

FILE

DE 12

I.O.S.

INTERNAL DOCUMENT

251

Mooring design study for DB2
North West of Cape Wrath

A.R. Packwood

January 1986

Internal Document No. 251

[This document should not be cited in a published bibliography, and is supplied for the use of the recipient only].

INSTITUTE OF
OCEANOGRAPHIC
SCIENCES

NATURAL
ENVIRONMENT
RESEARCH
COUNCIL

INSTITUTE OF OCEANOGRAPHIC SCIENCES

Wormley, Godalming,
Surrey GU8 5UB
(042-879-4141)

(Director: Dr. A. S. Laughton, FRS)

Bidston Observatory,
Birkenhead,
Merseyside L43 7RA
(051-653-8633)

(Assistant Director: Dr. D. E. Cartwright, FRS)

Mooring design study for DB2
North West of Cape Wrath

A.R. Packwood

January 1986

Internal Document No. 251

Institute of Oceanographic Sciences,
Brook Road,
Wormley,
Godalming,
Surrey, GU8 5UB.

This information or advice is given in good faith and is believed to be correct, but no responsibility can be accepted by the Natural Environment Research Council for any consequential loss or damage arising from any use that is made of it.

First look mooring study: To examine the feasibility of mooring ODAS 10 GB in 200m or 750m of water to the North West of Cape Wrath.

A general arrangement drawing for the buoy is given in Fig. 1. For other relevant information on mooring design for the DB series of buoys see Packwood (1982) which discusses buoy drag and proposes a mooring for 400m water depth in a different location.

Environmental conditions for the area in question - NW of Cape Wrath

Currents: Tidal 20-30cm/s, very flat tidal ellipse, major axis NE-SW
50 year surge current 20-40cm/s
Measured currents show episodic peaks of 90-100cm/s (Gould (1984))
Predominant current direction NE

Wind: Maximum hourly wind speed @ 10m ~ 40m/s ... with 50 year return

Waves: 50 year storm wave height (for storms longer than 12 hrs) ~ 35m;
period ~ 16 sec.
3 year storm wave height ~ 27m

Tidal range: 2m

(Most of the above was obtained from BS 6235, see refs)

Assumptions

- ... A depth average current of 100cm/s.
- ... 40m/s wind speed inducing an 80cm/s near surface current acting on the buoy hull.
- ... The buoy is three point moored, for the purposes of the calculation it will be assumed that all the load is taken on one weather leg of the mooring, the remaining two legs being slack.
- ... Only the drag of the top half of the two slack legs is transmitted to the buoy.
- ... The drag coefficient of the braidline is 1.5.

... The drag coefficient of the chain is ~ 2.0 and the chain equivalent diameter is given by $\frac{4W_a}{\pi P_c g}^{\frac{1}{2}}$ where W_a = weight of chain per unit length in air and P_c is the density of the chain material.

... Guess that the super-structure drag is given by $\sim 0.6V^2$ (N) where V is the wind speed in m/s.

... Assume the braidline is elastic with $E = 3 \times 10^8$ N/m². (Very approximate figure).

... Assume a maximum surface elevation change from the design depth of + 30m, due to waves and tide.

... Assume a near surface current + wave particle velocity drag of the form $D = Vaw \times 513$ N based on DB1 hull drag and Saunders (1977) where V = steady current speed in (m/s), a is the wave amplitude in (m) and w is the radian frequency (guess 16 sec. period).

Mooring configurations

ODAS 10 GB is currently moored using 28m of 32mm stud-link chain (230 N/m in air ~ 200 N/m in sea water, proof load 42 tonnes) as dropper chain from the buoy hull, followed by 100m of 81mm dia. nylon braidline (~ 4 N/m in water, breaking load 138 tonnes) and approximately 250m of 32mm stud-link chain to a 1 tonne Bruce anchor. The same arrangement is used for each leg. See fig. 2 for a detail mooring layout of the present arrangement in the S.W. Approaches. Initially it will be assumed that the same components are suitable with differing amounts of braidline and ground chain. A minimum of ~ 30 m of ground chain should be suspended above the sea-bed in still water. In the deeper water depths it would be more economic if a smaller diameter braidline could be used. The next size down is 72mm diameter which has a breaking load of 109 tonnes. Moorings were considered for both sites using 81mm and 72mm braidline as possible alternatives.

Mathematical model

The IOS mooring catenary numerical model, described in Packwood (1985), was used to estimate the stretch in the braidline and the amount of ground-chain needed. The model takes the drag forces, described in the assumptions above, imposes the design current and calculates the forces on the buoy, the tensions in the mooring line and the shape of the catenary. The results are summarized for the two design water depths and the two diameters of braidline in the following tables and figures. Figures 3-4 incorporate the 81mm braidline and figures 5-6 show catenaries for the 72mm diameter line.

Water depth (m)	200		750	
	81	72	81	72
unstretched length of braidline	140m	140m	700m	700m
max. line tension	5 tonnes	5 tonnes	12 tonnes	12 tonnes
max. vertical load on buoy (inc. weight of slack legs)	7 tonnes	7 tonnes	14 tonnes	13 tonnes
braidline extension	4m	5m	50m	60m
length of chain lifted off sea-bed	130m	130m	340m	330m
max. horizontal pull at the anchor	3 tonnes	3 tonnes	8 tonnes	8 tonnes
horizontal drift of buoy	90m	90m	440m	460m

Results are quoted to the nearest tonne or metre or 10 metres.

Conclusions

It appears that both the 81mm and the 72mm braidline with the 32mm chain have adequate strength to moor ODAS 10 in the stated locations. The minimum lengths of ground chain required are ~ 200m in 200m of water and 400m in 750m of water. In all cases a 1 tonne Bruce embedment anchor would provide adequate holding power provided the ground is good.

Note that these figures are only approximate, no attempt has been made to model the dynamics of the buoy in large waves. Consequently instantaneous forces due to breaking and slamming could increase these quoted loads considerably. However, the mooring components appear to have a good margin of strength and compliance in hand.

Note should be taken of Gould's comments that appear in the MIAS News Bulletin No. 7 that fishing activity on the slope at depths of ~ 500m was responsible for the majority of instrument losses in the area in question.

References

BS 6235: 1982. Code of practice for fixed offshore structures.

Gould, W.J. (1984) The current regime on the continental shelf North and West of the United Kingdom. SUT one-day conf. "Current measurements offshore". London 17 May 84.

Gould, W.J. (1984) CONSLEX: A progress report on current measurements on the continental slope North-West of the U.K. MIAS News Bulletin No.7: p.12.

Packwood A.R. (1985) Guide to cable catenary calculations. IOS GEC computer file EVERY1.USEB.AR.P.0E12.SHAP.GUIDE, pp.18.

Packwood A.R. (1982) DB2 theoretical mooring study. IOS Internal Document 165 pp.30.

Saunders, P.M. (1977) Average drag in oscillatory flow. Deep Sea Res. 24: 381-384.

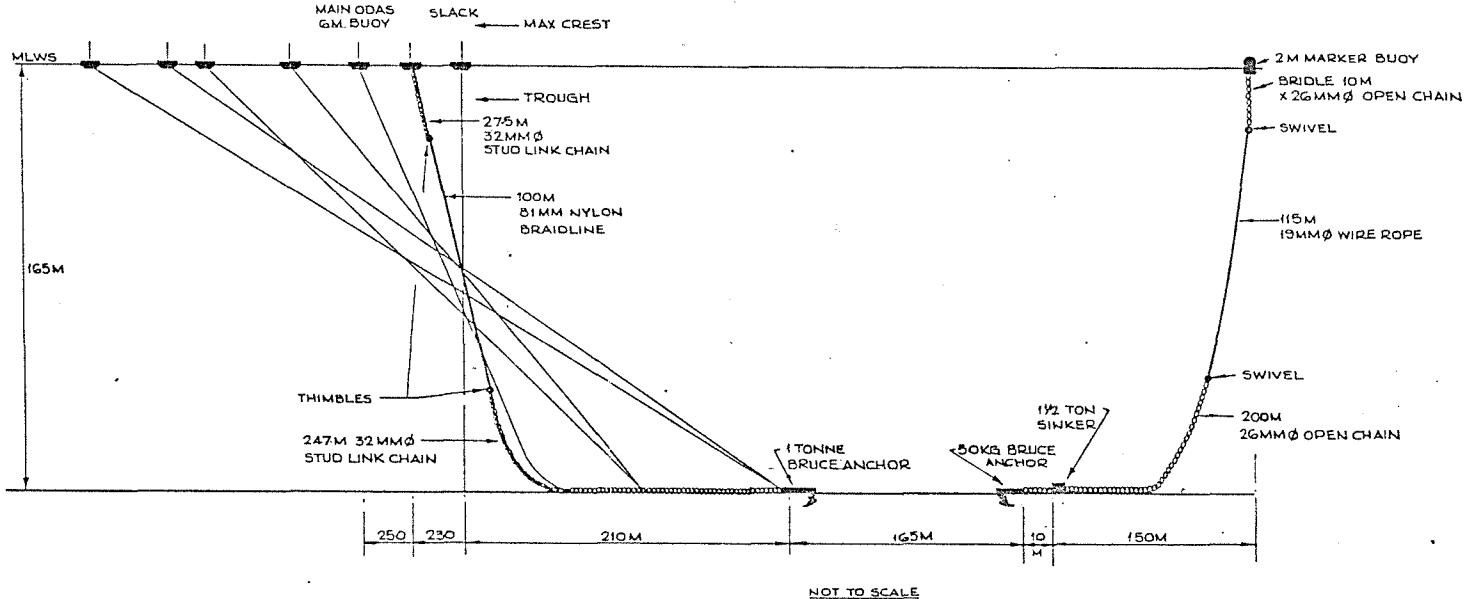
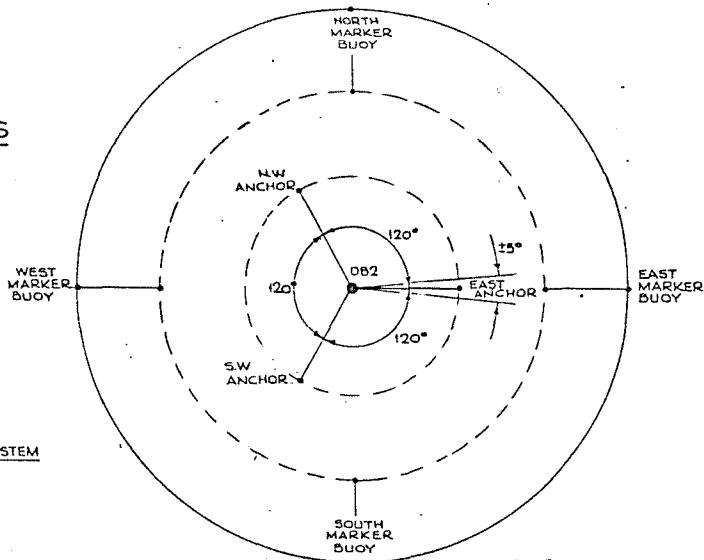


FIG. 2

SERVICE DRG. No. 260/1670/1
SECURITY CLASSIFICATION UNCLASSIFIED

3rd ANGLE PROJECTION
DID TO BE READ IN CONJUNCTION WITH 85308

NOTICE: ALL RIGHTS RESERVED. UNAUTHORISED USE, DISCLOSURE
OR REPRODUCTION IN WHOLE OR IN PART IS NOT ALLOWED.



DB2 (ODAS 10 GB) S. W. APPROACHE

48° 44.2' NORTH 8° 57.8' WEST.

DB3 (ODAS II GB) WEST OF SHETLANDS

60° 31' NORTH 2° 52' WEST.

I.A.L.A CARDINAL BUOYAGE SYSTEM

NAVIGATIONAL LIGHT CHARACTERISTICS

MAIN BUOY ODASIO E ODASII
YELLOW LIGHT (RANGE 5-1NM) AT 0.74 TRANSMISSIVITY FACTOR
5 FLASHERS X 0.5 SEC
4 ECLIPSE X 3 SEC
1 ECLIPSE X 5.5 SEC
TOTAL 20 SEC

MARKER BUOYS

WHITE LIGHT (RANGE 5-1NM) AT 0.74 TRANSMISSIVITY FACTOR
NORTH - QUICK FLASH
SOUTH - QUICK FLASH (6) + LONG FLASH EVERY 15 SECS
EAST - QUICK FLASH (3) EVERY 10 SECS.
WEST - QUICK FLASH (9) EVERY 15 SECS.

FOG SIGNAL ON MAIN BUOY
1SEC BLAST EVERY 30 SECS. (RANGE 1/2 NM)

TRACED	D 29.884										
SEARCHED	C 27.54										
INDEXED	B 11.3.83										
FILED	A 10.11.82										
DRAWN	B 4.0	ISSUE DATE	CHANGE NO.								

DESIGN GRADING		MATERIAL	FINISH	TITLE		RESPONSIBLE AUTHORITY	
GRADE				DATA BUOY DB2/3			
SPEC				MOORING DETAILS			
ORIGINAL SPEC DO NOT SCALE PRINT		CONTRACTOR'S CODE	CONTRACTOR'S CODE	NSN		SECURITY CLASSIFICATION UNCLASSIFIED	
DIMENSIONS IN		ESTIMATED MASS	PLATING THICKNESS	THORN EMI ELECTRONICS LTD (C) 1982		CONTRACTOR'S D/C NO	
			10				
				MUD ESTABLISHMENT		SERVICE D/C NO	
						ZG/1670/1	
SHEET							

FIG. 3

CABLE CATENARY SHAPE
DB2 OFF CAPE WRATH IN 200m. WATER DEPTH 27m WAVE + 40 m/s WIND

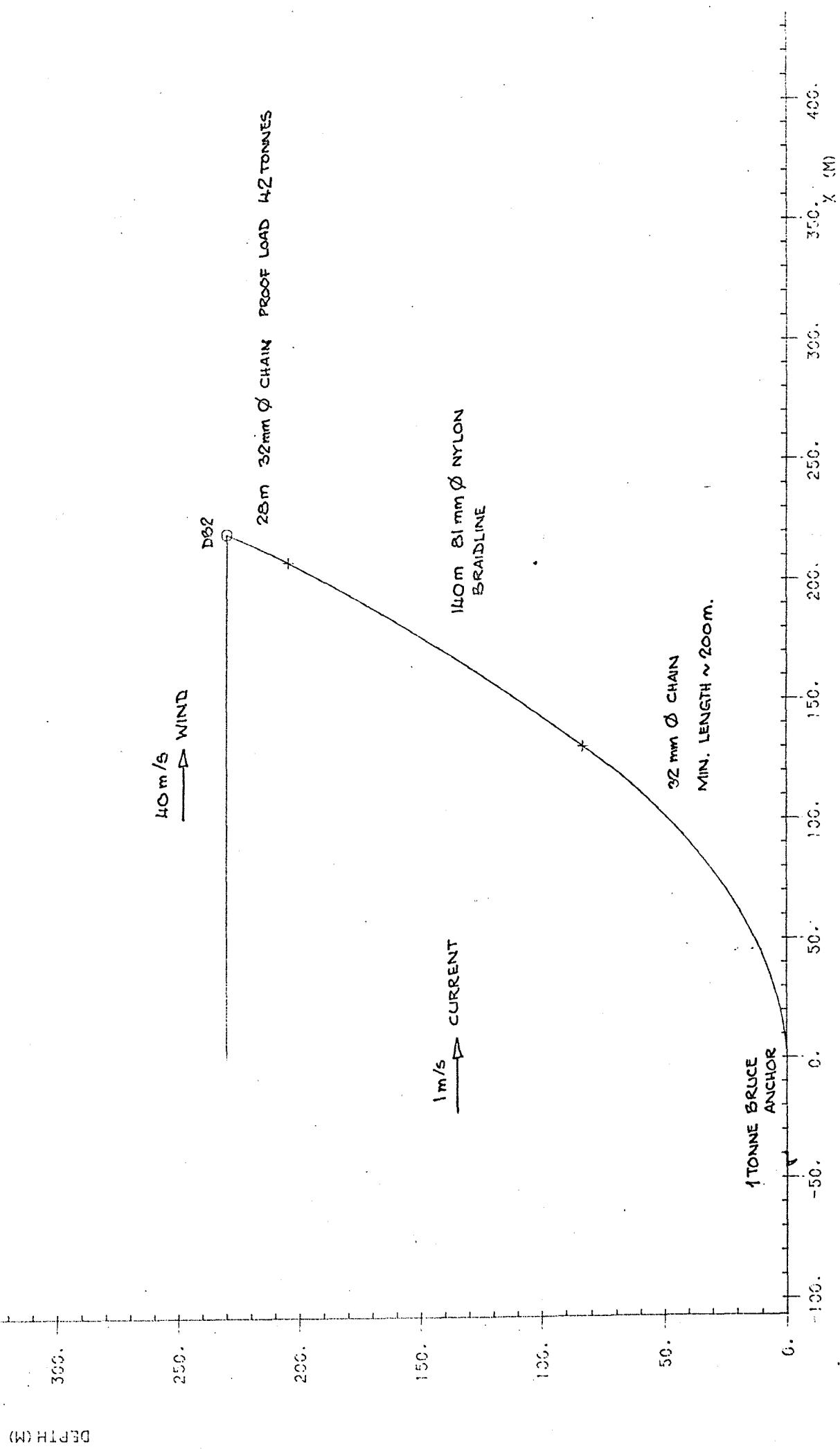


FIG. 4

CABLE CATENARY SHAPE
DB2 OFF CAPE WRATH IN 750M WATER DEPTH 27M WAVE + 40M/S WIND

DEPTH (M)

1000.

600.

600.

400.

200.

0.

40m/s
WIND

DB2

28m 32mm \varnothing CHAIN

1m/s
CURRENT

700m 81mm \varnothing NYLON
BRAIDLINE

32mm \varnothing CHAIN
MIN. LENGTH ~ 400m

1TONNE BRUCE
ANCHOR

-200.

0.

200.

400.

600.

800.

1000.

1200.

1400.

X (M)

FIG. 5

CABLE CATENARY SHAPE
DB2 OFF CAPE WRATH IN 200M WATER DEPTH 27M WAVE + 40M/S WIND

DEPTH (M)

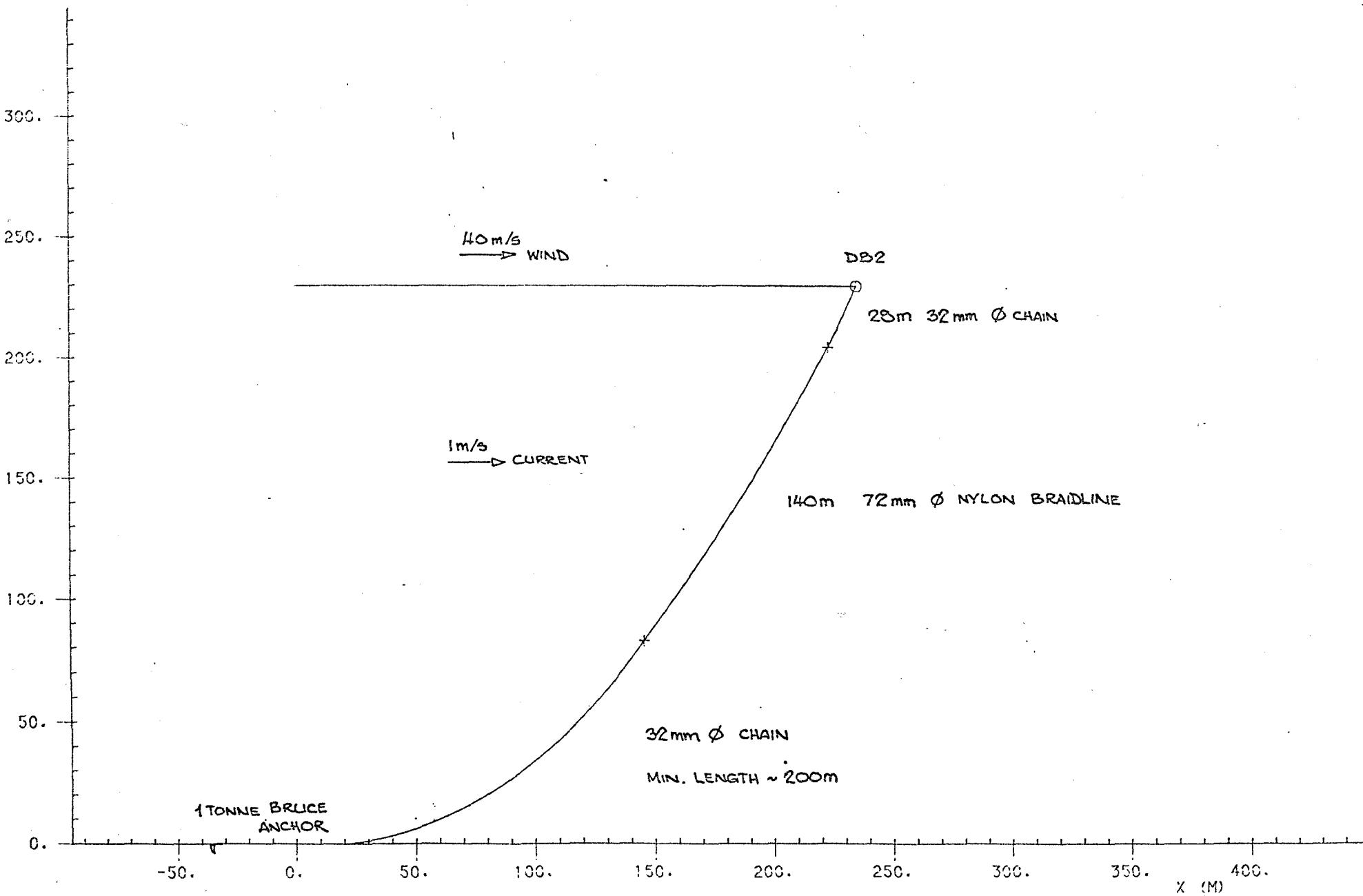


FIG. 6

CABLE CATENARY SHAPE
DB2 OFF CAPE WRATH IN 750M WATER DEPTH 27M WAVE + 40M/S WIND

DEPTH (M)

1000.

600.

600.

400.

200.

0.

-200.

0.

200.

400.

600.

800.

1000.

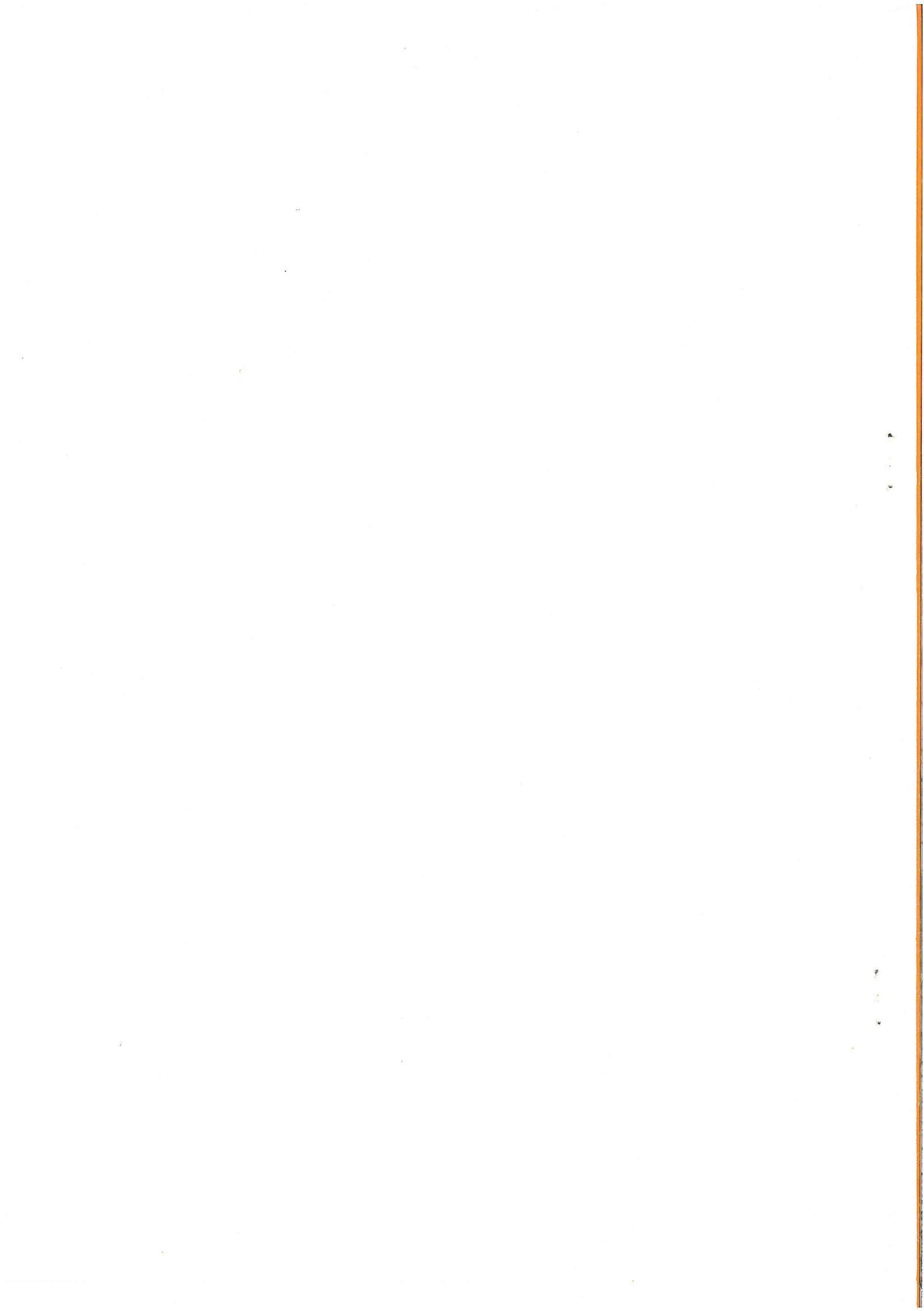
1200.

1400.

X (M)

40m/s
WIND

DB2


28m 32mm \varnothing CHAIN

1m/s
CURRENT

700m 72mm \varnothing NYLON BRAIDLINE

32mm \varnothing CHAIN MIN. LENGTH ~ 400M

1 TONNE BRUCE
ANCHOR

