy, the tensions in the 

mooring line and the shape of the catenary. The results are summarized for the 

two design water depths and the two diameters of braidline in the following 

tables and figures. Figures 3-4 incorporate the 81mm braidline and figures 5-6 

show catenaries for the 72mm diameter line. 

Water depth (m) 200 750 

Braidline diameter (mm) 81 • 72 81 72 

unstretched length of braidline 140m 1 40m 700m 700m 

max. line tension 5 tonnes 5 tonnes 12 tonnes 12 tonnes 

max. vertical load on buoy 7 tonnes 7 tonnes 14 tonnes 13 tonnes 

(inc. weight of slack legs) 

braidline extension 4m 5m 50m 50m 

length of chain lifted off sea-bed 130m 130m 340m 330m 

max. horizontal pull at the anchor 3 tonnes 3 tonnes 8 tonnes 8 tonnes 

horizontal drift of buoy 90m 90m 440m 460m 

Results are quoted to the nearest tonne or metre or 10 metres. 

Conclusions 

It appears that both the 81mm and the 72mm braidline with the 32mm chain have 

adequate strength to moor ODAS 10 in the stated locations. minimum lengths 

of ground chain required are ~ 200m in 200m of water and 400m in 750m of water. 

In all cases a 1 tonne Bruce embedment anchor would provide adequate holding 

power provided the ground is good. 
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Note that these figures arc only approximate, no attempt ha^ been made to model 

the dynamics of the buoy in large waves. Consequently instantaneous forces due 

to breaking and slamming could increase these quoted loads considerably. 

However, the mooring components appear to have a good margin of strength and 

compliance in hand. 

Note should be taken of Gould's comments that appear in the MIAS News Bulletin 

Kkx 7 that fishing activity on the slope at depths of ~ 500m was responsible for 

the majority of instrument losses in the area in question. 
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